
Approximation Algorithms for ℓp-Shortest Path and
ℓp-Group Steiner Tree
Yury Makarychev # Ñ

Toyota Technological Institute at Chicago, IL, USA

Max Ovsiankin # Ñ

Toyota Technological Institute at Chicago, IL, USA

Erasmo Tani # Ñ

University of Chicago, IL, USA

Abstract
We present polylogarithmic approximation algorithms for variants of the Shortest Path, Group
Steiner Tree, and Group ATSP problems with vector costs. In these problems, each edge e has
a vector cost ce ∈ Rℓ

≥0. For a feasible solution – a path, subtree, or tour (respectively) – we find
the total vector cost of all the edges in the solution and then compute the ℓp-norm of the obtained
cost vector (we assume that p ≥ 1 is an integer). Our algorithms for series-parallel graphs run in
polynomial time and those for arbitrary graphs run in quasi-polynomial time.

To obtain our results, we introduce and use new flow-based Sum-of-Squares relaxations. We also
obtain a number of hardness results.

2012 ACM Subject Classification Theory of computation → Graph algorithms analysis; Theory
of computation → Shortest paths; Theory of computation → Approximation algorithms analysis;
Theory of computation → Routing and network design problems

Keywords and phrases Shortest Path, Asymmetric Group Steiner Tree, Sum-of-Squares

Digital Object Identifier 10.4230/LIPIcs.ICALP.2024.111

Category Track A: Algorithms, Complexity and Games

Related Version Full Version: http://arxiv.org/abs/2404.17669 [24]

Funding Yury Makarychev: Partially supported by NSF Awards CCF-1955173, CCF-1934843, and
ECCS-2216899.
Max Ovsiankin: Partially supported by the Institute for Data, Econometrics, Algorithms, and
Learning (IDEAL) with NSF Grant ECCS-2216899.
Erasmo Tani: Partially supported by the Institute for Data, Econometrics, Algorithms, and Learning
(IDEAL) with NSF Grant ECCS-2216912.

Acknowledgements We would like to thank the anonymous reviewers for providing references to
relevant prior work and for comments that improved the presentation of this paper.

1 Introduction

In this work, we study robust versions of network design problems. In the ℓp-Shortest Path
problem, we are given p ≥ 1, a graph G = (V, E) with vector-valued edge costs ce ∈ Rℓ

≥0,
and two vertices s and t; the goal is to find a path P from s to t in G that minimizes the
following cost:

costℓp
(P) =

∥∥∥∥∥∑
e∈P

ce

∥∥∥∥∥
p

.

EA
T

C
S

© Yury Makarychev, Max Ovsiankin, and Erasmo Tani;
licensed under Creative Commons License CC-BY 4.0

51st International Colloquium on Automata, Languages, and Programming (ICALP 2024).
Editors: Karl Bringmann, Martin Grohe, Gabriele Puppis, and Ola Svensson;
Article No. 111; pp. 111:1–111:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:yury@ttic.edu
https://home.ttic.edu/~yury/
https://orcid.org/0000-0003-3114-3947
mailto:maxov@ttic.edu
https://maxov.org/
https://orcid.org/0009-0003-7840-905X
mailto:etani@uchicago.edu
https://ertani.github.io
https://orcid.org/0009-0009-5433-1685
https://doi.org/10.4230/LIPIcs.ICALP.2024.111
http://arxiv.org/abs/2404.17669
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

111:2 Approximation Algorithms for ℓp-Shortest Path and ℓp-Group Steiner Tree

This problem is a natural generalization of the classical shortest path problem, but
surprisingly has not received much attention till recently. The problem has been studied for
p = ∞ under the name Robust Shortest Path. Aissi, Bazgan and Vanderpooten [1] used
dynamic programming to obtain a fully polynomial-time approximation scheme for the case
when the number of coordinates ℓ is a constant and p = ∞ (this result generalizes to other
p). Kasperski and Zieliński [18] proved that ℓ∞-Shortest Path is hard to approximate within
log1−ε ℓ for all ε > 0 unless NP ⊆ DTIME(npolylog n). More recently, the same authors [21]
gave an O(

√
n log ℓ/ log log ℓ)-approximation to the problem by rounding a flow-based linear

programming relaxation and proved that their LP has the integrality gap of Ω(
√

n). In a
recent breakthrough, Li, Xu, and Zhang [23] gave an O(log n log ℓ)-approximation algorithm
for ℓ∞-Shortest Path with running time quasi-polynomial in the size of the input instance.
In particular, their algorithm is the first polylogarithmic approximation known to date. They
also show that the same approximation guarantees can be obtained in polynomial time for
graphs of bounded treewidth, and they give a polynomial time O(d log ℓ) approximation
algorithm for series-parallel graphs, where d is the depth (order) of the series-parallel
decomposition of the input graph. No results were known for any other exponents p ∈ (1, ∞).
However, it is trivial to get an ℓ1−1/p-approximation by solving standard shortest path with
edge costs ∥ce∥1.

Introducing vector-valued costs to the graph’s edges allows this model to capture a
number of different applications. First, it allows us to describe a situation in which different
parties, each corresponding to a different coordinate of the cost vectors, incur different cost
when an edge is added to the solution. In this interpretation, as p → ∞, the problem will
increasingly favor paths in which every party simultaneously incurs small cost. Alternatively,
each coordinate of the cost vectors may represent the cost incurred in terms of a different
resource. This model would then allow one to balance minimizing the total amount of
resources spent and ensuring that no single resource is depleted. Furthermore, one can think
of this problem as providing an avenue for modeling robustness of a solution in the presence
of uncertainty. Each coordinate would then represent the cost incurred by adding an edge in
a distinct possible scenario, and the value of the ℓp-Shortest Path problem would amount to
a trade-off between average and worst-case cost among all scenarios. Finally, this problem
generalizes congestion minimization in directed graphs (a fact that we prove in Section 8 of
the full version of the paper [24]).

Our results for the ℓp-Shortest Path problem. In this paper, we introduce a natural
flow-based sum-of-squares (SoS) relaxation for ℓp-Shortest Path (Section 3) and present
approximation algorithms for all integer p ≥ 1.

First, we give an O(pd1−1/p)-approximation algorithm for the problem running in nO(p)

time for series-parallel graphs of depth/order d (Section 5). We do this by considering a
natural rounding algorithm for the SoS relaxation. We prove the following theorem:

▶ Theorem 1. There exists an approximation algorithm for the ℓp-Shortest Path problem in
series-parallel graphs that, given a series-parallel graph G of order/depth d and parameters
p ∈ Z≥1 and ε ∈ (0, 1), finds a (1 + ε)Bd(p)1/p = O(pd1−1/p) approximation in time
mO(p)/εO(1) (which is polynomial time when p and ε are fixed). Here, Bd(p) is the pth

d-dimensional Bell number.1

1 We provide a review of Bell numbers in the preliminaries.

Y. Makarychev, M. Ovsiankin, and E. Tani 111:3

For graphs of small series-parallel order/depth d ≤ log∗ p, the approximation factor is
B

1/p
d ≤ O(p/ log(d) p). Remarkably, in a complementary analysis given in Section 8 of the

full version of the paper, we show that the approximation factor Bd(p)1/p is tight for our
rounding scheme. In all algorithms, we assume that ℓ is at most polynomial in n (if not, the
running times will also depend on ℓ).

Then, we give a O(p log1−1/d n)-approximation for arbitrary graphs (Section 6 of the full
version of the paper), obtaining the following theorem:

▶ Theorem 2. There exists an approximation algorithm for the ℓp-Shortest Path problem
in arbitrary graphs that, given a graph G and parameters p ∈ Z≥1 and c ∈ (0, 1/2), finds a
cp log1−1/p n approximation in time mceO(1/c) log n = mOc(log n).

Note that when p = log ℓ, this result yields an O(c log n log ℓ) approximation. This is very
similar to the approximation guarantee of O(log n log k) by Li, Xu, and Zhang, except that
in our algorithm c can be an arbitrarily small constant.
▶ Remark 3. As previously discussed, an ℓ1−1/p-approximation is trivial to achieve in
polynomial time by solving standard shortest path with edge costs ∥ce∥1. On the other hand,
for each fixed ℓ′ there is a polynomial-time approximation scheme (PTAS) for ℓp-Shortest
Path in ℓ′ dimensions that runs in time nO(ℓ′). We now explain how to combine these two
results. Fix δ ∈ (1/ℓ, 1/2). Divide the coordinates of the cost vectors ce ∈ Rℓ into ℓ′ = ⌈1/δ⌉
groups, each of size at most k = ⌈δℓ⌉ and then add up the coordinates in each group. For
each cost vector ce ∈ Rℓ, we obtain a new vector c′

e ∈ Rℓ′ . Costs c′
e approximate costs ce

within a factor of k1−1/p in the following sense: for every path P ,∥∥∥∑
e∈P

ce

∥∥∥
p

≤
∥∥∥∑

e∈P

c′
e

∥∥∥
p

≤ k1−1/p
∥∥∥∑

e∈P

ce

∥∥∥
p
. (1)

Using the PTAS, we solve the problem with costs c′
e and by (1) get a (1 + ε)k1−1/p approx-

imation to the original problem. We conclude that there exists an approximation algorithm
that finds an O((δℓ)1−1/p) approximation in time nO(1/δ) (for every δ ∈ (1/ℓ, 1/2)).

In the course of analyzing our algorithms, we prove a new majorization inequality for
pseudo-expectations (see Section 4) generalizing pseudo-expectation Lyapunov’s and Hölder
inequality (for the latter see [2, arXiv version]). We believe this result to be of independent
interest.

Hardness results. We also complement the analysis above with several hardness results for
ℓp-Shortest Path. First, in Section 8.1 of the full version of the paper, we give a reduction
showing that the problem of congestion minimization can be reduced to the ℓ∞-Shortest
Path problem. This simultaneously speaks to the broad applicability of ℓp-Shortest Path
and implies hardness for the ℓ∞-version of the problem, following a result of Chuzhoy and
Khanna [9].

▶ Theorem 4. The ℓ∞-Shortest Path problem is hard to approximate within an
Ω(log n/ log log n)-factor unless NP ⊆ ZPTIME(nlog log n).

This theorem slightly strengthens the Ω(log1−ε ℓ)-hardness of approximation result by Kasper-
ski and Zieliński [18]. Finally, in Section 8.2 of the full version of the paper, we show that
allowing the entries of the cost vectors to be negative makes the problem substantially
harder. We do this by giving a reduction from the Closest Vector problem in lattices to
this (potentially negative costs) version of the ℓp-Shortest Path problem. Below, Ωp hides a
constant depending on p.

ICALP 2024

111:4 Approximation Algorithms for ℓp-Shortest Path and ℓp-Group Steiner Tree

▶ Theorem 5. For every p ∈ [1, ∞], it is NP-Hard to approximate the ℓp-Shortest Path
problem allowing negative edge costs within a factor of nΩp(1/ log log n).

▶ Remark 6. The requirement that all the coordinates of cost vectors ce are non-negative
can be slightly relaxed when p = 2. For our algorithms to work, it is sufficient that all
pairwise inner products of cost vectors are non-negative. That is, instead of requiring that
the Gram matrix of cost vectors is completely positive, we can only require that it is doubly
non-negative.

From shortest path to network design. In network design problems, one is given a graph
G = (V, E) with non-negative edge costs ce ≥ 0, and wishes to find a subgraph F = (VF , EF)
that minimizes the total cost

∑
e∈EF

ce subject to some connectivity constraints. By varying
the set of allowed subgraphs F , this paradigm encapsulates many central and well-studied
network design problems, including the Survivable Network Design, Steiner Forest, Steiner
Tree, and Minimum Spanning Tree. In this paper we explore two network design problems,
Group Steiner Tree and Asymetric Traveling Salesperson (ATSP). We first recall the Group
Steiner Tree problem.

▶ Problem 7 (Group Steiner Tree). Given a weighted undirected graph G = (V, E, c), as well
as k subsets R1, . . . , Rk of V , find a minimum-cost subtree T of G containing at least one
vertex from each Ri.

We then introduce an analogous group variant of ATSP:

▶ Problem 8 (Group ATSP). Given a weighted directed graph G = (V, E, c) and a collection
of subsets R1, . . . , Rk of V , find a minimum-cost tour that visits at least one vertex in each Ri.

As in the case of Shortest Path, it is natural to ask whether we can approximately solve
ℓp versions of other network design problems efficiently. Prior work has been done in this
area. Hamacher and Ruhe [15] studied ℓ∞-Minimum Spanning Tree, and proved that it is
NP-complete. Following that, the complexity of the problem has been nearly completely
settled: Chekuri, Vondrák, and Zenklusen [8] presented an O(log ℓ/ log log ℓ)-approximation
algorithm, while Kasperski and Zielinski [19] (also see [20], Table 1) proved an Ω(log1−ε ℓ)-
hardness of approximation for every ε > 0, unless all problems in NP can be solved in
quasi-polynomial time. Laddha, Singh and Vempala [22] studied the ℓ∞-version of a subclass
of network design problems which encompasses the Generalized Steiner Network problem,
and gave a polynomial-time ℓ-approximation algorithm for it.

Our results for ℓp-Group Steiner Tree and ℓp-Group ATSP. We consider the ℓp-version of
the Group Steiner Tree and the Group ATSP problems.

In Section 7 of the full version of the paper, we refine the SoS relaxation for ℓp-Shortest
Path to obtain approximation algorithms for ℓp-Group ATSP and ℓp-Group Steiner Tree,
and thus obtain approximation algorithms for these problems as well. In particular, we prove
the following two results:

▶ Theorem 9. There exists an approximation algorithm for ℓp-Group ATSP that given graph
G, groups Ri, and parameters p ∈ Z≥0 and c ∈ (0, 1/2) finds a c2p log2−1/p n log k approx-
imation in time mO(p)+ceO(1/c) log n = mOc(log n). We assume that k is at most polynomial
in n.

▶ Theorem 10. There exists an approximation algorithm for the ℓp-Group Steiner Tree
problem in undirected graphs that given a graph G, groups Ri, and parameters p ∈ Z≥1 and
c ∈ (0, 1/2) finds a c2p log2−1/p n log k approximation in time mceO(1/c) log n = mOc(log n). We
assume that k is at most polynomial in n.

Y. Makarychev, M. Ovsiankin, and E. Tani 111:5

Note that for p = ⌈log ℓ⌉, we get an approximation algorithm for the ℓ∞ norm.

1.1 Related Works

Previous results on the scalar-cost group Steiner tree problem. Group Steiner Tree with
scalar costs was introduced by Reich and Widmayer [29]. Garg, Konjevod, and Ravi [14] gave
an O(log2 n log k)-approximation to the problem, the first polylogarithmic approximation.
Charikar, Chekuri, Goel, and Guha [6] gave the same O(log2 n log k)-approximation with
a deterministic algorithm. Then Charikar, Chekuri, Cheung, Dai, Goel, Guha, and Li [5]
gave an O(log3 k) approximation that works even with directed graphs; however, it required
quasipolynomial time. Finally, Chekuri and Pál [7] gave an O(log2 k) approximation for
undirected graphs also in quasipolynomial time. The approximation guarantees of [14]
and [6] are presented above with the improvement resulting from using metric embedding by
Fakcharoenphol, Rao and Talwar [12]. In terms of the approximation guarantee and running
time, out algorithm is most similar to that by Chekuri and Pál [7]: when k = Θ(n), the
approximation guarantees match. In terms of techniques used, our algorithm uses some ideas
from that by Garg, Konjevod, and Ravi [14].

Dijkstra-style Algorithm for ℓp-Shortest Path. The authors of [3] describe a Dijkstra-style
algorithm for the ℓp-Shortest Path problem and claim that it achieves an O(min{p, log ℓ})-
approximation. However, we show that this claim is incorrect and, in fact, the approximation
factor of their algorithm is at least Ω(n1−1/p). We discuss this algorithm in Appendix B of
the full version of the paper.

Multi-objective combinatorial optimization for shortest path and network design. The
work in this paper is closely related to multi-objective combinatorial optimization (MOCO).
This area studies combinatorial optimization problems in the presence of multiple competing
objective functions. Much of the literature on MOCO is concerned with finding all or some
Pareto efficient solutions, that is, solutions that are not dominated in every objective by
any other solution, a problem which is often intractable due to the exponential number of
these points. In particular, there is prior MOCO work on both shortest path [16, 25, 4] and
network design problems [28]. We refer the reader to the paper of Ruzika and Hamacher [30]
for a survey on multi-objective spanning tree problems, and the book of Ehrgott [11] for an
overview of multi-criteria optimization area as a whole.

1.2 Technical Overview

Let us first discuss the ℓp-Shortest Path problem. The most basic variant of this problem
is when G is a series-parallel graph (see Section 2 for definitions) and p = 2. The first idea
is to write an LP flow relaxation with a convex objective: minimize ∥

∑
e∈E cexe∥2 subject

to the constraint that (xe)e∈E define a unit flow from s to t. However, this LP has an
integrality gap of

√
ℓ. To deal with this problem, Li, Xu, and Zhang [23] introduced a new

constraint for ℓ∞-Shortest Path: the constraint loosely speaking says that the LP cost of
every subgraph/block B in the series-parallel decomposition of G is at most OPT times the
probability (according to the LP) that the path visits B. Unfortunately, this new constraint
does not help when p = 2.

ICALP 2024

111:6 Approximation Algorithms for ℓp-Shortest Path and ℓp-Group Steiner Tree

Instead, we consider a sum-of-squares (SoS) strengthening of this LP.2 The SoS relaxation
gives valuations not only to individual edges but also to tuples of edges. Using the standard
notation of pseudo-expectations (see Section 2), the SoS relaxation for p = 2 gives Ẽ[xe] for
every edge e and Ẽ[xe1xe2] for every pair of edges e1 and e2. The former could be interpreted
as the probability that e ∈ P and the latter as the probability as both e1, e2 ∈ P according
to the relaxation. To the best of our knowledge, this is the first flow-based SoS or SDP
relaxation studied in the literature.

Our algorithm is very straightforward. We start at u0 = s, then choose one of the edges
outgoing from u1 with probability of choosing e being equal to Ẽ[xe]. We get to a vertex u1
and then again sample one of the edges leaving u1 with probability of choosing e proportional
to Ẽ[xe]. We repeat this step over and over until we reach t. It is clear that the algorithm
finds an s-t path P .

Now we need to upper bound the cost of P . We do that recursively using the series-parallel
decomposition of G.3 Assume that G is composed of subgraphs/blocks B1, . . . , Bt and our
algorithm achieves an α approximation for the squared ℓ2-cost in each of them. For simplicity,
assume that t = 2 for now. There are two cases: G is a (i) parallel and (ii) series composition
of B1 and B2. Consider the first case. The SoS relaxation ensures that Ẽ[xe1xe2] = 0 for all
e1 ∈ B1 and e2 ∈ B2; this means that the SoS solution is simply a convex combination of
solutions for B1 and B2 with some weights p1 and p2. Also, with probability p1, the first
edge of P will be in B1 and then the entire path will be in B1; similarly, with probability p2,
the entire path will be in B2. Thus running the algorithm reduces to randomly choosing
a block Bi with probability pi and then running the algorithm in Bi. Since the algorithm
gets an α approximation in each Bi, it also gets an α approximation in the entire graph.
Interestingly, this step would already fail if we used the basic LP relaxation; however, a
Sherali–Adams or configuration LP would work in this case.

The second case – when G is a series composition of B1 and B2 is more challenging and
requires the power of an SDP relaxation. Let Pi = P ∩ Bi. Write the squared objective as
follows:∥∥∥∑

e∈P

ce

∥∥∥2

2
=
∥∥∥∑

e∈P1

ce

∥∥∥2

2
+
∥∥∥∑

e∈P2

ce

∥∥∥2

2︸ ︷︷ ︸
≤αOPT2 (in expectation)

+2
∑

e1∈P1
e2∈P2

⟨ce1 , ce2⟩. (2)

The first two terms are squared ℓ2-costs of paths P1 and P2. As we assumed, they are at
most α times their SoS costs, and thus their sum is at most αOPT2 (in expectation). We
now analyze the third term. It is not hard to see that our algorithm samples edges in P1
and P2 independently (because the last vertex of P1 and the first vertex of P2 are fixed).
Therefore,

E
[∑

e1∈P1
e2∈P2

⟨ce1 , ce2⟩
]

=
∑

e1∈B1
e2∈B2

⟨ce1 , ce2⟩·Pr (e1, e2 ∈ P) =
∑

e1∈B1
e2∈B2

⟨ce1 , ce2⟩·Pr (e1 ∈ P)·Pr (e2 ∈ P) .

(3)

2 It is sufficient to use a vector-flow SDP with one vector variable per edge in order to approximate the
ℓ2-cost in series-parallel graphs. However, we need higher degree SoS relaxations when p > 2 and in
general graphs.

3 Interestingly, neither the relaxation nor the algorithm uses the series-parallel decomposition of G.

Y. Makarychev, M. Ovsiankin, and E. Tani 111:7

It would be natural to upper bound this expression by the corresponding expression in the
SoS objective (appropriately scaled):∑

e1∈B1
e2∈B2

⟨ce1 , ce2⟩ · Ẽ[xe1xe2].

However, this is not possible, since it may happen that Pr (e1 ∈ P) · Pr (e2 ∈ P) > 0 but
Ẽ[xe1xe2] = 0. Instead, observing that for every edge e, Pr (e ∈ P) = Ẽ[xe], we rewrite and
upper bound (3):∑

e1∈B1
e2∈B2

⟨ce1 , ce2⟩ Ẽ[xe1] Ẽ[xe2] ≤
∑

e1,e2∈E

⟨ce1 , ce2⟩ · Ẽ[xe1] · Ẽ[xe2]

=
∥∥∥Ẽ[∑

e∈E

cexe

]∥∥∥2

2
≤ Ẽ

[∥∥∥∑
e∈E

cexe

∥∥∥2]
≤ OPT2.

Here, we first expanded the summation, then used the pseudo-expectation Lyapunov’s
inequality ∥ Ẽ[f]∥2

2 ≤ Ẽ[∥f∥2
2] (see Fact 18), and finally observed that the last pseudo-

expectation is the SoS objective for G. We conclude that the expected squared cost of P is
at most (α + 2)OPT. Applying this argument recursively, we get an O(d)-approximation for
the squared cost and an O(

√
d)-approximation for the cost itself in series-parallel graphs of

order/depth d.
When p > 2 and blocks in the series-parallel composition of G are formed by t > 2

lower-order blocks, the proof becomes more technical. In particular, we need to use a new
majorization inequality for pseudo-expectation, which we present in Section 4.

The SoS relaxation for arbitrary graphs is the same as that for series-parallel graphs
(except that its degree is higher). However, the rounding algorithm is quite different. Very
informally, the algorithm in its simplest form resembles Savitch’s algorithm for s-t connectivity
in O(log2 n) space [31] (see also [7]): (i) we sample the middle edge e = (u, v) of the path
using probabilities provided by Ẽ[·], (ii) condition Ẽ[·] on e being the middle edge, (iii)
then recursively find paths P1 from s to u and (independently) P2 from v to t, using the
conditional pseudo-expectation. To upper bound the cost, as in the analysis of the algorithm
for series-parallel graphs, we first use (2) , then bound the third term using a variant of (3),
and finally use the majorization inequality for pseudo-expectations.

To solve Group ATSP, we loosely speaking add SoS constraints that require that the
tour P visits every group (for technical reasons, we need to require that P visits each group
exactly once). Then we run the rounding algorithm for ℓp-Shortest Path in arbitrary graphs.
It is not guaranteed that P indeed visits every group; however, using the machinery we
developed for bounding the cost of P , we show that P visits every group with probability at
least Ω(1/ log n). By sampling sufficiently many tours and concatenating them, we obtain
the desired solution with high probability. The Group Steiner Tree problem easily reduces to
Group ATSP.

1.3 Paper Organization
The rest of the paper is organized as follows. In Section 2 we define series-parallel graphs,
relevant combinatorial quantities and notation used in the rest of the paper, and give some
basic facts on Sum-of-Squares relaxations. In Section 3, we describe our Sum-of-Squares
relaxation for ℓp-Shortest Path in directed acyclic graphs. In Section 4 we show a majorization
inequality for pseudo-expectations used in the analysis of our algorithms. In Section 5 we
describe and analyze our rounding algorithm for ℓp-Shortest Path in series-parallel graphs. In
Section 6 we describe our approximation algorithm for ℓp-Shortest Path in arbitrary graphs.

ICALP 2024

111:8 Approximation Algorithms for ℓp-Shortest Path and ℓp-Group Steiner Tree

The remaining sections appear in the full version of the paper [24]. Section 6 of the
full version of the paper contains the proofs of the theorems that have been ommitted in
this version. In Section 7 of the full version, we present our algorithms for ℓp-Group ATSP
and ℓp-Group Steiner Tree. In Section 8 of the full version, we give our hardness results:
hardness of approximation results for ℓp-Shortest Path with potentially negative edge costs
and for ℓ∞-Shortest Path. We also show that our analysis of the ℓp-Shortest Path algorithm
in series-parallel graphs is tight. In Appendix A of the full version, we prove a recurrence
formula and upper bound on multidimensional Bell numbers, which are used in the analyses
of our algorithms for ℓp-Shortest Path.

2 Preliminaries and Notation

In this paper, all logs are base 2. In this paper, we consider Shortest Path and Group ATSP
in directed graphs and Group Steiner Tree in undirected graphs. We assume that graphs
may have parallel edges. Let G = (V, E) be a directed graph. We denote n = |V | and
m = |E|. For v ∈ V , denote the sets of its outgoing and incoming edges by δ+(v) and δ−(v),
respectively. Similarly, define δ+(A) and δ−(A) for subsets of vertices A. Finally, denote the
set of edges from A to B by δ(A, B). We denote the i-th coordinate of vector edge cost ce

by ce(i).

2.1 Series-Parallel Graphs
We start with providing a recursive definition of directed series-parallel graphs with source s

and sink t. A graph on two vertices s, t and one or more edges from s to t is a series-parallel
graph of order (depth) 0. We denote the order of G as ord(G).

Parallel Composition. Let B1,. . . , Bt be series-parallel graphs that share only vertices
s and t. Then their union G is a series-parallel graph. Define ord(G) = maxj ord(Bj).
Series Composition. Let B1,. . . , Bt be series-parallel graphs. Denote the source and
sink of Bi by si and ti (respectively). Assume that ti = si+1 for all i ∈ {1, . . . , t − 1}
and that graphs Bi do not share any other vertices. Then the union G of graphs Bi is a
series-parallel graph. Define ord(G) = maxj ord(Bj) + 1.

In this definition, we only count series compositions when we compute the order of a series-
parallel graph. We call vertices s and t terminals. We call intermediate graphs that we
obtain while constructing G blocks. We denote the source and sink of a block B by sB and
tB , respectively.

2.2 Combinatorics
Unlabeled Partitions. We say that a tuple of integers λ = (λ1, . . . , λk) is an unlabeled
partition of an integer n ≥ 1 if n =

∑k
i=1 λi and λ1 ≥ λ2 ≥ · · · ≥ λk ≥ 1. We will denote

this by λ ⊢ n. We will denote the length of λ = (λ1, . . . , λk) by |λ| = k.
Given an n and some tuple of non-negative integers α with α1 + . . . + αk = n, we use

standard notation for the multinomial coefficient(
n

α

)
def= n!∏k

i=1 αi!

Multidimensional Bell Numbers. Recall that the nth Bell number Bn equals the number
of labeled partitions of a set of size n. In this paper, we will need a generalization of Bell
numbers, known as multidimensional Bell numbers (see [32, Example 5.2.4] and [10]).

Y. Makarychev, M. Ovsiankin, and E. Tani 111:9

▶ Definition 11. We say that a collection of subsets P is a partition of a set S if all subsets
in P are disjoint and their union is S. Consider two partitions P and P ′ of S. We say that
P ′ is a refinement of P if every A ∈ P ′ is a subset of some B ∈ P .

A d-dimensional partition of p is a tuple (P1, . . . , Pd) where all Pi are partitions of
[p] def= {1, . . . , p} and each Pi+1 is a refinement of Pi. The d-dimensional Bell number Bd(p)
is the number of d-dimensional partitions of p. If d = 0 or p = 0, we let Bd(p) def= 1.

Note that 1-dimensional Bell numbers are simply the standard Bell numbers: B1(i) = B(i).
We can also restate the definition of Bd(n) as follows. Bd(n) is the number of (d + 2)-level
rooted trees with n labeled leaves: the root must be in level 0, all leaves must be in level
d + 1, and all leaves are labeled with numbers from 1 to n with each number being used
exactly once.

We will need the following recurrence formula for d-dimensional Bell numbers, which is
proved in Appendix A of the full version of the paper.

▶ Lemma 12. For every d ≥ 1 and p ≥ 1, we have

Bd(p) =
∑
λ ⊢ p

(
p

λ

) |λ|∏
i=1

Bd−1(λi)
/

p∏
j=1

count(j, λ)!

where count(j, λ) is the number of times j appears in λ.

Now, we describe the exponential generating function for sequence (Bd(i))i when d is
fixed.

▶ Fact 13 ([32, Example 5.2.4]). Let f0(x) = exp(x) and fi+1(x) = exp(fi(x) − 1). Then the
exponential generating function for sequence (Bd(i))∞

i=0 is given by:

∞∑
i=0

Bd(i)xi

i! = fd(x). (4)

In this paper, we will present an approximation algorithm for ℓp-Shortest Path in depth-d
series-parallel graphs with approximation factor Ad(p) def= Bd(p)1/p. From Fact 13, we obtain
the following upper bound on Ad(p), proved in Appendix A of the full version of the paper.

▷ Claim 14. For all p ≥ 1 and d ≥ 1, we have

Ad(p) = Bd(p)1/p = O(pd1−1/p).

Let log(j) p = log · · · log︸ ︷︷ ︸
j times

p and log∗ p be the largest value of j such that log(j) p ≥ 1. Then,

the following upper bound on Ad(p) holds for d ≤ log∗ p :

Ad(p) = Bd(p)1/p ≤ O
(p

log(d) p

)
.

2.3 Sum-of-Squares Relaxations
We recall some basics about the sum-of-squares relaxations. Sum-of-squares relaxations can
be thought of in terms of moment matrices, pseudo-distributions, and pseudo-expectations.
As is common, we will use the pseudo-expectation framework in this paper. We refer the
reader to [13] for a detailed description of the sum-of-squares framework.

ICALP 2024

111:10 Approximation Algorithms for ℓp-Shortest Path and ℓp-Group Steiner Tree

Consider a set of variables xi where i belongs to some set of indices I. We denote the
entire collection of all variables (xi)i∈I by x. Consider the set of multivariate polynomials
R≤d[x] def= R≤d[{xi : i ∈ I}] in variables xi of degree at most d. We say that f ∈ R≤d[x]
is a sum of squares (SoS) if f =

∑m
i=1 f2

i for some polynomials f1, . . . , fm. Note that the
product of SoS polynomials is a SoS, and so is any linear combination of SoS polynomials
with positive coefficients.

In this paper, we consider SoS relaxations for the Boolean hypercube; that is, all variables
xi take values 0 and 1 in the intended solution. Therefore, we work with the quotient ring
R≤d/⟨x2

i − xi⟩i, where ⟨x2
i − xi⟩i is the ideal generated by polynomials x2

i − xi. In other
words, we identify monomials xa1

i1
, . . . , xat

it
and xi1 , . . . , xit

for all i1, . . . , it and a1, . . . , at ≥ 1
such that

∑t
i=1 ai ≤ d. In particular, we will write f = g if f − g ∈ ⟨x2

i − xi⟩i.

▶ Definition 15. A linear map Ẽ : R≤d[x]/⟨x2
i − xi⟩i → R is a pseudo-expectation of degree

d if it satisfies the following properties.
Ẽ[1] = 1,
Ẽ[f2] ≥ 0 for every polynomial f of degree at most d/2,

We say that a pseudo-expectation Ẽ satisfies an equality constraint f = 0 if Ẽ[fg] = 0
whenever deg fg ≤ d.

Given an objective function f and sets of equality and inequality constraints, we can
find a pseudo-expectation Ẽ that maximizes Ẽ[f] and satisfies all the constraints in time
polynomial in NO(d), where N is the number variables, as long as it satisfies certain regularity
conditions [27]. When we prove any statements about pseudo-expectations Ẽ[f] below, we
will always implicitly assume that d ≥ Ω(deg f) so that all the inequalities appearing in the
proofs have degree at most d.

▶ Definition 16. Let Ẽ be a pseudo-expectation of degree d. Assume that g is a sum of
squares and Ẽ[g] > 0. Then the conditional pseudo-expectation Ẽ[· | g] operator is defined as
follows: Ẽ[f | g] def= Ẽ[fg]/ Ẽ[g].

▶ Fact 17. A conditional pseudo-expectation Ẽ[· | g] is a pseudo-expectation of degree d′ =
d − deg g. If Ẽ satisfies an equality or inequality constraint of degree at most d′, then so
does Ẽ.

We will use Lyapunov’s inequality for pseudo-expectations (which is also referred to as
Jensen’s inequality in the literature).

▷ Claim 18. Let g be a sum of squares and f be any polynomial. Assume that deg f2g ≤ d.
Then,

Ẽ[fg]2 ≤ Ẽ[f2g] Ẽ[g]. (5)

If Ẽ[g] > 0, the inequality can be restated as

Ẽ[f | g]2 ≤ Ẽ[f2 | g]. (6)

▷ Claim 19. Let f1, . . . , ft be SoS polynomials. Then, Ẽ[
(∑t

i=1 fi

)p

] ≥
∑t

i=1 Ẽ[fp
i].

Proof. We expand
(∑t

i=1 fi

)p

as
∑

α1,...,αt≥0
α1+···+αt=p

(
p
α

)
fα1

1 · · · fαt
t . All terms in the expansion

are SoS polynomials and thus have non-negative pseudo-expectations. The claim follows
from the observation that all terms fp

i are present in the expansion. ◁

Y. Makarychev, M. Ovsiankin, and E. Tani 111:11

3 Sum of Squares Relaxation for ℓp-Shortest Path

In this section, we first present our SoS relaxation for ℓp-Shortest Path in directed acyclic
graphs (DAGs). In Section 5, we will present a rounding algorithm for series-parallel graphs
and then, in Section 6 of the full version of the paper, for layered graphs. The latter result
will also yield an algorithm for arbitrary graphs. We will also describe a few basic properties
that feasible solutions for this relaxation satisfy.

Relaxation. We use a degree 2p SoS relaxation with variables x = (xe)e∈E for ℓp-Shortest
Path in series-parallel graphs.

min Ẽ
[ℓ∑

i=1

(∑
e

ce(i)xe

)p]
subject to (xe)e∈E is a unit flow from s to t

The flow constraint says that
∑

e∈δ+(u) xe −
∑

e∈δ−(u) xe = 0 for all u other than s and t

(flow conservation) and
∑

e∈δ+(s) xe − 1 = 0 (xe sends 1 unit of flow from s to t). It is clear

that this is a relaxation for the ℓp-Shortest Path problem: Ẽ[
∑ℓ

i=1(
∑

e ce(i)xe)p
]

≤ OPTp,
where OPT is the ℓp-cost of the optimal s-t path.

Basic properties of the SoS relaxation. We say that two edges e1 and e2 are compatible if
both of them belong to some s-t path; otherwise, we say that e1 and e2 are incompatible. In
a series-parallel graph edges e1 and e2 are incompatible if and only if there exist two parallel
blocks B1 and B2 such that e1 lies in B1 and e2 lies in B2. For any set of vertices A, let
x+

A =
∑

e∈δ+(A) xe and x−
A =

∑
e∈δ−(A) xe.

▷ Claim 20. Assume that G is a DAG and Ẽ is a feasible pseudo-expectation for the
relaxation. Let h be a multivariate polynomial. Then
1. If A ⊆ V contains neither of the terminals, then Ẽ[(x+

A − x−
A)h] = 0. If A contains s but

not t, Ẽ[(x+
A − x−

A)h] = Ẽ[h].
2. If e1 and e2 are not compatible, then Ẽ[xe1xe2h] = 0.
3. Assume further that G is a series-parallel graph. Let (L, R) be an sB-tB cut in a block

B. Let fLR =
∑

e∈δ(L,R) xe. Then

Ẽ
[
fLRh

]
= Ẽ

[(∑
e∈δ+(sB)∩B

xe

)
h
]
.

In particular, Ẽ[fLRh] does not depend on the cut (L, R) in B.

Proof.
1. The SoS relaxation satisfies the flow conservation constraints and the constraint that the

amount of flow being routed equals 1. Therefore, it satisfies any linear combination of
them. In particular, it satisfies degree-1 polynomial equations x+

A − x−
A = 0 when s, t /∈ A

and x+
A − x−

A = 1 when s ∈ A but t /∈ A. The first item follows.
2. It is sufficient to prove the statement for all monomials (the claim then follows by the

linearity of Ẽ). Thus, we will assume that h is a monomial. Recall that an s-t cut is
monotone if it cuts exactly one edge on every s-t path. Since e1 and e2 are incompatible,
there is a monotone s-t cut (A, Ā) that cuts both of them. We apply item 1 to polynomial

ICALP 2024

111:12 Approximation Algorithms for ℓp-Shortest Path and ℓp-Group Steiner Tree

xe1h and get Ẽ[xe1h] = Ẽ[xe1x+
Ah] = Ẽ[xe1(xe1 + xe2 + . . .)h]. Here, . . . is a sum of some

xe (the coefficient of each of them is 1). Note that xeh is a monomial, thus xeh = (xeh)2

and therefore Ẽ[xeh] ≥ 0. We conclude that

Ẽ[xe1h] ≥ Ẽ[xe1(xe1 + xe2)h] = Ẽ[(xe1 + xe1xe2)h]

and simplifying, we get Ẽ[xe1xe2h] ≤ 0. Since xe1xe2h is a monomial, Ẽ[xe1xe2h] ≥ 0,
and thus Ẽ[xe1xe2h] = 0.

3. Item 3 follows immediately from item 1. ◁

4 Majorization Inequalities for Pseudo-expectations

In this section, we will prove a majorization inequality for pseudo-expectations. This
inequality generalizes already known pseudo-expectation Lyapunov’s (see Claim 18) and
Hölder’s (see [2]) inequalities.

▶ Definition 21. Consider two integer sequences a1 ≥ a2 ≥ . . . ≥ ak ≥ 0 and b1 ≥ . . . ≥
bk ≥ 0. We say a majorizes b and write a ⪰ b, if

∑k
i=1 ai =

∑k
i=1 bi and for all 1 ≤ i ≤ k

we have

a1 + . . . + ai ≥ b1 + . . . + bi.

Sequence majorization is a powerful tool for proving inequalities; it appears in widely used
Muirhead’s [26] and Karamata’s [17] majorization inequalities. We now present a majorization
inequality for pseudo-expectations. An analogous inequality for true expectations easily
follows both from Karamata’s and from Muirhead’s majorization inequality.

▶ Lemma 22. Consider a degree d pseudo-expectation Ẽ. Let a ⪰ b and f be an SoS
polynomial of degree deg(fa1) ≤ d. Then

k∏
i=1

Ẽ[fai] ≥
k∏

i=1
Ẽ[f bi]. (7)

Proof. First, observe that this inequality for sequences (r + 1, r − 1) ⪰ (r, r) follows from
Lyapunov’s inequality for pseudo-expectations (Claim 18). Indeed, let g = fr−1. Then,
Lyapunov’s inequality states that

Ẽ[fr]2 = Ẽ[fg]2 ≤ Ẽ[f2g] Ẽ[g] = Ẽ[fr+1] Ẽ[fr−1], (8)

as required. Now we use this inequality to show the desired inequality (7) for a more general
case (p + 1, q − 1) ⪰ (p, q).

▷ Claim 23. Let p ≥ q ≥ 1 be integers. Then

Ẽ[fp+1] Ẽ[fq−1] ≥ Ẽ[fp] Ẽ[fq].

Proof. We just proved the inequality when p = q. So we will assume below that p > q. Since
f is an SoS polynomial, Ẽ[fr] ≥ 0 for all integers 0 ≤ r ≤ p. Let us assume first that the
inequality is strict for all r: Ẽ[fr] > 0. Then, by dividing and multiplying Ẽ[fq] Ẽ[fp] by∏p−1

r=q Ẽ[fr], we obtain the following identity.

Ẽ[fq] Ẽ[fp] = Ẽ[fq] Ẽ[fq] Ẽ[fq+1] · · · Ẽ[fp−1] Ẽ[fp]
Ẽ[fq] Ẽ[fq+1] · · · Ẽ[fp−1]

Y. Makarychev, M. Ovsiankin, and E. Tani 111:13

Now we upper bound the numerator of this fraction by iteratively applying (8).(
Ẽ[fq] Ẽ[fq]

)
Ẽ[fq+1] · · · Ẽ[fp−1] Ẽ[fp] ≤

(
Ẽ[fq−1] Ẽ[fq+1]

)
Ẽ[fq+1] · · · Ẽ[fp−1] Ẽ[fp]

Ẽ[fq−1]
(
Ẽ[fq+1] Ẽ[fq+1]

)
· · · Ẽ[fp−1] Ẽ[fp] ≤ Ẽ[fq−1]

(
Ẽ[fq] Ẽ[fq+2]

)
· · · Ẽ[fp−1] Ẽ[fp]

...

Ẽ[fq−1] Ẽ[fq] Ẽ[fq+1] · · ·
(
Ẽ[fp] Ẽ[fp]

)
≤ Ẽ[fq−1] Ẽ[fq] Ẽ[fq+1] · · ·

(
Ẽ[fp−1] Ẽ[fp+1]

)
We conclude that

Ẽ[fq] Ẽ[fp] ≤ Ẽ[fq−1] Ẽ[fp+1],

as desired. If Ẽ[fr] = 0 for some r, we apply the inequality to f̂ = f + ε (where ε > 0).
Now Ẽ[f̄r] ≥ εr > 0, since f is a SoS polynomial. Therefore, Ẽ[f̂q] Ẽ[f̂p] ≤ Ẽ[f̂q−1] Ẽ[f̂p+1].
Letting ε → 0, we obtain the desired inequality in the limit. ◁

Consider an integer sequence a1 ≥ . . . ak ≥ 0 and two indices 1 ≤ i∗ < j∗ ≤ k such that
ai∗ − aj∗ ≥ 2. Define a transfer or T-transform as follows: we decrease ai∗ by 1, increase
aj∗ by 1, and then sort the obtained sequence in descending order. Claim 23 implies that
Lemma 22 holds for sequence a and sequence b obtained from a by a T-transform.

Finally, we use that if a ⪰ b then b can be obtained by a sequence of T-transforms [26]:
a = a(0) 7→ a(1) 7→ a(2) 7→ · · · 7→ a(T) = b. As we proved, the value of the product∏k

i=1 Ẽ[fa
(t)
i] may only decrease each time we apply a T-transform. This concludes the proof

of the lemma. ◀

Importantly, conditional pseudo-expectations are pseudo-expectations (see Fact 17) and
thus Lemma 22 holds for conditional pseudo-expectations as well.

5 Sum-of-Squares Relaxation Rounding

In this section, we describe and analyze a rounding algorithm for series-parallel graphs. It
gives an (1 + ε)Ad(p) = O(pd) approximation for ℓp-Shortest Path in series-parallel graphs
of order d. Later we use a different algorithm with a similar analysis to solve the problem in
layered and arbitrary graphs.

5.1 Algorithm
Let us denote pe = Ẽ[xe] and pu =

∑
e∈δ+(u) Ẽ[xe]. Note that the SoS relaxation constraints

ensure that pe is an s-t flow; pu equals the amount of flow that leaves vertex u. The total
amount of flow is 1.

Algorithm 1 Rounding algorithm for SoS.

1: Input: series-parallel graph G with source s and sink t, a pseudo-expectation Ẽ
2: Output: an s-t path in G

3: Let u = s and P be an empty path.
4: while u ̸= t do
5: Sample e ∈ δ+(u) with probability pe

pu
= Ẽ[xe]∑

e∈δ+(u)
Ẽ[xe]

6: Append e to path P

7: end while
8: return P

ICALP 2024

111:14 Approximation Algorithms for ℓp-Shortest Path and ℓp-Group Steiner Tree

▶ Lemma 24. Let P be the path returned by Algorithm 1. Then Pr (e ∈ P) = pe for every
edge e and Pr (u ∈ P) = pu for every vertex u.

Proof. We consider all vertices in topological order and prove the desired formulas for
Pr (u ∈ P) and Pr ((u, v) ∈ P) by induction. For u = s, we have Pr (s ∈ P) = 1 = ps. Then,
Pr ((s, v) ∈ P) = p(s,v)/ps = p(s,v), as required. Now assume that we proved the formulas
for vertices u′ proceeding u in the topological order. We have,

Pr (u ∈ P) =
∑

e=(u′,u)∈δ−(u)

Pr (e ∈ P) =
∑

e=(u,u′)∈δ−(u)

pe = pu.

Here, we used the induction hypothesis and the flow conservation condition at vertex u. Now
let e = (u, v).

Pr (e ∈ P) = Pr (e ∈ P | u ∈ P) Pr (u ∈ P) = (pe/pu) · pu. ◀

Now we will prove an upper bound on the ℓp-cost of path P . The proof will be by
induction on the series-parallel decomposition of G, going from lower to higher order blocks
B. To analyze different blocks B, we first introduce some relevant notation.

Let us say that a path P visits block B if it contains at least one edge from B. Let
PB = P ∩ B be the restriction of P to B. If P does not visit B, let PB = ∅. Note that if
P visits B then it must go through the source sB and sink tB of B. However, if B has a
parallel block B′, a path may go through sB and tB but visit B′ rather than B itself. It
follows from Lemma 24 that the probability that P visits B equals pB

def=
∑

e∈δ+(sB)∩B pe.
Now, we define conditional expectations and pseudo-expectations restricted to B (that is,

conditioned on the event that P visits B). Let hB =
∑

e∈δ+(sB)∩B xe =
∑

e∈δ+(sB)∩B x2
e be

a SoS indicator of the event that P visits B. We let

EB [·] def= E [· | P visits B] and Ẽ
B

[·] def= Ẽ [· | hB] .

In the sequel, we shall bound the costs of P coordinate-by-coordinate. Thus, we consider
a set of scalar non-negative edge weights ae ≥ 0. Define fB

def=
∑

e∈B ae · xe. For a path P ′,
let cost(P ′) =

∑
e∈P ′ ae. Note that fB =

∑
e∈B ae · x2

e and thus is a sum of squares.

▷ Claim 25. Let B′ be a block inside B (possibly B′ = B). Assume pB > 0. Then, we have
EB [cost(PB′)r] = E[cost(PB′)r]

pB
and ẼB [fr

B′] = Ẽ[fr
B′]

pB
when r ∈ {1, . . . , p}.

Proof. We have

E [cost(PB′)r] = E [cost(PB′)r | PB ̸= ∅] · Pr (PB ̸= ∅) + E [cost(PB′)r | PB = ∅] · Pr (PB = ∅)
= EB [cost(PB′)r] · pB + 0 · (1 − pB) = pB · EB [cost(PB′)r] ,

as required. To prove the second identity, consider a monomial g in the expansion of fr
B′ .

We now prove that Ẽ[ghB] = Ẽ[g] and thus ẼB [g] def= Ẽ[ghB]/pB = Ẽ[g]/pB . Note that only
xe with e ∈ B′ appear in g, and deg g = r ≥ 1. Choose an arbitrary xe in g, say e = (u, v)
and let g′ be such that g = g′xe. Let (L, R) be a monotone sB-tB cut in B that cuts e. By
Claim 20, item 3,

Ẽ[ghB] = Ẽ
[
g

∑
e′∈δ(L,R)

xe′

]
= Ẽ

[
g′

∑
e′∈δ(L,R)

xexe′

]
.

Now all edges e′ ∈ δ(L, R) other than e are incompatible with e; for them, Ẽ[g′xexe′] = 0 by
Claim 20, item 2. Also, Ẽ[g′xexe′] = Ẽ[g′xe] for e′ = e. Therefore, Ẽ[ghB] = Ẽ[g′xe] = Ẽ[g],
as required. ◁

Y. Makarychev, M. Ovsiankin, and E. Tani 111:15

▶ Lemma 26. Let Ẽ be a feasible solution for the SoS relaxation of ℓp-Shortest Path. Let B

be a block of order h = ord(B) with pB > 0. Then for every r ≤ p, we have

EB [cost(PB)r] ≤ Bh(r) Ẽ
B

[fr
B].

Here, Bh(r) is an h-dimensional Bell number (see Section 2.2 for details).

Proof. We will prove the upper bound on E [cost(PB)r] by induction on r and on the series-
parallel decomposition of B. If r = 0 or h = 0, the claim trivially holds. We consider
two cases: when a block B is a parallel composition and when it is a series composition
of lower-level blocks. We start with the former, much simpler case when B is a parallel
composition of blocks B1, . . . , Bt sharing the same source sB and sink tB . If P visits B, then
it visits exactly one of the blocks B1, . . . , Bt. Therefore,

EB [cost(PB)r] =
t∑

i=1

EBi [cost(PBi)r] Pr (P visits Bi|P visits B) =
t∑

i=1

pBi

pB
EBi [cost(PBi)r] . (9)

Note that fB =
∑t

i=1 fBi . Applying Claim 19 and then Claim 25 twice, we get

Ẽ
B

[fr
B] ≥

t∑
i=1

Ẽ
B

[fr
Bi

] =
t∑

i=1

1
pB

Ẽ[fr
Bi

] =
t∑

i=1

pBi

pB
Ẽ
Bi

[fr
Bi

]. (10)

In fact the inequality above is an equality by Claim 20, part 2, but we do not need that here.
Comparing (9) and (10) term-by-term, and using the induction hypothesis, we get

EB [cost(PB)r] ≤ Bh(r) Ẽ
B

[fr
B].

This concludes the analysis of this case. Now we assume that B is a series composition of
blocks B1, . . . , Bt. In this case, if P visits B then it visits all Bi; if it visits Bi, it visits B and
all other Bj . Thus, pB = pB1 = · · · = pBt . Also, PB is the concatenation of PB1 , . . . , PBt .
Using the multinomial theorem, we get

EB [cost(PB)r] = EB

[(
t∑

i=1
cost(PBi)

)r]
= EB

 ∑
α1,...,αt≥0

α1+···+αt=r

(
r

α

) t∏
i=1

cost(PBi)αi

 (11)

=
∑

α1,...,αt≥0
α1+···+αt=r

(
r

α

)
EB

[
t∏

i=1
cost(P ∩ Bi)αi

]
.

Observe that if P enters B, it necessarily visits sB1 , . . . , sBt
and thus paths PB1 , . . . , PBt

are
mutually independent. We then have

EB [cost(PB)r] =
∑

α1,...,αt≥0
α1+···+αt=r

(
r

α

) t∏
i=1

EB [cost(PBi
)αi] .

By Claim 25, EB [cost(PBi
)αi] = E [cost(PBi

)αi] /pB = E [cost(PBi
)αi] /pBi

=
EBi [cost(PBi)αi] and ẼB[fαi

Bi
] = Ẽ[fαi

Bi
]/pB = Ẽ[fαi

Bi
]/pBi = ẼBi [f

αi

Bi
]. Using that

ord(Bi) ≤ h − 1 and applying the induction hypothesis, we get

ICALP 2024

111:16 Approximation Algorithms for ℓp-Shortest Path and ℓp-Group Steiner Tree

EB [cost(PB)r] =
∑

α1,...,αt≥0
α1+···+αt=r

(
r

α

) t∏
i=1

EB [cost(PBi
)αi] =

∑
α1,...,αt≥0

α1+···+αt=r

(
r

α

) t∏
i=1

EBi
[cost(PBi

)αi]

≤
∑

α1,...,αt≥0
α1+···+αt=r

(
r

α

) t∏
i=1

Bh−1(αi) · Ẽ
Bi

fαi

Bi
=

∑
α1,...,αt≥0

α1+···+αt=r

(
r

α

) t∏
i=1

Bh−1(αi) · Ẽ
B

fαi

Bi
.

Now, every α in the summation defines an unlabeled partition λ of n: λ is obtained by sorting
all non-zero entries αi of α. Let us denote this α → σ. For example, α = (4, 1, 0, 2, 4, 0, 2, 2) →
λ = (4, 4, 2, 2, 2, 1). Thus, to go over all α, it is sufficient to go over all λ ⊢ r and then all α

such that α → λ. To do the latter, we go over all choices of distinct indices j1, . . . , j|λ| and
define α as follows: αji

= λi for i ∈ [|λ|] and αj = 0 for all other j. However, if λi = λi′ , then
indices j1, . . . , j|λ| and those with ji and ji′ swapped define the same α. It is easy to see that
the above procedure defines every α exactly

∏r
j=1 count(j, λ) times. In the example above

with λ = (4, 4, 2, 2, 2, 1), this procedure defines every α exactly 2! · 3! times. Finally note that(
r
α

)
=
(

r
λ

)
. Keeping this discussion in mind, we rewrite the upper bound on EB [cost(PB)r]

as follows.

EB [cost(PB)r] ≤
∑

λ ⊢ r, |λ|≤t

(
r

λ

)∑j1,...,j|λ|∈[t]
distinct

∏|λ|
i=1 Bh−1(λi) · ẼB [fλi

Bji
]∏r

j=1 count(j, λ)

≤
∑

λ ⊢ r, |λ|≤t

(
r

λ

)
·
∏|λ|

i=1 Bh−1(λi)∏r
j=1 count(j, λ)

∑
j1,...,j|λ|∈[t]

|λ|∏
i=1

Ẽ
B

[fλi

Bji
].

Note that we removed the requirement that all ji are distinct in the last inequality (this is
valid, since all terms are non-negative). Now we use Claim 19 and then the majorization
inequality (see Lemma 22) to upper bound each term in the inner sum.

∑
j1,...,j|λ|∈[t]

|λ|∏
i=1

Ẽ
B

[fλi

Bji
] =

|λ|∏
i=1

∑
j∈[t]

Ẽ
B

[
fλi

Bj

]
=

|λ|∏
i=1

Ẽ
B

[∑
j∈[t]

fλi

Bj

]
≤

|λ|∏
i=1

Ẽ
B

[fλi

B] ≤ Ẽ[fr
B].

Using the recurrence relation for multidimensional Bell numbers from Lemma 12, we conclude
that

EB [cost(PB)r] ≤
∑
λ ⊢ r

(
r
λ

)∏|λ|
i=1 Bh−1(λi)∏r

j=1 count(j, λ)
Ẽ[fr

B] = Bh(r) Ẽ[fr
B]. ◀

▶ Theorem 27. Algorithm 1 gives an (1 + ε)Ad(p) def= (1 + ε)Bd(p)1/p approximation for the
problem in series-parallel graphs of order d in time polynomial in nO(p) and 1/ε.

Proof. We apply Lemma 26 with ae = ce(i) to every coordinate i ∈ [ℓ] and add up the
obtained upper bounds on E

[(∑
e∈P ce(i)

)p]. We get that

E

[∥∥∥∑
e∈P

ce

∥∥∥p

p

]
≤ Bh(p) Ẽ

[ℓ∑
i=1

(∑
e

ce(i)xe

)p]
≤ Bh(p) · OPTp.

By Markov’s inequality,
∥∥∥∑e∈P ce

∥∥∥p

p
≤ (1+ε)Bh(p) ·OPTp with probability at least ε/(1+ε).

By running the algorithm 1/ε times, we find a solution of cost at most
∥∥∥∑e∈P ce

∥∥∥
p

≤

(1 + ε)1/pBh(p)1/p · OPT ≤ (1 + ε)Ah(p) · OPT with constant probability. (As is standard, we
can run this procedure many times and make the failure probability exponentially small.) ◀

Y. Makarychev, M. Ovsiankin, and E. Tani 111:17

6 Algorithms for ℓp-Shortest Path in Arbitrary Graphs

In this section, we describe an approximation algorithm for ℓp-Shortest Path in arbitrary
graphs. We note that there is a black-box reduction from the problem in arbitrary graphs
to that in series-parallel graphs, which is implicitly used by Li, Xu, and Zhang [23] in
their algorithm for ℓ∞-Shortest Path (which they call Robust s-t Path). This reduction
outputs a series-parallel graph with O(nlog n) vertices, where n is the number of vertices
in the original graph. By using this reduction, we immediately get an O(p log1−1/p n)-
approximation algorithm for general graphs with running time nO(p log n). We describe here
how to get an approximation algorithm for general graphs with an improved running time and
slightly improved approximation factor; namely we describe how to get a O(cp log1−1/p n)-
approximation in time mO(ce1/c log n) for every c ∈ (0, 1/2). We assume below that ℓ is at
most polynomial in n; thus, we may assume p ≤ ⌈log2 ℓ⌉ = O(log n) (since all norms ∥ · ∥r

with r ≥ log2 ℓ are equivalent within a factor of 2).

Layered graphs and reduction from general graphs to layered graphs. We say that a
directed acyclic graph (DAG) G = (V, E) is an s-t layered graph with ∆ edge layers if V is
the disjoint union of vertex layers V0, V1, . . . , V∆, E is the disjoint union of layers E1, . . . , E∆,
and each edge in Ei goes from Vi−1 to Vi. Further, we require that V0 = {s} and V∆ = {t}.

We transform an arbitrary graph G = (VG, EG) with terminals s and t into a layered
graph Ĝ = (VĜ, EĜ) with ∆ = n − 1 edge layers. We create vertex layers V0, V1, . . . , V∆:
V0 = {s}, V∆ = {t}, and each of the other Vis is a disjoint copy of VG. We connect û ∈ Vi

with v̂ ∈ Vi+1 if there is an edge (u, v) ∈ EG between the corresponding vertices in G. The
vector cost of (û, v̂) equals that of (u, v). Additionally, we add padding edges between copies
of t in adjacent layers and assign these edges cost 0.

For every s-t path P with at most ∆ edges in G there is a corresponding path P̂ in Ĝ

and vice versa (P might not be a simple path); if path P has k < ∆ = n − 1 edges, then P̂

contains k non-padding edges and ends with ∆ − k padding edges. Paths P and P̂ have the
same vector costs. Note that the ℓp-Shortest Path P ∗ between s and t is a simple path and
thus contains at most ∆ = n − 1 edges. Therefore, there is a path P̂ ∗ in Ĝ corresponding to
P ∗. An α-approximation for P̂ ∗ in Ĝ gives an α-approximation for P ∗ in G. This reduction
shows that it is sufficient to consider layered graphs.

An algorithm for layered graphs. Assume that G is a layered graph with ∆ edge layers,
source s, and sink t. We use the SoS relaxation from Section 3 for G. Let a = ⌈e1/c⌉.
We require that Ẽ be a pseudo-expectation of degree 2d = 2(p + (a + 1)⌈loga+1 ∆⌉) =
Θ(p+ce1/c log ∆). For a set of edges A of size at most d, we define polynomial hA =

∑
e∈A xa

and conditional pseudo-expectation ẼA[·] def= Ẽ[· | hA]. Given A and a set of layer indices
I ⊆ [∆] so that |A| + |I| ≤ d, we define a sampling procedure that samples an edge from
each layer Ei with i ∈ I using pseudo-expectation ẼA. We assume that the two algorithms
below have access to graph G and pseudo-expectation Ẽ.

Algorithm 2 Edge sampling procedure.

1: Input: a subset of layer indices I ⊆ [∆] and a subset A of edges.
2: Output: one edge from every layer Ei with i ∈ I.
3: R = ∅
4: for all i ∈ I do
5: Sample e ∈ Ei with probability of choosing e equal to ẼA∪R[xe]
6: R = R ∪ {e}
7: end for
8: return R

ICALP 2024

111:18 Approximation Algorithms for ℓp-Shortest Path and ℓp-Group Steiner Tree

We say that we sample edges e1, . . . , ek in layers i1, . . . , ik conditioning on set A to mean
that we run Algorithm 2 with parameters I = {i1, . . . , ik} and A.

Algorithm 3 Rounding algorithm for layered graphs.

1: Input: indices y and z of two edge layers (1 ≤ y ≤ z ≤ ∆) and a subset of edges A.
2: Output: a path in Ĝ traversing layers Ey to Ez.
3: function FindPath(y, z, A)
4: if z − y + 1 ≤ a then
5: Sample edges e0, . . . , ez−y in layers Ey, Ey+1, . . . , Ez conditioning on A.
6: return the path formed by e0, . . . , ez−y.
7: end if
8: Let mi = y + ⌈ z−y

a+1 · i⌉ for i ∈ [a].
9: Sample edges e1, . . . , ea in layers m1, . . . , ma conditioning on A.

10: Let A′ = A ∪ {ei : i ∈ [a]}.
11: Let m0 = z − 1 and ma+1 = y + 1.
12: for i = 0 to a do
13: Pi = FindPath(mi + 1, mi+1 − 1, A′) unless mi + 1 > mi+1 − 1 then Pi = ∅
14: end for
15: Let P be the path formed by P0, e1, P1, e2, . . . , ea, Pa.
16: return P

17: end function

To solve the problem, we run Algorithm 3 with y = 1, z = ∆, and A = ∅. The analysis of
this algorithm is quite similar to that of Algorithm 1 for series-parallel graphs, with the main
difference that instead of the series-parallel decomposition of G, we consider the recursion
tree whose nodes correspond to invocations of FindPath. The full analysis of this algorithm
can be found in the full version of this paper [24], where the following theorems are shown.

▶ Theorem 28. Algorithm 1 gives an O(cp log1−1/p ∆) approximation for the ℓp-Shortest
Path problem in layered graphs with ∆ layers in time mO(p+ce1/c log ∆) for c ∈ (0, 1/2).

As a corollary, we get the following result for arbitrary graphs.

▶ Theorem 29. There is an O(cp log1−1/p n) approximation algorithm for the ℓp-Shortest
Path problem in arbitrary graphs that runs in time mO(p+ce1/c log n) for c ∈ (0, 1/2).

References
1 Hassene Aissi, Cristina Bazgan, and Daniel Vanderpooten. Approximation of min–max and

min–max regret versions of some combinatorial optimization problems. European Journal of
Operational Research, 179(2):281–290, 2007. doi:10.1016/j.ejor.2006.03.023.

2 Boaz Barak, Jonathan A. Kelner, and David Steurer. Rounding sum-of-squares relaxations. In
David B. Shmoys, editor, Symposium on Theory of Computing, STOC 2014, New York, NY,
USA, May 31 - June 03, 2014, pages 31–40. ACM, 2014. doi:10.1145/2591796.2591886.

3 Vittorio Bilò, Ioannis Caragiannis, Angelo Fanelli, Michele Flammini, and Gianpiero Monaco.
Simple greedy algorithms for fundamental multidimensional graph problems. In Ioannis
Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl, editors, 44th International
Colloquium on Automata, Languages, and Programming, ICALP 2017, July 10-14, 2017,
Warsaw, Poland, volume 80 of LIPIcs, pages 125:1–125:13. Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2017. doi:10.4230/
LIPIcs.ICALP.2017.125.

https://doi.org/10.1016/j.ejor.2006.03.023
https://doi.org/10.1145/2591796.2591886
https://doi.org/10.4230/LIPIcs.ICALP.2017.125
https://doi.org/10.4230/LIPIcs.ICALP.2017.125

Y. Makarychev, M. Ovsiankin, and E. Tani 111:19

4 Thomas Breugem, Twan Dollevoet, and Wilco van den Heuvel. Analysis of fptases for the
multi-objective shortest path problem. Comput. Oper. Res., 78:44–58, 2017. doi:10.1016/j.
cor.2016.06.022.

5 Moses Charikar, Chandra Chekuri, To-Yat Cheung, Zuo Dai, Ashish Goel, Sudipto Guha,
and Ming Li. Approximation algorithms for directed steiner problems. Journal of Algorithms,
33(1):73–91, 1999. doi:10.1006/jagm.1999.1042.

6 Moses Charikar, Chandra Chekuri, Ashish Goel, and Sudipto Guha. Rounding via trees:
deterministic approximation algorithms for group steiner trees and k-median. In Proceedings of
the Symposium on Theory of Computing, pages 114–123, 1998. doi:10.1145/276698.276719.

7 Chandra Chekuri and Martin Pál. A recursive greedy algorithm for walks in directed graphs.
In Proceedings of the Symposium on Foundations of Computer Science, pages 245–253, 2005.
doi:10.1109/SFCS.2005.9.

8 Chandra Chekuri, Jan Vondrák, and Rico Zenklusen. Dependent randomized rounding
via exchange properties of combinatorial structures. In Proceedings of the Symposium on
Foundations of Computer Science, pages 575–584, 2010. doi:10.1109/FOCS.2010.60.

9 Julia Chuzhoy and Sanjeev Khanna. Hardness of directed routing with congestion. Electron.
Colloquium Comput. Complex., TR06-109(109), 2006. arXiv:TR06-109.

10 Jesús de la Cal and Javier Cárcamo. Set partitions and moments of random variables. Journal
of mathematical analysis and applications, 378(1):16–22, 2011.

11 Matthias Ehrgott. Multicriteria Optimization (2. ed.), volume 491. Springer, 2005. doi:
10.1007/3-540-27659-9.

12 Jittat Fakcharoenphol, Satish Rao, and Kunal Talwar. A tight bound on approximating
arbitrary metrics by tree metrics. In Proceedings of the Symposium on Theory of Computing,
pages 448–455, 2003. doi:10.1145/780542.780608.

13 Noah Fleming, Pravesh Kothari, and Toniann Pitassi. Semialgebraic proofs and efficient
algorithm design. Foundations and Trends in Theoretical Computer Science, 14(1-2):1–221,
2019. doi:10.1561/0400000086.

14 Naveen Garg, Goran Konjevod, and Ramamoorthi Ravi. A polylogarithmic approximation
algorithm for the group steiner tree problem. Journal of Algorithms, 37(1):66–84, 2000.
doi:10.1006/jagm.2000.1096.

15 Horst W Hamacher and Günter Ruhe. On spanning tree problems with multiple objectives.
Annals of Operations Research, 52(4):209–230, 1994. doi:10.1007/BF02032304.

16 Pierre Hansen. Bicriterion path problems. In Multiple Criteria Decision Making Theory and
Application: Proceedings of the Third Conference Hagen/Königswinter, West Germany, August
20–24, 1979, pages 109–127. Springer, 1980.

17 Jovan Karamata. Sur une inégalité relative aux fonctions convexes. Publications de l’Institut
mathematique, 1(1):145–147, 1932.

18 Adam Kasperski and Paweł Zieliński. On the approximability of minmax (regret) network
optimization problems. Information Processing Letters, 109(5):262–266, 2009. doi:10.1016/
j.ipl.2008.10.008.

19 Adam Kasperski and Paweł Zieliński. On the approximability of robust spanning tree problems.
Theoretical Computer Science, 412(4-5):365–374, 2011. doi:10.1016/j.tcs.2010.10.006.

20 Adam Kasperski and Paweł Zieliński. Robust discrete optimization under discrete and interval
uncertainty: A survey. Robustness analysis in decision aiding, optimization, and analytics,
pages 113–143, 2016.

21 Adam Kasperski and Pawel Zielinski. Approximating some network problems with scenarios.
CoRR, abs/1806.08936, 2018. doi:10.48550/arXiv.1806.08936.

22 Aditi Laddha, Mohit Singh, and Santosh S Vempala. Socially fair network design via iterative
rounding. Operations Research Letters, 50(5):536–540, 2022. doi:10.1016/j.orl.2022.07.
011.

23 Shi Li, Chenyang Xu, and Ruilong Zhang. Polylogarithmic approximation for robust s-t path.
CoRR, abs/2305.16439, 2023. doi:10.48550/arXiv.2305.16439.

ICALP 2024

https://doi.org/10.1016/j.cor.2016.06.022
https://doi.org/10.1016/j.cor.2016.06.022
https://doi.org/10.1006/jagm.1999.1042
https://doi.org/10.1145/276698.276719
https://doi.org/10.1109/SFCS.2005.9
https://doi.org/10.1109/FOCS.2010.60
https://arxiv.org/abs/TR06-109
https://doi.org/10.1007/3-540-27659-9
https://doi.org/10.1007/3-540-27659-9
https://doi.org/10.1145/780542.780608
https://doi.org/10.1561/0400000086
https://doi.org/10.1006/jagm.2000.1096
https://doi.org/10.1007/BF02032304
https://doi.org/10.1016/j.ipl.2008.10.008
https://doi.org/10.1016/j.ipl.2008.10.008
https://doi.org/10.1016/j.tcs.2010.10.006
https://doi.org/10.48550/arXiv.1806.08936
https://doi.org/10.1016/j.orl.2022.07.011
https://doi.org/10.1016/j.orl.2022.07.011
https://doi.org/10.48550/arXiv.2305.16439

111:20 Approximation Algorithms for ℓp-Shortest Path and ℓp-Group Steiner Tree

24 Yury Makarychev, Max Ovsiankin, and Erasmo Tani. Approximation algorithms for ℓp-shortest
path and ℓp-group steiner tree, 2024. arXiv:2404.17669.

25 Ernesto Queiros Vieira Martins. On a multicriteria shortest path problem. European Journal
of Operational Research, 16(2):236–245, 1984.

26 Robert Franklin Muirhead. Some methods applicable to identities and inequalities of symmetric
algebraic functions of n letters. Proceedings of the Edinburgh Mathematical Society, 21:144–162,
1902.

27 Prasad Raghavendra and Benjamin Weitz. On the bit complexity of sum-of-squares proofs.
In Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl, editors, 44th
International Colloquium on Automata, Languages, and Programming, ICALP 2017, July
10-14, 2017, Warsaw, Poland, volume 80 of LIPIcs, pages 80:1–80:13. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2017. doi:10.4230/LIPIcs.ICALP.2017.80.

28 R. Ravi, Madhav V. Marathe, S. S. Ravi, Daniel J. Rosenkrantz, and Harry B. Hunt III.
Many birds with one stone: multi-objective approximation algorithms. In S. Rao Kosaraju,
David S. Johnson, and Alok Aggarwal, editors, Proceedings of the Twenty-Fifth Annual ACM
Symposium on Theory of Computing, May 16-18, 1993, San Diego, CA, USA, pages 438–447.
ACM, 1993. doi:10.1145/167088.167209.

29 Gabriele Reich and Peter Widmayer. Beyond steiner’s problem: A vlsi oriented generalization.
In International Workshop on Graph-theoretic Concepts in Computer Science, pages 196–210.
Springer, 1989. doi:10.1007/3-540-52292-1_14.

30 Stefan Ruzika and Horst W Hamacher. A survey on multiple objective minimum spanning tree
problems. In Algorithmics of Large and Complex Networks: Design, Analysis, and Simulation,
pages 104–116. Springer, 2009. doi:10.1007/978-3-642-02094-0_6.

31 Walter J Savitch. Relationships between nondeterministic and deterministic tape complexities.
Journal of computer and system sciences, 4(2):177–192, 1970. doi:10.1016/S0022-0000(70)
80006-X.

32 Richard Stanley. Enumerative Combinatorics: Volume 2. Cambridge University Press, 2023.

https://arxiv.org/abs/2404.17669
https://doi.org/10.4230/LIPIcs.ICALP.2017.80
https://doi.org/10.1145/167088.167209
https://doi.org/10.1007/3-540-52292-1_14
https://doi.org/10.1007/978-3-642-02094-0_6
https://doi.org/10.1016/S0022-0000(70)80006-X
https://doi.org/10.1016/S0022-0000(70)80006-X

	1 Introduction
	1.1 Related Works
	1.2 Technical Overview
	1.3 Paper Organization

	2 Preliminaries and Notation
	2.1 Series-Parallel Graphs
	2.2 Combinatorics
	2.3 Sum-of-Squares Relaxations

	3 Sum of Squares Relaxation for l-p-Shortest Path
	4 Majorization Inequalities for Pseudo-expectations
	5 Sum-of-Squares Relaxation Rounding
	5.1 Algorithm

	6 Algorithms for l-p-Shortest Path in Arbitrary Graphs

