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Abstract
We develop new characterizations of Impagliazzo’s worlds Algorithmica, Heuristica and Pessiland by
the intractability of conditional Kolmogorov complexity K and conditional probabilistic time-bounded
Kolmogorov complexity pKt.

In our first set of results, we show that NP ⊆ BPP iff pKt(x | y) can be computed efficiently in
the worst case when t is sublinear in |x| + |y|; DistNP ⊆ HeurBPP iff pKt(x | y) can be computed
efficiently over all polynomial-time samplable distributions when t is sublinear in |x| + |y|; and
infinitely-often one-way functions fail to exist iff pKt(x | y) can be computed efficiently over all
polynomial-time samplable distributions for t a sufficiently large polynomial in |x| + |y|. These
results characterize Impagliazzo’s worlds Algorithmica, Heuristica and Pessiland purely in terms of
the tractability of conditional pKt. Notably, the results imply that Pessiland fails to exist iff the
average-case intractability of conditional pKt is insensitive to the difference between sublinear and
polynomially bounded t. As a corollary, while we prove conditional pKt to be NP-hard for sublinear
t, showing NP-hardness for large enough polynomially bounded t would eliminate Pessiland as a
possible world of average-case complexity.

In our second set of results, we characterize Impagliazzo’s worlds Algorithmica, Heuristica
and Pessiland by the distributional tractability of a natural problem, i.e., approximating the
conditional Kolmogorov complexity, that is provably intractable in the worst case. We show
that NP ⊆ BPP iff conditional Kolmogorov complexity can be approximated in the semi-worst
case; and DistNP ⊆ HeurBPP iff conditional Kolmogorov complexity can be approximated on
average over all independent polynomial-time samplable distributions. It follows from a result by
Ilango, Ren, and Santhanam (STOC 2022) that infinitely-often one-way functions fail to exist
iff conditional Kolmogorov complexity can be approximated on average over all polynomial-time
samplable distributions. Together, these results yield the claimed characterizations. Our techniques,
combined with previous work, also yield a characterization of auxiliary-input one-way functions and
equivalences between different average-case tractability assumptions for conditional Kolmogorov
complexity and its variants. Our results suggest that novel average-case tractability assumptions such
as tractability in the semi-worst case and over independent polynomial-time samplable distributions
might be worthy of further study.

2012 ACM Subject Classification Theory of computation → Computational complexity and crypto-
graphy

Keywords and phrases meta-complexity, Kolmogorov complexity, one-way functions, average-case
complexity

Digital Object Identifier 10.4230/LIPIcs.ICALP.2024.110

Category Track A: Algorithms, Complexity and Games

Related Version Full Version: https://eccc.weizmann.ac.il/report/2024/085/ [20]

Acknowledgements We thank Shuichi Hirahara, Yanyi Liu, Igor C. Oliveira, and Hanlin Ren for
useful discussions.

EA
T
C
S

© Zhenjian Lu and Rahul Santhanam;
licensed under Creative Commons License CC-BY 4.0

51st International Colloquium on Automata, Languages, and Programming (ICALP 2024).
Editors: Karl Bringmann, Martin Grohe, Gabriele Puppis, and Ola Svensson;
Article No. 110; pp. 110:1–110:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:zhenjian.lu@warwick.ac.uk
https://orcid.org/0009-0007-3990-4751
mailto:rahul.santhanam@cs.ox.ac.uk
https://orcid.org/0000-0002-8716-6091
https://doi.org/10.4230/LIPIcs.ICALP.2024.110
https://eccc.weizmann.ac.il/report/2024/085/
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


110:2 Impagliazzo’s Worlds Through the Lens of Conditional Kolmogorov Complexity

1 Introduction

In his influential survey on average-case complexity [12], Impagliazzo described five possible
computational worlds: Algorithmica, Heuristica, Pessiland, Minicrypt and Cryptomania.
Algorithmica is a world where NP is easy in the worst case; Heuristica a world where NP is
hard in the worst case but easy on average; Pessiland a world where NP is hard on average
but one-way functions do not exist; Minicrypt a world where one-way functions exist but
public-key cryptography does not; and Cryptomania a world where public-key cryptography
exists. The general belief among complexity theorists and cryptographers is that we live
in Cryptomania, but we are very far from a proof, as even ruling out Algorithmica would
involve showing NP ̸= P.

There is the possibility, however, that we might be able to unconditionally rule out some
of the intermediate worlds, such as Heuristica, Pessiland and Minicrypt. Until recently, there
was little progress on ruling out these intermediate worlds. All that was known was that
there are various black-box and relativization barriers to ruling out these worlds.

The study of meta-complexity, i.e., the complexity of computational problems that are
themselves about complexity, has enabled new attacks on these questions. Examples of
meta-complexity problems are the Minimum Circuit Size Problem (MCSP), which asks
whether a Boolean function represented by its truth table has circuits of a given size,
and the problem of computing Kolmogorov complexity and its resource-bounded variants
such as Levin’s time-bounded Kolmogorov complexity. The average-case complexity of
meta-complexity problems is of particular interest [9]. Hirahara [5] gave an approach via
meta-complexity to ruling out the analogue of Heuristica for the Polynomial Hierarchy. More
recently, the Polynomial Hierarchy analogue of Pessiland has been ruled out [10], again using
meta-complexity techniques.

There have been several successful efforts to characterize the existence of one-way func-
tions via meta-complexity. In [23], a conditional characterization was given, based on a
believable but seemingly hard-to-establish conjecture. Liu and Pass [14] unconditionally
characterized one-way functions by the average-case hardness of polynomial-time-bounded
Kolmogorov complexity over the uniform distribution. This characterization was extended to
other meta-complexity problems and notions of one-way function in [15, 21, 1]. A different
characterization of one-way functions via the hardness of approximating Kolmogorov complex-
ity over samplable distributions was given in [11]. More recently, Hirahara [7] introduced a
meta-complexity problem whose NP-hardness and the worst-case hardness of NP characterize
the existence of one-way functions.

These connections between meta-complexity, average-case complexity and one-way func-
tions raise the following question: Can we characterize Impagliazzo’s worlds Algorithmica,
Heuristica and Pessiland by different notions of hardness for a single computational problem?
A positive answer to this question is implicit in [16], who study the problem of conditional
polynomial-time-bounded Kolmogorov complexity. They show that the worst-case hardness
of conditional polynomial-time-bounded Kolmogorov complexity captures worst-case hardness
of NP, and the average-case hardness of conditional polynomial-time-bounded Kolmogorov
complexity over the uniform distribution captures the existence of one-way functions. Their
result on worst-case hardness immediately implies that the average-case hardness of NP is
equivalent to the hardness of conditional polynomial-time-bounded Kolmogorov complexity
over some samplable distribution.

In this work, we give two new characterizations of Impagliazzo’s worlds by different notions
of hardness for a single problem - first for conditional probabilistic time-bounded Kolmogorov
complexity pKt [3], and second for the standard notion of conditional Kolmogorov complexity.
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These new characterizations have some interesting features. The first characterization
implies that ruling out Pessiland corresponds to robustness of the average-case tractability of
conditional pKt over time regimes t that vary from sublinear to polynomial. As a consequence,
while we are able to prove (by building on [6]) that pKt is NP-hard to compute exactly when
t is sublinear, Pessiland would fail to exist if pKt were NP-hard to compute for arbitrary
polynomial t. This could be a promising route to ruling out Pessiland, since pKt is a fairly
powerful complexity measure with nice properties such as the coding theorem which could
potentially be exploited when showing hardness, and the computational version is in (promise)
AM but is not known to be in NP.

The second characterization is for a fundamental problem that is provably intractable in
the worst case, i.e., the problem of approximating conditional Kolmogorov complexity. A
somewhat surprising aspect of our results (which is also present in the main result of [11] on
which we build) is that conditional Kolmogorov complexity is uncomputable, yet natural
average-case hardness assumptions on conditional Kolmogorov complexity capture complexity
worlds related to average-case hardness of NP. What this indicates is that the distinctions
between Impagliazzo’s worlds can be encoded in a natural way into the distributional
assumptions that are made, while considering a single well-understood problem.

As a corollary of our second set of results together with those in [16], we get new
equivalences between hardness assumptions for conditional Kolmogorov complexity and
hardness assumptions for conditional time-bounded Kolmogorov complexity. The proofs of
these equivalences crucially use the various characterizations of Impagliazzo’s worlds, and it
seems tricky to show such equivalences directly.

1.1 Results
We state our results formally in this subsection.

1.1.1 Characterizing Both DistNP ⊆ HeurBPP and Non-Existence of
One-Way Functions by Average-Case Easiness of Conditional pKt

We present a meta-complexity problem whose average-case tractability over polynomial-
time samplable distributions can be used to characterize both the non-existence of one-way
functions and DistNP ⊆ HeurBPP, while considering different time regimes in the measure of
time-bounded Kolmogorov complexity. Specifically, we consider the problem of computing
conditional probabilistic t-time-bounded Kolmogorov complexity.

As defined in [3], we let pKt
λ(x | y) be the smallest integer k such that, with probability

at least λ over the choice of a random string w ∼ {0, 1}t, there is a (deterministic) program
of size k that, when running on w and given oracle access to y, prints x within t steps (see
[20, Definition 16] for the formal definition).

For τ : N × N → N, let Cond-pK[τ ] be the following promise problem (YES,NO):

YES :=
{

(x, y, 1s) | pKτ(|x|,|y|)
2/3 (x | y) ≤ s

}
,

NO :=
{

(x, y, 1s) | pKτ(|x|,|y|)
1/3 (x | y) > s

}
.

We will refer to this problem as “computing conditional pKt”.
We will consider two specific settings for the time bound function τ . For the purpose

of illustration, let us consider the following simplified problem. For τ : N × N → N, we are
given x, y and s, and the task is to decide whether Kτ(|x|,|y|)(x | y) ≤ s, i.e., whether there is
a program of size at most s such that given oracle access to y, the program outputs x within
time τ(|x|, |y|).

ICALP 2024
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A typical setting of τ is τ(n,m) := nc ·mc, where c > 1 is some constant. For this τ , we
want to decide if there is a program of size at most s that, given oracle access to y, outputs
x within time τ(|x|, |y|), and such a program has enough time to read the entire string y.

Now consider another setting of τ where τ(n,m) := nc ·m1−1/c for a constant c > 1. In
this case, for a string y ∈ {0, 1}m, where m := n2c2 , we have

τ(n,m) = nc ·m1−1/c = n2c2−c ≪ m.

Again, we want to decide if there is a program of size at most s that, given oracle access to
y, outputs x within time τ(|x|, |y|). However, in this case any such program does not have
time to read the entire string y

We will show that the non-existence of one-way functions corresponds to the average-case
tractability of Cond-pK[τ ] over polynomial-time samplable distributions for the “polynomial-
time regime” of τ , and that DistNP ⊆ HeurBPP corresponds to that of the “sublinear-time
regime”.1 We state our results formally next.

For an algorithm A, x, y ∈ {0, 1}∗, and s ∈ N, we say that A decides Cond-pK[τ ] on
(x, y, 1s) if the following holds:

A(x, y, 1s) =


1 if pKτ(|x|,|y|)

2/3 (x | y) ≤ s,

0 if pKτ(|x|,|y|)
1/3 (x | y) > s,

either 0 or 1 otherwise.

▶ Theorem 1. The following are equivalent.
1. Infinitely-often one-way functions do not exist.
2. (Computing conditional pKt in the polynomial-time regime is easy-on-average

over samplable distributions.)
For every polynomial-time samplable distribution family {D⟨n,m⟩}n,m supported over
{0, 1}n × {0, 1}m, every polynomial q, and for all large enough constant c, there exists a
probabilistic polynomial-time algorithm A such that for all n,m, s ∈ N,

Pr
(x,y)∼D⟨n,m⟩

[A decides Cond-pK[τ ] on (x, y, 1s)] ≥ 1 − 1
q(n,m) ,

where τ(n,m) := nc ·mc.

▶ Theorem 2. The following are equivalent.
1. DistNP ⊆ HeurBPP.
2. (Computing conditional pKt in the sublinear-time regime is easy-on-average

over samplable distributions.)
For every polynomial-time samplable distribution family {D⟨n,m⟩}n,m supported over
{0, 1}n × {0, 1}m, every polynomial q, and for all large enough constant c, there exists a
probabilistic polynomial-time algorithm A such that for all n,m, s ∈ N,

Pr
(x,y)∼D⟨n,m⟩

[A decides Cond-pK[τ ] on (x, y, 1s)] ≥ 1 − 1
q(n,m) ,

where τ(n,m) := nc ·m1−1/c.

1 Note that even in the “sublinear-time regime” of τ , the program can still run in polynomial time with
respect to the the length of x; the word “sublinear-time” refers to the fact that the program runs in
sublinear time with respect to the length of y.
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In proving Theorem 2, we also show that it is NP-hard to compute conditional pKt in the
sublinear-time regime in the worst case.

▶ Theorem 3 (Informal). For any constant c > 1, Cond-pK[τ ] is NP-hard under randomized
polynomial-time reductions, where τ(n,m) := nc ·m1−1/c.

In fact, Theorem 3 holds even if we consider the problem of approximating pKt(x | y)
in the sublinear-time regime within a multiplicative factor of |x|1/ log log |x|O(1) . This also
extends a result by Liu and Pass [16] and Hirahara [6], which showed that the problem of
computing/approximating conditional Kt in the sublinear-time regime is NP-hard.

Theorem 3, Theorem 1 and Theorem 2 together give characterizations of Impagliazzo’s
worlds Algorithmica, Heuristica and Pessiland based on different hardness assumptions for
the computation of conditional pKt.

In particular, Theorem 1 and Theorem 2 imply that the task of ruling out Pessiland2

is equivalent to showing that the problem of computing conditional pKt on average over
polynomial-time samplable distributions is robust with respect to the two different time
regimes.

Also, we get that to rule out Pessiland, it suffices to show that it is NP-hard to compute
conditional pKt in the polynomial-time regime in the worst case.

▶ Corollary 4 (Informal. See [20, Corollary 55] for the formal version). If computing conditional
pKt in the polynomial-time regime is NP-hard, then Pessiland does not exist.

A proof sketch of Corollary 4 can be found in [20, Section 4.4].
For comparison, it was observed in [7] that if one can show the NP-hardness of approxim-

ating a certain variant of time-bounded Kolmogorov complexity called qt, then Pessiland does
not exist. It is known that qpoly and pKpoly are equivalent to each other up to an additive
logarithmic factor. This implies that showing the NP-hardness of approximating pKt will
allow us to rule out Pessiland.3 It can also be shown that the problem of approximating pKt is
reducible to that of computing conditional pKt.4 On the other hand, Corollary 4 only requires
showing the NP-hardness of computing conditional pKt, which might be easier. Moreover, we
note that the barrier of [22] to showing NP-hardness of approximating Kolmogorov complexity
and its variants does not seem to apply directly to exact computation.

Equivalences between Average-Case Easiness of Approximating and Computing
(Conditional) pKt

By combining Theorem 1 with existing characterizations of one-way functions, we get that
the average-case easiness of approximating and computing different variants of probabilistic
(conditional) time-bounded Kolmogorov complexity are in fact equivalent. We state this
result more formally below.

We say that “approximating pKt is easy-on-average over samplable distributions” if the
following holds.

2 In this case, we mean basing infinitely-often one-way functions on DistNP ̸⊆ HeurBPP.
3 Here, we refer to the problem called Gap-MINpKT. For a polynomial τ , Gap-MINpKT[τ ] is the (promise)

problem of deciding, given as input (x, 1s, 1t), whether pKt(x) ≤ s or pKτ(|x|,t)(x) > s + log τ(|x|, t).
4 More precisely, if we can solve Cond-pK[τ ] for some polynomial τ , then we can also solve Gap-MINpKT[τ ′]

for some polynomial τ ′.

ICALP 2024
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For every polynomial-time samplable distribution family {Dn}n supported over {0, 1}n,
every polynomial q, and for all large enough polynomial τ , there is a probabilistic
polynomial-time algorithm A that can decide, given as input (x, 1s, 1t), whether
pKt(x) ≤ s or pKτ(|x|,t)(x) > s + log τ(|x|, t),5 with probability at least 1 − 1/q(n)
over x ∼ Dn and the internal randomness of A.

The above can be naturally generalized to the conditional setting, where we consider any
samplable distribution family {D⟨n,m⟩}n,m supported over {0, 1}n × {0, 1}m, and for all
large enough polynomial τ , we can decide whether pKt(x | y) ≤ s or pKτ(|x|,|y|,t)(x | y) >
s+ log τ(|x|, |y|, t) with high probability over (x, y) sampled from D⟨n,m⟩. In this case, we
say that “approximating conditional pKt is easy-on-average over samplable distributions”

Also, we say that “computing pKt is easy-on-average over samplable distributions” if the
following holds.

For every polynomial-time samplable distribution family {Dn}n supported over {0, 1}n,
every polynomial q, and for all large enough polynomial τ , there is a probabil-
istic polynomial-time algorithm A that can decide, given as input (x, 1s), whether
pKτ(|x|)

2/3 (x) ≤ s or pKτ(|x|)
1/3 (x) > s,6 with probability at least 1 − 1/q(n) over x ∼ Dn

and the internal randomness of A.

▶ Theorem 5 (Informal). The following are equivalent.
1. Infinitely-often one-way functions do not exist.
2. Approximating pKt is easy-on-average over samplable distributions.
3. Approximating conditional pKt is easy-on-average over samplable distributions.
4. Computing pKt is easy-on-average over samplable distributions.
5. Computing conditional pKt is easy-on-average over samplable distributions.

A sketch of the proof of Theorem 5 can be found in [20, Section 3.3].

1.1.2 Characterizing Impagliazzo’s Worlds by Tractability of Conditional
Time-Unbounded Kolmogorov Complexity

We present a meta-complexity problem, namely approximating conditional Kolmogorov
complexity up to an O(logn) additive term, that is unconditionally hard (even uncomput-
able) in the worst case, but such that its average-case intractability for different classes of
distributions characterize Algorithmica, Heuristica and Pessiland.

Characterizing DistNP ⊆ BPP and DistNP ⊆ HeurBPP by Tractability of
Time-Unbounded Kolmogorov Complexity

To begin, we recall a recent result by Ilango, Ren, and Santhanam [11] characterizing the non-
existence of one-way functions by the tractability of approximating Kolmogorov complexity
over polynomial-time samplable distributions. We consider the following conditional variant
from [8].

5 Note that this is the problem Gap-MINpKT mentioned in Footnote 3.
6 This problem is referred to as MpKτ P in [17].
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▶ Theorem 6 ([8, Lemma 27], cf. [11]). The following are equivalent.
1. Infinitely-often one-way functions do not exist.
2. (Approximating conditional Kolmogorov complexity is easy-on-average over

polynomial-time samplable distributions.)
For every polynomial-time samplable distribution family {Dn}n, where each Dn is over
{0, 1}n × {0, 1}n, and every polynomial q, there exist a probabilistic polynomial-time
algorithm A and a polynomial p such that for all n ∈ N,

Pr
(x,y)∼Dn

[K(x | y) ≤ A(x, y) ≤ K(x | y) + log p(n)] ≥ 1 − 1
q(n) .

Note that a one-way function is a function that is efficiently computable but hard to invert
on average; thus, this notion is based on average-case hardness. Theorem 6 characterizes the
existence of one-way functions by the average-case hardness of approximating (conditional)
Kolmogorov complexity. Then, for NP ̸⊆ BPP, which is a worst-case hardness notion,
one might think that it can be characterized by the worst-case hardness of approximating
(conditional) Kolmogorov complexity. However, it is well known that the task of approximating
the conditional Kolmogorov complexity is provably intractable in the worst case, so such a
characterization would imply NP ̸⊆ BPP unconditionally.

Consider a polynomial-time samplable distribution D over {0, 1}n ×{0, 1}n. Also, let D(2)

be the marginal distribution of D on the second half, and let D(· | y) denote the conditional
distribution of D on the first half given that the second half is y. Now, observe the following
equivalent way of sampling a pair of strings (x, y) from D: We first sample y from D(2) and
then x from D(· | y).

Note that Theorem 6 essentially says that one-way functions do not exist if and only if,
for every polynomial-time samplable distribution D, one can approximate K(x | y) on average
over (x, y), where we sample y from D(2) and then x from D(· | y). In order to characterize
NP ⊆ BPP, we consider the tractability of approximating conditional Kolmogorov complexity
in the semi-worst case, meaning that we can approximate K(x | y) on average over x sampled
from D(· | y) for all y ∈ {0, 1}n (instead of an average y from D(2)). Our first result is a
characterization of NP ⊆ BPP by the tractability of approximating conditional Kolmogorov
complexity in this semi-worst case. Formally, we show the following.

▶ Theorem 7. The following are equivalent.
1. NP ⊆ BPP.
2. (Approximating conditional Kolmogorov complexity is easy in the semi-worst

case.)
For every polynomial-time samplable distribution family {Dn}n, where each Dn is over
{0, 1}n × {0, 1}n, and every polynomial q, there exist a probabilistic polynomial-time
algorithm A and a polynomial p such that for all n ∈ N and y ∈ {0, 1}n,

Pr
x∼Dn(·|y)

[K(x | y) ≤ A(x, y) ≤ K(x | y) + log p(n)] ≥ 1 − 1
q(n) .

Theorem 7 shows that NP ⊆ BPP if and only if for every polynomial-time samplable
distribution D, approximating K(x | y) is easy on average over x sampled from D(· | y)
for every y ∈ {0, 1}n. Now, instead of considering every y ∈ {0, 1}n (a worst-case notion),
it is also natural to consider an average y sampled from some polynomial-time samplable
distribution C (an average-case notion). However, the distribution C here can be independent
of D. In particular, it does not necessarily have to be D(2).

ICALP 2024
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Next, we show that the average-case tractability of approximating conditional Kolmogorov
complexity over such independent polynomial-time samplable distributions, in fact character-
izes the average-case easiness of NP (i.e., DistNP ⊆ HeurBPP). We first state formally the
definition of independent polynomial-time samplable distributions.

▶ Definition 8 (Independent Polynomial-Time Samplable [8]). We say that a distribution family
{Dn}n, where each Dn is over {0, 1}n ×{0, 1}n, is independent polynomial-time samplable if
there exist two polynomial-time samplable distribution families {An}n and {Bn}n, where each
An is over {0, 1}n and each Bn is over {0, 1}n × {0, 1}n, such that Dn can be equivalently
sampled as follows: sample y ∼ An, sample x ∼ Bn(· | y), and then output (x, y).

It is easy to see that every polynomial-time samplable distribution is also independent
polynomial-time samplable, by letting A be the marginal distribution of D on the second half
and letting B be D. However, the converse is not necessarily true. Nevertheless, Theorem 6
and Theorem 9 (which we state below) imply that the task of ruling out Pessiland is equivalent
to showing that the hardness of approximating conditional Kolmogorov complexity remains
unchanged over these two classes of distributions.

▶ Theorem 9. The following are equivalent.
1. DistNP ⊆ HeurBPP.
2. (Approximating conditional Kolmogorov complexity is easy-on-average over

independent polynomial-time samplable distributions.)
For every independent polynomial-time samplable distribution family {Dn}n and every
polynomial q, there exist a probabilistic polynomial-time algorithm A and a polynomial p
such that for all n ∈ N,

Pr
(x,y)∼Dn

[K(x | y) ≤ A(x, y) ≤ K(x | y) + log p(n)] ≥ 1 − 1
q(n) .

Finally, we extend Theorem 6 to characterize the non-existence of auxiliary-input one-way
functions by the tractability of approximating conditional Kolmogorov complexity over
P/poly-samplable distributions.

▶ Theorem 10. The following are equivalent.
1. Auxiliary-input one-way functions do not exist.
2. For every sequence of strings {yn}n where each yn ∈ {0, 1}n, every distribution family

{Dn}n samplable in polynomial time using {yn}n as advice, where each Dn is over {0, 1}n,
and every polynomial q, there exist a probabilistic polynomial-time algorithm A and a
polynomial p such that for all n ∈ N,

Pr
x∼Dn

[K(x | yn) ≤ A(x, yn) ≤ K(x | yn) + log p(n)] ≥ 1 − 1
q(n) .

The results above characterize the non-existence of one-way functions, DistNP ⊆ HeurBPP,
and NP ⊆ BPP by the distributional tractability of approximating the conditional Kolmogorov
complexity. They imply that the tasks of ruling out Impagliazzo’s certain worlds are equivalent
to showing that the hardness of this problem is the same with respect to different classes
of distributions. For example, Theorem 6 and Theorem 9 imply that basing one-way
functions on DistNP ̸⊆ HeurBPP (a.k.a., ruling out Pessiland) is equivalent to showing that
the hardness of approximating conditional Kolmogorov complexity over polynomial-time
samplable distributions is the same as the hardness over independent polynomial-time
samplable distributions.
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Equivalences between Tractability of Time-Unbounded and Time-Bounded
Kolmogorov Complexity

We first recall the definition of time-bounded Kolmogorov complexity. For x, y ∈ {0, 1}∗ and
t ∈ N, we define Kt(x | y) to be the minimum length of a program p ∈ {0, 1}∗ such that
Uy(p) outputs x within t steps. Here, U is a fixed time-optimal universal Turing machine
and has oracle access to the string y.

For τ : N → N and κ : N → N, let McKτ P[κ] be the problem where we are given input
x ∈ {0, 1}n and y ∈ {0, 1}κ(n), and we are asked to compute Kτ(|x|)(x | y). Given a polynomial
τ and a polynomial κ, we say that:

McKτ P[κ] is easy in the worst case if McKτ P[κ] can be solved in polynomial time.
McKτ P[κ] is easy-on-average over polynomial-time samplable distributions if McKτ P[κ]
admits a heuristic scheme. That is for any polynomial-time samplable distribution
D = {Dn}n, where each Dn samples (x, z) with x ∈ {0, 1}n and y ∈ {0, 1}κ(n), there
exists a probabilistic polynomial-time algorithm A such that for all n, k ∈ N,

Pr
x,y∼Dn

[
A(x, y; 1n, 1k) = Kτ(|x|)(x | y)

]
≥ 1 − 1

k
.

McKτ P[κ] is easy-on-average over the uniform distribution if for every polynomial p, there
exists a probabilistic polynomial-time algorithm A such that for all n ∈ N,

Pr
x∼{0,1}n,y∼{0,1}κ(n)

[
A(x, y) = Kτ(|x|)(x | y)

]
≥ 1 − 1

p(n) .

▶ Theorem 11 (Implicit in [16]). The following hold.
For all polynomial τ(n) ≥ n2, there exists a polynomial κ such that NP ⊆ BPP if and
only if McKτ P[κ] is easy in the worst-case.
For all polynomial τ(n) ≥ n2, there exists a polynomial κ such that DistNP ⊆ HeurBPP
if and only if McKτ P[κ] is easy-on-average over polynomial-time samplable distributions.
For every polynomial τ(n) ≥ 1.1n and polynomial κ, infinitely-often one-way functions
do not exist if and only if McKτ P[κ] is easy-on-average over the uniform distribution.

As a corollary, we get the following equivalences between the tractability of conditional
Kolmogorov complexity and that of conditional time-bounded Kolmogorov complexity.

▶ Corollary 12 (Informal). The following hold.
For all polynomial τ(n) ≥ n2, there exists a polynomial κ such that approximating
conditional Kolmogorov complexity is easy in the semi-worst case if and only if McKτ P[κ]
is easy in the worst-case case.
For all polynomial τ(n) ≥ n2, there exists a polynomial κ such that approximating
conditional Kolmogorov complexity is easy-on-average over independent polynomial-time
samplable distributions if and only if McKτ P[κ] is easy-on-average over polynomial-time
samplable distributions.
For every polynomial τ(n)≥1.1n and polynomial κ, approximating conditional Kolmogorov
complexity is easy-on-average over polynomial-time samplable distributions if and only if
McKτ P[κ] is easy-on-average over the uniform distribution.

Proof. This follows directly from Theorem 6, Theorem 7, Theorem 9, and Theorem 11. ◀

ICALP 2024



110:10 Impagliazzo’s Worlds Through the Lens of Conditional Kolmogorov Complexity

1.2 Techniques
In this section, we explain the main ideas behind our proofs.

Characterizing Non-Existence of One-Way Functions by Average-Case Easiness of
Conditional pKt

A recent result by Liu and Pass [17] characterized the non-existence of (infinitely-often)
one-way functions by the average-case easiness of computing pKt over polynomial-time
samplable distributions. Here, we describe a proof of this result that is slightly different than
the original one and show how to generalize it to conditional pKt.

It will be convenient to think of the pKt complexity of a string as its Kt complexity
conditioning on a random string r (see [20, Proposition 17]).

First of all, by employing ideas from [14, 17], one can construct a function, which outputs
the string x produced by a randomly selected (time-bounded) program (resp. conditioning
on a random string r), and show that if this function can be inverted, then we can obtain
a shortest program for x (resp. conditioning on r) “on average”. In particular, it can be
shown that if infinitely-often one-way functions do not exist, then for every time bound
function τ(n) = nO(1), there exists an efficient algorithm A (for simplicity, think of it as
being deterministic) such that with high probability over a uniformly random string r,
A(x; r) computes Kτ (x | r) for an average x sampled from some distribution Eτ

r , defined as
Eτ

r (x) := 2−Kτ (x|r).
Next, we want to say that, for almost all r, the algorithm A(−; r), which works for the

distribution Eτ
r , also works for a given polynomial-time samplable distribution D (provided

that τ is a sufficiently large polynomial). To get this, it suffices to show that Eτ
r dominates7

D, i.e., 2−Kτ (x|r) ≳ D(x) for every x. The observation here is that this follows from the
recently discovered coding theorem for pKpoly [19], which asserts that for every string x,
pKτ (x) ≲ log(1/D(x)) (again, provided that τ is a sufficiently large polynomial). To see this,
note that by the definition of pKt, we have for a uniform random r, Kτ (x | r) ≤ pKτ (x).

Given the above, we have that with high probability over a uniformly random r, A(x; r) =
Kτ (x | r) for an average x sampled from D. By an averaging argument, we get that with
high probability over x ∼ D, A(x; r) = Kτ (x | r) with high probability over a uniformly
random r. For any such good x, if pKτ

2/3(x) ≤ s (resp. pKτ
1/3(x) > s), which means

Prr[Kτ (x | r) ≤ s] ≥ 2/3 (resp. Prr[Kτ (x | r) > s] ≥ 2/3), then A(x, r) ≤ s (resp.
A(x, r) > s) with high probability over r. This allows us to solve the problem of computing
pKτ on average over the distribution D.

Now we describe how to generalize the above to conditional pKt.
Suppose we want to compute pKτ (x | y) over (x, y) sampled from some polynomial-time

distribution D. It will be convenient to consider the following equivalent way of sampling D:
We first sample y ∼ D(2), where D(2) is the marginal distribution of D on the second half,
and then sample x ∼ D(· | y), where D(· | y) is the conditional distribution of Dn on the first
half given that the second half is y. Finally, we output (x, y).

First of all, by modifying the construction of the candidate one-way function described
above (e.g., by incorporating the distribution D(2) into the construction), we can show that
if infinitely-often one-way functions do not exist, then there exists an efficient algorithm A

such that with high probability over a uniformly random string r and over y sampled from
D(2), A(x; y, r) computes Kτ (x | y, r) for an average x sampled from some distribution Eτ

y,r,
where Eτ

y,r(x) := 2−Kτ (x|y,r).

7 Recall that a distribution D dominates another distribution D′ if D(x) ≥ D′(x)/poly(n) for every x.
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Now similar to the previous case, we want to say that, with high probability over r and
y ∼ D(2), the algorithm A(−; y, r), which works for the distribution Eτ

y,r, also works for the
distribution D(· | y). Again, it suffices to show that Eτ

y,r(x) = 2−Kτ (x|y,r) ≳ D(x | y) for
every x. However, this would require a conditional version of the coding theorem for pKpoly

applying to the distribution D(· | y) (which is not necessarily efficiently samplable given y).
Such a coding theorem is not known (in fact, is unlikely to hold).

The key observation is that in order to show that the algorithm A(−; y, r), which works
on average over the distribution Eτ

y,r, also works for D(· | y), it suffices to have that Eτ
y,r(x)

dominates D(x | y) on almost all x, instead of every x. Then this weaker condition can be
obtained from an average-case coding theorem for pKpoly, which has been shown under the
assumption that infinitely-often one-way functions do not exist [8] (see [20, Theorem 29]).

More specifically, [8] showed that if infinitely-often one-way functions do not exist, then
with high probability over y ∼ D(2) and x ∼ D(· | y), it holds that

pKτ (x | y) ≲ log 1
D(x | y) .

Again, by the definition of pKt and an averaging argument, this yields that with high
probability over a uniformly random r and y ∼ D(2),

Kτ (x | y, r) ≤ log 1
D(x | y)

holds for almost all x ∼ D(· | y). This allows us to say that with high probability over r and
y ∼ D(2), the distribution Eτ

y,r dominates D(· | y) on average, so the algorithm A(−; y, r),
which works for Eτ

y,r, also works for D(· | y).
At this point, we get that with high probability over (x, y) ∼ D and over a uniformly

random r, A(x; y, r) = Kτ (x | y, r). By the same argument as described above, this allows us
to compute pKτ (x | y) on average over (x, y) sampled from D.

The converse direction, i.e., that computing conditional pKt on average allows us to break
one-way functions, follows from the standard observation that computing pKt on average
over samplable distributions allows us to distinguish pseudo-random distributions (which
are supported on strings of low pKt complexity) from random strings (which have high pKt

complexity).

Characterizing DistNP ⊆ HeurBPP by Average-Case Easiness of Conditional pKt in
Sublinear-Time Regime

To show that the average-case easiness of computing conditional pKt (in the sublinear-time
regime) implies the average-case easiness of NP (both with respect to polynomial-time
samplable distributions), we first show that it is NP-hard to compute conditional pKt (again,
in the sublinear-time regime). Recently, Liu and Pass [16] and Hirahara [6] showed that
the problem of computing the conditional Kt in the sublinear-time regime is NP-hard. We
generalize this result to pKt.

At a high level, our proof follows a similar approach but also requires some crucial
observations to address the more complex notion of pKt and to make it applicable to show
Theorem 2. In particular, we adapt the proof in [6] which relies on the use of a secret
sharing scheme (see [6, Section 2.3] for an exposition). More specifically, it reduces the
problem of approximating the hamming weight of a minimum satisfying assignment of a
given monotone formula, which is known to be NP-hard, to that of computing conditional
Kt in the sublinear-time regime. That is, for every constant c > 1 and time bound function
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τ(n,m) := nc · m1−1/c, there is a randomized reduction R such that if a given monotone
formula ψ has a satisfying assignment of hamming weight at most ζ (resp. much larger
than ζ), then with high probability, R produces a pair of strings (x, y) and ρ such that
Kτ(|x|,|y|)(x | y) ≤ ρ (resp. Kτ(|x|,|y|)(x | y) > ρ).

Our key observation is that this reduction still works in the presence of any fixed string r.
Roughly put, the reason for this is that a secret sharing scheme remains secure even if an
adversary has access to some fixed string. More specifically, we can show that with respect to
any string r, if a given monotone formula ψ has a satisfying assignment of hamming weight
much larger than ζ, then with high probability the algorithm R produces a pair of strings
(x, y) and ρ such that Kτ(|x|,|y|)(x | y, r) > ρ. This allows us to say that if the minimum
weight of ψ is much larger than ζ, then with high probability over a random string r and
over the internal randomness of R, Kτ(|x|,|y|)(x | y, r) > ρ. By an averaging argument, this
gives that with high probability over the internal randomness of R, Kτ(|x|,|y|)(x | y, r) > ρ

for more than 2/3 of the r’s, which essentially means pKτ(|x|,|y|)
1/3 (x | y) > ρ.

Now we have showed that computing conditional pKt (in the sublinear-time regime) is
NP-hard. To solve an NP problem L over a given polynomial-time samplable distribution D,
we can compose D with the reduction R to obtain a new distribution D′. Then we can show
that computing conditional pKt on average over D′ will allow us to solve L on average over
D. However, there is an additional subtle issue here, the original reduction R depends on
the time bound function (i.e., for every sublinear time bound τ , there is a reduction R that
will work). On the other hand, to show Theorem 2 (Item 2 =⇒ Item 1), it is required that
the reduction works for all time bound functions τ of the form τ(n,m) = nc ·m1−1/c. We
will then need to further modify the reduction to achieve this. (See [20, Lemma 45] for the
details.)

Now we need to show the other direction saying that the average-case easiness of NP
implies the average-case easiness of computing conditional pKt. Unlike the problem of
computing (conditional) Kt, computing (conditional) pKt is not known to be in NP, so we
can not get the desired implication directly. However, it is not hard to see that the problem
of computing conditional pKt is in fact in (promise) AM.8 If we can solve NP, then we can
also solve AM (in the randomized setting), by a standard trick that combines the instance of
an AM problem with a random string to produce an instance for an NP problem. (See [20,
Lemma 53] for the details.)

Characterizing DistNP ⊆ BPP and DistNP ⊆ HeurBPP by Tractability of
Time-Unbounded Kolmogorov Complexity.

First, we recap the proof of Theorem 6 as presented in [11]. We will ignore the issue of
“infinitely often” in this subsection.

To show that the non-existence of one-way functions implies efficient algorithms for
approximating conditional Kolmogorov complexity on average over polynomial-time samplable
distributions, we use a powerful result from [13], which asserts that if one-way functions
do not exist, then for any polynomial-time samplable distribution D over {0, 1}n × {0, 1}n,
one can efficiently estimate D(x | y) on average over (x, y) ∼ D. In addition, we combine
two fundamental properties related to time-unbounded Kolmogorov complexity: The first is
called the coding theorem, which roughly says that for every (x, y) ∈ Support(D),

8 Here, we refer to the problem Cond-pK instead of the one that asks to decide whether pKτ(|x|,|y|)(x |
y) ≤ s for a given input (x, y, 1s) and time bound τ .
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K(x | y) ≲ log 1
D(x | y) ,

and the second is the incompressibility property, which states that all y ∈ {0, 1}n and for
almost all x ∼ D(· | y),

K(x | y) ≳ log 1
D(x | y) .

It follows that for almost all (x, y) ∼ D,

K(x | y) ≈ log 1
D(x | y) .

This allows us to approximate K(x | y) by estimating D(x | y), and the latter can be done
efficiently if one-way functions do not exist.

For the other direction, the idea is that an efficient algorithm for approximating Kolmogorov
complexity on average can be used to construct a function that distinguishes the output
distribution of a cryptographic pseudorandom generator from the uniform distribution.
Intuitively, this is because the outputs of such a generator have low Kpoly complexity while
a random string has high Kolmogorov complexity. Then such an algorithm implies the
non-existence of pseudorandom generators and hence of one-way functions [4].

Now, let us try to see if we can adapt the above proof paradigm to show Theorem 9,
which characterizes DistNP ⊆ HeurBPP by the tractability of approximating conditional
Kolmogorov complexity on average over independent polynomial-time samplable distributions.

One direction is in fact easy by using tools developed in [8]. In particular, it is observed in
[8] that if DistNP ⊆ HeurBPP, then every independent polynomial-time samplable distribution
can be simulated by some polynomial-time samplable distribution (see [20, Lemma 26]).
Consequently, if DistNP ⊆ HeurBPP (which also implies that one-way functions do not exist),
then we can reduce the task of approximating conditional Kolmogorov complexity over
independent polynomial-time samplable distributions to that of approximating conditional
Kolmogorov complexity over polynomial-time samplable distributions, which is tractable if
one-way functions do not exist.

However, for the other direction, it is unclear how we can get DistNP ⊆ HeurBPP from
the tractability of approximating conditional Kolmogorov complexity over independent
polynomial-time samplable distributions, by using ideas from the proof of the character-
ization for one-way functions. In that scenario, we use the algorithm for approximating
conditional Kolmogorov complexity as a distinguisher to break the security of a cryptographic
pseudorandom generator.

Here, we will use a different approach. Specifically, we rely on a recently discovered
characterization of DistNP ⊆ HeurBPP by the validity of a certain property called conditional
coding for pKt. More precisely, the authors of [8] showed that DistNP ⊆ HeurBPP if and only
if conditional coding property for pKpoly holds on average over pairs of strings drawn from
independent polynomial-time samplable distributions, i.e., for any independent polynomial-
time samplable distribution D over {0, 1}n × {0, 1}n and for almost all (x, y) ∼ D,

pKpoly(n)(x | y) ≲ log 1
D(x | y)

(see [20, Theorem 30]).
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Now given this characterization of DistNP ⊆ HeurBPP using conditional coding, it
suffices to show that conditional coding property for pKpoly over independent polynomial-time
samplable distributions follows from the tractability of approximating conditional Kolmogorov
complexity over the same class of distributions.

How can we show this? First of all, note that by the coding theorem for time-unbounded
Kolmogorov complexity, we have that for every (x, y) ∈ Support(D),

K(x | y) ≲ log 1
D(x | y) .

Then to get the desired conditional coding property for pKpoly, it suffices to show that for
almost all (x, y) ∼ D,

pKpoly(n)(x | y) ≤ K(x | y) +O(logn). (1)

Now, let us describe how to show the above, assuming efficient algorithms for approx-
imating conditional Kolmogorov complexity over independent polynomial-time samplable
distributions.

The key ingredient here is a pseudorandom generator construction with reconstruction
property. Such a generator is instantiated with a target string, it then takes as input a
random seed and outputs a string that is longer than the seed. The reconstruction property
allows us to say that if there exists a function that can distinguish the output distribution
of the generator from the uniform distribution, then it can be used to recover the target
string, using an additional advice string. This enables us to say that given a distinguisher,
the target string has poly-time-bounded Kolmogorov complexity bounded by the length of
the advice string. An algorithm for approximating Kolmogorov complexity can naturally
be used as such a distinguisher, since the outputs of the generator have low Kolmogorov
complexity while a random string has high Kolmogorov complexity. By appropriately
configuring the parameters of the generator, we can ensure that the length of the advice
string is comparable to the Kolmogorov complexity of the target string. This allows us
to upper bound the poly-time-bounded Kolmogorov complexity of the target string by its
Kolmogorov complexity.

Using this approach, the authors of [8] showed that if efficient algorithms exist for approx-
imating conditional Kolmogorov complexity over polynomial-time samplable distributions,
then for every polynomial-time samplable distribution D over {0, 1}n × {0, 1}n and almost
all (x, y) ∼ D,

rKpoly(n)(x | y) ≤ K(x | y) +O(log3 n). (2)

Here, rKt is a certain randomized variant of time-bounded Kolmogorov complexity measure
[2, 18].

The O(log3 n) additive term in Equation (2) results from the use of a specific pseudor-
andom generator construction with an rKt-style reconstruction property (as they need to
upper bound rKpoly by K), and such a generator has sub-optimal “advice complexity” in its
reconstruction. In our case, we need to upper bound pKpoly by K, and we can use a different
pseudorandom generator construction with a pKt-style reconstruction property that is known
to have optimal “advice complexity” (see [20, Section 2.7]). This results in only an O(logn)
additive term instead of O(log3 n) as in the previous case.

The description provided above does not address an important technical distinction
between showing Equation (1) and showing Equation (2) in [8]. In our case, we need to
show Equation (1) over independent polynomial-time samplable distributions, whereas the
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other case involves the simpler class of polynomial-time samplable samplable distributions.
In fact, in the proof of Equation (2), a crucial fact used is that the uniform mixture of two
polynomial-time samplable distributions is also polynomial-time samplable. Intuitively, the
reason why this is needed is that we need to obtain a function that can distinguish the
output distribution of a pseudorandom generator (induced by a polynomial-time samplable
distribution) and the uniform distribution (also combined with a polynomial-time samplable
distribution), so we need to apply an algorithm to approximate Kolmogorov complexity over
the mixture uniform of those two distributions.

However, in our case, we are dealing with independent polynomial-time samplable
distributions, and the uniform mixture of two independent polynomial-time samplable
distributions is not necessarily independent polynomial-time samplable. The key insight
here is that we don’t really need to be concerned with the uniform mixture of two generic
independently polynomial-time samplable distributions. Instead, the two distributions have
the property that they are identical when restricted to the second half. We then show
that the uniform mixture of such two distributions remains independently polynomial-time
samplable. (See the proofs of [20, Lemma 59] and [20, Lemma 63] for details.)

We now describe the proof of Theorem 7. Again, the direction of showing the tractability
of approximating conditional Kolmogorov complexity in the semi-worst case from NP ⊆ BPP
can be done in a way similar to that of Theorem 6 (as described earlier in this subsection).
This is because if NP ⊆ BPP, then one can estimate D(x | y) for every polynomial-time
samplable distribution D and (x, y) ∈ Support(D), a result due to [24] (see also [20, Lemma
27]).

For the other direction, we will employ the same approach as used to to show Theorem 9.
In this case, we will use a similar characterization of NP ⊆ BPP through conditional
coding. Specifically, it has been shown in [8] that NP ⊆ BPP if and only if worst-case
conditional coding for pKpoly holds, i.e., for every polynomial-time samplable distribution D
over {0, 1}n × {0, 1}n and every (x, y) ∈ Support(D),

pKpoly(n)(x | y) ≲ log 1
D(x | y) . (3)

Unfortunately, it is unclear how we can obtain the above worst-case conditional coding
property from the tractability of approximating conditional Kolmogorov complexity in the
semi-worst case by following the same approach. To overcome this, we observe that we can
modify the original proof in [8] to obtain a characterization of NP ⊆ BPP by semi-worst-case
conditional coding, which only requires Equation (3) to hold for almost all x ∼ D(· | y) and
for all y ∈ {0, 1}n (see [20, Lemma 64]).

By using this alternative characterization and addressing a similar issue that arises
when transitioning from polynomial-time samplable distributions to semi-worst-case input
distributions, as described above in the case of showing Theorem 9, we can now use efficient
algorithms for approximating conditional Kolmogorov complexity in the semi-worst case to
obtain the desired semi-worst-case conditional coding property, which then yields NP ⊆ BPP.

1.3 Open Problems
Can we show NP-hardness of computing conditional pKt in the polynomial-time regime?
By Corollary 4, this would imply that Pessiland does not exist. Are there any barriers to
showing such an NP-hardness result?

Theorem 9 characterizes the error-prone average-case easiness of NP (i.e., DistNP ⊆
HeurBPP) by the tractability of approximating conditional Kolmogorov complexity over inde-
pendent polynomial-time samplable distributions. Can we obtain a similar characterization
for the errorless average-case easiness of NP (i.e., DistNP ⊆ AvgBPP)?

ICALP 2024



110:16 Impagliazzo’s Worlds Through the Lens of Conditional Kolmogorov Complexity

References
1 Eric Allender, Mahdi Cheraghchi, Dimitrios Myrisiotis, Harsha Tirumala, and Ilya Volkovich.

One-way functions and a conditional variant of MKTP. In Conference on Foundations of
Software Technology and Theoretical Computer Science (FSTTCS), pages 7:1–7:19, 2021.
doi:10.4230/LIPIcs.FSTTCS.2021.7.

2 Harry Buhrman, Troy Lee, and Dieter van Melkebeek. Language compression and pseudoran-
dom generators. Comput. Complex., 14(3):228–255, 2005. doi:10.1007/s00037-005-0199-5.

3 Halley Goldberg, Valentine Kabanets, Zhenjian Lu, and Igor C. Oliveira. Probabilistic
Kolmogorov complexity with applications to average-case complexity. In Computational
Complexity Conference (CCC), pages 16:1–16:60, 2022. doi:10.4230/LIPIcs.CCC.2022.16.

4 Johan Håstad, Russell Impagliazzo, Leonid A. Levin, and Michael Luby. A pseudorandom
generator from any one-way function. SIAM J. Comput., 28(4):1364–1396, 1999. doi:
10.1137/S0097539793244708.

5 Shuichi Hirahara. Characterizing average-case complexity of PH by worst-case meta-complexity.
In Symposium on Foundations of Computer Science (FOCS), pages 50–60, 2020. doi:10.
1109/FOCS46700.2020.00014.

6 Shuichi Hirahara. Symmetry of information from meta-complexity. In Computational Com-
plexity Conference (CCC), pages 26:1–26:41, 2022. doi:10.4230/LIPIcs.CCC.2022.26.

7 Shuichi Hirahara. Capturing one-way functions via NP-hardness of meta-complexity. In
Symposium on Theory of Computing (STOC), pages 1027–1038, 2023. doi:10.1145/3564246.
3585130.

8 Shuichi Hirahara, Rahul Ilango, Zhenjian Lu, Mikito Nanashima, and Igor C. Oliveira. A
duality between one-way functions and average-case symmetry of information. In Symposium
on Theory of Computing (STOC), pages 1039–1050, 2023. doi:10.1145/3564246.3585138.

9 Shuichi Hirahara and Rahul Santhanam. On the average-case complexity of MCSP and
its variants. In Computational Complexity Conference (CCC), pages 7:1–7:20, 2017. doi:
10.4230/LIPIcs.CCC.2017.7.

10 Shuichi Hirahara and Rahul Santhanam. Excluding PH pessiland. In Innovations in Theoretical
Computer Science Conference (ITCS), pages 85:1–85:25, 2022. doi:10.4230/LIPIcs.ITCS.
2022.85.

11 Rahul Ilango, Hanlin Ren, and Rahul Santhanam. Robustness of average-case meta-complexity
via pseudorandomness. In Symposium on Theory of Computing (STOC), pages 1575–1583,
2022. doi:10.1145/3519935.3520051.

12 Russell Impagliazzo. A personal view of average-case complexity. In Proceedings of the Tenth
Annual Structure in Complexity Theory Conference, pages 134–147, 1995. doi:10.1109/SCT.
1995.514853.

13 Russell Impagliazzo and Leonid A. Levin. No better ways to generate hard NP instances than
picking uniformly at random. In Symposium on Theory of Computing (STOC), pages 812–821,
1990. doi:10.1109/FSCS.1990.89604.

14 Yanyi Liu and Rafael Pass. On one-way functions and Kolmogorov complexity. In Symposium on
Foundations of Computer Science (FOCS), pages 1243–1254, 2020. doi:10.1109/FOCS46700.
2020.00118.

15 Yanyi Liu and Rafael Pass. On the possibility of basing cryptography on EXP̸=BPP.
In International Cryptology Conference (CRYPTO), pages 11–40, 2021. doi:10.1007/
978-3-030-84242-0_2.

16 Yanyi Liu and Rafael Pass. On one-way functions from NP-complete problems. In Conference
on Computational Complexity (CCC), pages 36:1–36:24, 2022. doi:10.4230/LIPIcs.CCC.2022.
36.

17 Yanyi Liu and Rafael Pass. One-way functions and the hardness of (probabilistic) time-bounded
Kolmogorov complexity w.r.t. samplable distributions. In Annual Cryptology Conference
(CRYPTO), pages 645–673, 2023. doi:10.1007/978-3-031-38545-2_21.

https://doi.org/10.4230/LIPIcs.FSTTCS.2021.7
https://doi.org/10.1007/s00037-005-0199-5
https://doi.org/10.4230/LIPIcs.CCC.2022.16
https://doi.org/10.1137/S0097539793244708
https://doi.org/10.1137/S0097539793244708
https://doi.org/10.1109/FOCS46700.2020.00014
https://doi.org/10.1109/FOCS46700.2020.00014
https://doi.org/10.4230/LIPIcs.CCC.2022.26
https://doi.org/10.1145/3564246.3585130
https://doi.org/10.1145/3564246.3585130
https://doi.org/10.1145/3564246.3585138
https://doi.org/10.4230/LIPIcs.CCC.2017.7
https://doi.org/10.4230/LIPIcs.CCC.2017.7
https://doi.org/10.4230/LIPIcs.ITCS.2022.85
https://doi.org/10.4230/LIPIcs.ITCS.2022.85
https://doi.org/10.1145/3519935.3520051
https://doi.org/10.1109/SCT.1995.514853
https://doi.org/10.1109/SCT.1995.514853
https://doi.org/10.1109/FSCS.1990.89604
https://doi.org/10.1109/FOCS46700.2020.00118
https://doi.org/10.1109/FOCS46700.2020.00118
https://doi.org/10.1007/978-3-030-84242-0_2
https://doi.org/10.1007/978-3-030-84242-0_2
https://doi.org/10.4230/LIPIcs.CCC.2022.36
https://doi.org/10.4230/LIPIcs.CCC.2022.36
https://doi.org/10.1007/978-3-031-38545-2_21


Z. Lu and R. Santhanam 110:17

18 Zhenjian Lu, Igor C. Oliveira, and Rahul Santhanam. Pseudodeterministic algorithms and
the structure of probabilistic time. In Symposium on Theory of Computing (STOC), pages
303–316, 2021. doi:10.1145/3406325.3451085.

19 Zhenjian Lu, Igor C. Oliveira, and Marius Zimand. Optimal coding theorems in time-
bounded Kolmogorov complexity. In International Colloquium on Automata, Languages, and
Programming (ICALP), pages 92:1–92:14, 2022. doi:10.4230/LIPICS.ICALP.2022.92.

20 Zhenjian Lu and Rahul Santhanam. Impagliazzo’s worlds through the lens of conditional
Kolmogorov complexity. Electronic Colloquium on Computational Complexity (ECCC), TR24-
085, 2024. URL: https://eccc.weizmann.ac.il/report/2024/085.

21 Hanlin Ren and Rahul Santhanam. Hardness of KT characterizes parallel cryptography. In
Computational Complexity Conference (CCC), pages 35:1–35:58, 2021. doi:10.4230/LIPIcs.
CCC.2021.35.

22 Michael E. Saks and Rahul Santhanam. On randomized reductions to the random strings. In
Computational Complexity Conference (CCC), pages 29:1–29:30, 2022. doi:10.4230/LIPIcs.
CCC.2022.29.

23 Rahul Santhanam. Pseudorandomness and the minimum circuit size problem. In Innovations
in Theoretical Computer Science Conference (ITCS), pages 68:1–68:26, 2020. doi:10.4230/
LIPIcs.ITCS.2020.68.

24 Larry J. Stockmeyer. On approximation algorithms for #P. SIAM J. Comput., 14(4):849–861,
1985. doi:10.1137/0214060.

ICALP 2024

https://doi.org/10.1145/3406325.3451085
https://doi.org/10.4230/LIPICS.ICALP.2022.92
https://eccc.weizmann.ac.il/report/2024/085
https://doi.org/10.4230/LIPIcs.CCC.2021.35
https://doi.org/10.4230/LIPIcs.CCC.2021.35
https://doi.org/10.4230/LIPIcs.CCC.2022.29
https://doi.org/10.4230/LIPIcs.CCC.2022.29
https://doi.org/10.4230/LIPIcs.ITCS.2020.68
https://doi.org/10.4230/LIPIcs.ITCS.2020.68
https://doi.org/10.1137/0214060

	1 Introduction
	1.1 Results
	1.1.1 Characterizing Both  and Non-Existence of One-Way Functions by Average-Case Easiness of Conditional pKpoly
	1.1.2 Characterizing Impagliazzo's Worlds by Tractability of Conditional Time-Unbounded Kolmogorov Complexity

	1.2 Techniques
	1.3 Open Problems


