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Abstract
We study the sensitivity oracles problem for subgraph connectivity in the decremental and fully
dynamic settings. In the fully dynamic setting, we preprocess an n-vertices m-edges undirected
graph G with noff deactivated vertices initially and the others are activated. Then we receive a
single update D ⊆ V (G) of size |D| = d ≤ d⋆, representing vertices whose states will be switched.
Finally, we get a sequence of queries, each of which asks the connectivity of two given vertices u and
v in the activated subgraph. The decremental setting is a special case when there is no deactivated
vertex initially, and it is also known as the vertex-failure connectivity oracles problem.

We present a better deterministic vertex-failure connectivity oracle with Ô(d⋆m) preprocessing
time, Õ(m) space, Õ(d2) update time and O(d) query time, which improves the update time of the
previous almost-optimal oracle [14] from Ô(d2) to Õ(d2).

We also present a better deterministic fully dynamic sensitivity oracle for subgraph connectivity
with Ô(min{m(noff + d⋆), nω}) preprocessing time, Õ(min{m(noff + d⋆), n2}) space, Õ(d2) update
time and O(d) query time, which significantly improves the update time of the state of the art [9] from
Õ(d4) to Õ(d2). Furthermore, our solution is even almost-optimal assuming popular fine-grained
complexity conjectures.
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1 Introduction

We study the sensitivity oracles problem for subgraph connectivity in the decremental and fully
dynamic settings, which is one of the fundamental dynamic graph problems in undirected
graphs. In the fully dynamic setting, this problem has three phases. In the preprocessing
phase, given an integer d⋆, we preprocess an n-vertices m-edges undirected graph G = (V, E)
in which some vertices are activated, called on-vertices and denoted by Von, while the others
are deactivated, called off-vertices and denoted by Voff . We let non = |Von| and noff = |Voff |
denote the number of initial on-vertices and off-vertices respectively. In the update phase, we
will receive a set D ⊆ V with |D| = d ≤ d⋆, representing vertices whose states will be switched,
and we update the oracle. In the subsequent query phase, let Vnew = (Von \D) ∪ (Voff ∩D)
denote the activated vertices after the update. Each query will give a pair of vertices
u, v ∈ Vnew and ask the connectivity of u and v in the new activated subgraph G[Vnew]. The
decremental setting is a special case where there is no off-vertices initially, i.e. Voff is empty.

The decremental version of this problem is also called the vertex-failure connectivity
oracles problem, which has been studied extensively, e.g. [4, 5, 18, 17, 14, 13], and its
complexity was well-understood up to subpolynomial factors. Specifically, a line of works by
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Duan and Pettie [4, 5] started the study on vertex-failure connectivity oracles for general d⋆,
and they finally gave a deterministic oracle with Õ(mn) preprocessing time, Õ(md⋆) space,
Õ(d3) update time and O(d) query time. Following [4, 5], Long and Saranurak [14] presented
an improved solution with Ô(m) + Õ(md⋆) preprocessing time, Õ(m) space, Ô(d2) update
time and O(d) query time1, which is optimal up to subpolynomial factors because matching
(conditional) lower bounds for all the four complexity measurements were shown in [7, 5, 14].
We refer to Table 1 for more solutions to this problem (for example, Kosinas [13] proposed a
simple and practical algorithm using a conceptually different approach). However, there are
still relatively large subpolynomial overheads on the current almost-optimal upper bounds
(i.e., on the preprocessing time and update time of the LS-oracle), so a natural question is
whether we can improve them:

Can we design an almost-optimal deterministic vertex-failure connectivity oracle with only
polylogarithmic overheads on the update time, or even on all complexity bounds?

The fully dynamic sensitivity oracles problem for subgraph connectivity was studied
by [8, 9]. Henzinger and Neumann [8] showed a black-box reduction from the decremental
setting. Plugging in the almost-optimal decremental algorithm of [14], this reduction leads to
a fully dynamic sensitivity oracle with Ô(n2

offm) + Õ(d⋆n2
offm) preprocessing time, Õ(n2

offm)
space, Ô(d4) update time and O(d2). Hu, Kosinas and Polak [9] studied this problem from an
equivalent but different perspective called connectivity oracles for predictable vertex failures,
which gave a solution with Õ((noff + d⋆)m) preprocessing time, Õ((noff + d⋆)m) space, Õ(d4)
update time and O(d) query time2. Despite the efforts, there are still gaps between the
upper bounds of the fully dynamic setting and the decremental setting (except the query
time). Naturally, one may have the following question:

Can we match the upper bounds in the fully dynamic and decremental settings
or show separations between them for all the four measurements?

Notably, [9] showed a conditional lower bound Ω̂((noff + d⋆)m) on the preprocessing time3,
which separated two settings at the preprocessing time aspect. However, the right complexity
bounds are still not clear for the space and the update time. In particular, given that
two different approaches [8, 9] both showed upper bounds around d4 for update time, it is
interesting to identify if this is indeed a barrier or it just happened accidentally. Furthermore,
we note that it seems hard to improve the update time following either of these two approaches,
because the black-box reduction by [8] has been plugged in the almost-optimal decremental
oracle, and the fully dynamic oracle by [9] generalizes the decremental oracle by [13], where
the latter already has Õ(d4) update time.

1.1 Our Results
We give a partially affirmative answer to the first question and answer the second question
affirmatively by the following results.

1 Throughout the paper, we use Õ(·) to hide a polylog(n) factor and use Ô(·) to hide a no(1) factor.
2 In [9], they modeled the problem using slightly different parameters, and here we describe their bounds

using our parameters. Basically, they defined a parameter d′ (named d in their paper) in the preprocessing
phase and η in the update phase. Their η is equivalent to our d. Besides, fixing d⋆ and noff , our input
instances can be reduced to theirs with d′ at most noff + d⋆. In the other direction, fixing d′, their input
instances can be reduced to ours with d⋆ + noff at most 3d′. Furthermore, their space complexity was
not specified, but to our best knowledge, it should be roughly proportional to their preprocessing time.

3 This lower bound is obtained from input instances with noff = Θ(n) and m is roughly linear to n.
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The Decremental Setting

We show a better vertex-failure connectivity oracle by improving the Ô(d2) update time of
the current almost-optimal solution [14] to Õ(d2). See Corollary 8 for a detailed version of
Theorem 1.

▶ Theorem 1. There exists a deterministic vertex-failure connectivity oracle with Ô(m) +
Õ(d⋆m) preprocessing time, Õ(m) space, Õ(d2) update time and O(d) query time.

Same as all the previous vertex-failure connectivity oracles, we can substitute all the
m factors in Theorem 1 with m̄ = min{m, n(d⋆ + 1)} using a standard sparsification by
Nagamochi and Ibaraki [15] at a cost of an additional O(m) preprocessing time.

Table 1 Complexity of known vertex-failure connectivity oracles. All the m factors can be
replaced by m̄ = min{m, n(d⋆ + 1)} at a cost of an additional O(m) preprocessing time. The
randomized algorithms are all Monte Carlo. The notation Ō(·) hides a polyloglog(n) factor.

Det./
Rand. Space Preprocessing Update Query

Block trees,
SQRT trees, and
[10]
only when d⋆ ≤ 3

Det. O(n) Õ(m) O(1) O(1)

Duan & Pettie
[4] for c ≥ 1 Det. linear in

preprocessing time Õ(md
1− 2

c
⋆ n

1
c

− 1
c log(2d⋆) ) Õ(d2c+4) O(d)

Duan & Pettie [5]
Det. O(md⋆ log n) O(mn log n) O(d3 log3 n) O(d)

Rand. O(m log6 n) O(mn log n) Ō(d2 log3 n) w.h.p. O(d)
Brand &
Saranurak [18]

Rand. O(n2) O(nω) O(dω) O(d2)

Pilipczuk et al.
[17]

Det. m22O(d⋆)
mn222O(d⋆)

22O(d⋆)
22O(d⋆)

Det. n2poly(d⋆) poly(n)2O(d⋆ log d⋆) poly(d⋆) poly(d⋆)
Long &
Saranurak [14]

Det. O(m log3 n) O(mn log n) Ō(d2 log3 n log4 d) O(d)
Det. O(m log∗ n) Ô(m) + Õ(d⋆m) Ô(d2) O(d)

Kosinas [13] Det. O(d⋆m log n) O(d⋆m log n) O(d4 log n) O(d)
This paper Det. O(m log3 n) Ô(m) + O(d⋆m log3 n) O(d2(log7 n + log5 n log4 d)) O(d)

We emphasize that our result is a strict improvement on [14]. In addition to the
improvement on update time, our algorithm also improves the hidden subpolynomial overheads
on the preprocessing time. We achieve this by giving a new construction algorithm of the
low degree hierarchy, a graph decomposition technique widely used in this area [5, 14, 16].
Roughly speaking, the previous almost-linear-time construction [14] relies on modern graph
techniques including vertex expander decomposition and approximate vertex capacitated
maxflow algorithm, which are highly complicated and will bring relatively large subpolynomial
overheads. Our new construction bypasses the vertex expander decomposition to obtain
improvement on both efficiency and quality, which is also considerably simpler. Finally, we
point out that the subpolynomial factors in our preprocessing time still comes from the
construction of the low degree hierarchy, which can be traced back to the subpolynomial
overheads of the current approximate vertex capacitated maxflow algorithm [2].

The Fully Dynamic Setting

We also show a better fully dynamic sensitivity oracle for subgraph connectivity, with update
time and query time matching the decremental bounds up to polylogarithmic factors. See
Theorem 17 for a detailed version of Theorem 2. The first upper bound Ô(m)+Õ(m(noff +d⋆))
is obtained from a combinatorial algorithm4.

4 Combinatorial algorithms [1] are algorithms that do not use fast matrix multiplication.
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▶ Theorem 2. There exists a deterministic fully dynamic sensitivity oracle for subgraph
connectivity with Ô(m) + Õ(min{m(noff + d⋆), nω}) preprocessing time, Õ(min{m(noff +
d⋆), n2}) space, Õ(d2) update time and O(d) query time, where ω is the exponent of matrix
multiplication.

Table 2 Complexity of known fully dynamic sensitivity oracles for subgraph connectivity.

Det./
Rand. Space Preprocessing Update Query

Henzinger &
Neumann [8] Det. Õ(n2

offm) Ô(n2
offm) + Õ(d⋆n2

offm) Ô(d4) O(d2)

Hu, Kosinas &
Polak [9] Det. Õ((noff + d⋆)m) Õ((noff + d⋆)m) Õ(d4) O(d)

This paper Det. O(min{(noff + d⋆)m log2 n, n2}) Ô(m)+
O(min{(noff + d⋆)m, nω} log2 n)

O(d2 log7 n) O(d)

We also show conditional lower bounds on the preprocessing time and the space, which
separate the fully dynamic and decremental settings. Furthermore, combining our new lower
bounds and the existing ones, our solution in Theorem 2 is optimal up to subpolynomial
factors.

▶ Theorem 3. Let A be a fully dynamic sensitivity oracle for subgraph connectivity with
S space, tp preprocessing time, tu update time and tq query time upper bounds. Assuming
popular conjectures, we have the following:
1. If tu + tp = f(d) · no(1), then S = Ω̂(n2). (See Lemma 7.10 in the full version)
2. If tu + tp = f(d) · no(1), then tu = Ω̂((noff + d)m) (See [9])
3. If tu + tp = f(d) · no(1), then tu = Ω̂(nωbool) (See Lemma 7.3 in the full version)
4. If tp = poly(n), then tu + tq = Ω̂(d2). (See [14])
5. If tp = poly(n) and tu = poly(dno(1)), then tq = Ω̂(d). (See [7])

The f(d) above can be an arbitrary growing function, and ωbool is the exponent of Boolean
matrix multiplication.

We make some additional remarks here. When discussing lower bounds, we assume d = d⋆

for each update. The lower bound on the space (item 1) holds even when the input graphs
are sparse, so it naturally holds for input graphs with general density. The lower bounds
on the preprocessing time (items 2 and 3) are not contradictory, because item 2 is obtained
from sparse graphs while item 3 is obtained from dense graphs. The lower bounds on the
update time and query time (items 4 and 5) are from those in the decremental setting. See
Section 7 in the full version for the omitted proofs and more discussions.

1.2 Organization

In Section 2, we give an overview of our techniques. In Section 3, we give the preliminaries.
In Section 4, we introduce our new construction of the low degree hierarchy and obtain a
better vertex-failure connectivity oracle as a corollary. In Sections 5 and 6, we describe
the preprocessing, update and query algorithms of our fully dynamic sensitivity oracle for
subgraph connectivity. Due to space constraints, some proofs are omitted and can be found
in the full version. In particular
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2 Technical Overview

Better Vertex-Failure Connectivity Oracles

Our main contribution is a new construction of the low degree hierarchy. Then we obtain a
better vertex-failure connectivity oracle as a corollary by combining the new construction of
the low degree hierarchy and the remaining part in [14].

It is known that the construction of the low degree hierarchy can be reduced to O(log n)
calls to the low-degree Steiner forest decomposition [5, 14]. Basically, for an input graph G

with terminal set U ⊆ V (G), we say a forest F ⊆ E(G) is a Steiner forest of U in G if F spans
the whole U (may also span some additional non-U vertices) and for each u, v ∈ U , u, v are
connected in F if and only if they are connected in G. We propose a new almost-linear time
low-degree Steiner forest decomposition algorithm as shown in Lemma 4, which improves the
degree parameter ∆ from no(1) to O(log2 n) compared to the previous one by [14]. This will
leads to an improvement to the quality of the low degree hierarchy, and finally reflects on
the update time.

▶ Lemma 4 (Lemma 12, Informal). Let G be an undirected graph with terminals U ⊆ V (G).
There is an almost-linear-time algorithm that computes a separator |X| ⊆ V (G) of size
|X| ≤ |U |/2, and a low-degree Steiner forest of U \ X in G \ X with maximum degree
∆ = O(log2 n).

In the following discussion, we assume U = V (G) for simplicity (hence spanning trees/-
forests and Steiner trees/forests are now interchangable). To obtain Lemma 4, our starting
point is that it is not necessary to perform a vertex expander decomposition (which will
bring large no(1) overheads to ∆) to get a low-degree Steiner forest decomposition. Basically,
in [14], they obtain a fast low-degree Steiner forest decomposition by first proving that any
vertex expander admits a low-degree spanning tree, so then it suffices to perform the stronger
vertex expander decomposition. The way they prove the former is to argue that for any
vertex expander H, one can embed another expander W into H with low vertex-congestion,
which implies that H has a low-degree subgraph including all vertices in V (H).

The key observation is that, to make the above argument work, W does not need to be
an expander and W can be an arbitrary connected graph. This inspires us to design the
following subroutine Lemma 5. Then Lemma 4 can be shown by invoking Lemma 10 using a
standard divide-and-conquer framework.

▶ Lemma 5 (Lemma 10, Informal). Let G be an undirected graph. There is an almost-linear-
time algorithm that computes either

a balanced sparse vertex cut (L, S, R) with |R| ≥ |L| ≥ |V (G)|/12 and |S| ≤ 1/(100 log n) ·
|L|.
a large subset V ′ ⊆ V (G) with |V ′| ≥ 3|U |/4 s.t. we can embed a connected graph W ′

with V (W ′) = V ′ into G[V ′] with vertex congestion O(log2 n), which implies a spanning
tree in G[V ′] with maximum degree O(log2 n).

We design the algorithm in Lemma 5 using a simplified cut-matching game. The original
cut-matching game [12, 11] can be used to embed an expander into a graph with low
congestion (or produce a balanced sparse cut). To embed a connected graph, consider the
following procedure. Assume a standard matching player (i.e. Lemma 9) which, given a
graph G and a balanced partition (A, B) of V (G), either embeds a large matching between
A and B into G with low vertex-congestion or outputs a balanced sparse vertex cut in
almost-linear time. Start with a graph W with V (W ) = V (G) but no edge and perform
several rounds. At each round, we (as the cut player) partition the connected components
of W into two parts with balanced sizes, and feed the partition to the matching player. If

ICALP 2024
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the matching player gives a matching, we add it to W and go to the next round. The game
stops once a giant connected component (of size at least 3|V (G)|/4) appears in W , which
will roughly serve as W ′. Roughly speaking, the game will stop in O(log n) rounds because
at each round, there exists a large fraction of vertices, s.t. for each of them (say vertex v),
the component containing v has its size doubled.

Fully Dynamic Sensitivity Oracles for Subgraph Connectivity

Our fully dynamic oracle is actually a generalization of a simplified version of the decremental
oracle in [14].

Initially, we construct a low degree hierarchy on the activated subgraph Gon := G[Von]. As
mentioned in [14], the hierarchy will roughly reduce Gon to the following semi-bipartite form.
First, Von can be partitioned into Lon and Ron, called left on-vertices and right on-vertices
respectively, s.t. there is no edge connecting two vertices in Ron. Second, Lon is spanned by
a known path τ . Therefore, we assume the original graph G has a semi-bipartite Gon from
now.

When there is no off-vertices initially (i.e. the decremental setting), the properties of a
semi-bipartite Gon naturally support the following update and query strategy. In the update
phase, removing vertices in D will break the path τ into at most d + 1 intervals, and we
will somehow (we will not explain this in the overview) recompute the connectivity of these
intervals in the graph Gon \D. Then, for each query of u, v ∈ Von \D, it suffices to find two
intervals Iu, Iv connecting with u, v in Gon \D respectively. When u, v are left on-vertices,
Iu, Iv can be found trivially. When u, v are right on-vertices, we just need to scan at most
d + 1 neighbors of each of u, v, which takes O(d) time. Note that removing D will generate
at most d + 1 intervals is a crucial point to achieve fast update time.

Back to the fully dynamic setting, for an update D, in addition to removing vertices
Don := D ∩ Von from Gon, we will also add vertices Doff := D ∩ Voff and their incident edges.
The key observation is that G[Von ∪Doff ] is still roughly a semi-bipartite graph. The first
property will still hold if we put the newly activated vertices Doff into the left side. The
second property may not hold because we do not have a path spanning the new left vertices
Lon ∪Doff . However, this will not hurt because we can still partition Lon ∪Doff into O(d)
connected parts after removing Don from G[Von ∪Doff ], i.e. at most d + 1 intervals covering
Lon \Don, and at most d vertices in Doff .

Giving this key observation, it is quite natural to adapt the decremental algorithm to the
fully dynamic setting. Using the ideas of adding artificial edges (intuitively, substituting each
right vertex and its incident edges with an artificial clique on its left neighbors) and applying
2D range counting structure, we can design an update algorithm with Õ(d3) update time [5].
To improve the update time to Õ(d2), we can use a Borůvka’s styled update algorithm and
implement it by considering batched adjacency queries on intervals [14].

3 Preliminaries

Throughout the paper, we use the standard graph theoretic notation. For any graph, we
use V (·) and E(·) to denote its vertex set and edge set respectively. If there is no other
specification, we use G to denote the original graph on which we will build the oracle, and
we let n = |V (G)| and m = |E(G)|. Initially, the vertices V (G) in the original graph are
partitioned into on-vertices Von and off-vertices Voff , and we let noff = |Voff |. For a graph H

and any S ⊆ V (H), we let H[S] denote the subgraph induced by vertices S. Also, for any
S ⊆ V (H), we use H \ S to denote the graph after removing vertices in S and edges incident
to them. Similarly, for any F ⊆ E(H), H \ F denote the graph after removing edges in F .
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We also use the notion of multigraphs. For a multigraph H, its edge set E(H) is a
multiset. We use + and

∑
to denote the union operation and use − to denote the subtraction

operation on multiset. We let ω denote the exponent of matrix multiplication and ωbool
denote the exponent of Boolean matrix multiplication. To our best knowledge, currently ω

and ωbool have the same upper bound.

4 The Low Degree Hierarchy

The low degree hierarchy was first introduced in [5] to design efficient vertex-failure connectiv-
ity oracles. The construction of this hierarchy in [5] is based on the approximate minimum
degree Steiner forest algorithm of [6], which gives Õ(mn) construction time. Later, an altern-
ative construction algorithm was shown in [14] by exploiting vertex expander decomposition,
which improves the construction time to m1+o(1), at a cost of a small quality loss.

In this section, we will show a new construction algorithm, which still runs in almost-linear
time and gives a hierarchy with quality better than the one in [14] (but still worse than the
one in [5]). To obtain the quality improvement, we basically simplify the construction in [14]
and bypass the vertex expander decomposition.

We define the low degree hierarchy in Definition 6, and the main result of this section is
Theorem 7. It was known that constructing a low degree hierarchy reduces to several rounds
of low-degree Steiner forest decomposition. In Section 4.1, we introduce our key subroutine
Lemma 10, which given an input graph, either computes a balanced sparse vertex cut or a
low-degree Steiner tree covering a large fraction of terminals. In Section 4.2, we show the
low-degree Steiner forest decomposition algorithm Lemma 12 using Lemma 10 in a standard
divide and conquer framework, and then complete the proof of Theorem 7.

▶ Definition 6 (Low Degree Hierarchy [5], Definition 5.1 in [14]). Let G be a connected
undirected graph. A (p, ∆)-low degree hierarchy with height p and degree parameter ∆ on
G is a pair (C, T ) of sets, where C is a set of vertex-induced connected subgraphs called
components, and T is a set of Steiner trees with maximum vertex degree at most ∆.

The set C of components is a laminar set. Concretely, it satisfies the following properties.

(1) Components in C belong to p levels and we denote by Ci the set of components at level
i. In particular, at the top level p, Cp = {G} is a singleton set with the whole G as
the unique component. Furthermore, for each level i ∈ [1, p], components in Ci are
vertex-disjoint and there is no edge in E(G) connecting two components in Ci.

(2) For each level i ∈ [1, p − 1] and each component γ ∈ Ci, there is a unique component
γ′ ∈ Ci+1 such that V (γ) ⊆ V (γ′), where we say that γ′ is the parent-component of γ

and that γ is a child-component of γ′.
(3) For each component γ ∈ C, the terminals of γ, denoted by U(γ), are vertices in γ but not

in any of γ’s child-components. Note that U(γ) can be empty. In particular, for each
γ ∈ C1, U(γ) = V (γ).

Generally, for each level i ∈ [1, p], we define the terminals at level i be terminals in all
components in Ci, denoted by Ui =

⋃
γ∈Ci

U(γ).
The set T of low-degree Steiner trees has the following properties.

(4) T can also be partitioned into subsets T1, ..., Tp, where Ti denote trees at level i and trees
in Ti are vertex-disjoint.

(5) For each level i ∈ [1, p] and tree τ ∈ Ti, the terminals of τ is defined by U(τ) = Ui∩V (τ).

ICALP 2024
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(6) For each level i ∈ [1, p] and each component γ ∈ Ci with U(γ) ̸= ∅, there is a tree τ ∈ Ti

such that U(γ) ⊆ U(τ), denoted by τ(γ). We emphasize that two different components γ

and γ′ ∈ Ci may correspond to the same tree τ ∈ Ti.

For better understanding, we note that the terminal sets of component {U(γ) | γ ∈ C},
levels {Ui | 1 ≤ i ≤ p}, and Steiner trees {U(τ) | τ ∈ T } are all partitions of V (G). One
may also get the picture of the hierarchy from the perspective of construction. See the
construction described in Algorithm 2, which invokes Lemma 12 in a black-box way.

▶ Theorem 7. Let G be an undirected graph. There is a deterministic algorithm that
computes a (p, ∆)-low degree hierarchy with p = O(log n) and ∆ = O(log2 n). The running
time is m1+o(1).

Corollary 8 is obtained by substituting the construction of low degree hierarchy in [14]
with ours. Formally speaking, it is a corollary of Theorem 7, and Lemma 6.14, Theorem 7.2
and Section 7.3 in [14].

▶ Corollary 8. There is a deterministic vertex-failure connectivity oracle with Ô(m) +
O(d⋆m log3 n) preprocessing time, O(m log3 n) space, O(d2(log7 n + log5 n · log4 d)) update
time and O(d) query time.

4.1 A Balanced Sparse Vertex Cut or a Low-Degree Steiner Tree
The goal of this subsection is to show Lemma 10, a subroutine which given a graph with
terminals, outputs either a balanced sparse vertex cut or a low-degree Steiner tree covering
a large fraction of terminals. In fact, some expander decomposition algorithms (e.g. [3])
exploit a similar subroutine which either computes a balanced sparse cut or certifies that
a large part of the graph is an expander. Our subroutine can be viewed as a weaker and
simplified version, because similar to the notion of expanders, a low-degree Steiner tree is
also an object that certifies some kind of (weaker) well-linkedness.

At a high level, our algorithm uses a simplified cut-matching-game framework. A cut-
matching game is an interactive process between a cut player and a matching player with
several rounds. Start from a graph with no edge. In each round, the cut player will select a cut
and then the matching player is required to add a perfect matching on this cut. It is known
that there exists cut-player strategies against an arbitrary matching player that guarantees
the final graph is an expander after Õ(1) rounds [12, 11]. In the proof of Lemma 10, we show
a cut-player strategy that only guarantees the final graph is a connected graph. Combining a
classic matching player as shown in Lemma 9, we can either find a balanced sparse vertex cut
or embed a connected graph covering most of the terminals into the original graph with low
vertex congestion. In the latter case, the embedding leads to a low-degree subgraph covering
most of the terminals. Finally, picking an arbitrary spanning tree in this subgraph suffices.

Given a cut w.r.t. terminals, Lemma 9 will either output a balanced sparse vertex cut
or a large matching between terminals that is embeddable into the original graph with low
vertex congestion. In fact, it is a simplified version of the matching player in [14], and the
proof can be found in Appendix A.1 of the full version.

▶ Lemma 9. Let G be an undirected graph with a terminal set U . Given a parameter ϕ and
a partition (A, B) of U , there is a deterministic algorithm that computes either

a vertex cut (L, S, R) with |R ∩ U | ≥ |L ∩ U | ≥ min{|A|, |B|}/3 and |S| ≤ ϕ · |L ∩ U |, or
a matching M between A and B with size |M | ≥ min{|A|, |B|}/3 s.t. there is an embedding
ΠM→G of M into G with vertex congestion at most ⌈1/ϕ⌉.

The running time is m1+o(1). If the output is a matching M , the algorithm can further output
the edge set E(ΠM→G) of the embedding ΠM→G.
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▶ Lemma 10. Let G be an undirected graph with a terminal set U . Given parameters
0 < ϵ, ϕ ≤ 1/4, there is a deterministic algorithm that computes either

a vertex cut (L, S, R) with |R ∩ U | ≥ |L ∩ U | ≥ ϵ|U |/3 and |S| ≤ ϕ · |L ∩ U |, or
a subset Udrop ⊆ U of terminals with |Udrop| ≤ ϵ|U | and a Steiner tree τ on G \ Udrop of
terminal set U \ Udrop with maximum degree O(log |U |/ϕ).

Proof. The algorithm is made up of an iteration phase and a postprocessing phase. The
iteration phase will maintain an incremental graph W with V (W ) = U , called the witness
graph, and its embedding ΠW →G into G. Precisely, instead of storing the embedding ΠW →G

explicitly, the algorithm will only store its edge set E(ΠW →G). Initially, the witness graph
W (0) has no edge and E(ΠW (0)→G) is empty. We use W (i) and E(ΠW (i)→G) to denote the
witness graph and the edge set of the embedding right after the i-th round.

In the iteration phase, we do the following steps in the i-th round.
1. We compute all the connected components of W (i−1), which forms a partition Q(i−1) of

U s.t. each Q ∈ Q(i−1) is a subset of |U |, called a cluster. If there is a cluster Q⋆ ∈ Q(i−1)

has |Q⋆| ≥ (1− ϵ)|U |, then we terminate the iteration phase and go to the postprocessing
phase, otherwise we proceed to the next step.

2. Because step 1 guarantees that all clusters in Q(i−1) have size at most (1− ϵ)|U |, we will
partition Q(i−1) into two groups QA and QB depending on the following two cases.

(a) If all clusters in Q(i−1) have size at most |U |/2, then we partition Q(i−1) into QA

and QB s.t.
∑

Q∈QA
|Q| ≥ |U |/4 and

∑
Q∈QB

|Q| ≥ |U |/4.
(b) Otherwise, there is a unique cluster Q⋆ s.t. |U |/2 < |Q⋆| ≤ (1 − ϵ)|U |, and we let
QA = Q \ {Q⋆} and QB = {Q⋆}.

Let Ai =
⋃

Q∈QA
Q and Bi =

⋃
Q∈QB

Q. Note that by definition, (Ai, Bi) forms a
partition of U . We have |Ai|, |Bi| ≥ |U |/4 in case (a) and |Ai|, |Bi| ≥ ϵ|U | in case (b).

3. We apply Lemma 9 on graph G and terminal U with parameter ϕ and the partition
(Ai, Bi) of U . If we get a vertex cut (L, S, R), it will satisfy |R ∩ U | ≥ |L ∩ U | ≥
min{|Ai|, |Bi|}/3 ≥ ϵ|U |/3 and |S| ≤ ϕ · |L ∩ U | as desired, so we can terminate the
whole algorithm with (L, S, R) as the output. Otherwise, we get a matching Mi between
Ai and Bi with size |Mi| ≥ |Ai|/3, and the edge set E(ΠMi→G) of some embedding
ΠMi→G that has vertex congestion O(1/ϕ). Then we let W (i) = W (i−1) ∪ Mi and
E(ΠW (i)→G) = E(ΠW (i−1)→G) ∪ E(ΠMi→G), and proceed to the next round.

If the algorithm does not end at step 3, it exits the iteration phase at step 1, and then
we perform the following postprocessing phase. Let W denote the final witness graph with
connected components Q and a cluster Q⋆ ∈ Q s.t. |Q⋆| ≥ (1 − ϵ)|U |. Note that Q⋆ ⊆ U .
Let G′ be the subgraph of G induced by E(ΠW →G). By the definition of embedding, vertices
in Q⋆ are also connected in G′. In other words, Q⋆ is contained by a connected component of
G′. We can take an arbitrary spanning tree τ of this component as a Steiner tree of V (τ)∩U ,
and define Udrop = U \ V (τ) be the uncovered terminals.

We now show that Udrop and τ have the desire property. The number of uncovered
terminals is bounded by |Udrop| ≤ |U | − |V (τ) ∩ U | ≤ |U | − |Q⋆| ≤ ϵ|U |, and τ is a Steiner
tree of U \ Udrop with maximum degree O(log |U |/ϕ) because G′ has maximum degree at
most the vertex congestion of ΠW →G, which is at most O(log |U |/ϕ) by Claim 11.

▷ Claim 11. The number of rounds in the iteration phase is at most O(log |U |), and the
vertex congestion of the final embedding ΠW →G is at most O(log |U |/ϕ).
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Proof. Note that the early rounds will go into case (a) in step 2, while the late rounds will
go into case (b). We bound the number of case-(a) rounds and case-(b) rounds separately.

The number of case-(a) rounds is at most O(log |U |) by the following reason. We define a
potential function Φ(W ) of the witness graph by

Φ(W ) =
∑
Q∈Q

∑
v∈Q

log |Q| =
∑
Q∈Q
|Q| · log |Q|.

In particular, for each cluster Q ∈ Q and each vertex v ∈ Q, we say the potential at v is
log |Q|.

Because initially Φ(W (0)) = 0 and we always have Φ(W ) ≤ |U | log |U |, it is sufficient to
show that each case-(a) round increases the potential by at least Ω(|U |). To see this, consider
the i-th case-(a) round. For each matching edge {u, v} ∈ Mi, let Q

(i−1)
v (resp. Q

(i−1)
u ) be

the connected component of W (i−1) that contains v (resp. u), and assume without loss of
generality that |Q(i−1)

v | ≤ |Q(i−1)
u |. Then the connected component Q

(i)
v of W (i) that contains

v will have |Q(i)
v | ≥ 2|Q(i−1)

v |, because Q
(i)
v ⊇ Q

(i−1)
u ∪ Q

(i−1)
v . In other words, this round

will increase the potential at v (from log |Q(i−1)
v | to log |Q(i)

v |) by at least 1. Summing over
|Mi| matching edges, the total potential Φ(W ) will be increased by at least |Mi| ≥ |U |/12 as
desired, because the potential at any v ∈ V (W ) will never drop.

It remains to show that the number of case-(b) rounds is at most O(log |U |). This is
simple because in each round, the matching Mi will merge at least |Ai|/3 terminals in |Ai|
into the giant cluster Q⋆, which means |Q⋆| will reach the threshold (1− ϵ)|U | in O(log |U |)
many case-(b) rounds and then the iteration phase ends.

The final embedding ΠW →G has vertex congestion O(log |U |/ϕ) because there are
O(log |U |) rounds and the embedding ΠMi→G has vertex congestion O(1/ϕ) each round. ◁

◀

4.2 The Low-Degree Steiner Forest Decomposition

Lemma 12 describes the low-degree Steiner forest decomposition algorithm, which invokes
Lemma 10 in a divide-and-conquer fashion. For simplicity, the readers can always assume
ϵ = 1/2, which is the value we will choose when constructing the low degree hierarchy. We
introduce this tradeoff parameter ϵ just to show that our algorithm has the same flexibility
as those in [5, 14].

▶ Lemma 12. Let G be an undirected graph with a terminal set U . Given a parameter
0 < ϵ ≤ 1/2, there is a deterministic algorithm that computes

a vertex set X ⊆ V (G), called the separator, s.t. |X| ≤ ϵ|U |, and

for each connected component Y of G \ X s.t. U intersects V (Y ), a Steiner tree τY

spanning U ∩ V (Y ) on Y with maximum degree O(log2 |U |/ϵ).
The running time is m1+o(1)/ϵ.

We include the algorithm of Lemma 12 in Algorithm 1, and the complete proof can be
founded in the full version.
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Algorithm 1 The low-degree Steiner forest decomposition SFDecomp(G, U).

Input: An undirected graph G with terminals U .
Output: A separator X and a collection T of Steiner trees {τY }.

1: Let ϵ′ = ϵ/2 and ϕ = ϵ′/ log |U |
2: Apply Lemma 10 on G and U with parameters ϵ′ and ϕ.
3: if Lemma 10 outputs a vertex cut (L, S, R) then
4: (XL, TL)← SFDecomp(G[L], L ∩ U)
5: (XR, TR)← SFDecomp(G[R], R ∩ U)
6: Return X = XL ∪XR ∪ S and T = TL ∪ TR.
7: else
8: Otherwise Lemma 10 outputs Udrop ⊆ U and a Steiner tree τ of U \Udrop on G\Udrop.
9: Return X = Udrop and T = {τ}.

10: end if

As shown in [5], to construct a low-degree hierarchy (C, T ), it suffices to invoke the
low-degree Steiner forest decomposition (with ϵ = 1/2) O(log n) times. The algorithm is
shown in Algorithm 2, and the proof of correctness is included in Appendix A.2 in the full
version.

Algorithm 2 The construction of the low-degree hierarchy.

Input: An undirected graph G.
Output: A low-degree hierarchy (C, T ).

1: Initialize i = 1, X1 = V (G).
2: while Xi is not empty do
3: (Xi+1, Ti)← SFDecomp(G, Xi) with ϵ = 1/2.
4: i← i + 1.
5: end while
6: p← i− 1, which denotes the number of levels.
7: for each level i do
8: U ′

i ← Xi ∪ ... ∪Xp.
9: Ci ← the connected component of G \ U ′

i+1 (particularly, U ′
p+1 = ∅).

10: Ui ← U ′
i \ U ′

i+1, which denotes the terminals of level i.
11: end for

5 The Preprocessing Algorithm

In this section, we will describe the preprocessing algorithm, which basically first computes
the low degree hierarchy on Gon := G[Von], and then constructs some affiliated data structures
on top of the hierarchy.

The low degree hierarchy (C, T ) is computed by applying Theorem 7 on Gon, if Gon is a
connected graph. In the case that Gon is not connected, we simply apply Theorem 7 on each
of the connected components of Gon. To simplify the notations, we use (C, T ) to denote the
union of hierarchies of connected components of Gon, and still say (C, T ) is the low degree
hierarchy of Gon. Note that (C, T ) has all properties in Definition 6, except that the top
level C1 are now made up of connected components of Gon.
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In Section 5.1, we introduce the notions of artificial edges and the artificial graph Ĝ. In
Section 5.2, we define a global order π based on Euler tour orders of Steiner trees in T , and
then construct a 2D range counting structure which can answer the number of edges in E(Ĝ)
between two intervals on π. Finally, in Section 5.3, we summarize what we will store, and
analyse the preprocessing time and the space complexity.

5.1 Artificial Edges and the Artificial Graph Ĝ

The artificial graph Ĝ is a multi-graph constructed by adding some artificial edges into
the original graph G in the following way. For each component γ ∈ C, let Aγ collect the
neighbors of V (γ) in G, formally defined by Aγ = {v | v ∈ V (G) \ V (γ) s.t. ∃{u, v} ∈
E(G) with u ∈ V (γ)}. We call Aγ the adjacency list of γ. Let Aγ,on = Aγ ∩ Von and
Aγ,off = Aγ ∩ Voff . Next, we let Bγ,off = Aγ,off and let Bγ,on be an arbitrary subset of Aγ,on
with size min{d⋆ + 1, |Aγ,on|}. Then define Bγ = Bγ,on ∪Bγ,off .

The artificial edges added by the component γ is then Êγ = {{u, v} | u ∈ Aγ , v ∈ Bγ , u ̸=
v}. Namely, Êγ consists of a clique on Bγ and a biclique between Bγ and Aγ \Bγ . Finally,
the artificial graph Ĝ is defined by Ĝ = G+

∑
γ∈C Êγ . We emphasize that Ĝ is a multi-graph,

and those edges connecting the same endpoints will have different identifiers.
We show some useful properties in Proposition 13. Item 3 of Proposition 13 basically

says that, if Aγ has an on-vertex after update, then Bγ also has one.

▶ Proposition 13. We have the following.
1.

∑
γ∈C |Aγ | ≤ O(pm).

2. |E(Ĝ)| ≤ O(pm(noff + d⋆)).
3. Given any update D ⊆ V with |D| ≤ d⋆, if (Aγ,on \D) ∪ (Aγ,off ∩D) ̸= ∅, then we have

(Bγ,on \D) ∪ (Bγ,off ∩D) ̸= ∅.

Proof.
Part 1. For each γ ∈ C, observe that |Aγ | ≤

∑
v∈V (γ) degG(v). Hence

∑
γ∈C |Aγ | ≤ O(pm)

because each vertex can appear in at most p components (at most one at each level).
Part 2. By definition, |E(Ĝ)| ≤ m +

∑
γ∈C |Êγ | ≤ m +

∑
γ∈C |Aγ | · |Bγ |. Note that |Bγ | ≤

noff + d⋆ + 1 for all γ ∈ C by construction. Combining part 1, we have |E(Ĝ)| ≤
O(pm(noff + d⋆)).

Part 3. If |Aγ,on| ≤ d⋆ + 1, we have Aγ = Bγ by construction and the proposition trivially
holds. Otherwise, Bγ will include d⋆ + 1 vertices in Aγ,on. Because |D| ≤ d⋆, at least one
of them will survive in Bγ,on \D, which implies (Bγ,on \D) ∪ (Bγ,off ∩D) ̸= ∅. ◀

5.2 The Global Order and Range Counting Structures

Next, we define an order, called the global order and denoted by π, over the whole vertex set
V (G), based on the Euler Tour orders of Steiner trees in T .

For each τ ∈ T , we define its Euler tour order ET(τ) as an ordered list of vertices in V (τ)
ordered by the time stamps of their first appearances in an Euler tour of τ (starting from an
arbitrary root). Intuitively, the Euler tour order ET(τ) can be interpreted as a linearization
of τ , i.e. after the removal of failed vertices in τ , the remaining subtrees will corresponding
to intervals on ET(τ), as shown in Lemma 14.
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▶ Lemma 14 (Lemma 6.3 in [14], Rephrased). Let τ be an undirected tree with maximum
vertex degree ∆. A removal of d failed vertices from τ will split τ into at most O(∆d) subtrees
τ̂1, τ̂2, ..., τ̂O(∆d), and there exists a set Iτ of at most O(∆d) disjoint intervals on ET(τ), such
that each interval is owned by a unique subtree and for each subtree τi, V (τi) is equal to the
union of intervals it owns.

Furthermore, by preprocessing τ in O(|V (τ)|) time, we can store ET(τ) and some addi-
tional information in O(|V (τ)|) space, which supports the following operations.

Given a set Dτ of d failed vertices, the intervals It can be computed in O(∆d log(∆d))
update time.
Given a vertex v ∈ V (τ) \Dτ , it takes O(log d) query time to find an interval I ∈ It s.t.
vertices in I are connected to v in τ \Dτ .

Given the Euler tour orders of all τ ∈ T , we define the global order π as follows. We
first concatenate ET(τ) ∩ U(τ) (i.e. the restriction of ET(τ) on the terminals of τ) of all
τ ∈ T in an arbitrary order, and then append all vertices in Voff to the end. Recall that
{U(τ) | τ ∈ T } partitions Von, so π is well-defined.

With the global order π, we will construct a 2D-range counting structure Table, which
can answer the number of edges in E(Ĝ) that connect two disjoint intervals on π. We first
initialize Tableinit to be an ordinary 2D array on range π × π. For each u, v ∈ π, we store a
non-negative integer in the entry Tableinit(u, v) representing the number of edges in E(Ĝ)
connecting vertices u and v.

▶ Lemma 15. Suppose that we can access the lists Aγ and Bγ for all γ ∈ C. There is
a combinatorial algorithm that computes Tableinit in O(|E(Ĝ)|) time, or Tableinit can be
computed in O(p · nω) time using fast matrix multiplication.

Proof. A trivial construction of Tableinit is to construct the edge sets E(Ĝ) explicitly, and
then scan the edges one by one. Obviously, this takes O(|E(Ĝ)|) time.

When |E(Ĝ)| is large, we can use fast matrix multiplication (FMM) to speed up the
construction of Tableinit. Recall that E(Ĝ) = E(G)+

∑
γ∈C Êγ . We first add the contribution

of E(G) into Tableinit using the trivial algorithm, which takes O(m) time. Next, we compute
the contribution of artificial edges, i.e.

∑
γ∈C Êγ , using FMM. We construct a matrix X

with n rows and |C| columns, where rows are indexed by the global order π and columns are
indexed by components (in an arbitrary order). For each vertex u ∈ π and component γ ∈ C,
the entry X(u, γ) = 1 if and only if u ∈ Aγ . Similarly, we define an n-row |C|-column matrix
Y , in which each entry Y (u, γ) = 1 if and only if u ∈ Aγ \ Bγ . Let Z = X ·X⊺ − Y · Y ⊺.
Observe that, for each pair of distinct vertices u, v ∈ π,

Z(u, v) =
∑
γ∈C

(X(u, γ) ·X(v, γ)− Y (u, γ) · Y (v, γ))

=
∑
γ∈C

1[u, v ∈ Aγ ]− 1[u, v ∈ Aγ \Bγ ]

=
∑
γ∈C

1[{u, v} ∈ Êγ ].

Therefore, the matrix Z count the contribution of
∑

γ Êγ correctly and the last step is to
add Z to Tableinit. The construction time is dominated by the computation of Z, which
takes O(p · nω) time because it involves multiplying an n× |C| matrix and a |C| × n matrix,
and |C| = O(pn). ◀
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▶ Lemma 16. With access to the positive entries of Tableinit, we can construct a data
structure Table that given any disjoint intervals I1 and I2 on π, answers in O(log n) time
the number of edges in E(Ĝ) with one endpoint in I1 and the other one in I2. The structure
Table can be constructed in O(N log n) time and takes space O(N log n), where N denotes
the number of positive entries in Tableinit.

Proof. We simply construct Table as a standard weighted 2D range counting structure of
Tableinit, By using textbook algorithms such as range trees and persistent segment trees, we
can construct Table in O(N log n) time and it takes space O(N log n). The correctness of
Table follows the definition of Tableinit. ◀

5.3 Preprocessing Time and Space Analysis
In conclusion, we will compute and store the following in the preprocessing phase.

First, we store the low degree hierarchy (C, T ). Constructing the low degree hierarchy
takes Ô(m) time by Theorem 7. Storing the low degree hierarchy explicitly takes O(pn)
space, because for each level i, the components in Ci are vertex disjoint, also Steiner trees
in Ti.
Next, for each γ ∈ C, we store the lists Aγ and Bγ after ordering them by π. Computing
the lists Aγ and Bγ takes O(pm) time by checking the incident edges of each vertex in each
component. Storing the lists Aγ and Bγ takes O(pm) space by Item 1 in Proposition 13.
Additionally, for each γ ∈ C, store the list Aγ,on.
For each v ∈ Voff and γ ∈ C, store a binary indicator to indicate whether v ∈ Aγ,off or
not. Computing the indicators takes O(pm) time by scanning all the lists Aγ . Storing
the indicators explicitly takes O(|Voff | · |C|) = O(pn · |Voff |) space.
We also store the global order π, which takes O(n) space. For each τ ∈ T , we store ET(τ)
and the additional information stated in Lemma 14 in O(|V (τ)|) space. Computing the
things above takes totally

∑
τ∈T |V (τ)| = O(pn) time by Lemma 14.

Finally, we store the data structure Table. Combining Item 2 in Proposition 13 and
Lemmas 15 and 16, we can compute Table in O(pm(noff + d) log n) time using an combin-
atorial algorithm, or in O(p · nω log n) time using fast matrix multiplication. The space
to store Table is min{pm(noff + d) log n, n2}.

In conclusion, the total preprocessing time can be upper bounded by Ô(m) + O(pm(noff +
d) log n) using an combinatorial algorithm, then tp = Ω̂(md), or Ô(m) + O(p · nω log n)
using fast matrix multiplication. The space complexity is O(min{pm(noff + d) log n, n2}).
Because the low degree hierarchy has p = O(log n) levels, the preprocessing time is Ô(m) +
O(min{m(noff + d) log2 n, nω log2 n}), and the space is O(min{m(noff + d) log2 n, n2}).

6 The Update and Query Algorithms

Let D ⊆ V (G) be a given update. We use Don = D ∩ Von to denote the vertices that will be
turned off in this update and Doff = D ∩ Voff to denote the vertices that will be turned on.
Let Vnew = (Von \Don) ∪Doff be the on-vertices after updates.

Our update strategy is to recompute the connectivity of a subset of affected vertices
Q⋆ ⊆ Vnew on some affected graph G⋆. In Section 6.1, we will define Q⋆ and G⋆, and prove
that Q⋆ has the same connectivity on the affected graph G⋆ and the updated original graph
G[Vnew]. In Section 6.2, we will partition G⋆ into a small number of sets s.t. each set forms
an interval on the global order π and it is certified to be connected by some Steiner tree
in T . Thus, it suffices to solve the connectivity of intervals on Q⋆, which is formalized in
Lemma 19.
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▶ Theorem 17. There exists a deterministic fully dynamic sensitivity oracle for subgraph
connectivity with O(min{m(noff + d⋆) log2 n, n2}) space, O(d2 log7 n) update time and O(d)
query time. The preprocessing time is Ô(m) + O(m(noff + d⋆) log2 n) by a combinatorial
algorithm, and Ô(m) + O(nω log2 n) using fast matrix multiplication.

We first conclude our fully dynamic sensitivity oracle for subgraph connectivity in
Theorem 17. The bounds on preprocessing time and space are shown in Section 5.3. The
update time is given by Lemma 19. The query algorithm and the query time analysis are
omitted here and they can be founded in the full version.

6.1 Affected Vertices Q⋆ and the Affected Graph G⋆

For each component γ ∈ C, we call γ an affected component if V (γ) intersects Don, otherwise
it is unaffected. Let Caff denote the set of affected components. Let Taff = {τ(γ) | γ ∈ Caff}
denote the Steiner trees corresponding to affected components.

We then define the affected vertices to be Q⋆ = Doff ∪
⋃

τ∈Taff
U(τ) \Don. Namely, Q⋆

collect the newly opened vertices and the open terminals of affected components. Note that
Q⋆ ⊆ Vnew. The affected graph G⋆ is G⋆ = Ĝ[Q⋆]−

∑
γ∈Caff

Êγ . In other words, G⋆ is the
subgraph of the artificial graph Ĝ induced by the affected vertices Q⋆, with the artificial
edges from affected components removed.

▶ Lemma 18. For any two vertices u, v ∈ Q⋆, u and v are connected in G[Vnew] if and only
if u and v are connected in G⋆.

The proof of Lemma 18 can be founded in the full version. Intuitively, this lemma holds
because those maximal unaffected components in C partition Vnew \Q⋆, and the artificial
edges will capture the connectivity contributed by these maximal unaffected components.

6.2 Solving Connectivity of Intervals
Although the primary goal of our update algorithm is to compute the connectivity of Q⋆ on
G[Vnew], Lemma 18 tells that it is equivalent to compute the connectivity of Q⋆ on G⋆.

▶ Lemma 19. There is a deterministic algorithm that computes a partition I of Q⋆ s.t.
each set I ∈ I forms an interval on π and all vertices in I are connected in G⋆, and then
computes a partition R of I s.t. for each group R ∈ R, the union of intervals in R forms a
(maximal) connected component of G⋆. The running time is O(p2d2∆2 log n).

Intervals

We first describe how to compute the partition I of Q⋆. Because we require each set I ∈ I
forms an interval on the global order π, we can represent I by the positions of its endpoints
on π. Recall that Q⋆ = (

⋃
γ∈Taff

U(γ) \Don) ∪Doff .
We first construct the intervals of

⋃
τ∈Taff

U(τ) \Don by exploiting the Steiner trees. For
each τ ∈ Taff , by invoking Lemma 14 on τ with failed vertices Don, we will obtain a
partition I ′

τ of V (τ) \Don s.t. each I ′ ∈ I ′
τ is an interval on ET(τ) and it is contained

by a subtree of τ \Don. We construct a set It of intervals on ET(τ)∩U(τ) by taking the
restriction of intervals I ′

t on U(τ). Therefore, intervals in It are indeed intervals on π

because ET(τ)∩U(τ) is a consecutive sublist of π. Also, for each interval I ∈ Iτ , vertices
in I are connected in G[Vnew] (because τ \Don is a subgraph of G[Vnew]), which implies
vertices in I are connected in G⋆ by Lemma 18.
For each vertex v ∈ Doff ⊆ Q⋆, we construct a singleton interval Iv = {v}.
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Finally, the whole set of intervals is I =
⋃

τ∈Taff
Iτ ∪ {Iv | v ∈ Doff}.

▶ Proposition 20. The total number of intervals is |I| = O(pd∆), and computing all intervals
takes O(pd∆ log(d∆)) time.

Proof. By Lemma 14, the number of intervals generated by a tree τ ∈ Taff is at most
O(|V (τ)∩Don| ·∆), and it takes O(|V (τ)∩Don| ·∆ · log(|V (τ)∩Don| ·∆)) time to generate
them. Observe that

∑
τ∈Taff

|V (τ) ∩ Don| = O(p · |Don|) because each vertex in Don can
appear in at most p trees in T (at most one at each level). Furthermore, the trivial intervals
generated by vertices in Doff is obviously |Doff |. Therefore, the total number of intervals in
O(p|Don|∆) + |Doff | = O(pd∆), and computing all intervals takes O(pd∆(d∆)) time. ◀

Borůvka’s Algorithm

We now discuss how to compute the partition R of I. We will merge the intervals by a
Borůvka’s styled algorithm. The algorithm has several phases, and each phase j receives
a partition R(j) of I as input. each group R ∈ R(j) is either active or inactive. Initially,
R(1) = {{I} | I ∈ I} is the trivial partition of I and all groups in R(1) are active. For each
phase j, we do the following to update R(j) to R(j+1).
1. For each active group R in R(j), we will ask the following adjacency query.

(Q1) Given an active group R ∈ R(j), find another active group R′ ∈ R(j) s.t. there
exists an edge e = {u, v} ∈ E(G⋆) with u ∈ Iu ∈ R and v ∈ Iv ∈ R′, or claim that
there is no such R′.

After asking (Q1) for all active groups, for each active group R, if (Q1) tells that no
such R′ exists, we mark R as an inactive group, otherwise we find an adjacent group-pair
{R, R′}.

2. Given the adjacent group-pairs in step 1, we construct a graph K with vertices corres-
ponding to active groups and edges corresponding to adjacent group-pairs. Note that for
each adjacent group-pair {R, R′}, R and R′ must still be active. Then, for each connected
component of K, we merge the groups inside it into a new active group.

The algorithm terminates once it reaches a phase j̄ s.t. all groups in R(j̄) are inactive, and we
let R = R(j̄) be the final output. Obviously, R satisfies the output requirement of Lemma 19.
Furthermore, the number of phases is bounded in Proposition 21. Let R(j)

act ⊆ R(j) denote
the active groups in R(j) at the moment when phase j starts and let k̄(j) = |R(j)

act|.

▶ Proposition 21. For each j ≥ 2, k̄(j) ≤ k̄(j−1)/2. The number of phases is O(log |I|).

Proof. At each phase, the number of active groups is halved because we mark all old active
groups without adjacent group inactive in step 1, and each connected component of the graph
K in step 2 contains at least two old active groups. Because initially k̄(0) = |R(0)| = |I|, the
number of phases is O(log |I|). ◀

Next, we will discuss the implementation of step 1. Basically, for each phase j, we need
an algorithm that answers the adjacency query (Q1) efficiently. Instead of answering (Q1)
directly, we will reduce (Q1) to the following batched adjacency query (Q2). We give an
arbitrary order to the groups in R(j)

act, denoted by R(j)
act = {R(j)

1 , R
(j)
2 , ..., R

(j)
k̄(j)}.

(Q2) Given a group R
(j)
k ∈ R(j)

act and a batch of consecutive groups R
(j)
ℓ , R

(j)
ℓ+1, ..., R

(j)
r ∈ R(j)

act

s.t. k /∈ [ℓ, r], decide if there exists R
(j)
k′ s.t. k′ ∈ [ℓ, r] and R

(j)
k′ is adjacent to R

(j)
k .

▶ Lemma 22. At phase j, one adjacency query can be reduced to O(log k̄(j)) batched adjacency
queries.
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Proof. Consider an adjacency query for some R
(j)
k ∈ R(j)

act. We can either find some
R

(j)
k′ ∈ R(j)

act s.t. k + 1 ≤ k′ ≤ k̄(j) and R
(j)
k′ is adjacent to R

(j)
k or claim there is no such R

(j)
k′

in the following way: first fix ℓ = k + 1, and then perform a binary search on r in range
[k + 1, k̄(j)], in which each binary search step is guided by a batched adjacency query with
parameters k, ℓ, r. Similarly, we can try to find an adjacent group R

(j)
k′ to the left of R

(j)
k by

fixing r = k− 1 and performing a binary search on ℓ in range [1, k− 1]. The total number of
calls to (Q2) is obviously O(log k̄(j)) in these two binary searches. ◀

To answer batched adjacency queries in each phase, we will first introduce some additional
structures, and then use them to design the algorithm answering (Q2), which is formalized in
Lemma 23.

▶ Lemma 23. There is a deterministic algorithm that computes some additional structures
in O(p2d2∆2 log n) time to support any batched adjacency query in O(pd) time.

We are now ready to analyse the running time of the Borůvka’s algorithm, which
completes the proof of Lemma 19. At each phase j, the number of adjacency queries is at
most k̄(j) (one for each active group in R(j)), so the number of batched adjacency queries
is O(k̄(j) log k̄(j)) by Lemma 22. Thus the total number of batched adjacency queries is∑

j≥1 O(k̄(j) log k̄(j)) = O(|I| log |I|) by Proposition 21. By Lemma 23, the total running
time of step 1 is O(p2d2∆2 log n) + O(pd|I| log |I|) = O(p2d2∆2 log n). The total running
time of the Borůvka’s algorithm is asymptotically the same because step 2 takes little time.

In what follows, we prove Lemma 23.

The Additional Structures

We start with introducing some notations. For a group R ⊆ I, we use V (R) =
⋃

I∈R I to
denote its vertex set. For two disjoint groups R1, R2 ⊆ I and a (multi) set E of undirected
edges, let δE(R1, R2) denote the number of edges in E with one endpoint in V (R1) and
the other one in V (R2). Also, recall that we gave an order to groups in R(j)

act, denoted by
R(j)

act = {R(j)
1 , ..., R

(j)
k̄(j)}.

For each phase j, we will construct the following data structures.
First, we construct a two-dimensional (k̄(j) × k̄(j))-array CountAll(j), where for each
1 ≤ x, y ≤ k̄(j), the entry CountAll(j)(x, y) = δE(Ĝ)(R

(j)
x , R

(j)
y ). Furthermore, we store

the 2D-prefix sum of CountAll(j).
For each affected component γ, we prepare a one-dimensional array CountA(j)

γ with length
k̄(j), where for each 1 ≤ x ≤ k̄(j), the entry CountA(j)

γ (x) = |Aγ ∩ V (R(j)
x )|. Similarly,

we construct an one-dimensional array CountB(j)
γ with length k̄(j) in which the entry

CountB(j)
γ (x) = |Bγ ∩ V (R(j)

x )|. Furthermore, we store the prefix sum of CountA(j)
γ and

CountB(j)
γ .

▶ Lemma 24. The total construction time of arrays CountAll(j), CountA(j)
γ and CountB(j)

γ

summing over all phases j and all affected components γ is O(p2d2∆2 log d).

Proof. We first initialize CountAll(1), CountA(1)
γ , CountB(1)

γ for phase 1. For each entry
CountAll(1)(x, y) of CountAll(1), note that R

(1)
x and R

(1)
y are both singleton groups. Let

Ix and Iy be the intervals in R
(1)
x and R

(1)
y . Then CountAll(1)(x, y) is exactly the number of

E(Ĝ)-edges that connect Ix and Iy, which can be answered by querying Table in O(log n)
time by Lemma 16 because Ix and Iy are intervals on the global order π. For an entry
CountA(1)

γ (x) of CountA(1)
γ , let Ix be the single interval in R

(1)
x , and we can easily compute

ICALP 2024
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|Aγ ∩ Ix| by binary search in O(log n) time because Ix is an interval on π and Aγ is ordered
consistently with π. Similarly, we can compute the array CountB(1)

γ . The construction time
of additional structures at phase 1 is O(((k̄(1))2 + |Caff | · k̄(1)) log n).

For each phase j ≥ 2, we will compute CountAll(j), CountA(j)
γ , CountB(j)

γ based on the
arrays of phase j − 1. For an entry CountAll(j)(x, y) of CountAll(j), recall that R

(j)
x is the

union of several groups R
(j−1)
x1 , R

(j−1)
x2 , ... inside R(j−1)

act , and R
(j)
y = R

(j−1)
y1 ∪ R

(j−1)
y2 ∪ ....

Furthermore, x1, x2, ..., y1, y2, ... are distinct indexes in [1, k̄(j−1)]. Therefore,

CountAll(j)(x, y) =
∑

x′=x1,x2,...

∑
y′=y1,y2,..

CountAll(j−1)(x′, y′).

We can compute CountA(j)
γ and CountB(j)

γ in a similar way. The construction time of
additional structures at phase j is proportional to the total size of additional structures at
phase j − 1, i.e. O((k̄(j−1))2 + |Caff | · k̄(j−1)).

The overall construction time is

O(((k̄(1))2 + |Caff | · k̄(1)) log n) +
∑
j≥2

O((k̄(j−1))2 + |Caff | · k̄(j−1)) = O(p2d2∆2 log n),

because k̄(1) = |I| = O(pd∆), |Caff | = O(pd) and k̄(j) ≤ k̄(j−1)/2 for each phase j. ◀

Answering Batched Adjacency Queries

Consider a batched adjacency query at phase j with parameters k, ℓ, r. It is equivalent to
decide whether the number of G⋆-edges connecting R

(j)
k and some R

(j)
k′ where k′ ∈ [ℓ, r] is

greater than zero or not. Namely, it suffices to decide whether∑
ℓ≤k′≤r

δE(G⋆)(R
(j)
k , R

(j)
k′ ) > 0. (1)

▶ Lemma 25. For any two disjoint groups R1, R2 ⊆ I,

δE(G⋆)(R1, R2) = δE(Ĝ)(R1, R2)−
∑

γ∈Caff

δÊγ
(R1, R2).

Proof. First the RHS is equal to δE(Ĝ)−
∑

γ∈Caff
Êγ

(R1, R2) because Êγ of all γ ∈ Caff are

disjoint subsets of E(Ĝ) (note that E(Ĝ) is defined to be a multiset).
Recall that G⋆ = Ĝ[Q⋆]−

∑
γ∈Caff

Êγ . The LHS is at most the RHS because E(G⋆) ⊆
E(Ĝ)−

∑
γ∈Caff

Êγ . On the other direction, each edge in E(Ĝ) connecting V (R1) and V (R2)
is inside Ĝ[Q⋆] since V (R1), V (R2) ⊆ Q⋆, so the RHS is at most the LHS. ◀

▶ Lemma 26. For each γ ∈ Caff and two disjoint groups R1, R2 ⊆ I,

δÊγ
(R1, R2) = |Aγ ∩ V (R1)| · |Aγ ∩ V (R2)| − |(Aγ \Bγ) ∩ V (R1)| · |(Aγ \Bγ) ∩ V (R2)|.

Proof. Recall that Êγ is the union of a clique on Bγ and a biclique between Aγ \Bγ and Bγ .
In other words, Êγ is a clique on Aγ with the clique on Aγ \Bγ removed. Because V (R1)
and V (R2) are disjoint, the equation follows. ◀
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Using Lemma 25 and Lemma 26, we can rewrite the LHS of inequality 1 as follows.∑
ℓ≤k′≤r

δE(G⋆)(R
(j)
k , R

(j)
k′ ) =

∑
ℓ≤k′≤r

δE(Ĝ)(R
(j)
k , R

(j)
k′ )−

∑
ℓ≤k′≤r

∑
γ∈Caff

δÊγ
(R(j)

k , R
(j)
k′ )

=
∑

ℓ≤k′≤r

δE(Ĝ)(R
(j)
k , R

(j)
k′ )

−
∑

γ∈Caff

∑
ℓ≤k′≤r

|Aγ ∩ V (R(j)
k )| · |Aγ ∩ V (R(j)

k′ )|

+
∑

γ∈Caff

∑
ℓ≤k′≤r

|(Aγ \Bγ) ∩ V (R(j)
k )| · |(Aγ \Bγ) ∩ V (R(j)

k′ )|.

For convenience, we denote α
(j)
γ (k) = CountA(j)

γ (k), β
(j)
γ (k) = CountB(j)

γ (k)
Combining the definition of the additional structures, we further have

∑
ℓ≤k′≤r

δE(G⋆)(R
(j)
k , R

(j)
k′ ) =

∑
ℓ≤k′≤r

CountAll(j)(k, k′)−
∑

γ∈Caff

α(j)
γ (k) ·

∑
ℓ≤k′≤r

α(j)
γ (k′)


+

∑
γ∈Caff

(α(j)
γ (k)− β(j)

γ (k)) ·
∑

ℓ≤k′≤r

(α(j)
γ (k′)− β(j)

γ (k′))


Because we have stored the prefix sum of the arrays CountAll(j), CountA(j)

γ , CountB(j)
γ , com-

puting the value of the above expression takes O(|Caff |) = O(pd) time.
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