
Improved Lower Bounds for Approximating
Parameterized Nearest Codeword and Related
Problems Under ETH
Shuangle Li #

State Key Laboratory for Novel Software Technology, Nanjing University, China

Bingkai Lin #

State Key Laboratory for Novel Software Technology, Nanjing University, China

Yuwei Liu #

BASICS, Shanghai Jiao Tong University, China

Abstract
In this paper we present a new gap-creating randomized self-reduction for the parameterized
Maximum Likelihood Decoding problem over Fp (k-MLDp). The reduction takes a k-MLDp instance
with k · n d-dimensional vectors as input, runs in O(d2O(k)n1.01) time for some computable function
f , outputs a (3/2 − ε)-Gap-k′-MLDp instance for any ε > 0, where k′ = O(k2 log k). Using
this reduction, we show that assuming the randomized Exponential Time Hypothesis (ETH), no
algorithms can approximate k-MLDp (and therefore its dual problem k-NCPp) within factor (3/2−ε)
in f(k) · no(

√
k/ log k) time for any ε > 0.

We then use reduction by Bhattacharyya, Ghoshal, Karthik and Manurangsi (ICALP 2018) to
amplify the (3/2 − ε)-gap to any constant. As a result, we show that assuming ETH, no algorithms
can approximate k-NCPp and k-MDPp within γ-factor in f(k) · no(kεγ) time for some constant
εγ > 0. Combining with the gap-preserving reduction by Bennett, Cheraghchi, Guruswami and
Ribeiro (STOC 2023), we also obtain similar lower bounds for k-MDPp, k-CVPp and k-SVPp.

These results improve upon the previous f(k) ·nΩ(poly log k) lower bounds for these problems under
ETH using reductions by Bhattacharyya et al. (J.ACM 2021) and Bennett et al. (STOC 2023).

2012 ACM Subject Classification Theory of computation → Problems, reductions and complete-
ness; Theory of computation → Error-correcting codes; Theory of computation → Parameterized
complexity and exact algorithms

Keywords and phrases Nearest Codeword Problem, Hardness of Approximations, Fine-grained
Complexity, Parameterized Complexity, Minimum Distance Problem, Shortest Vector Problem

Digital Object Identifier 10.4230/LIPIcs.ICALP.2024.107

Category Track A: Algorithms, Complexity and Games

Related Version Full Version: https://arxiv.org/abs/2402.09825

Acknowledgements We thank the anonymous reviewers for their detailed comments.

1 Introduction

The study of linear error correcting codes has drawn attention to two dual fundamental
computational problems called Nearest Codeword Problem (NCP) and Maximum
Likelihood Decoding (MLD). Given a matrix A ∈ Fm×n

p and a vector t⃗ ∈ Fm
p , the

Nearest Codeword Problem (NCP) asks for a vector x⃗ ∈ Fn
p such that ||Ax⃗ − t⃗||0 is

minimized. Here || · ||0 denotes the Hamming weight. While in the Maximum Likelihood
Decoding (MLD), we are given a matrix A ∈ Fm×n

p and a vector t⃗ ∈ Fm
p , the goal is to

minimize ||x⃗||0 subject to Ax⃗ = t⃗. Another fundamental problem related to a linear code is
the homogeneous version of NCP, known as Minimum Distance Problem (MDP), where
the task is to find a non-zero vector x⃗ such that ||Ax⃗||0 is minimized.

EA
T
C
S

© Shuangle Li, Bingkai Lin, and Yuwei Liu;
licensed under Creative Commons License CC-BY 4.0

51st International Colloquium on Automata, Languages, and Programming (ICALP 2024).
Editors: Karl Bringmann, Martin Grohe, Gabriele Puppis, and Ola Svensson;
Article No. 107; pp. 107:1–107:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:shuangleli@smail.nju.edu.cn
https://orcid.org/0009-0009-6865-9286
mailto:lin@nju.edu.cn
https://orcid.org/0000-0002-3444-6380
mailto:yuwei.liu@sjtu.edu.cn
https://orcid.org/0009-0000-8035-6629
https://doi.org/10.4230/LIPIcs.ICALP.2024.107
https://arxiv.org/abs/2402.09825
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

107:2 Improved Lower Bounds for Approximating k-NCP and Related Problems

The computational complexity of MLD, NCP and MDP has been studied with great effort
throughout the past several decades. It is known that MLD, NCP and MDP are not only NP-
hard [12,48], but also NP-hard to approximate within any constant ratio [6, 7, 18,22,42,47].
Moreover, the variant of MLD that allows the code being preprocessed by unbounded
computational resource is also NP-hard to approximate within a factor of (3 − ε) [24, 44].
Also it is proven that assuming NP ̸⊆ DTIME(npoly(log n)), no polynomial time algorithm
can approximate NCP up to 2log1−ϵ n factor for any ϵ > 0 [6, 43] and no polynomial time
algorithm can approximate MDP up to 2log1−ϵ n for any ϵ > 0 [7, 18, 22, 42]. For some
specific codes, MLD is also shown to be NP-hard, e.g. product code [8], Reed-Solomon
code [28], algebraic geometry code [17]. On the algorithmic side, it is known that NCP can
be approximate to O(n/ log n) in polynomial time [5].

The lattice version of NCP and MDP are known as Closest Vector Problem (CVP)
and Shortest Vector Problem (SVP). In these problems, a lattice L is given instead of
a linear code. For CVP a target t⃗ is additionally given and the goal is to find a vector v⃗ ∈ L
such that ||v⃗ − t⃗||p is minimized, where || · ||p denotes the ℓp-norm. And for SVP the goal
is to find a non-zero vector v⃗ ∈ L with minimum ℓp norm. The study for CVP and SVP
also has long history [4,6,20,25,29,33,40–42,47]. For CVP, it is NP-hard to approximate
within factor nc/ log log n for some constant c > 0 [20]. As for SVP, it was shown that
no polynomial time algorithm can approximate SVP within any constant factor assuming
NP ̸⊆ RP [33], and no polynomial time algorithm can approximate SVP up to 2log1−ϵ n

factor assuming NP ̸⊆ RTIME(npoly(log n)) [29]. Lattice problems have many applications in
cryptography [45, 46]. Due to their importance, lattice problems are also extensively studied
in the fine-grained complexity area, see, e.g., [1–3,11] and a very recent survey by Bennett [9]
for more details on hardness of SVP.

Over the past three decades, parameterized complexity, a new framework to address
NP-hard problems, has been rapidly developed and drawing growing attention. The study
in the field of parameterized complexity focuses on whether a problem can be solved in
f(k) · nO(1) time (FPT time), where k is a parameter given along with the instance. In
the parameterized version of k-MLD, k-NCP, k-MDP, k-CVP and k-SVP, an integer
k is additionally given and the task is to decide whether the optimal value is no greater
than k. Downey, Fellows, Vardy and Whittle [21] showed that k-MLD (and therefore
k-NCP) is W[1]-hard and belongs to W[2]. They asked if k-CVP and k-SVP (in ℓ2 norm)
is W[1]-hard. 20 years later in recent breakthroughs [10, 13], the parameterized intractability
of k-NCP, k-MDP, k-CVP and k-SVP are settled. Notably they ruled out not only exact
FPT algorithms, but also FPT approximation algorithms as well. Specifically, [13] first
presented a gap-creating reduction for k-NCP and then showed gap-preserving reductions
from k-NCP towards k-MDP, k-CVP and k-SVP. Soon afterwards, Bennett, Cheraghchi,
Guruswami and Ribeiro [10] improved the gap-preserving reductions for more general cases
(general fields and general ℓp norm). These two works jointly showed that it is W[1]-hard to
approximate k-NCP and k-MDP within any constant factor over any finite field Fp, and
it is W[1]-hard to approximate k-CVP in the ℓp norm within any constant factor for any
p ≥ 1. And they showed hardness for k-SVP to approximate within any constant factor in
the ℓp norm for any p > 1, and some constant approaching 2 for p = 1 .

After obtaining FPT-inapproximability results, it is natural to study fine-grained time
lower bounds for parameterized approximability of these problems. Assuming Gap-ETH
[19,39], Manurangsi [38] showed that no f(k) · no(k) time algorithm can approximate k-NCP
and k-CVP to any constant factor. With the gap-preserving reduction in [10], one can
further show that no f(k) · no(k) time algorithm can approximate k-MDP and k-SVP to

S. Li, B. Lin, and Y. Liu 107:3

any constant under the randomized Gap-ETH. All these results are based on an assumption
with a gap. This raises the following open question:
(1) Can we establish similar lower bounds for these problems under the weaker and gap-free

assumption of ETH?
We note that the gap-preserving reduction in [10] from Gap-k-NCP (Gap-k-CVP) to
Gap-k′-MDP (Gap-k′-SVP) has k′ = O(k). So, it suffices to prove constant Gap-k-NCP
(Gap-k-CVP) has no f(k) · no(k)-time algorithm assuming ETH [30]. Unfortunately, the
gap-creating reduction in [13] causes an exponential growth of the parameter and only gives
an Ω(n(log k)1/(2+ϵ))-time lower bound for constant Gap-k-NCP under ETH (See the analysis
in Section 1.3). Therefore, finding better reductions for Gap-k-NCP and Gap-k-CVP is
the crux of improving lower bounds for Gap-k-MDP and Gap-k-SVP.

1.1 Our Contributions
We take a step forward on closing the gap between results under gap-free assumption (ETH)
and gap assumption (Gap-ETH). Our main result is a new direct gap-creating self reduction
for k-MLD, which is the dual problem of k-NCP, with polynomial growth of the parameter.

▶ Theorem 1 (informal; See Theorem 20 for a formal statement). For any constant 1 < γ < 3
2

and prime power p > 1, there is a reduction runs in Ok(nO(1)) that on input a k-MLDp

instance (V, t⃗), output a Gap-k′-MLDp instance (V ′, t⃗′) satisfies:
(Completeness) If there exists k vectors in V with their sum 1 being t⃗, then there exists
k′ vectors in V ′ with their sum being t⃗′.
(Soundness) If for any set S ⊆ V with size at most k, t⃗ /∈ Span(S), then for any set
S′ ⊆ V ′ with size at most γk′, t⃗′ /∈ Span(S′).
Polynomial parameter growth k′ = O(k2 log k). (And k′ = O(k3) if not allowing random-
ness).

Combining this gap-creating reduction with the f(k)nΩ(k)-time ETH lower bound for k-MLD
in [36, Theorem 11], we obtain improved lower bounds for Gap-k-NCP assuming ETH and
randomized ETH.

▶ Corollary 2. Assuming randomized ETH, for any prime power p > 1 and real number
γ ∈ (1, 3

2), no f(k)no(
√

k/ log k) time algorithm can solve γ-Gap-k-NCPp.

▶ Corollary 3. Assuming ETH, for any prime power p > 1 and real number γ ∈ (1, 3
2), no

f(k)no(k1/3) time algorithm can solve γ-Gap-k-NCPp.

By applying the gap amplification procedure in [14] (γ → Ω(γ2), k → O(k2), see Theorem
22 for a formal statement) sufficiently many (but still constant) times, we obtain a reduction
for Gap-k-MLD with any constant gap with still polynomial growth of parameter. Therefore
we obtain the following improved ETH lower bound for k-NCP.

▶ Corollary 4. Assuming ETH, for any prime power p > 1 and real number γ > 1, no
f(k)no(kϵ) time algorithm can solve γ-Gap-k-NCPp where ϵ = 1

polylog(γ) is a constant.

Combining our results of Gap-k-NCPp with the gap-preserving reductions in [13] and [10],
we obtain improved ETH lower bounds for constant approximating k-NCP, k-CVP, k-MDP
and k-SVP. The summarize of corollaries are present in Table 1.

1 The definition of k-MLD used in our proof is a slightly different variant, where the vectors directly sum
to the target in the YES case, but they are essentially equivalent, see Section 2.3 for more details.

ICALP 2024

107:4 Improved Lower Bounds for Approximating k-NCP and Related Problems

Table 1 The f(k)nΩ(kϵ)-time lower bound for k-NCP and k-CVP are based on ETH. The other
lower bounds are based on randomized ETH.

Summarize of Corollaries

Problem Inapprox Factor Lower Bound Dependency Specification

k-NCP any γ ∈ (1, 3
2) f(k)nΩ(

√
k/ log k) any finite field Fp

k-NCP any γ > 1 f(k)nΩ(kϵ) ϵ = 1
polylog(γ) any finite field Fp

k-MDP any γ > 1 f(k)nΩ(kϵ) ϵ = 1
p log γ·polylog(p) any finite field Fp

k-CVP any γ > 1 f(k)nΩ(kϵ) ϵ = Θ(1
polylog(γ)) in any ℓp norm, p ≥ 1

k-SVP any γ > 1 f(k)nΩ(kϵ) ϵ = ϵ(p, γ)2 in any ℓp norm, p > 1

k-SVP any γ ∈ [1, 2) f(k)nΩ(kϵ) ϵ = ϵ(p, γ)3 in any ℓp norm, p ≥ 1

1.2 Technical Overview of Gap Creation Step
We implicitly use the threshold graph composition method [15, 34, 35, 37] to construct
a (3/2 − ε)-gap producing reduction for the k-MLD problem. This technique was first
introduced in [34] to prove the W[1]-hardness of k-Biclique problem. A threshold graph is a
bipartite graph that has a “threshold property”, meaning that there is a significant gap in the
number of common neighbors between any k vertices and any k + 1 vertices on the left side.
Threshold graph and its variants have been widely used to show hardness of approximation
for various parameterized problems, such as k-DominatingSet [16], k-SetCover [32, 35],
k-SetIntersection [15] or to create gap for subsequent reductions, e.g. [13].

Let ∪̇ denotes for union set of multiple disjoint sets. In this paper, we implicitly use
the strong threshold graphs in [37], which are bipartite graphs T = (A∪̇B, ET) with the
following properties:

(i) A = A1∪̇A2∪̇ · · · ∪̇Ak.
(ii) B = B1∪̇B2∪̇ · · · ∪̇Bm.
(iii) For any a1 ∈ A1, . . . , ak ∈ Ak and i ∈ [m], a1, . . . , ak have a common neighbor in Bi.
(iv) For any X ⊆ A and I ⊆ [m] with |I| ≥ εm, if for every i ∈ I, there exists bi ∈ Bi has

k + 1 neighbors in X, then |X| > h.
These strong threshold graphs are constructed from error-correcting codes with large relative
distance (1 − o(1)), and such “threshold” properties essentially come from the following
intuition of ECC: If there is a collection of codewords (X), and a constant fraction of entries
of these codewords (I ⊆ [m], |I| ≥ εm) such that, for each entry (i ∈ I), there exists two
distinct codewords in the collection having same content in it. Then, the collection must have
huge size (at least h). To characterize the aforementioned property, previous works [32,37]
introduced the definition of (ε-)Collision Number of an error-correcting code C, Colε(C),
which is the minimum size of X mentioned above.

Diving into coding-based threshold graph. Our construction deeply relies on the collision
number of an ECC, so we only use threshold graph as an intuitive illustration for readers,
and we directly use the error-correcting codes in our formal analysis.

Below we illustrate the idea of our reduction. For simplicity, here we consider k-MLD
problem on d-length vectors over binary field. Given k vectors sets V1, . . . , Vk ⊆ Fd

2, a target
vector t⃗ and a strong threshold graph T = (A∪̇B, ET), we first identify Vi with Ai for every

S. Li, B. Lin, and Y. Liu 107:5

i ∈ [k]. Our goal is to construct a one-to-one mapping f : A ∪ B → FD
2 and a new target

vector t⃗′ ∈ FD
2 for some D = poly(d, k) such that in order to pick vectors from f(A ∪ B)4

with their sum being t⃗′, one has to pick a set f(X) of vectors from f(A) for some X ⊆ A

with
∑

a⃗∈X a⃗ = t⃗ and a set f(Y) of vectors from f(B) for some Y ⊆ B such that for every
i ∈ [m],
(a) either |Y ∩ Bi| ≥ 2,
(b) or |Y ∩ Bi| = 1 and there exists bi ∈ Bi with one of following properties:

(b.1) |X| = k and bi is the common neighbors of vertices in X.
(b.2) bi has at least k + 1 neighbors in X.

Then we argue that these properties imply a constant gap between the solution sizes in the
(YES) and (NO) cases of the k-MLD problem.
(YES) Suppose there are a1 ∈ A1, . . . , ak ∈ Ak such that

∑
i∈[k] ai = t⃗. By the property

(iii) of threshold graphs, a1, . . . , ak have a common neighbor bi ∈ Bi for every i ∈ [m].
Then according to (b), the sum of f(a1), . . . , f(ak) and f(b1), . . . , f(bm) is t⃗′.

(NO) On the other hand, if there are no a1 ∈ A1, . . . , ak ∈ Ak such that
∑

i∈[k] ai = t⃗, then
one should pick either at least (1 − ε)2m vectors from f(B) and k + 1 vectors from f(A),
or pick a subset of vectors f(X) from f(A) and a subset of vectors f(Y) from f(B) for
some Y ⊆ B with |{i ∈ [m] : |Y ∩ Bi| = 1}| ≥ εm. Let I = {i ∈ [m] : |Y ∩ Bi| = 1}.
According to the property (b.2), each vertex in Y ∩ Bi (i ∈ I) has k + 1 neighbors in X.
Since |I| ≥ εm, by the property (iv) of threshold graphs, we have that |X| > h. Thus,
either (1 − ε)2m vectors in f(B) and k + 1 vectors in f(A) or m vectors in f(B) and h

vectors in f(A) must be picked in this case.
To obtain a constant gap, we duplicate each vector in f(A) m/k times and let h = ck where
c is some constant to be chosen. In the (yes) case, there are 2m vectors with their sum being
t⃗′. In the (no) case, no min{2(1 − ε)m + m, m + cm} vectors from f(A ∪ B) can have sum t⃗′.

The proof framework above has two problems to be solved.
(P1) How to combine the threshold graph and the k-MLD instance to produce vectors

f(A ∪ B) with the properties (a) and (b)?
(P2) The smaller parameter blow-up we create in reduction, the tighter running time lower

bound we obtain. So how to construct a threshold graph with h > ck and m as small as
possible?

Our approach to solve Problem (P1). Problem (P1) is related to the composition step in
the threshold graph composition method. For the k-SetCover problem, we can use the
hypercube partition system [23] to solve this problem. Unfortunately, this does not apply
to the k-MLD problem. To solve problem (P1), we exploit an additional property from the
construction of strong threshold graph using error correcting codes. More precisely, we can
assume that there is a encoding function C : A → Σm and each bi ∈ Bi can be written as
a k-tuple in (bi,1, . . . , bi,k) ∈ Σk such that bi is adjacent to aj ∈ Aj in the threshold graph
if and only if bi,j = C(aj)[i]. Informally speaking, we choose the target vector t⃗′ and the
one-to-one mapping f : A ∪ B → FD

2 such that any subset of vectors in f(A ∪ B) summing
up to t⃗′ must contains, for each i ∈ [m], at least one vector f(bi) for some bi ∈ Bi. And
if it contains exactly only one such vector f(bi), then one need to pick at least k vectors
f(a1) ∈ f(A1), . . . , f(ak) ∈ f(Ak) to cancel out the parts corresponding to bi,1, . . . , bi,k in the
vector f(bi). A careful analysis shows that this construction has the properties (a) and (b).

4 Here we let f(X) denote the set {f(x) : x ∈ X}.

ICALP 2024

107:6 Improved Lower Bounds for Approximating k-NCP and Related Problems

Our approach to solve Problem (P2). The construction of strong threshold graph in [37]
was based on the idea of Karthik and Navon [32]. Karthik and Navon [32] observed that
the “collision number” of an error-correcting code can be directly used to show the threshold
property. Intuitively speaking, a set C of strings with high ε-collision number indicates that
if there is some mechanism forces us to choose some strings in C that collides on at least ε

fraction of entries, then we must choose at least Colε(C) strings.
Known analysis of collision number in [10,32] starts from the distance of an error-correcting

code. For a code with relative distance δ, previous analysis shows that its ε-collision number
is Colε(C) =

√
2ε

1−δ . Note that δ = 1 − Θ(r
m) for Reed-Solomon codes used in the previous

works. To obtain a gap, we require Colε(C) ≥ Θ(k), which leads to m = Ω(k2)r. In our
reduction, we additionally require Σr ≥ n to fit the input size, which requires r ≥ log n

log |Σ| , then
we have m ≥ k2 log n/ log |Σ|. On the other hand, our reduction needs to enumerate every
k-tuples in Σk, concerning the running time we require |Σ|k ≤ nO(1). Putting all together,
we must have m ≥ Ω(k3). In fact, we showed that the Singleton bound of codes implies such
construction must have parameter growth Ω(k3).

To obtain a better parameter, we find the analysis by Karthik and Navon [32, Section 3.1]
can be modified to show better lower bound for the ε-collision number of a random code.
Following their idea, we show a random code CR : Σr → Σm with superconstant-sized
alphabet and m = Ω(|Σ|1/3 log |Σ|r) would have ε-collision number Colε(CR) ≥ |Σ|1/3, with
high probability. Setting |Σ| = Θ(k3), we have Colε(C) ≥ Θ(k). But now the parameter
m = Ω(|Σ|1/3 log |Σ|r) ≥ k log n is too large. Our solution is to consider a new error correcting
code with small dimension by increasing the alphabet size and show that this new code
has the same collision number. More precisely, we partition the m bits into g blocks, each
containing m/g bits and treat the code words as strings in Σ′g where Σ′ = Σm/g. Since
|Σ′k| ≤ nO(1), we have m/g ≤ O(log n

k log |Σ|) = O(log n
3k log k). Thus, g ≥ Θ(mk log k

log n) ≥ Θ(k2 log k).
This reduces the parameter growth from k3 to k2 log k, and the (randomized) ETH-based
running time lower bound can be improved to nO(

√
k/ log k). We hope to see whether some

better construction of threshold graph leads to better lower bound of problems we discuss.

1.3 Previous Work
The parameterized complexity of k-MDP had been open for many years. This problem
was first resolved by [13]. Interestingly, the reduction in [13] also ruled out constant FPT-
approximation algorithm for k-MDP over binary field. In addition, they also ruled out any
constant FPT-approximation algorithm for k-CVP in all ℓp norms. Recent work by Bennett,
Cheraghchi, Guruswami and Ribeiro [10] proved parameterized inapproximability for k-MDP
over all finite fields and k-SVP in all ℓp norms and arbitrary constant gap. These results are
all based on the W[1]-hardness of constant Gap-k-NCP or Gap-k-CVP in [13].

Unfortunately, the gap-creating reduction from k-Clique to constant Gap-k′-NCP or
Gap-k′-CVP in [13] has a long reduction chain and causes a significant increase in the
parameter. For example, the reduction from k-Clique to constant Gap-k′-NCP contains
the following steps (the reduction for Gap-k′-CVP is similar):

The first step is to reduce k-Clique to the One-Sided Gap Biclique problem. In
this step, the reduction outputs a bipartite graph H = (L ∪ R, E) and three integers
s = k(k − 1)/2, ℓ = (k + 1)! and h > ℓ on input a graph G and an integer k such that if
G contains a k-clique, then there are s vertices in L with h common neighbors. On the
other hand, if G contains no k-clique, then every s-vertex set of L has at most ℓ common
neighbors in R.

S. Li, B. Lin, and Y. Liu 107:7

The second step is to reduce the One-Sided Gap Biclique problem to Gap-k′-Linear
Dependent Set problem (Gap-k′-LDS)5. On input the bipartite graph H = (L ∪ R, E)
and three positive integers s, ℓ, h ∈ N, the reduction outputs a set W of vectors and
an integer k′ = hs such that, if H contains a Ks,h-subgraph, then there are k′ vectors
in W that are linearly dependent. If every s-vertex set in L has at most ℓ common
neighbors, then any linearly dependent set of W must have size at least (h/ℓ)1/s. To
create a constant gap, one must choose a large parameter h such that (h/ℓ)1/s ≥ γhs

for some γ > 1. Hence in [13], the authors have to set h = (k + 6)! · (γk2)k2 and
k′ = hs ≥ kΩ(k2) = 2Ω(k2 log k).
The next step is to reduce the Gap-k′-Linear Dependent Set problem (Gap-k′-LDS)
to Gap-k′′-Maximum Likelihood Decoding problem (Gap-k′′-MLD)6. This reduction
preserves the parameter i.e., k′′ = k.
The remaining step gives a reduction from constant Gap-k′′-MLD to constant Gap-k′′-
NCP.

Combining this with the f(k) · nΩ(k)-time lower bound for the k-Clique problem, we only
get a g(k) · nΩ((log k)1/(2+ϵ))-time lower bound for Gap-k-NCP using the reduction from [13].

Under a stronger gap assumption (Gap-ETH), Manurangsi [38] showed a tight nΩ(k) time
lower bound for constant approximating problems discussed in this article. His approach is
to show an nΩ(k) time lower bound for constant approximating LaberCover, then reduce it
to k-UniqueSetCover, then reduce k-UniqueSetCover to gap problems we discuss using
reduction in [6]. The key step in his proof is to establish hardness result for approximating
k-UniqueSetCover. To our best knowledge, there is no hardness of approximation result
for the parameterized k-UniqueSetCover under gap-free assumptions, e.g. ETH and
W[1] ̸= FPT.

Very recently, Guruswami, Ren and Sandeep [26] showed constant FPT-inapproximability
of k-UniqueSetCover under the assumption that Average Baby PIH holds even for 2CSP
instance having rectangular relations. It’s interesting whether their result and method can
shed some light on showing ETH-based nΩ(k) time lower bound for k-UniqueSetCover.
We remark that the ETH-based nΩ(k) time lower bound for constant approximating k-
UniqueSetCover is still an open problem, and so does its FPT-inapproximability assuming
W[1] ̸= FPT.

1.4 Paper Organization
In Section 2, we give preliminary of this paper. In Section 3, we give a new analysis on
collision number of random code, this section can be skipped if readers wants to see the
reduction directly. In Section 4, we present our gap-creating reduction for k-MLDp. In
Section 5, we show how to apply our reduction to other results and show inapproximability
of other problems. For self-containment, we give a proof of equivalence between k-MLDp

and k-NCPp in Appendix A of our full version.

2 Preliminaries

For integer m > 0, let [m] = {1, 2, · · · , m}. For prime power p > 1, we let Fp = {0, 1 · · · , p−1}
denote the p-sized finite field. We denote F+

p as Fp\{0}. For a vector v⃗ ∈ Σm and i ∈ [m], let
v⃗[i] ∈ Σ denote the i-th entry of v⃗. For two vectors u⃗, v⃗, let u⃗ ◦ v⃗ denote their concatenation.

5 In fact, the reduction in [13] from One-Sided Gap Biclique to Gap-k-LDS goes though an intermediate
problem called gap bipartite subgraph with minimum degree (GapBSMD).

6 Again, they introduced a color-coding technique to Gap-k-LDS (Gap-k-Colored-LDS) and used it
as an intermediate problem between Gap-k-LDS and Gap-k-MLD, for details see [13, Lemma 4.8,
Theorem 5.4].

ICALP 2024

107:8 Improved Lower Bounds for Approximating k-NCP and Related Problems

The symbol ∪̇ denotes for the union set of multiple disjoint sets. As a supplement of big-O
notation, we let f(k, n) = Ok(g(n)) denote there exists constant c > 0 and computable
function h : N → N such that for any fixed k > 0, f(k, n) < c · h(k)g(n) holds for all
sufficiently large n.

For alphabet Σ and vector u⃗, v⃗ ∈ Σm, the relative distance of them is defined as dist(u⃗, v⃗) =
|{i∈[m]:u⃗[i] ̸=v⃗[i]}|

m . In this article, we sometimes use “distance” as shorthand of relative distance.
For vector v⃗ ∈ Zm and p ≥ 1, let the ℓp norm of v⃗ be ℓp(v⃗) = (Σ1≤i≤m|v⃗[i]|p)1/p.

2.1 Error-correcting Codes
Error-correcting code plays a fundamental role in computer science and information theory.
The problem we mainly discuss in this article and the construction we use are closely related
to them. We give a general definition of error-correcting code. A detailed and systematic
introduction to coding theory can be found at [27].

▶ Definition 5 (Error-correcting Codes). Fix an alphabet Σ, an error-correcting code with
length m and relative distance δ > 0 is a subset C ⊆ Σm satisfying for all x⃗, y⃗ ∈ C, if x⃗ ̸= y⃗,
dist(x⃗, y⃗) ≥ δ.

▶ Definition 6 (Linear Codes). Fix an alphabet Σ such that Σr and Σm being linear spaces, a
linear code is an error-correcting code C ⊆ Σm associated with a linear function f : Σr → Σm

that for all x ∈ Σr, f(x) ∈ C.

2.2 Hypothesis
We introduce the Exponential Time Hypothesis in this section.

▶ Definition 7 (3-SAT). Given a 3-CNF formula (conjunctive formal form, each clause
contains exactly 3 literals) φ with n variables and m clauses, decide if there exists a boolean
assignment z ∈ {0, 1}n that satisfies φ, i.e., φ(z) = 1.

▶ Hypothesis 8 (Exponential Time Hypothesis [30,31]). There exists constant δ > 0 such that
3-SAT with n variable and O(n) clauses cannot be solved in time O(2δn).

▶ Hypothesis 9 (Randomized Exponential Time Hypothesis). There exists constant δ > 0 such
that 3-SAT with n variable and O(n) clauses cannot be solved by randomized algorithm in
time O(2δn).

2.3 Problems
We first give the definition of general parameterized Maximum Likelihood Decoding problem.

γ-Gap-k-MLDp

Instance: A vector multi-set V ⊆ Fd
p with size n and a target vector t⃗ ∈ Fd

p.

Parameter: k.

Problem: Distinguish between the following two cases:

(YES) There exists k distinct vectors (with respect to multi-set),
v⃗1, · · · , v⃗k ∈ V and α1, . . . , αl ∈ F+

p such that α1v⃗1 + · · · + αkv⃗k = t⃗.

(NO) Any ℓ ≤ γk, l vectors v⃗1, . . . , v⃗l ∈ V and α1, . . . , αl ∈ F+
p satisfies

α1v⃗1 + · · · + αlv⃗l ̸= t⃗.

S. Li, B. Lin, and Y. Liu 107:9

To fit requirements in our reduction, we start from a special restricted type of parameterized
Maximum Likelihood Decoding problem that vectors are partitioned into k different sets,
and the YES case asks for selecting one vector from each set such that they directly add up
to the target vector.

The other problems we study includes parameterized Nearest Codeword Problem, which
asks if there is a codeword of the given linear code having distance no more than k to a
given target vector; Minimum Distance Problem, which asks if the minimum distance of
given linear code does not exceed k; Closest Vector Problem, asking if there is a vector in
the given linear lattice having ℓp distance no more than k to a given target vector; Shortest
Vector Problem, asking if the shortest non-zero vector of given linear lattice does not exceed
k. Formal definitions of these problems are referred to the full version.

2.4 Probability Inequality
▶ Theorem 10 (Chernoff Bound). Consider independent random variables X1, . . . , Xn ∈ {0, 1}
with X =

∑m
i=1 Xi and µ = E[X]. For any 0 < δ < 1 we have

Pr[X ≤ (1 − δ)µ] ≤ exp
(

−µδ2

2

)
.

3 Collision Number of Error Correcting Codes

In this section, we introduce the definition of collision number of a code, which is key to our
gap-creating reductions. Given a collection of strings S ⊆ Σm, we say that S “collides” on
the i-th coordinate if there are distinct x, y ∈ S such that x[i] = y[i]. Following the work
of [32,37], we define the collision number of a set of strings as follows.

▶ Definition 11 (ε-Collision Number). For a set C ⊆ Σm and 0 < ε < 1, the ε-collision
number of C, denote as Colε(C), is the smallest integer s ∈ N+ such that there exists S ⊆ C

with |S| = s and S collides on more than εm coordinates, i.e.,

|{i ∈ [m] | ∃x, y ∈ S, x ̸= y s.t. x[i] = y[i]}| > εm.

To create a gap for the k-MLDp problem, we need to construct codes C ⊆ Σm with collision
number Colε(C) ≥ Ω(k) and m depends only on k. We sketch two constructions (Theorem 13
and Lemma 17).

▶ Lemma 12 ([32], See also Theorem 10 in [37]). For any constant 0 < ε ≤ 1, an error
correcting code C : Σr → Σm with relative distance 0 < δ < 1 has Colε(C) ≥

√
2ε

1−δ .

▶ Theorem 13 ([32, 37]). Fix any Reed-Solomon code CRS : Σr → Σm with r < m ≤ |Σ|.
For any 0 < ε < 1, Colε(CRS) ≥

√
2εm

r .

To fit the requirement in our reduction, i.e., |Σ|r ≥ n, we choose |Σ| = n1/k and r = Ω(k).
To fit the requirement that Colε(C) = Ω(k) in Lemma 19, the Reed-Solomon code here must
satisfy m = Ω(k2r) = Ω(k3). Seeking for a shorter code with high ε-collision number, we
turn to randomized construction of codes, and we show the following lemma. The proof is
similar to [32, Claim 3.4] by showing each coordinate has collision with low probability in a
small set, then apply Chernoff bound and union bound to show a small set can hardly have
large collision number. Details see the full version.

ICALP 2024

107:10 Improved Lower Bounds for Approximating k-NCP and Related Problems

▶ Lemma 14. For any constant 0 < ε < 1 and any random code CR : Σr → Σm where each
codeword is selected uniformly at random in Σm, if m ≥ 16 1

ε2 |Σ|1/3 ln |Σ|r and |Σ| = ω(1),
then with high probability, Colε(CR) > |Σ|1/3.

By instantiating Lemma 14 with appropriate parameter, we have:

▶ Lemma 15. For any constant c > 0 and 0 < ε < 1, there is a randomized algorithm that
given integers n, k ∈ N+, constructs a code C ⊆ Σm with parameters |C| = n, |Σ| = O(k3)
and m = O(k log n) such that with high probability, Colε(C) > ck. Moreover, the running
time of this algorithm is O(nm|Σ|).

▶ Remark 16. We remark that using an almost identical argument, Lemma 14 can be extended
to the case that for each integer t ≥ 3, if m > Ω(|Σ|1/t log |Σ|r) and |Σ| = ω(1), then w.h.p.,
Colε(CR) > |Σ|1/t. For constant t > 3, setting |Σ| = Ω(kt), Lemma 15 can be extended to
the case with same parameter but larger code alphabet.

By merging the number of code blocks over small alphabet from Lemma 15, we obtain:

▶ Lemma 17. For any constant c > 1 and 0 < ε < 1, there is a randomized algorithm that
given integers n, k ∈ N+, constructs a code C ⊆ Σm with parameters |C| = n, |Σ| = O(n1/k)
and m = O(k2 log k) such that with high probability Colε(C) > ck. Moreover, the running
time of this algorithm is O(k2 log kn1+1/k).

3.1 Limitation of Collision Analysis in [32, 37]

We have already shown the a direct collision analysis yields m′ = O(k2 log k). Below, we
argue that collision analysis from distance must cause a cubic increase in the parameter.

To obtain a constant gap using Lemma 19 in Section 4, we require the collision number of
code C to be Colε(C) = Ω(k). Combining with Lemma 12, we immediately have the relative
distance of code C must satisfy

δ ≥ 1 − 1/Ω(k2).

On the other hand, we have the following Singleton bound from coding theory, whose proof
can be found in [27, Section 4.3].

▶ Theorem 18 (Singleton Bound). For every code C : Σr → Σm with relative distance δ

must have r ≤ m − δm + 1.

We apply the bound to parameter we choose and obtain m − (1 − 1
Ω(k2)))m + 1 ≥ r, i.e.,

m ≥ Ω(k2)r.

Our reduction for MLD associates each input vector with a unique codeword, which requires
|C| = |Σ|r ≥ n, leading to

r ≥ (log n)/(log |Σ|).

Since our reduction runs in time Ω(|Σ|k), we need |Σ| ≤ nO(1/k). Thus r ≥ (log n)/(log |Σ|) ≥
Ω(k) and m ≥ Ω(k2)r ≥ Ω(k3). Note that we’ve shown the Reed-Solomon code already
achieves m = O(k3).

S. Li, B. Lin, and Y. Liu 107:11

4 Gap-creating Reduction for k-MLDp

In this section we present our gap-creation reduction for k-MLDp. First we present a
construction that illustrates our main idea and is the crux of our reduction. This construction
produces an “unbalanced gap” k′-MLDp instance in the sense that the output instance is
divided into two parts (with different sizes), any solution must contain an amount of vectors
in each part. Further, for the NO case, any solution must contain constant fraction more
vectors in at least one part. This construction still needs to be modified later to convert into
an actual reduction.

▶ Lemma 19. There is an algorithm which on input k sets of length-d vectors V1, · · · , Vk ⊆ Fd
p

each of size n, a target vector t⃗ ∈ Fd
p and a code C ⊆ |Σ|m with |C| = n and Colε(C) ≥ ck

outputs A = A1∪̇ · · · ∪̇Ak ⊆ FD
p and B = B1∪̇ . . . ∪̇Bm ⊆ FD

p with D = O(d + km|Σ|) and a
target vector t⃗′ ∈ FD

p in O(dm2k2|Σ|(n + |Σ|k))-time such that
(i) If there exist v⃗1 ∈ V1, . . . , v⃗k ∈ Vk such that

∑
i∈[k] v⃗i = t⃗, then there exists a⃗′

1 ∈
A1, · · · , a⃗′

k ∈ Ak and b⃗′
1 ∈ B1, · · · , b⃗′

m ∈ Bm with their sum being t⃗′.
(ii) If for any v⃗1 ∈ V1, . . . , v⃗k ∈ Vk and α1, . . . αk ∈ F+

p it holds that α1v⃗1 + · · · + αkv⃗k ̸= t⃗,
then any X ⊆ A∪̇B and λ : X → F+

p such that
∑

x⃗∈X λ(x⃗)x⃗ = t⃗′ must satisfy at least
one of the following:

|X ∩ A| ≥ ck and |X ∩ B| ≥ m,
|X ∩ A| ≥ k and |X ∩ B| ≥ 2(1 − ε)m.

Proof. The resulting dimension is D = d + mk|Σ| + k + m. We break the resulting dimension
into 4 blocks respectively of size d, mk|Σ|, k and m. To be precise, for any vector x⃗ ∈ FD

p , let
x⃗(1) ∈ Fd

p be the first block,
x⃗(2) ∈ Fmk|Σ|

p be second block,
x⃗(3) ∈ Fk

p be the third block,
x⃗(4) ∈ Fm

p be the fourth block.
We further break the second block into m sub-blocks each of size k|Σ|, i.e., x⃗(2) = x⃗(2,1) ◦
· · · ◦ x⃗(2,m).

We let e⃗i be the indicator vector of which the i-th entry is 1 and the other entries are 0.
To be convenient, the dimension of e⃗i depends on the context. Specially we let ι : Σ → [|Σ|]
be an arbitrary bijection, and for every σ ∈ Σ we let

e⃗σ = (
ι(σ)−1︷ ︸︸ ︷

0, . . . , 0, 1, 0 . . . , 0︸ ︷︷ ︸
|Σ|

).

Construction of A. For every Vi, associate each v⃗ ∈ Vi a distinct codeword of C, denoted
by C(v⃗). For every i ∈ [k] and v⃗ ∈ Vi, introduce a vector a⃗i,v⃗ as

a⃗
(1)
i,v⃗ = v⃗,

a⃗
(2,j)
i,v⃗ = (

(i−1)︷ ︸︸ ︷
0⃗, . . . , 0⃗, e⃗C(v⃗)[j], 0⃗, . . . , 0⃗︸ ︷︷ ︸

k

), for every j ∈ [m],

a⃗
(3)
i,v⃗ = e⃗i,

a⃗
(4)
i,v⃗ = 0⃗m.

And we let Ai = {a⃗i,v⃗ | v⃗ ∈ Vi} and A = A1 ∪ · · · ∪ Ak.

ICALP 2024

107:12 Improved Lower Bounds for Approximating k-NCP and Related Problems

(1,0, … , 0) (0, … , 0)Ԧ𝑣1

(0,1, … , 0) (0, … , 0)Ԧ𝑣2

(0,0, … , 1) (0, … , 0)Ԧ𝑣𝑘

(0, … , 0) (1,0, … , 0)0

(0, … , 0) (0,1, … , 0)0

(0, … , 0) (0,0, … , 1)(− Ԧ𝑒𝐶 𝑣1 [𝑚], … , − Ԧ𝑒𝐶 𝑣𝑘 [𝑚])0

(1,1, … , 1) (1,1, … , 1)Ԧ𝑡

𝐴1 ∋ Ԧ𝑎1,𝑣1 =

𝐴2 ∋ Ԧ𝑎2,𝑣2 =

𝐴𝑘 ∋ Ԧ𝑎𝑘,𝑣𝑘 =

𝐵1 ∋ 𝑏1,𝜎1 =

𝐵2 ∋ 𝑏2,𝜎2 =

𝐵𝑚 ∋ 𝑏𝑚,𝜎𝑚 =

Ԧ𝑡′ =

𝑘 𝑚𝑑

⋮

⋮

(0, … , 0)

(0, … , 0)

(0, … , 0)

0, 0, … , Ԧ𝑒𝐶 𝑣𝑘 [𝑚]

Ԧ𝑒𝐶 𝑣1 [m], 0, … , 0

0, Ԧ𝑒𝐶 𝑣2 [𝑚], … , 0

… ∘∘

… ∘∘

… ∘∘

… ∘∘

… ∘∘

… ∘∘

… ∘∘

(0, … , 0)

(0, … , 0)

(0, … , 0)

(− Ԧ𝑒𝐶 𝑣1 [2], … , − Ԧ𝑒𝐶 𝑣𝑘 [2])

0, 0, … , Ԧ𝑒𝐶 𝑣𝑘 [2]

Ԧ𝑒𝐶 𝑣1 [2], 0, … , 0

0, Ԧ𝑒𝐶 𝑣2 [2], … , 0

(0, … , 0)

(0, … , 0)

(− Ԧ𝑒𝐶 𝑣1 [1], … , − Ԧ𝑒𝐶 𝑣𝑘 [1])

(0, … , 0)

0, 0, … , Ԧ𝑒𝐶 𝑣𝑘 [1]

Ԧ𝑒𝐶 𝑣1 [1], 0, … , 0

0, Ԧ𝑒𝐶 𝑣2 [1], … , 0

∘

∘

∘

∘

∘

∘

∘

𝑚𝑘|Σ|

Figure 1 Illustration for the vectors of Lemma 19 in the completeness setting. We can choose
each b⃗j,σ⃗j as σ⃗j = (C(v⃗1)[j], · · · , C(v⃗k)[j]).

Construction of B. For every j ∈ [m] and σ⃗ = (σ1, . . . , σk) ∈ Σk, introduce a vector b⃗j,σ⃗ as
b⃗

(1)
j,σ⃗ = 0⃗d,

b⃗
(2,j)
j,σ⃗ = (−e⃗σ1 , · · · − e⃗σk

), b⃗
(2,j′)
j,σ⃗ = 0⃗k for every j′ ∈ [m]\{j},

b⃗
(3)
j,σ⃗ = 0⃗k,

b⃗
(4)
j,σ⃗ = e⃗j .

We let Bj = {⃗bj,σ⃗ | σ⃗ ∈ Σk} and B = B1 ∪ · · · ∪ Bm.
Finally we set the target vector t⃗′ as
t⃗′(1) = t⃗,
t⃗′(2) = 0⃗mk|Σ|,
t⃗′(3) = 1⃗k,
t⃗′(4) = 1⃗m.

Time complexity. Producing each vector in A requires O(d + mk|Σ| + km) = O(d + mk|Σ|)
time, so the total time cost producing A is O(dkn+mk2n|Σ|). Producing each vector in B also
requires O(d + mk|Σ|) time, and the total time cost producing B is O(dm|Σ|k + m2k|Σ|k+1).
So the total time cost of this reduction is O(dm2k2|Σ|(n + |Σ|k)).

Proof of (i). Suppose there exist v⃗1 ∈ V1, · · · , v⃗k ∈ Vk satisfying
∑

i∈[k] v⃗i = t⃗. For every
i ∈ [k] we choose a vector a⃗i,v⃗i

∈ Ai. And for every j ∈ [m] we choose a vector b⃗j,σ⃗j
∈ Bj ,

where σ⃗j = (C(v⃗1)[j], . . . , C(v⃗m)[j]) ∈ Σk. We now examine that
∑

i∈[k] a⃗i,v⃗i
+

∑
j∈[m] b⃗j,σ⃗j

=
t⃗′ as:

For the first block,∑
i∈[k]

a⃗
(1)
i,v⃗i

+
∑

j∈[m]

b⃗
(1)
j,σ⃗j

=
∑
i∈[k]

v⃗i +
∑

j∈[m]

0⃗d = t⃗ = t⃗′(1).

For every j ∈ [m] the (2, j)-th block,∑
i∈[k]

a⃗
(2,j)
i,v⃗i

+
∑

j′∈[m]

b⃗
(2,j)
j′,σ⃗j′

=
∑
i∈[k]

a⃗
(2,j)
i,v⃗i

+ b⃗
(2,j)
j,σ⃗j

=
∑
i∈[k]

(

i−1︷ ︸︸ ︷
0⃗, . . . , 0⃗, e⃗C(v⃗i)[j], 0⃗, . . . , 0⃗)+(−e⃗C(v⃗1)[j], . . . , −e⃗C(v⃗k)[j])

= (e⃗C(v⃗1)[j], . . . , e⃗C(v⃗k)[j]) + (−e⃗C(v⃗1)[j], . . . , −e⃗C(v⃗k)[j])

= 0⃗k|Σ| = t⃗′(2,j).

S. Li, B. Lin, and Y. Liu 107:13

For the third block,∑
i∈[k]

a⃗
(3)
i,v⃗i

+
∑

j∈[m]

b⃗
(3)
j,σ⃗j

=
∑
i∈[k]

e⃗i +
∑

j∈[m]

0⃗k = 1⃗k = t⃗′(3).

For the fourth block,∑
i∈[k]

a⃗
(4)
i,v⃗i

+
∑

j∈[m]

b⃗
(4)
j,σ⃗j

=
∑
i∈[k]

0⃗m +
∑

j∈[m]

e⃗j = 1⃗m = t⃗′(4).

Proof of (ii). Suppose X ⊆ A∪̇B and λ : X → F+
p such that

∑
x⃗∈X λ(x⃗)x⃗ = t⃗′. Observe

the third block of the equation:∑
x⃗∈X

λ(x⃗)x⃗(3) =
∑
i∈[k]

∑
x⃗∈X∩Ai

λ(x⃗)e⃗i = 1⃗m = t⃗′(3).

For every i ∈ [k], X ∩ Ai must not be empty since
∑

x⃗∈X∩Ai
λ(x⃗) = 1. Also similarly

by observing the fourth block it holds that X ∩ Bj must not be empty for every j ∈ [m].
Therefore |X ∩ A| ≥ k and |X ∩ B| ≥ m.

Further suppose that any v⃗1 ∈ V1, . . . , v⃗k ∈ Vk and α1, . . . αk ∈ F+
p must satisfy α1v⃗1 +

· · · + αkv⃗k ̸= t⃗, we show that either |X ∩ A| ≥ ck or |X ∩ B| ≥ 2(1 − ε)m.
We let I ⊆ [m] be the set of indices j that X ∩ Bj contains only one vector, i.e.,

I = {j ∈ [m] : |X ∩ Bj | = 1}.

Since |X ∩ Bj | ≥ 1 for every j ∈ [m], if |I| ≤ εm then

|X ∩ B| ≥
∑

j∈[m]\I

|X ∩ Bj | ≥ 2(1 − ε)m

as desired. It remains to show that if |I| > εm then |X ∩ A| ≥ ck.
First we claim that there must be an i ∈ [k] such that X ∩ Ai contains more than one

vector. Otherwise suppose that |X ∩ Ai| = 1 for every i ∈ [k], let a⃗i,v⃗i
∈ X ∩ Ai be the

unique vector in X ∩ Ai. Recall that in the first block, vectors in X ∩ B are all zero, so the
sum of vectors in X in the first block is∑

x⃗∈X

λ(x⃗)x⃗(1) =
∑

λ(⃗ai,v⃗i
)⃗a′(1)

i,v⃗i
=

∑
i∈[k]

λ(⃗ai,v⃗i
)v⃗i = t⃗ = t⃗′(1)

This contradicts to our assumption that for all v⃗1 ∈ V1, . . . , v⃗k ∈ Vk and α1, . . . , αk ∈ F+
p ,∑

i∈[k] αiv⃗i ̸= t⃗. Therefore, there must be such an index i∗ ∈ [k] that |A′
i∗ | > 1.

Let l > 1 be the size of X ∩ Ai∗ , we next show that l ≥ ck. Suppose that X ∩ Ai∗ =
{a⃗i∗,v⃗1 , . . . , a⃗i∗,v⃗l

} where v⃗1, . . . v⃗l ∈ Vi∗ . We show in the following that the codeword set
{C(v⃗1), . . . , C(v⃗l)} must collide on every j ∈ I. Fix any j ∈ I, let b⃗j,σ⃗ be the unique vector
in X ∩ Bj , where σ⃗ = (σ1, . . . , σk). Recall that the (2, j)-th block of the resulting dimension
consists of k|Σ| coordinates, here we further break it down into k sub-blocks each of size |Σ|,
and we focus on the (2, j, i∗)-th sub-block:∑

x⃗∈X

λ(x⃗)x⃗(2,j,i∗) = λ(⃗ai∗,v⃗1)⃗a(2,j,i∗)
i∗,v⃗1

+ · · · + λ(⃗ai∗,v⃗l
)⃗a(2,j,i∗)

i∗,v⃗l
+ λ(⃗bj,σ⃗)⃗b(2,j,i∗)

j,σ⃗

= λ(⃗ai∗,v⃗1)e⃗C(v⃗1)[j] + · · · + λ(⃗ai∗,v⃗l
)e⃗C(v⃗l)[j] − λ(⃗bj,σ⃗)e⃗σi∗

= 0⃗|Σ| = t⃗′(2,j,i∗).

ICALP 2024

107:14 Improved Lower Bounds for Approximating k-NCP and Related Problems

If C(v⃗1)[j], . . . , C(v⃗l)[j] are all distinct, the equation λ(⃗ai∗,v⃗1)e⃗C(v⃗1)[j]+· · ·+λ(⃗ai∗,v⃗l
)e⃗C(v⃗l)[j]−

λ(⃗bj,σ⃗)e⃗σi∗ = 0⃗|Σ| must not be satisfied since l > 1 and the λ’s are nonzero. Therefore
{C(v⃗1), . . . , C(v⃗l)} must collide on the j-th coordinate.

If |I| > εm then {C(v⃗1), . . . , C(v⃗l)} collide on more than εm coordinates, by the definition
of collision number, it holds that |{C(v⃗1), . . . , C(v⃗l)}| ≥ Colε(C) ≥ ck. And thus |X ∩ A| ≥
|X ∩ Ai∗ | ≥ ck. ◀

Since the codes (with good collision number) we construct has codeword length m =
O(k2 log k) (Lemma 17) much greater than k, the above construction cannot directly lead to
a gap-creating reduction for k-MLD. To settle this, intuitively we further duplicate the vector
sets A1, . . . , Ak several times into m vector sets. This leads to our gap creating reduction as
follows.

▶ Theorem 20. For any 0 < ε < 1, there is a randomized reduction which on input k

sets of length-d vectors V1, · · · , Vk ⊆ Fd
p each of size n and a target vector t⃗ ∈ Fd

p outputs
k′ vector sets U1, . . . , Uk′ ⊆ FD

p and a target vector t⃗′ ∈ FD
p with k′ = O(k2 log k) and

D = O(k′d + k′2n1/k) in O(d2O(k)n1.01) time such that
(i) If there exist v⃗1 ∈ V1, . . . , v⃗k ∈ Vk such that

∑
i∈[k] v⃗i = t⃗, then there exists u⃗1 ∈

U1, . . . , u⃗k′ ∈ Uk′ with their sum being t⃗′.
(ii) If any v⃗1 ∈ V1, . . . , v⃗k ∈ Vk and α1, . . . αk ∈ F+

p must satisfy α1v⃗1 + · · · + αkv⃗k ̸= t⃗,
then any X ⊆

⋃
i∈[k′] Ui and λ : X → F+

p such that
∑

x⃗∈X λ(x⃗)x⃗ = t⃗′ must satisfy
|X| ≥ (3

2 − ε)k′.

▶ Remark 21. Consider the k-VectorSumq problem in [36], whose definition is identical to
k-MLDq except that it requires all the coefficients being 1. A closer look at our reduction
shows that it can directly create a gap of almost (q + 1)/2 for k-VectorSumq rather than
almost 3

2 in the k-MLDq case.

5 Lower Bounds for Gap-k-NCP and Other Problems

In this section, we show the reduction described in the previous sections implies improved
running time lower bounds for various problems under ETH.

5.1 Maximum Likelihood Decoding and Nearest Codeword Problem
In [14], Bhattacharyya, Ghoshal, Karthik and Manurangsi presented a gap amplification
procedure for Gap-k-MLDp. Although they only discussed the procedure on the binary
field, it’s straightforward to see the procedure also works for Gap-k-MLDp instances over
all Fp. Formally,

▶ Theorem 22 (Generalization of Lemma 4.5 in [14]). For integers k1, k2 > 0, k′ = k2 + k1k2
and reals γ1, γ2 > 1, γ′ ≥ γ1γ2(1 − 1

k1
), there is a polynomial time algorithm that on input

2 vector sets U ⊆ Fm1
p , V ⊆ Fm2

p , |U | = n1, |V | = n2, two target vectors t⃗ ∈ Fm1
p , s⃗ ∈ Fm2

p ,
outputs a vector set W ⊆ Fm2+n1m1

p and a target vector t⃗′ ∈ Fm2+n1m1
p satisfies:

If (U, t⃗) is a YES instance of γ1-Gap-k1-MLDp instance and (V, s⃗) is a YES instance of
γ2-Gap-k2-MLDp instance, then (W, t⃗′) is a YES instance of γ′-Gap-k′-MLDp.
If (U, t⃗) is a NO instance of γ1-Gap-k1-MLDp instance and (V, s⃗) is a NO instance of
γ2-Gap-k2-MLDp instance, then (W, t⃗′) is a NO instance of γ′-Gap-k′-MLDp.

Readers seeking for a formal proof is referred to [14, Section 4.2].

S. Li, B. Lin, and Y. Liu 107:15

5.1.1 ETH-based Running Time Lower Bound
Taking a closer look at the reduction from 3-SAT to k-VectorSum in [36, Theorem 11], we
observe that by applying a minor modification, their reduction can actually have soundness
condition as:

If ϕ is not satisfiable, then for any v⃗1 ∈ V1, . . . , v⃗k ∈ Vk and α1, . . . , αk ∈ F+
p , Σk

i=1αiv⃗i ̸= t⃗.
The modification is simply appending a vector (0i−1 ◦ 1 ◦ 0k−i) to each vector in Vi, for all
1 ≤ i ≤ k. Then, the target vector is changed from a zero vector to t⃗ = 0d ◦ 1k. Completeness
of their reduction is trivially preserved. For soundness we claim, we note that for any
v⃗1 ∈ V1, · · · , v⃗k ∈ Vk and α1, · · · , αk ∈ Fp, if Σk

i=1αiv⃗i = t⃗, then α1 = · · · = αk = 1.
By strengthening the soundness condition in [36], we obtain exactly the restricted version

of k-MLDp in the previous sections. Combining with their soundness for k-VectorSum,
we obtain the following hardness result for k-MLDp as:

▶ Theorem 23 (Theorem 11 in [36]). Assuming ETH, for any constant integer p, k-MLDp

has no no(k)-time algorithm.

The parameterized MLD and NCP are equivalent in the sense that there exist reductions
preserving the solution size in both direction. Recall that Theorem 20 showed a reduction
from k-MLDp to (3/2 − ε)-Gap-k′-MLDp with k′ = k2 log k and ε > 0. Combining running
time lower bound in Theorem 23, we have:

▶ Theorem 24. Assuming randomized ETH, for any constant integer p, constant 1 < γ < 3
2 ,

γ-Gap-k-MLDp and γ-Gap-k-NCPp has no Ok(no(
√

k/ log k))-time algorithm.

By applying Theorem 22 to the gap instance itself O(log log γ) times, we can obtain
the ETH-based time lower bound for approximating parameterized MLD and NCP to any
constant factor.

▶ Corollary 25. Assuming ETH, for any constant integer p and constant γ > 1, γ-Gap-
k-MLDp and γ-Gap-k-NCPp have no Ok(no(kϵ)) time algorithm, where ϵ = 1

polylog(γ) is a
constant.

5.2 Minimum Distance Problem
The reduction from Gap-k-NCP to Gap-k-MDP in [10] is as follows.

▶ Theorem 26 ([10], Theorem 3.1 and 3.3). For any prime power p ≥ 2 there is a randomized
reduction from (4p)-Gap-k-NCPp to 4p

4p−1 -Gap-k′-MDPp runs in polynomial time with
k′ = O(k).

Use our gap-creating reduction for Gap-k-MLD, and apply the gap amplification for a
constant number of times, then use Theorem 26 to reduce to Gap-k′-MDP and self-tensoring
the instance for a constant number of times, we have:

▶ Corollary 27. Assuming randomized ETH, for any prime power p ≥ 2 and real number
γ > 1, γ-Gap-k-MDPp has no Ok(no(kϵ)) time algorithm, where ϵ = Θ(1

p log γ·polylog(p)).

5.3 Closest Vector Problem
We need a reduction from (2γ)-Gap-k-MLDq to γ-Gap-2k-CVPp from [13].

ICALP 2024

107:16 Improved Lower Bounds for Approximating k-NCP and Related Problems

▶ Theorem 28 ([13], Theorem 7.2). For any real numbers γ, p ≥ 1 and a prime number
q > 2γ, there is a reduction from (2γ)-Gap-k-MLDq to γ-Gap-k′-CVPp runs in polynomial
time, where k′ = 2k.

Use our gap-creating reduction for Gap-k-MLD, and apply gap amplification for a constant
number of times to obtain 2γ-gap, then use Theorem 28 to reduce to Gap-k′-CVP, we have:

▶ Corollary 29. Assuming ETH, there exists constant c > 0, for any real numbers p, γ ≥ 1,
γ-Gap-k-CVPp has no Ok(no(kϵ)) time algorithm, where ϵ = Θ(1

γc).

5.4 Shortest Vector Problem
Combining our work with [10], we show two ways of obtaining running time lower bound
for γ-Gap-k-SVPp. The first way reduces from Gap-k-CVPp, obtaining lower bound for
only a fixed constant ratio and all lp norms where p ≥ 1. The second way reduces from
Gap-k-NCPq, obtaining lower bound for all constant ratio and all lp norms except for l1.

5.4.1 Reduction From Gap-k-CVPp

▶ Theorem 30 ([10], Theorem 4.1 and 4.3, modified). For any real numbers p ≥ 1 and
γ′ ∈ [1, 2) there exist a real number γ ≥ 1 7 and a reduction from γ-Gap-k-CVPp to
γ′-Gap-k′-SVPp runs in polynomial time, where k′ ≤ γk.

Use Corollary 29 to obtain a γ0-gap CVP instance, where γ0 fits requirement in Theorem 30,
then use Theorem 30 we have:

▶ Corollary 31. Assuming randomized ETH, for any real numbers p ≥ 1 and γ ∈ [1, 2),
γ-Gap-k-SVPp has no Ok(no(kϵ)) time algorithm,where 0 < ϵ < 1 is some constant that
depends on p and γ.

5.4.2 Reduction From Gap-k-NCP2

▶ Theorem 32 ([10], Lemma 5.1 and Theorem 5.2, modified). There exists a constant real
µ ≥ 1 such that, for any real numbers p > 1 and γ′ ≥ 1, there exists a reduction from
µ-Gap-k-NCP2 to γ′-Gap-k′-SVPp runs in polynomial time, where k′ = O(kc), c > 1 is a
constant only depends on p and γ′8.

The reduction in Theorem 32 in fact proceeds in two steps: first reduces µ-Gap-k-NCP2 to
γ′-Gap-k′-SVPp for some fixed γ′ > 1 with k′ < µk (while having some additional properties
for the second step), then use a tensor technique to amplify the gap to any constant.

▶ Corollary 33. Assuming randomized ETH, for any real numbers p > 1 and γ ≥ 1, γ-Gap-
k-SVPp has no Ok(no(kϵ)) time algorithm, where 0 < ϵ < 1 is some constant that depends
on p and γ.

7 γ = (max
(

12/ε, 1
(1+ε/2)1/p−1

)
)p where ε = (γ′)−1 − 1/2 > 0.

8 There are two problems here about the parameter blow-up, one is that k′ ≤ (µk)O(1) due to the
Haviv-Regev “tensoring” step of SVP, the other is that to achieve final gap γ′, the gap µ of NCP needs
to satisfy µ

2p+1+αµ > γ′ for some 1/2 + 2−p < α < 1, causing a polynomial blow-up of parameter to
achieve such µ.

S. Li, B. Lin, and Y. Liu 107:17

6 Conclusion

We have presented new ETH-based lower bounds for approximating parameterized nearest
codeword problem and its related problems, improving upon the previous results from [10,13].
Our reduction technique is also simpler and more straight forward than the one used in [13].
However, our results still do not match the lower bound for constant Gap-k-NCP based on
Gap-ETH [38]. A natural open problem is to close this gap by proving a stronger lower bound
under an assumption that is weaker than Gap-ETH, such as constant Gap-k-Clique has
no no(k)-time algorithm. This would be a key step towards understanding the fine-grained
complexity of parameterized nearest codeword problem and its variants.

▶ Open Problem 34. Prove no(k) time lower bound of approximating k-NCPp or its related
problems to any constant factor under assumptions weaker than Gap-ETH.

To show such a result, as pointed out in [38], one might need to come up with a better
“one-shot proof” that gives arbitrary constant factors without tensoring, and with linear
parameter growth.

In this paper, we give a new method of composing threshold graph with vector problems
to yield hardness of approximation results. We showed the limitation of analyzing collision
number of a code from its relative distance in [32,37], and improved the analysis to bypass
the limitation above. It might be interesting to consider whether this result can be further
improved to yield threshold graph with better parameters, or some limitations of our method
can be discovered, formally:

▶ Open Problem 35. Give a better construction of strong threshold graph in Section 1.2
with h = Ω(k) and m = O(k), or show that such graphs do not exist.

References
1 Divesh Aggarwal, Huck Bennett, Zvika Brakerski, Alexander Golovnev, Rajendra Kumar,

Zeyong Li, Spencer Peters, Noah Stephens-Davidowitz, and Vinod Vaikuntanathan. Lattice
problems beyond polynomial time. In Proceedings of the 55th Annual ACM Symposium on
Theory of Computing, pages 1516–1526. ACM, 2023. doi:10.1145/3564246.3585227.

2 Divesh Aggarwal, Huck Bennett, Alexander Golovnev, and Noah Stephens-Davidowitz. Fine-
grained hardness of CVP(P) - everything that we can prove (and nothing else). In Proceedings
of the 2021 ACM-SIAM Symposium on Discrete Algorithms, SODA 2021, pages 1816–1835.
SIAM, 2021. doi:10.1137/1.9781611976465.109.

3 Divesh Aggarwal and Noah Stephens-Davidowitz. (gap/s)eth hardness of SVP. In Proceedings
of the 50th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2018, pages
228–238. ACM, 2018. doi:10.1145/3188745.3188840.

4 Miklós Ajtai. The shortest vector problem in L2 is NP-hard for randomized reductions
(extended abstract). In Proceedings of the Thirtieth Annual ACM Symposium on the Theory
of Computing, pages 10–19. ACM, 1998. doi:10.1145/276698.276705.

5 Noga Alon, Rina Panigrahy, and Sergey Yekhanin. Deterministic approximation algorithms
for the nearest codeword problem. In Approximation, Randomization, and Combinatorial
Optimization. Algorithms and Techniques, 12th International Workshop, APPROX 2009, and
13th International Workshop, RANDOM 2009. Proceedings, volume 5687 of Lecture Notes in
Computer Science, pages 339–351. Springer, 2009. doi:10.1007/978-3-642-03685-9_26.

6 Sanjeev Arora, László Babai, Jacques Stern, and Z. Sweedyk. The hardness of approximate
optima in lattices, codes, and systems of linear equations. J. Comput. Syst. Sci., 54(2):317–331,
1997. doi:10.1006/jcss.1997.1472.

ICALP 2024

https://doi.org/10.1145/3564246.3585227
https://doi.org/10.1137/1.9781611976465.109
https://doi.org/10.1145/3188745.3188840
https://doi.org/10.1145/276698.276705
https://doi.org/10.1007/978-3-642-03685-9_26
https://doi.org/10.1006/jcss.1997.1472

107:18 Improved Lower Bounds for Approximating k-NCP and Related Problems

7 Per Austrin and Subhash Khot. A simple deterministic reduction for the gap minimum distance
of code problem. IEEE Trans. Inf. Theory, 60(10):6636–6645, 2014. doi:10.1109/TIT.2014.
2340869.

8 S Barg. Some new np-complete coding problems. Problemy Peredachi Informatsii, 30(3):23–28,
1994.

9 Huck Bennett. The complexity of the shortest vector problem. SIGACT News, 54(1):37–61,
2023. doi:10.1145/3586165.3586172.

10 Huck Bennett, Mahdi Cheraghchi, Venkatesan Guruswami, and João Ribeiro. Parameterized
inapproximability of the minimum distance problem over all fields and the shortest vector
problem in all ℓp norms. In Proceedings of the 55th Annual ACM Symposium on Theory of
Computing, STOC 2023, pages 553–566. ACM, 2023. doi:10.1145/3564246.3585214.

11 Huck Bennett, Chris Peikert, and Yi Tang. Improved hardness of BDD and SVP under
gap-(s)eth. In 13th Innovations in Theoretical Computer Science Conference, ITCS 2022,
volume 215 of LIPIcs, pages 19:1–19:12. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2022. doi:10.4230/LIPIcs.ITCS.2022.19.

12 Elwyn R. Berlekamp, Robert J. McEliece, and Henk C. A. van Tilborg. On the inherent
intractability of certain coding problems (corresp.). IEEE Trans. Inf. Theory, 24(3):384–386,
1978. doi:10.1109/TIT.1978.1055873.

13 Arnab Bhattacharyya, Édouard Bonnet, László Egri, Suprovat Ghoshal, Karthik C. S., Bingkai
Lin, Pasin Manurangsi, and Dániel Marx. Parameterized intractability of even set and shortest
vector problem. J. ACM, 68(3):16:1–16:40, 2021. doi:10.1145/3444942.

14 Arnab Bhattacharyya, Suprovat Ghoshal, Karthik C. S., and Pasin Manurangsi. Parameterized
intractability of even set and shortest vector problem from gap-eth. In 45th International
Colloquium on Automata, Languages, and Programming, ICALP 2018, volume 107 of LIPIcs,
pages 17:1–17:15. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2018. doi:10.4230/
LIPICS.ICALP.2018.17.

15 Boris Bukh, Karthik C. S., and Bhargav Narayanan. Applications of random algebraic
constructions to hardness of approximation. In 62nd IEEE Annual Symposium on Foundations
of Computer Science, pages 237–244. IEEE, 2021. doi:10.1109/FOCS52979.2021.00032.

16 Yijia Chen and Bingkai Lin. The constant inapproximability of the parameterized dominating
set problem. SIAM J. Comput., 48(2):513–533, 2019. doi:10.1137/17M1127211.

17 Qi Cheng. Hard problems of algebraic geometry codes. IEEE Trans. Inf. Theory, 54(1):402–406,
2008. doi:10.1109/TIT.2007.911213.

18 Qi Cheng and Daqing Wan. A deterministic reduction for the gap minimum distance problem.
IEEE Trans. Inf. Theory, 58(11):6935–6941, 2012. doi:10.1109/TIT.2012.2209198.

19 Irit Dinur. Mildly exponential reduction from gap-3sat to polynomial-gap label-cover. In
Electronic colloquium on computational complexity ECCC; research reports, surveys and books
in computational complexity, 2016.

20 Irit Dinur, Guy Kindler, Ran Raz, and Shmuel Safra. Approximating CVP to within almost-
polynomial factors is np-hard. Comb., 23(2):205–243, 2003. doi:10.1007/s00493-003-0019-y.

21 Rodney G. Downey, Michael R. Fellows, Alexander Vardy, and Geoff Whittle. The parametrized
complexity of some fundamental problems in coding theory. SIAM J. Comput., 29(2):545–570,
1999. doi:10.1137/S0097539797323571.

22 Ilya Dumer, Daniele Micciancio, and Madhu Sudan. Hardness of approximating the minimum
distance of a linear code. IEEE Trans. Inf. Theory, 49(1):22–37, 2003. doi:10.1109/TIT.
2002.806118.

23 Uriel Feige. A threshold of ln n for approximating set cover. J. ACM, 45(4):634–652, 1998.
doi:10.1145/285055.285059.

24 Uriel Feige and Daniele Micciancio. The inapproximability of lattice and coding problems with
preprocessing. J. Comput. Syst. Sci., 69(1):45–67, 2004. doi:10.1016/j.jcss.2004.01.002.

https://doi.org/10.1109/TIT.2014.2340869
https://doi.org/10.1109/TIT.2014.2340869
https://doi.org/10.1145/3586165.3586172
https://doi.org/10.1145/3564246.3585214
https://doi.org/10.4230/LIPIcs.ITCS.2022.19
https://doi.org/10.1109/TIT.1978.1055873
https://doi.org/10.1145/3444942
https://doi.org/10.4230/LIPICS.ICALP.2018.17
https://doi.org/10.4230/LIPICS.ICALP.2018.17
https://doi.org/10.1109/FOCS52979.2021.00032
https://doi.org/10.1137/17M1127211
https://doi.org/10.1109/TIT.2007.911213
https://doi.org/10.1109/TIT.2012.2209198
https://doi.org/10.1007/s00493-003-0019-y
https://doi.org/10.1137/S0097539797323571
https://doi.org/10.1109/TIT.2002.806118
https://doi.org/10.1109/TIT.2002.806118
https://doi.org/10.1145/285055.285059
https://doi.org/10.1016/j.jcss.2004.01.002

S. Li, B. Lin, and Y. Liu 107:19

25 Oded Goldreich, Daniele Micciancio, Shmuel Safra, and Jean-Pierre Seifert. Approximating
shortest lattice vectors is not harder than approximating closest lattice vectors. Inf. Process.
Lett., 71(2):55–61, 1999. doi:10.1016/S0020-0190(99)00083-6.

26 Venkatesan Guruswami, Xuandi Ren, and Sai Sandeep. Baby pih: Parameterized inapproxima-
bility of min csp. Electron. Colloquium Comput. Complex., TR23-155, 2023. arXiv:TR23-155.

27 Venkatesan Guruswami, Atri Rudra, and Madhu Sudan. Essential coding theory. Draft
available at https://cse.buffalo.edu/faculty/atri/courses/coding-theory/book/, 2(1),
2023.

28 Venkatesan Guruswami and Alexander Vardy. Maximum-likelihood decoding of reed-solomon
codes is np-hard. IEEE Trans. Inf. Theory, 51(7):2249–2256, 2005. doi:10.1109/TIT.2005.
850102.

29 Ishay Haviv and Oded Regev. Tensor-based hardness of the shortest vector problem to within
almost polynomial factors. Theory Comput., 8(1):513–531, 2012. doi:10.4086/toc.2012.
v008a023.

30 Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-sat. J. Comput. Syst.
Sci., 62(2):367–375, 2001. doi:10.1006/jcss.2000.1727.

31 Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have strongly
exponential complexity? J. Comput. Syst. Sci., 63(4):512–530, 2001. doi:10.1006/jcss.2001.
1774.

32 Karthik C. S. and Inbal Livni Navon. On hardness of approximation of parameterized set
cover and label cover: Threshold graphs from error correcting codes. In 4th Symposium on
Simplicity in Algorithms, pages 210–223. SIAM, 2021. doi:10.1137/1.9781611976496.24.

33 Subhash Khot. Hardness of approximating the shortest vector problem in lattices. J. ACM,
52(5):789–808, 2005. doi:10.1145/1089023.1089027.

34 Bingkai Lin. The parameterized complexity of the k-biclique problem. J. ACM, 65(5):34:1–
34:23, 2018. doi:10.1145/3212622.

35 Bingkai Lin. A simple gap-producing reduction for the parameterized set cover problem. In
46th International Colloquium on Automata, Languages, and Programming, volume 132 of
LIPIcs, pages 81:1–81:15. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2019. doi:
10.4230/LIPIcs.ICALP.2019.81.

36 Bingkai Lin, Xuandi Ren, Yican Sun, and Xiuhan Wang. On lower bounds of approximating
parameterized k-clique. In 49th International Colloquium on Automata, Languages, and
Programming, volume 229 of LIPIcs, pages 90:1–90:18. Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, 2022. doi:10.4230/LIPIcs.ICALP.2022.90.

37 Bingkai Lin, Xuandi Ren, Yican Sun, and Xiuhan Wang. Constant approximating parameter-
ized k-setcover is w[2]-hard. In Proceedings of the 2023 ACM-SIAM Symposium on Discrete
Algorithms, pages 3305–3316. SIAM, 2023. doi:10.1137/1.9781611977554.ch126.

38 Pasin Manurangsi. Tight running time lower bounds for strong inapproximability of maximum
k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In
Proceedings of the 2020 ACM-SIAM Symposium on Discrete Algorithms, SODA 2020, pages
62–81. SIAM, 2020. doi:10.1137/1.9781611975994.5.

39 Pasin Manurangsi and Prasad Raghavendra. A birthday repetition theorem and complexity of
approximating dense csps. arXiv preprint arXiv:1607.02986, 2016.

40 Daniele Micciancio. The shortest vector in a lattice is hard to approximate to within some
constant. SIAM J. Comput., 30(6):2008–2035, 2000. doi:10.1137/S0097539700373039.

41 Daniele Micciancio. The hardness of the closest vector problem with preprocessing. IEEE
Trans. Inf. Theory, 47(3):1212–1215, 2001. doi:10.1109/18.915688.

42 Daniele Micciancio. Locally dense codes. In IEEE 29th Conference on Computational
Complexity, pages 90–97. IEEE Computer Society, 2014. doi:10.1109/CCC.2014.17.

43 Ran Raz. A parallel repetition theorem. SIAM J. Comput., 27(3):763–803, 1998. doi:
10.1137/S0097539795280895.

ICALP 2024

https://doi.org/10.1016/S0020-0190(99)00083-6
https://arxiv.org/abs/TR23-155
https://cse.buffalo.edu/faculty/atri/courses/coding-theory/book/
https://doi.org/10.1109/TIT.2005.850102
https://doi.org/10.1109/TIT.2005.850102
https://doi.org/10.4086/toc.2012.v008a023
https://doi.org/10.4086/toc.2012.v008a023
https://doi.org/10.1006/jcss.2000.1727
https://doi.org/10.1006/jcss.2001.1774
https://doi.org/10.1006/jcss.2001.1774
https://doi.org/10.1137/1.9781611976496.24
https://doi.org/10.1145/1089023.1089027
https://doi.org/10.1145/3212622
https://doi.org/10.4230/LIPIcs.ICALP.2019.81
https://doi.org/10.4230/LIPIcs.ICALP.2019.81
https://doi.org/10.4230/LIPIcs.ICALP.2022.90
https://doi.org/10.1137/1.9781611977554.ch126
https://doi.org/10.1137/1.9781611975994.5
https://doi.org/10.1137/S0097539700373039
https://doi.org/10.1109/18.915688
https://doi.org/10.1109/CCC.2014.17
https://doi.org/10.1137/S0097539795280895
https://doi.org/10.1137/S0097539795280895

107:20 Improved Lower Bounds for Approximating k-NCP and Related Problems

44 Oded Regev. Improved inapproximability of lattice and coding problems with preprocessing.
IEEE Trans. Inf. Theory, 50(9):2031–2037, 2004. doi:10.1109/TIT.2004.833350.

45 Oded Regev. On lattices, learning with errors, random linear codes, and cryptography. J.
ACM, 56(6):34:1–34:40, 2009. doi:10.1145/1568318.1568324.

46 Oded Regev. The learning with errors problem (invited survey). In Proceedings of the 25th
Annual IEEE Conference on Computational Complexity, CCC 2010, pages 191–204. IEEE
Computer Society, 2010. doi:10.1109/CCC.2010.26.

47 Jacques Stern. Approximating the number of error locations within a constant ratio is
np-complete. In Applied Algebra, Algebraic Algorithms and Error-Correcting Codes, 10th
International Symposium, AAECC-10, 1993, Proceedings, volume 673 of Lecture Notes in
Computer Science, pages 325–331. Springer, 1993. doi:10.1007/3-540-56686-4_54.

48 Alexander Vardy. The intractability of computing the minimum distance of a code. IEEE
Trans. Inf. Theory, 43(6):1757–1766, 1997. doi:10.1109/18.641542.

https://doi.org/10.1109/TIT.2004.833350
https://doi.org/10.1145/1568318.1568324
https://doi.org/10.1109/CCC.2010.26
https://doi.org/10.1007/3-540-56686-4_54
https://doi.org/10.1109/18.641542

	1 Introduction
	1.1 Our Contributions
	1.2 Technical Overview of Gap Creation Step
	1.3 Previous Work
	1.4 Paper Organization

	2 Preliminaries
	2.1 Error-correcting Codes
	2.2 Hypothesis
	2.3 Problems
	2.4 Probability Inequality

	3 Collision Number of Error Correcting Codes
	3.1 Limitation of Collision Analysis in [32,37]

	4 Gap-creating Reduction for k-MLD_p
	5 Lower Bounds for Gap-k-NCP and Other Problems
	5.1 Maximum Likelihood Decoding and Nearest Codeword Problem
	5.1.1 ETH-based Running Time Lower Bound

	5.2 Minimum Distance Problem
	5.3 Closest Vector Problem
	5.4 Shortest Vector Problem
	5.4.1 Reduction From Gap-k-CVP_p
	5.4.2 Reduction From Gap-k-NCP_2

	6 Conclusion

