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Abstract

We present two randomised approximate counting algorithms with Õ(n2−c/ε2) running time for
some constant c > 0 and accuracy ε:

1. for the hard-core model with fugacity λ on graphs with maximum degree ∆ when λ = O(∆−1.5−c1 )
where c1 = c/(2 − 2c);

2. for spin systems with strong spatial mixing (SSM) on planar graphs with quadratic growth, such
as Z2.

For the hard-core model, Weitz’s algorithm (STOC, 2006) achieves sub-quadratic running time
when correlation decays faster than the neighbourhood growth, namely when λ = o(∆−2). Our first
algorithm does not require this property and extends the range where sub-quadratic algorithms
exist.

Our second algorithm appears to be the first to achieve sub-quadratic running time up to the SSM
threshold, albeit on a restricted family of graphs. It also extends to (not necessarily planar) graphs
with polynomial growth, such as Zd, but with a running time of the form Õ

(
n2ε−2/2c(log n)1/d

)
where d is the exponent of the polynomial growth and c > 0 is some constant.
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11:2 Approximate Counting for Spin Systems in Sub-Quadratic Time

1 Introduction

The study of counting complexity was initiated by Valiant [33] with the introduction of
the complexity class #P. An intriguing phenomenon emerging in counting complexity is
that many #P-complete problems admit fully polynomial-time randomised approximation
schemes (FPRAS), which output an ε-approximation in time polynomial in n and 1/ε with
n being the input size. This is most commonly found for the so-called partition function of
spin systems, as demonstrated by the pioneering work of Jerrum and Sinclair [23, 24]. Spin
systems are physics models for nearest neighbour interactions, and the partition functions
are the normalizing factors for their Gibbs distributions. This quantity can express the count
of combinatorial objects such as the number of matchings, independent sets, or colourings in
a graph, and is much more expressible by allowing real parameters of the system.

In this paper we are most interested in the fine-grained aspects of the complexity of
estimating partition functions. While for most spin systems, exact counting is #P-hard [6],
many of them admit efficient approximation schemes when strong spatial mixing (SSM) holds.
Roughly speaking, SSM states that correlation or influence between vertices decays quickly as
their distance increases (detailed definitions are given in Section 2 and Definition 7). When
SSM fails, the partition function is usually NP-hard to approximate [31, 19, 18].

Efficient approximate counting was first enabled by the work of Jerrum, Valiant, and
Vazirani [25] who gave self-reductions from approximate counting to sampling for a large
class of problems. The sampling task is then most commonly solved via Markov chains. The
efficiency of a Markov chain is measured by its mixing time (i.e. how long it takes to get close
to the target distribution). For spin systems with SSM, in many situations, the standard
chain, namely the Glauber dynamics, mixes in O(n log n) time [10, 2, 8, 9].

Another later technique, simulated annealing, provides a more efficient counting to
sampling reduction [32, 22, 27]. Together with the O(n log n) mixing time mentioned above,
this leads to Õ((n/ε)2)1 approximate counting algorithms. These Markov chain Monte Carlo
(MCMC) algorithms are the fastest for estimating partition functions in general, but Ω(n2)
appears to be a natural barrier to this approach. This is because generating a sample would
take at least linear time (and there are Ω(n log n) lower bounds for the mixing time of Markov
chains [21] for many spin systems), and, restricted to the standard way of using the samples,
the number of samples required for simulated annealing is at least Ω(n/ε2) [27, Theorem 10].

On the other hand, when we relax the parameters, Ω(n2) is no longer a barrier to
algorithms. Let us take the hard-core gas model as an example. Here the Gibbs distribution µ

is over the set I of independent sets of a graph G. For an independent set I, µ(I) := λ|I|/Z(G),
where λ is a parameter of the system (so-called fugacity), and Z(G) :=

∑
I∈I λ|I| is the

partition function. For graphs with degree bound ∆, SSM holds when λ < λc(∆) :=
(∆−1)∆−1

(∆−2)∆ ≈ e
∆ . The aforementioned MCMC results [10, 8, 9] imply FPRASes running in

time Õ((n/ε)2) as long as λ < λc(∆). Yet much earlier, Weitz [34] gave the first fully
polynomial-time approximation scheme (FPTAS, the deterministic counterpart to FPRAS)
for the partition function of the hard-core model when λ < λc(∆), which is not based on
Markov chains. While Weitz’s algorithm has a running time nO(log ∆) in general, it has
an interesting feature that it gets faster as λ decreases. Roughly speaking, for k > 0 and
λ = O((1/∆)1+k), Weitz’s FPTAS runs in time O(n1+1/k/ε2). In particular, if λ = o(∆−2),
Weitz’s algorithm passes the Ω(n2) barrier, whereas the aforementioned MCMC method still
takes Ω(n2) time. This leads to an intriguing question:

When can we achieve sub-quadratic running time for approximate counting? (1)

1 The notation Õ(·) hides logarithmic factors.
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In this paper we make some progress towards this question. For hard-core models, Weitz’s
algorithm uses the self-reduction [25] to reduce approximate counting to estimating marginal
probabilities. We provide a quadratic speedup for the marginal estimation step for λ well
below λc(∆), albeit with the introduction of randomness. The result is summarized as
follows.

▶ Theorem 1. Fix a constant k > 0. Let ∆ ≥ 2 be an integer and λ < 1
∆k(∆−1) . For graphs

with maximum degree ∆, there exists an FPRAS for the partition function of the hard-core
model with parameter λ in time Õ(n1+ 1

2k /ε2), where n is the number of vertices.

▶ Remark 2 (Decay rate vs. neighbourhood growth). For a constant ε, the running time of
Theorem 1 is sub-quadratic if λ = o(∆−1.5), and Õ(n1.5) if λ = O(∆−2). In contrast, to
achieve sub-quadratic running-time, Weitz’s algorithm requires λ = o(∆−2), which is also
the threshold when correlation decays faster than the growth of the neighbourhood. This
threshold has algorithmic significance in other contexts [17, 1], but Theorem 1 implies that
it is not essential to achieve sub-quadratic approximate counting.

Figure 1 is a sketch comparing the running times of MCMC,2 Weitz’s algorithm, and
Theorem 1.3 For the limiting case of k = 0, our algorithm works when λ < 1

∆−1 and still
presents a quadratic speedup comparing to Weitz’s algorithm. However in this case the
running time is

(
n
ε

)O(log ∆) and thus our speedup is hidden in the big-O notation and is less
significant. The parameter constraint 1

∆−1 is imposed by the running-time tail bound of a
subroutine we used, namely the recursive marginal sampler of Anand and Jerrum [1].

∆−1 ∆−1.5 ∆−2

O(n)

Õ(n2)

λ

R
un
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e

Theorem 1
Weitz
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Figure 1 Running time comparison among MCMC, Weitz’s algorithm, and Theorem 1.

The key to our method is to find a new estimator of the marginal probability that
simultaneously has low variance and can be evaluated very fast. Our technique combines
Weitz’s self-avoiding walk (SAW) tree construction and the Õ(1) marginal sampler of Anand

2 The running time of MCMC usually also depends on the parameter λ, but changing λ does not change
the exponent of n. The effect of λ is usually a small polynomial factor hidden in the Õ(·) notation, and
the sketch in Figure 1 ignores this effect.

3 Another notable FPTAS is via zeros of polynomials [3, 29]. It can achieve similar subquadratic running
time when λ = o(∆−2), but it is apparently no faster than Weitz’s correlation decay algorithm.
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11:4 Approximate Counting for Spin Systems in Sub-Quadratic Time

and Jerrum [1]. The marginal of the root of the SAW tree preserves the desired marginal
probability, and can be evaluated in time linear in the size of the tree via standard recursion.
We use the marginal sampler to draw a random boundary condition at a suitable depth on
the SAW tree, and compute the marginal of the root using recursion under this boundary
condition. Both steps can be computed in time near-linear in the size of the sub-tree. The
depth of our boundary condition is roughly half of where Weitz truncates the SAW tree, and
yet we show that our estimator has O(1/n) variance under SSM, which is essential to get an
FPRAS. This leads to our quadratic improvement on the marginal estimation over Weitz’s
algorithm. This method also extends to other anti-ferromagnetic 2-spin systems.

Our second contribution is about graphs with polynomial growth. In particular, for
planar graphs with quadratic growth, we provide Õ(n2−c/ε2) algorithms for some constant
c > 0. An informal statement is as follows. (The detailed statement is Theorem 13.)

▶ Theorem 3. Let G be a family of planar graphs with quadratic growth. For a spin system
exhibiting SSM on G, there exists an FPRAS for the partition function of G ∈ G with n

vertices. The run-time is Õ(n2−c/ε2) for some constant c > 0.

We note that one of the most important graph in statistical physics, the 2D integer grid Z2,
indeed has quadratic growth. More generally, any planar graph with a bounded radius circle
packing has quadratic growth. Thus Theorem 3 covers many important families of planar
graphs, including most lattices. (A non-example would be the Cayley tree.) Specialized to
the hard-core model, Theorem 3 works up to the critical threshold, which is at least λc(∆),4
when the graph satisfies the condition in the theorem and has maximum degree ∆.

The key to Theorem 3 is once again a suitable estimator for marginal probabilities. We
choose a distance ℓ boundary around a vertex v in G with a carefully chosen ℓ, and our
estimator is the marginal under random boundary conditions. This boundary condition is
yet again sampled using the algorithm of Anand and Jerrum [1]. Our main observation is
that due to quadratic growth, the number of possible boundary conditions do not grow very
fast. It turns out to be more efficient to create a look-up table by enumerating all boundary
conditions first, and instead of computing the marginal for each sample, we simply find it
in this table. Since planar graphs have linear local tree-width, the table can be created
efficiently. This last step is inspired by the work of Yin and Zhang [35].

This method extends to any (not necessarily planar) graph families with polynomial
growth. Without planarity, we use brute-force enumeration instead to create the table. This
makes our gain on the running time smaller. Again an informal statement is as follows, with
the full version in Theorem 22.

▶ Theorem 4. Let G be a family of graphs with polynomial growth. For a spin system
exhibiting SSM on G, there exists an FPRAS for the partition function of G ∈ G with n

vertices. The run-time is Õ
(

n2

ε22c(log n)1/d

)
where c > 0 is some constant and d is the exponent

of the polynomial growth.

An example of such graphs would be the d-dimensional integer lattice Zd. Note that
Theorem 3 is better than Theorem 4 for d = 2 but requires the extra assumption of planarity.
The speedup factor 2c(log n)1/d in Theorem 4 is slower than any polynomial in n but faster
than any polynomial in log n.

We note an interesting related work by Chu, Gao, Peng, Sachdeva, Sawlani, and Wang [11],
who give an approximate counting algorithm with running time Õ(m1+o(1) +n1.875+o(1)/ε1.75)
for spanning trees of graphs, where m is the number of edges and n is the number of vertices.

4 For a given graph family, such as subgraphs of Z2, the critical threshold may be well above λc(∆).
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Notice that the input size here is O(m) and m = Ω(n). Thus their running time is also
sub-quadratic. However, there are some key differences between this work and ours. Aside
from not being a spin system, spanning trees can be counted exactly in polynomial time,
thanks to Kirchhoff’s matrix-tree theorem. This allows them to use various efficient exact
counting subroutines, whereas the problems we consider are #P-hard in general and no such
subroutine is likely to exist.

Another more recent related result is the sub-quadratic all-terminal unreliability estimation
algorithm by Cen, He, Li, and Panigrahi [7], which runs in sub-quadratic time m1+o(1)ε−3 +
Õ(n1.5ε−2). This problem, while #P-hard, is not a spin system either. Their method features
a recursive Monte Carlo estimator that is very different from ours, and not applicable to
spin systems.

A crucial ingredient of our algorithm is the recursive marginal sampler of Anand and
Jerrum [1]. This type of local / marginal samplers allows us partial access to a large random
object with substantially less information than traditional samplers. It has found applications
in local computation algorithms [4], and in derandomising Markov chains [16]. Our results
offer yet another application, namely to accelerate computation of the global partition
function.

We hope that our results are just the first step towards answering the question (1). In
particular, it is not clear whether an O(n2−c/ε2) algorithm exists for the hard-core model
when λ = Θ(1/∆) on graphs with maximum degree ∆, or if more efficient algorithms exist
for graphs with polynomial or sub-exponential growth. We leave these questions as open
problems.

2 Preliminaries

We are interested in spin systems which exhibit strong spatial mixing.

▶ Definition 5. A q state spin system (or q-spin system for short) is given by a graph
G = (V, E), a q-by-q interaction matrix A, and a field b : [q]→ R. A configuration of G is an
assignment of states to vertices, σ : V → [q]. The weight of a configuration σ is determined
by the assignments to the vertices and the interactions between them,

w(σ) :=
∏

(u,v)∈E

Aσ(u),σ(v)
∏
v∈V

bσ(v).

The Gibbs distribution µ is one where the probability of each configuration is proportional
to its weight, namely, µ(σ) := w(σ)

Z(G) , where the partition function Z(G) =
∑

σ w(σ) is a
normalizing factor.

In this paper, we consider the following permissive spin system, which says any locally
feasible configuration can be extended to a globally feasible configuration.

▶ Definition 6. A q-spin system on G = (V, E) is permissive if for any Λ ⊆ V , any σ ∈ [q]Λ,
if bσ(v) > 0 for all v ∈ Λ and Aσ(u),σ(v) > 0 for all u, v ∈ Λ satisfying (u, v) ∈ E, then σ can
be extended to a full configuration σ′ ∈ [q]V such that w(σ′) > 0.

Many natural spin systems are permissive. Examples include the hard-core model, the graph
q-colouring with q ≥ ∆ + 1, where ∆ is the maximum degree of the graph, and all spin
systems with soft constraints (e.g. the Ising model and the Potts model).

We call the problem of evaluating Z the counting problem for the q-spin system. The
standard algorithmic aim here is a fully-polynomial randomised approximation scheme
(FPRAS), where given the spin system and an accuracy ε > 0, the algorithm outputs Z̃

ICALP 2024



11:6 Approximate Counting for Spin Systems in Sub-Quadratic Time

such that 1− ε ≤ Z̃
Z ≤ 1 + ε with probability at least 3/4, and runs in time polynomial in

the size of the system and 1/ε. To understand the requirement of an FPRAS, note that
the probability 3/4 can be boosted arbitrarily close to 1 via standard means. The accuracy
can also be boosted by taking many disjoint copies of the system. In fact, any polynomial
accuracy can be boosted to an arbitrarily small ε in polynomial-time.

Also note that if G is disconnected, then Z(G) =
∏

i Z(Gi) where G′is are the connected
components of G. Thus, we always consider connected graphs in the paper.

Similar to µ(σ) for the probability of a configuration, for an S ⊆ V and a partial
configuration σS on S, we use µ(σS) for the marginal probability of σS under µ. We denote
the marginal distribution induced by µ on S by µS . When S = {v}, we also write µv. For
the distribution conditioned on a partial configuration σS , we use µσS or µσS

v .
Strong spatial mixing is a property of the spin system where a partial configuration of G

does not significantly influence the assignment of a distant vertex.

▶ Definition 7 (SSM). A q-spin system is said to have strong spatial mixing with decay rate
f(ℓ) for a family of graphs if for any G = (V, E) in the family, any v ∈ V, S ⊂ V , and two
configurations σS , τS,

dTV(µσS
v , µτS

v ) ≤ f(ℓ),

where dTV denotes the total variation distance, T ⊆ S is the subset where the configurations
are different, and ℓ = dist(v, T ) is the minimum distance from v to a vertex in T .

Strong spatial mixing is a very strong form of correlation decay. When f(ℓ) = exp(−Ω(ℓ))
we say we have strong spatial mixing with exponential decay.

2.1 Two-state spin systems
A spin system is symmetric if Aij = Aji for all i, j. When q = 2 and the system is symmetric,
we have states {0, 1} and can normalize A and b so that the interaction between 0 and 1 and

the contribution of 0 are 1, and A =
[
β 1
1 γ

]
and b = (1, λ) for β, γ ≥ 0, and λ > 0.

When β = γ the system is an Ising model, and for β = 1, γ = 0 the system is a hard-core
gas model. We call a system anti-ferromagnetic if disagreeing assignments of adjacent vertices
are more heavily weighted, namely βγ < 1.

For a tree T rooted at v and a partial configuration σS we define the marginal ratio

RσS

T := µσS
v (1)

µσS
v (0) = µσS

v (1)
1− µσS

v (1) ,

or RσS

T :=∞ if µσS
v (1) = 1. These ratios satisfy a well-known recurrence relation:

RσS

T = λ

d∏
i=1

γRσS

Ti
+ 1

RσS

Ti
+ β

, (2)

where Ti is the ith subtree of T . Similarly, for a graph G we can define RσS

G,v = µσS
v (1)/(1−

µσS
v (1)). While RσS

G,v does not exhibit a simple recursion, the self-avoiding walk (SAW) tree
of G at v as constructed by Weitz [34] can be used to compute it.

▶ Theorem 8 (Theorem 3.1 of [34]). For any G = (V, E), a configuration σS on S ⊂ V , and
any v ∈ V , there exists a tree TSAW = TSAW(G, v) such that

RσS

G,v = RσS

TSAW
.
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The SAW tree is rooted at v. Each node corresponds to a self-avoiding walk starting
from v. The length of the walk is the same as the distance between the node and the root
v. When a walk is closed, the node is set to unoccupied or occupied according to if the
penultimate vertex is before or after the starting vertex of the cycle in some pre-determined
local ordering at the last vertex. For details, see [34].

The SAW tree can have depth up to n, so may be exponential in size. Marginals on
the SAW tree are therefore difficult to compute, but using the recursion in Equation (2)
we can approximate them by truncating the tree. This approximation is accurate when
strong spatial mixing holds, and the time to compute the marginal is linear in the size of the
truncated tree. To maintain a polynomial running time, Weitz [34] choose to truncate it at a
suitable logarithmic depth.

3 Fast SSM regime for 2-spin systems

In this section we give a quadratic speedup of Weitz’s Algorithm to estimate the marginal of
a single vertex in 2-spin systems, albeit being randomised instead of deterministic. We use
the hard-core model as our running example to illustrate the main ideas. The main result of
the section is Theorem 1.

Let the hard-core model be described by A =
[
1 1
1 0

]
and b = (1, λ). The support of the

Gibbs distribution is the set of independent sets of G. Let vertices assigned 0 not be in the
independent set (unoccupied) and vertices assigned 1 be in the independent set (occupied).
Our algorithm uses self-reduction [25] as follows. Since unoccupied vertices contribute 1 to
the weight of a configuration, we can consider the all 0 configuration σ0 where

1
Z(G) = µ(σ0) = µv1(0)µv1←0

V \{v1}(0) = µv1(0) 1
Z(G \ {v1})

= µG1,v1(0)µG2,v2(0) · · ·µGn,vn(0),
(3)

and where Gi = G \ {v1, . . . , vi−1} for all i ∈ [n]. This reduces the problem of computing
Z(G) to computing µv1 and recursively Z(G \ {v1}). As the Gi’s are subgraphs of G, they
have the same degree bound and still exhibit SSM. The crux of our algorithm is to design a
random variable that estimates µv in time Õ(n1/(2k)).

Another ingredient we need is the lazy single-site sampler by Anand and Jerrum [1],
which allows us to rapidly sample a partial configuration vertex by vertex. The original
setting of [1] requires sub-exponential neighbourhood growth in order to work up to the
strong spatial mixing threshold, but in our parameter regime no sub-exponential growth is
required. Moreover, only the expected running time is studied in [1], while we need a tail
bound. A similar analysis is done in [16, Appendix B]. For completeness, we provide a proof
specialised to our setting in Appendix A.

▶ Lemma 9. Let ∆ ≥ 2 be an integer and λ < 1
∆−1 . Let G = (V, E) be a graph with

maximum degree ∆. There exists an algorithm that, for any v ∈ V , draws a sample from µv

and halts in time O(log 1
ε ) with probability at least 1− ε.

Our algorithm then combines the lazy sampler of Lemma 9 with the SAW tree of [34].
We expand the SAW tree, and then use Lemma 9 to sample a truncated boundary, from
which we use the recursion in (2) to get our estimate. The depth of the truncation controls
the variance of this estimator. In our algorithm, we only need to bound the variance from
above by 1/n. In contrast, Weitz’s algorithm requires the error of the marginal incurred

ICALP 2024



11:8 Approximate Counting for Spin Systems in Sub-Quadratic Time

by the truncation to be bounded from above by O(1/n). As the variance of our estimator
decays twice as fast as the marginal errors, our truncation depth is roughly half of that in
Weitz’s algorithm. Consequently, we achieved a quadratic speedup for estimating each term
in (3).

▶ Lemma 10. For a graph G with maximum degree ∆, if the hard-core model on G has strong
spatial mixing with decay rate C∆−kℓ for some constant C > 0, there exists an algorithm
that generates a random sample p̃v and halts in time O(n1/(2k)(log n

δ )2) with probability at
least 1− δ

8 . Furthermore, E[p̃v] = µv(0) and Var (p̃v) ≤ 1/n.

Proof. Let TSAW be the self-avoiding walk tree for G rooted at v as defined in Theorem 8,
and let S = {u ∈ V |dTSAW(v, u) = ℓ} where ℓ is a parameter we will fix later. We have

µTSAW,v(0) =
∑

σ∈{0,1}S

µTSAW(σ)µσ
TSAW,v(0) = Eσ∼µTSAW,S

[µσ
TSAW,v(0)].

We use Lemma 9 to sample σ. Fix an arbitrary order of S = {s1, s2, . . . , s|S|}. We sample
first the marginal of s1 with ε := δ

8|S| . Then, conditioned on the result on s1, we sample s2
with the same ε, and so on and so forth. Note that whatever the result on s1 is, it always
reduces to a hard-core instance of a smaller graph. Thus, the condition of Lemma 9 is always
satisfied until all of S are sampled. This gives a boundary condition σS in TSAW.

As the full SAW tree may be exponential in size, a little care is required to implement
the outline above. We first expand TSAW up to level ℓ, denoted TSAW,ℓ. The algorithm in
Lemma 9 (Algorithm 1 in Appendix A) is essentially an exploration process. When we apply
it to sample the boundary condition σS , we expand the SAW tree below TSAW,ℓ on the fly,
only creating vertices that are explored by the algorithm. Note that the construction of the
SAW tree imposes a boundary condition whenever a vertex in G is encountered again in a
self-avoiding walk. We implement this pinning by remembering a list of all ancestors of a
given node in the SAW tree and checking the next vertex to explore against this list. Since
Lemma 9 halts in O(log 1

ε ) time with probability at least 1 − ε, this extra check incurs a
multiplicative slowdown factor O(ℓ + log 1

ε ) = O(ℓ + log |S|δ ) with probability at least 1− ε.
Given σS , we can compute µσS

v (0) = p̃v with the standard dynamic programming approach.
By a union bound, the total running time of sampling the boundary is O(|S| log |S|δ (ℓ+log |S|δ ))
with probability at least 1− δ

8 , and the dynamic programming step uses time O(|TSAW,ℓ|).
We choose ℓ :=

⌈
log(n)/2−log C

k log(∆)

⌉
so that C∆−kℓ ≤ n−0.5 and ∆ℓ ≤ C ′n1/(2k) for some

constant C ′ > 0. Note that |S| ≤ (∆− 1)ℓ and |TSAW,ℓ| ≤ ∆ℓ. Then the total runtime to
draw a sample is O(n1/(2k)(log n

δ )2) with probability at least 1− δ
8 .

Finally, we analyze the variance. SSM implies that for any σS , |µσS
v (0)− µv(0)| ≤ C∆−kℓ,

so

Var (p̃v) = VarσS
(µσS

v (0)) = EσS∼µTSAW,S
[|µσS

v (0)− µv(0)|2] ≤
(
C∆−kℓ

)2 ≤ n−1, (4)

which is what we desire. ◀

▶ Lemma 11. For a graph G with maximum degree ∆, if λ ≤ 1
∆k(∆−1) for some constant

k > 0, the hard-core model on G exhibits strong spatial mixing with decay rate C∆−kℓ.

Proof. It is well-known that if λ < λc(∆) = (∆−1)∆−1

(∆−2)∆ ≈ e
∆ , strong spatial mixing holds

with exponential decay Crℓ for some constant C and r < 1 [34]. Moreover, the decay rate
r can be controlled by a quantity related to the recursion (2) [30]. For example, by [20,



K. Anand, W. Feng, G. Freifeld, H. Guo, and J. Wang 11:9

Lemma 7.20], r is bounded by r ≤ |f ′(x̂)|, where f(x) := λ
(1+x)∆−1 is the symmetric version

of the recursion in (2) and x̂ is the unique positive fixed point of f . (Note that when the
degree of G is at most ∆, all vertices but the root in TSAW have branching number ∆− 1.)
Then we have

|f ′(x)| =
∣∣∣∣−f(x)(∆− 1)

1 + x

∣∣∣∣ < (∆− 1)f(x).

As x̂ > 0 and x̂ is a fixed point, it holds that x̂ < x̂(1 + x̂)∆−1 = λ. Thus, as λ ≤ 1
∆k(∆−1) ,

r ≤ |f ′(x̂)| < (∆− 1)f(x̂) = (∆− 1)x̂ <
1

∆k
. ◀

Now we are ready to prove Theorem 1.

Proof of Theorem 1. We will first give an algorithm whose running time has a tail bound.
To have a fixed running time upper bound, we then truncate this algorithm.

Set N := ⌈8e(1+λ)2
/ε2

0⌉ where ε0 = ε/2. Let X :=
∏n

i=1 p̃Gi,vi
where G1 = G and

Gi = Gi−1 \ {vi−1}. By Lemma 11, we can use Lemma 10 to draw N samples of X and
take its average, where we set δ = 1

nN in Lemma 10. Each p̃Gi,vi
can be computed in time

O(n1/(2k)(log n
δ )2) with probability at least 1− δ

8 , so computing one sample of X takes time
O(n1+1/(2k)(log n

δ )2) time with probability at least 1 − nδ
8 by a union bound. By a union

bound again, the overall running time of taking the average is O(Nn1+1/(2k)(log n
δ )2) =

O
(

n1+1/(2k)

ε2 (log n
ε )2

)
with probability at least 1− δ

8 · nN = 7
8 .

Since {p̃Gi,vi} are mutually independent, by Lemma 10,

E[X] = E

[
n∏

i=1
p̃Gi,vi

]
=

n∏
i=1

µGi,vi
(0) = 1

Z(G) .

We bound Var (X) as follows

Var (X)
(E[X])2 = E[X2]

(E[X])2 − 1 =
∏n

i=1 E[p̃2
Gi,vi

]∏n
i=1 E[p̃Gi,vi ]2

− 1 =
n∏

i=1

(
1 + Var (p̃Gi,vi

)
(E[p̃Gi,vi ])2

)
− 1

≤
(

1 + c

n

)n

− 1 < ec, (by Lemma 10)

where c = maxi(1/µGi,vi
(0)2). Note that as µGi,vi

(0) ≥ 1
1+λ , c ≤ (1 + λ)2 and is a constant.

Let X̃ be the average of N samples of X. Then Var
(

X̃
)

= Var(X)
N ≤ ec

N ·Z(G)2 . By
Chebyshev’s inequality,

Pr
[∣∣∣∣X̃ − 1

Z(G)

∣∣∣∣ ≥ ε0

Z(G)

]
≤

Var
(

X̃
)

ε2
0

Z(G)2

≤ ec

N · Z(G)2 ·
Z(G)2

ε2
0
≤ 1

8 .

Thus, with probability at least 7/8, we have that 1−ε0
Z(G) ≤ X̃ ≤ 1+ε0

Z(G) . Finally, we out-
put Z̃ = 1/X̃. To make sure that the algorithm runs within the desired time bound
O

(
n1+1/(2k)

ε2 (log n
ε )2

)
, we truncate the algorithm if it runs overtime and output an arbitrary

value in that case. This truncated version can be coupled with the untruncated algorithm
with probability at least 7/8, and its output Z̃ satisfies 1− ε ≤ Z̃

Z(G) ≤ 1 + ε with probability
at least 7/8− 1/8 = 3/4. ◀
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Note that, Weitz’s algorithm is faster if the correlation decay is faster, but in that case
so is our algorithm. In Appendix B, Lemma 26 shows that the correlation decay cannot be
much faster than the standard analysis in the parameter regimes of Theorem 1, and our
speed-up, comparing to Weitz’s algorithm, is always at least Õ(n1/2k−o(1/k2)).

We also remark that Theorem 1 generalises to antiferromagnetic 2-spin systems. This is
because all the key ingredients, namely correlation decay, Weitz’s SAW tree, and the marginal
sampler of Anand and Jerrum all generalise, except that the Anand-Jerrum algorithm would
require the neighbourhood growth rate smaller than the decay rate (see Theorem 25). This is
also the parameter regime where Weitz’s algorithm is faster than O(n2). Thus, our speedup
is still in the sub-quadratic regime. The self-reduction in (3) also generalises (as we will see
in (5) in the next section). One needs to redo the calculations in Lemma 11 to get a precise
statement, which we will omit here.

4 Speed-up on planar graphs

In this section we mainly consider (not necessarily two-state) spin systems on planar graphs.
We show that for any planar graph with quadratic neighbourhood growth, when SSM
holds with exponential decay, approximate counting can be done in sub-quadratic time.
For example, this includes all subgraphs of the 2D lattice Z2. The circle-packing theorem
asserts that any planar graph is the tangent graph of some circle packing. All planar graphs
with bounded-radius circle packings have quadratic neighbourhood growth. Thus this is
a substantial family of planar graphs. Moreover, in Section 4.2 we extend the result to
(not necessarily planar) graphs with polynomial growth, but the speed up factor there is
sub-polynomial yet faster than (log n)k for any k.

▶ Definition 12. A graph family G has quadratic growth, if there is a constant C0 such that
for any G = (V, E) ∈ G, v ∈ V , and any integer ℓ > 0, |Bv(ℓ)| ≤ C0ℓ2.

Subgraphs of the 2D lattice Z2 satisfies Definition 12 with C0 = 5. Note that by taking
ℓ = 1, Definition 12 implies that the maximum degree is no larger than C0.

▶ Theorem 13. Let G be a family of planar graphs with quadratic growth (assume the rate is
C0ℓ2). Let A and b specify a q-state spin system, which exhibits SSM with decay rate Cr−ℓ

on G. Then there is a constant c > 0 such that there exists an FPRAS for the partition
function of G ∈ G with n vertices with run-time Õ(n2−c/ε2). The constant c depends on C0,
q, and r.

Theorem 13 is the detailed version of Theorem 3.
Essentially the idea is still to find an estimator for the marginal of an arbitrary vertex

that can be evaluated very quickly. Let us first consider a
√

n-by-
√

n grid. For any vertex v,
we consider the sphere Sv(ℓ) of radius ℓ = O(log n) centered at v, and a random configuration
τ on Sv(ℓ). Let Bv(ℓ) be the ball of radius ℓ centered at v. Since any planar graph has linear
local tree-width [12, 15], Bv(ℓ) has tree-width O(ℓ). Thus, given a configuration τ on S, the
law of µτ

v can be computed in time 2O(ℓ)poly(ℓ) for a fixed τ (see, e.g. [35]5). This step can
be very efficient with a carefully chosen ℓ.

For a general bounded degree planar graph, |Sv(ℓ)| can be a polynomial in n, which
makes the number of possible τ ’s exponential in n. However, for a

√
n-by-

√
n grid, |Sv(ℓ)| ≤

4ℓ = O(log n), and the number of possible τ ’s is much smaller and is a small polynomial in

5 The algorithm in [35] uses the separator decomposition. Another possibility is to first find a constant
approximation of the tree decomposition first [26], and then apply Courcelle’s theorem.
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n. Thus, it would be more efficient to first create a table to list all possibilities of τ , and
then, instead of computing µτ

v each time, simply look up the answer from this table. We
can do the same for any subgraph of Z2 by choosing a boundary based on distance in the
original grid.

For a general G ∈ G, we no longer have a linear bound on the size of the boundary. (In
Appendix C of the arXiv version of this paper, we construct a subgraph of Z2 where the
distance ℓ boundary has size Ω(ℓ2).) However, since G has quadratic growth, we know that
Bv(ℓ) ≤ C0ℓ2 for some constant C0 > 0. It implies that

ℓ∑
i=ℓ/2

|Sv(ℓ)| ≤ |Bv(ℓ)| ≤ C0ℓ2.

Thus, there must exist an ℓ′ ∈ [ℓ/2, ℓ] such that |Sv(ℓ′)| ≤ 2C0ℓ. We will find this ℓ′ and use
Sv(ℓ′) instead.

Once again, we use a self-reduction similar to (3). For q-spin systems, given a feasible
configuration σ, we have the decomposition,

w(σ)
ZG

= µ(σ) = µv1(σv1)µσv1
v2 (σv2)µσv1 ,σv2

v3 (σv3) . . . µ
σv1 ,...,σvn−1
vn (σvn

). (5)

When computing our table, we will have to condition on the already pinned vertices.

▶ Lemma 14. Let A, b, q and G be as in Theorem 13. For v ∈ V , a partial configuration σ,
and an integer ℓ, we can find an ℓ′ such that ℓ′ ∈ [ℓ/2, ℓ], and then construct a table of µσ,τ

v ,
indexed by every boundary configuration τ on unpinned vertices of Sv(ℓ′). The total run-time
is 2C1ℓ, where C1 is a constant depending on C0 and q.

Proof. As discussed earlier, due to the quadratic growth of G, there must exist an ℓ such
that ℓ′ ∈ [ℓ/2, ℓ] and |Sv(ℓ′)| ≤ 2C0ℓ. To find this ℓ, we do a breadth-first-search to check
Sv(i) from i = ℓ/2 to ℓ. The running time is at most O(Bv(ℓ)) = O(ℓ2).

Once ℓ′ is found, |Sσ
v (ℓ′)| ≤ |Sv(ℓ′)| ≤ 2C0ℓ, and there are at most q2C0ℓ configurations τ

in our table. As G is a planar graph, the tree-width of the ball tw(Bv(ℓ′)) = O(ℓ′) = O(ℓ).
Thus, using for example the algorithm of [35], each entry of the table can be computed in
time 2O(ℓ)poly (ℓ). The total amount of time required is O(ℓ2) + q2C0ℓ2O(ℓ)poly (ℓ) ≤ 2C1ℓ,
for some sufficiently large constant C1. ◀

While we may construct this table very quickly, it is not clear how to compute or estimate
the marginals of the boundary condition τ ’s rapidly. Instead, we sample a random one using
the marginal sampler [1] that terminates in almost linear time with high probability. See
Theorem 25.

▶ Lemma 15. Let A, b, q and G ∈ G be as in Theorem 13. Let σ be a partial configuration.
For any v ∈ V not pinned under σ and any k ∈ [q], there exists an algorithm that generates
a random variable Z̃ such that E[Z̃] = µσ

v (k) and Var
(

Z̃
)
≤ 1/n. Moreover, its running

time is Õ(n1−c) with high probability where c depends on C0, q, and r.

Proof. Let ℓ be a constant that we will choose later. Let ℓ′ ∈ [ℓ/2, ℓ] be as in Lemma 14, and
let τ be a boundary condition on the unpinned vertices of Sv(ℓ′) under σ. Let Zv(τ) = µσ,τ

v (k)
so that Eτ [Zv(τ)] = µσ

v (k). Then, let

Z̃ := 1
m

m∑
j=1

Zv(τj)

be the empirical mean over m random samples τj , where we will choose m later.
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Since the spin system exhibits SSM with decay rate Cr−ℓ, similar to (4), we have
Var (Zv(τ)) ≤ C2r−2ℓ′ ≤ C2r−ℓ. Then

Var
(

Z̃
)

= Var

 1
m

m∑
j=1

Zv(τj)

 ≤ C2

mrℓ′ .

Thus, we set m = ⌈nC2r−ℓ′⌉ samples so that Var
(

Z̃
)
≤ 1/n.

For the running time, we first construct the table as in Lemma 14. Then we take m samples
of τ , each of which can be generated in time almost linear in |Sv(ℓ′)| with high probability
using Theorem 25. As |Sv(ℓ′)| ≤ 2C0ℓ, the runtime in total is at most O(2C1ℓ + nℓr−ℓ′ log n)
with high probability. We choose ℓ = 1−c

C1
log n for c = log r

log r+2C1
∈ [0, 1], so that ℓ′ ≥ ℓ/2 =

1−c
2C1

log n and the total runtime is O(n1−c + n1−(1−c) log r/(2C1) log2 n) = Õ(n1−c). ◀

Now we are ready to prove Theorem 13.

Proof of Theorem 13. We are going to use (5) to do a self-reduction. First we construct
the target configuration σ adaptively. Given σ on v1, . . . , vi−1, we want to choose σvi

to be
k ∈ [q] with the largest marginal. In other words, σvi = argmaxk∈[q] µσi

vi
(k) for each i, where

σi is what has been constructed so far, namely σv1 , . . . , σvi−1 . Of course, this step cannot
be done exactly. Instead, we may fix a constant t = t(C, r, q) such that Cr−t ≤ 1

2q , fix an
arbitrary boundary configuration τ on Sσi

vi
(t) and then pick k ∈ [q] that maximises µσi,τ

vi
(k).

SSM guarantees that µσi
vi

(σvi) ≥ 1/2q, where σvi = k. This step takes constant time as t is a
constant.

The rest of the proof is very similar to that of Theorem 1. Set N := ⌈10e4q2
/ε2

0⌉ where
ε0 = ε/2. We compute X =

∏n
i=1 Z̃i where each Z̃i is from Lemma 15 plugging in vi and σi.

Due to the decomposition (5) we have

E[X] = E

[
n∏

i=1
Z̃i

]
=

n∏
i=1

E
[
Z̃i

]
=

n∏
i=1

µσi
vi

(σvi
) = µ(σ).

We also compute w(σ) which can be done in O(n) on a planar graph with quadratic growth.
By Lemma 15, the time to generate one X is O(n2−cpolylog (n)) with high probability. We
bound Var (X) as follows

Var (X)
(E[X])2 = E[X2]

(E[X])2 − 1 =
∏n

i=1 E[Z̃2
i ]∏n

i=1 E[Z̃i]2
− 1 =

n∏
i=1

1 +
Var

(
Z̃i

)
(E[Z̃i])2

− 1

≤
(

1 + 4q2

n

)n

− 1 ≤ e4q2
,

where we use µσi
vi

(σvi
) ≥ 1/2q for any i ∈ [n]. Let X̃ be the average of N samples of X.

Then Var
(

X̃
)

= Var(X)
N ≤ e4q2

N ·Z(G)2 . By Chebyshev’s inequality,

Pr
[∣∣∣∣X̃ − 1

Z(G)

∣∣∣∣ ≥ ε0

Z(G)

]
≤

Var
(

X̃
)

ε2
0

Z(G)2

≤ e4q2

N · Z(G)2 ·
Z(G)2

ε2
0
≤ 1

10 .

Thus, with probability at least 9/10, we have that 1−ε0
Z(G) ≤ X̃ ≤ 1+ε0

Z(G) . Finally, we output
Z̃ = w(σ)/X̃. Since Definition 12 implies a constant degree bound, the graph is sparse and
w(σ) can be computed in O(n) time. To make sure that the algorithm runs within the
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(a) (b) (c)

Figure 2 Circle packings of some lattices. (a): Z2 grid, R = 1. (b): Kisrhombille tiling,
R = 2 −

√
3. (c): degree-3 Bethe lattice, R = 0.

desired time bound O
(

n2−c

ε2

)
, we truncate the algorithm if it runs overtime and output an

arbitrary value in that case. This truncated version can be coupled with the untruncated
algorithm with probability at least 7/8, and its output Z̃ satisfies 1− ε ≤ Z̃

Z(G) ≤ 1 + ε with
probability at least 3/4. ◀

4.1 Bounded-radius circle packing
Here we show that Theorem 13 applies to any planar graph with bounded-radius circle
packings. We begin with the definition of a circle packing.

▶ Definition 16. A circle packing is a collection C of interior-disjoint circles over the
2-dimensional plane. A tangency graph of a circle packing is a graph having a vertex for
each circle, and an edge between two vertices if and only if the two corresponding circles are
tangent.

The Koebe-Andreev-Thurston circle packing theorem states the following.

▶ Theorem 17. For every connected locally finite simple planar graph G, there exists a circle
packing whose tangency graph is (isomorphic to) G.

We are concerned with the radius of the circles used in the packing, especially the ratio
between the smallest and largest ones.

▶ Definition 18. A locally finite simple planar graph G is said to have an R-bounded-radius
circle packing (R-BRCP) for some constant R > 0, if there exists a circle packing C whose
tangency graph is (isomorphic to) G such that

inf
⊙∈C

r⊙

sup
⊙∈C

r⊙
≥ R

where r⊙ denotes the radius of a circle ⊙ in the packing.

Three examples are given in Figure 2. The Z2 grid can be naturally packed by unit disks,
leading to R = 1. Such a graph is called a “penny graph”. The 3, 6-kisrhombille tiling is a
tiling of the 2-dimensional plane by π/6-π/3-π/2 triangles. This lattice can be packed by
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circles of radii 1, 2
√

3− 3, 2−
√

3, so R = 2−
√

3. The degree-3 Bethe lattice, also known
as the infinite 3-regular tree, can be drawn as a planar graph on the 2-dimensional plane.
However, the neighbourhood growth is so fast that R = 0.

Fix the underlying graph G and its R-BRCP C. Without loss of generality, we assume
the diameter of the largest circle in C is 1. Thus, the radius of an arbitrary circle in C is
between R/2 and 1/2. Let G be a finite subgraph of G. Here we need to distinguish the
graph distance in G and the geometric distance (the Euclidean distance ∥·∥2 between the
center of their corresponding disks on the 2-dimensional plane). For two vertices u and v, we
use distG(u, v) to denote their graph distance, and use ∥u− v∥2 to denote their geometric
distance. Note that distG(u, v) ≥ ∥u− v∥2 and distG(u, v) ≥ distG(u, v).

For any vertex v and u in the ℓ-ball Bv(ℓ) in G, ∥u − v∥2 ≤ distG(u, v) ≤ ℓ. The disk
⊙u corresponding to u must be contained completely in the circle centered at u with radius
ℓ + 1/2. By considering the area they cover,

|Bv(ℓ)| ≤ π(ℓ + 1/2)2

π(R/2)2 = O(ℓ2/R2).

Thus, any family of subgraphs of G has quadratic growth, where the growth constant depends
on R. Together with Theorem 13, we have the following corollary.

▶ Corollary 19. Let G be a locally finite simple planar graph, together with an R-BRCP
where R > 0 is a constant. Let G be a family of subgraphs of G, and A, b specify a q-spin
system that exhibits SSM with exponential decay on G. Then there exists an FPRAS that
takes a graph G ∈ G as an input and estimates the partition function of the spin system on G

in time Õ(n2−c/ε2). Here, n = |V (G)|, and c > 0 is a constant depending on q, decay rate
of SSM, and R.

▶ Remark 20. The algorithm does not need to know the circle packing, as long as an R-BRCP
exists.

On a separate note, although a good approximation of the circle packing of a finite planar
graph can be found in near linear time [13], its output does not optimise the radius ratio. It
is not clear how to generate a circle packing with a constant approximation of the optimal
radius ratio. In the extreme, it is NP-hard to decide if a given graph G (without geometric
positions) is a penny graph, namely admitting a circle packing using unit circles [14], even if
G is restricted to be a tree [5].

4.2 Polynomial-growth graphs
Our method goes beyond planar graphs with quadratic growth rate. For any graph with a
polynomial growth rate, we have a speed-up that is faster than any polylog factors.

▶ Definition 21. A graph family G has polynomial growth, if there are constants C and d

such that for any G = (V, E) ∈ G, v ∈ V , and any integer ℓ > 0, |Bv(ℓ)| ≤ C0ℓd.

Examples of graphs with polynomial growth include finite subgraphs of the d-dimensional
integer lattice Zd. Again, by taking ℓ = 1, Definition 21 implies that the maximum degree is
no larger than C0.

▶ Theorem 22. Let G be a family of graphs with polynomial growth (assume the rate is
C0ℓd). Let A and b specify a q-state spin system, which exhibits SSM with decay rate Cr−ℓ

on G. Then there is a constant c > 0 such that there exists an FPRAS for the partition
function of G ∈ G with n vertices with run-time Õ

(
n2

ε22c(log n)1/d

)
. The constant c depends

on C0, q, and r.
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Theorem 22 is the detailed version of Theorem 4.
In comparison to Theorem 13, the proof of Theorem 22 needs only a few small tweaks.

Let ℓ be a parameter we will choose later, and our estimator is still set by using a random
boundary condition on Sv(ℓ) to estimate the marginal at v. Note that we no longer need
to find ℓ′ for a smaller boundary. The main difference is in Lemma 14, where we no longer
have linear local tree-width. Instead, we have to create the table by brute-force enumeration.
There are qC0ℓd possible boundary conditions, and the overall time cost for creating the table
is O(q2C0ℓd).

We use the same estimator as in Lemma 15. To reduce the variance of our estimator to
1/n, we need nC2r−2ℓ samples, each of which can be looked up quickly using the table. Let
ℓ = 0.99(log n)1/d

2C0 log q . The overall time cost is

Õ
( n

ε2

(
q2Cℓd

+ nr−2ℓ
))

= Õ

(
n

ε2

(
n0.99 + n

2c(log n)1/d

))
= Õ

(
n2

ε22c(log n)1/d

)
,

where c = 0.99 log r
C0 log q . This shows Theorem 22. Note that the factor 2c(log n)1/d grows faster

than (log n)k for any k > 0.
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A Lazy marginal samplers

Lemma 9 is proved in this subsection. The single-site Anand-Jerrum algorithm adapts to
the hard-core model as in Algorithm 1.

https://arxiv.org/abs/1111.7064
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Algorithm 1 HardcoreSampler(G, λ, (Σ, σ), v).

Input: a ∆-degree graph G, fugacity λ, a set of vertices Σ ⊆ V with a configuration
σ ∈ ΩΣ, and vertex to sample v /∈ Σ

Output: the partial configuration passed in with a spin at v: (Σ, σ)⊕ (v, i) for some
i ∈ {0, 1}.

1 Decrease the global timer T ← T − 1;
2 if there exists u ∈ Σ ∩N(v) such that σ(u) = 1 then
3 return ((Σ, σ)⊕ (v, 0));
4 Sample random X ∈ {⊥, 0} with Pr[X = ⊥] = λ/(1 + λ) and Pr[X = 0] = 1/(1 + λ);
5 if X = ⊥ then
6 (Σ′, σ′)← (Σ, σ);
7 Y ← 1;
8 forall u ∈ N(v)\Σ do
9 (Σ′, σ′)← HardcoreSampler(G, λ, (Σ′, σ′), u);

10 if σ′(u) = 1 then Y ← 0;
11 return ((Σ, σ)⊕ (v, Y ));
12 else
13 return ((Σ, σ)⊕ (v, 0));

The correctness of the algorithm is summarised by the following theorem, adapted to our
setting.

▶ Theorem 23 ([1, Theorem 5.3]). Suppose G is a graph with maximum degree bounded by ∆,
and λ < λc(∆). If the untruncated algorithm HardcoreSampler+∞(G, λ, (Σ, σ), v) terminates
with probability 1, then it generates a spin of v according to the correct marginal distribution
upon termination, provided that the partial configuration (Σ, σ) is feasible.

We remark that the correctness does not rely on the graph’s neighbourhood growth being
sub-exponential. However, the algorithm given here is a special case of that in [1], where
they look at an ℓ-distance neighbourhood. Fixing ℓ = 1 as we do here results in the regime
of fugacity λ being worse than the critical λc, as we will see very soon. The saving grace
of [1] is that other ℓ’s might be chosen in order to get to the critical regime, but this is at
the cost of limiting the neighbourhood growth. Our main algorithm does not work up to the
critical λc, so only the 1-hop neighbourhood is considered.

In [1], the expected running time is studied and turns out to be a constant depending on
the parameters of the model. However, we further need an exponential tail bound of the
algorithm. This is done by the same idea of [16, Section B.3], though we do not truncate
this algorithm as is done there. As soon as an exponential tail bound of running time is
established, the algorithm then terminates with probability 1 and hence is correct.

We treat the algorithm as a branching process. Each time the algorithm recurses into its
neighbourhood, it creates at most ∆− 1 new copies of the routine HardcoreSampler. Such
branching happens with probability p := λ/(1 + λ). This leads us to study the following
Markovian process that stochastically dominates the actual branching process. Let (Xt)t∈Z≥0

be a discrete Markov chain where Xt ∈ Z≥0 with initial state X0 = 1. This chain has an
absorbing barrier at 0, and for any other Xt > 0, the transition probability is given by

Xt+1 ←

{
Xt + ∆− 1 with probability p;
Xt − 1 with probability 1− p.

(6)

ICALP 2024
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In the general case, the tail bound of this process is proved in [16, Lemma B.12], and this
requires λ ≤ 1

2e∆−1 when specialised to the hard-core model. Here we provide a stronger
analysis to remove the constant.

▶ Lemma 24. Suppose λ < 1
∆−1 . For any 0 < ε < 1, let T = 2∆2

( λ
1+λ ∆−1)2 log 1

ε . Then with

probability at most ε, the process (Xt) defined by (6) does not terminate in T rounds.

Proof. Given {Xt}t∈Z≥0 , define an auxillary process {Yt}t∈Z≥0 in the following way. Let
Y0 = 1, and the transition probability is given by

Yt+1 ←

{
Yt + 1

1+λ ∆ with probability λ
1+λ ;

Yt − λ
1+λ ∆ with probability 1

1+λ .
(7)

Then couple Xt with Yt perfectly that, if Xt increases then so does Yt, and vice versa, till
Xt reaches the absorbing barrier. After this point, Yt just performs the above transition
independently.

Clearly, {Yt} is a martingale, and if Xt > 0 is not absorbed then Yt = Xt +
(

λ
1+λ ∆− 1

)
t.

Also note that the regime on λ ensures λ
1+λ ∆−1 > 0. This allows us to bound the probability

of {Xt} not terminating after T rounds by by applying Azuma–Hoeffding inequality:

Pr[XT > 0] = Pr[XT ≥ X0] = Pr
[
YT − Y0 ≥ T

(
λ

1 + λ
∆− 1

)]

≤ exp

−
T 2

(
λ

1+λ ∆− 1
)2

2∆2T

 = ε. ◀

Lemma 9 then follows by exactly the same argument as in [16, Proof of Lemma B.10],
by noticing that the branching process (Xt) stochastically dominates the number of “active”
instances of HardcoreSampler, and using Lemma 24.

If we want to cover the whole strong spatial mixing regime but only work on amenable
graphs, then we can invoke the original Anand-Jerrum algorithm, allowing us to do recursion
at farther vertices rather than one-hop neighbours. Its running time tail bound is shown in
[16, Lemma B.10].

▶ Theorem 25 ([16, Lemma B.10]). Suppose a q-spin system S = (G, [q], b, A) exhibits strong
spatial mixing with decay rate f(ℓ), and there is a function s(ℓ) such that the neighbourhood
growth of G satisfies |{u | distG(u, v) = ℓ}| ≤ s(ℓ) for all v. If there is some r ∈ Z≥1 such that
2eq(1 + s(r))f(r) ≤ 1, then for any feasible boundary configuration (Σ, σ), the Anand-Jerrum
algorithm, on input (S, (Σ, σ), v, r), generates a sample of v subject to the correct marginal
distribution, and halts in time O(s(r) log 1

ε ) with probability at least 1− ε.

B A lower bound for Weitz’s algorithm

In this section, we prove a lower bound for the running time of the standard implementation
of Weitz’s algorithm. Consider the hard-core model on G = (V, E) with parameter λ.
Suppose we want to estimate the partition function Z within a constant approximation
error. Let V = {v1, . . . , vn} and Gi = G \ {v1, . . . , vi−1}. Weitz’s algorithm solves this
task by estimating each µGi,vi

(0) within an approximation error O( 1
n ). It first constructs

the SAW tree of Gi rooted at vi, then truncates the tree at level ℓ and applies dynamic
programming on the truncated tree to estimate µGi,vi

(0). The standard implementation
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of Weitz’s algorithm [34, 28] ensures that for any tree with maximum degree ∆, any two
configurations σ, τ at level ℓ, dTV(µσ

v , µτ
v) = O( 1

n ). Standard analysis bounds the total
running time from above by TWeitz = Θ(n∆ℓ).

By the same correlation decay analysis as in Lemma 11, when the algorithm in Theorem 1
has running time Õ(n1+1/2k), we need to choose ℓ so that TWeitz = O(n1+1/k). This analysis
only gives an upper bound on the correlation decay rate. If the decay rate is faster, then
Weitz’s algorithm is faster, and so is the algorithm in Theorem 1. The speedup will depend
on how much faster the decay rate becomes. Nevertheless, the next lemma shows that the
analysis in Lemma 11 is almost sharp in the worst case. The speedup in Theorem 1 is at
least Ω̃

(
n

1
2k−O( 1

k2 log ∆
)
)

.

▶ Lemma 26. Let the real number k > 0 and the integer ∆ ≥ 2 be two constants satisfying
∆k ≥ 4. Let λ = 2

(∆−1)∆k . Let T be an infinite ∆-regular tree with root v. For any ℓ ≥ 2, let
σ0 and σ1 be all-0 and all-1 configurations at level ℓ of T respectively. The Gibbs distribution
µ of the hard-core model on T with parameter λ satisfies

dTV(µσ0
v , µσ1

v ) ≥ 1
2

(
1

∆k

)ℓ

.

Let the parameters k, ∆, and λ be as in Lemma 26. Consider a family of hard-core
instances where the graphs are indeed ∆-regular trees. In Weitz’s algorithm, in order to
ensure an O( 1

n ) truncation error, Lemma 26 implies that ℓ must satisfy 1
2
( 1

∆k

)ℓ = O( 1
n ),

namely,

∆ℓ = Ω(n 1
k ).

This makes the overall running time TWeitz = Ω(n1+ 1
k ). In comparison, for these parameters,

the algorithm in Theorem 1 has a running time upper bound Õ
(

n
1+ 1

2k +O( 1
k2 log ∆

)
)

, which is

faster by a factor of roughly Ω̃(n1/2k).

Proof of Lemma 26. Let w be an arbitrary vertex at level 0 ≤ t ≤ ℓ. Let π denote the
Gibbs distribution on the subtree rooted Tw at w. Recall that σ0, σ1 are pinnings on T (ℓ),
where T (ℓ) is level ℓ of T . Let p0

t (c) = πσ0
w (c) and p1

t (c) = πσ1
w (c) for c ∈ {0, 1}, where we

use σ0 and σ1 to denote all-0 and all-1 pinnings on Tw ∩ T (ℓ). By symmetry, p0
t (·) and p1

t (·)
depend only on t but not on w. In particular, p0

0 = µσ0
v and p1

0 = µσ1
v for the root v. For any

0 ≤ t ≤ ℓ, define

R0
t := p0

t (1)
p0

t (0) , R1
t := p1

t (1)
p1

t (0) .

We next prove the following result holds for all 1 ≤ t ≤ ℓ− 1:

∣∣R0
t −R1

t

∣∣ ≥ 1
2

(
1

∆k

)ℓ−t−1
. (8)

We need the following bound to prove (8). By considering the worst pinning on the
neighbourhood, we have the following bound on both ratios R0

s and R1
s

∀0 ≤ s ≤ ℓ− 1, R0
s, R1

s ≤ λ = 2
(∆− 1)∆k

. (9)
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We prove (8) by induction on t from ℓ− 1 to 1. The base case is t = ℓ− 1. Note that ∆k ≥ 4.
A straightforward calculation shows that∣∣R0

ℓ−1 −R1
ℓ−1

∣∣ = |1− λ| = 1− 2
(∆− 1)∆k

≥ 1
2 .

For the induction step, fix 1 ≤ t ≤ ℓ− 2. The recursion function in (∆− 1)-ary tree is

f(x) = λ

(
1

1 + x

)∆−1
.

Note that R0
t = f(R0

t+1) and R1
t = f(R1

t+1). By the mean value theorem, there exists
min(R0

t+1, R1
t+1) < θ < max(R0

t+1, R1
t+1) such that∣∣R0

t −R1
t

∣∣ = |f ′(θ)| ·
∣∣R0

t+1 −R1
t+1

∣∣ .

By (9) and the fact ∆k ≥ 4, we have

|f ′(θ)| = λ(∆− 1)
(

1
1 + θ

)∆
≥ λ(∆− 1)

(
1

1 + λ

)∆
≥ λ(∆− 1) exp(−λ∆)

= 2
∆k

exp
(
− 2∆

(∆− 1)∆k

)
≥ 2

∆k
exp

(
− 4

∆k

)
≥ 1

∆k
.

By the induction hypothesis that
∣∣R0

t+1 −R1
t+1

∣∣ ≥ 1
2 ( 1

∆k )ℓ−t−2, we can prove (8) for t. This
finishes the induction step for 1 ≤ t ≤ ℓ− 3.

Finally, we use (8) to bound |R0
0 −R1

0|. The proof is similar to the proof in the induction

step. The only difference is that the recursion for root v becomes g(x) = λ
(

1
1+x

)∆
. By a

similar calculation, there exists min(R0
1, R1

1) < θ < max(R0
1, R1

1) such that

|R0
0 −R1

0| = |g′(θ)| ·
∣∣R0

1 −R1
1
∣∣ ≥ ∆λ

(
1

1 + θ

)∆+1
· 1

2

(
1

∆k

)ℓ−2

= ∆
(∆− 1)(1 + θ) · λ(∆− 1)

(
1

1 + θ

)∆
· 1

2

(
1

∆k

)ℓ−2

≥ ∆
(∆− 1)(1 + λ) ·

1
2

(
1

∆k

)ℓ−1
≥ 1

3

(
1

∆k

)ℓ−1
.

By the definitions of R0
0 and R1

0 and the fact ∆k ≥ 4, we have

dTV(µσ0
v , µσ1

v ) = |µσ0
v (1)− µσ1

v (1)| = µσ0
v (0)µσ1

v (0)|R0
0 −R1

0|

≥
(

1
1 + λ

)2
· 1

3

(
1

∆k

)ℓ−1
≥ 4

27

(
1

∆k

)ℓ−1
≥ 1

2

(
1

∆k

)ℓ

. ◀
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