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Abstract
We present a reconfiguration analogue of alphabet reduction à la Dinur (J. ACM, 2007) [7] and
its applications. Given a binary constraint graph G and its two satisfying assignments ψini and
ψtar, the Maxmin 2-CSP Reconfiguration problem requests to transform ψini into ψtar by repeatedly
changing the value of a single vertex so that the minimum fraction of satisfied edges is maximized.
We demonstrate a polynomial-time reduction from Maxmin 2-CSP Reconfiguration with arbitrarily
large alphabet size W ∈ N to itself with universal alphabet size W0 ∈ N such that
1. the perfect completeness is preserved, and
2. if any reconfiguration for the former violates ε-fraction of edges, then Ω(ε)-fraction of edges must

be unsatisfied during any reconfiguration for the latter.
The crux of its construction is the reconfigurability of Hadamard codes, which enables to reconfigure
between a pair of codewords, while avoiding getting too close to the other codewords. Combining
this alphabet reduction with gap amplification due to Ohsaka (SODA 2024) [26], we are able to
amplify the 1 vs. 1 − ε gap for arbitrarily small ε ∈ (0, 1) up to the 1 vs. 1 − ε0 for some universal
ε0 ∈ (0, 1) without blowing up the alphabet size. In particular, a 1 vs. 1 − ε0 gap version of Maxmin
2-CSP Reconfiguration with alphabet size W0 is PSPACE-hard given a probabilistically checkable
reconfiguration proof system having any soundness error 1 − ε due to Hirahara and Ohsaka (STOC
2024) [14] and Karthik C. S. and Manurangsi (2023) [17]. As an immediate corollary, we show that
there exists a universal constant ε0 ∈ (0, 1) such that many popular reconfiguration problems are
PSPACE-hard to approximate within a factor of 1 − ε0, including those of 3-SAT, Independent
Set, Vertex Cover, Clique, Dominating Set, and Set Cover. This may not be achieved only by gap
amplification of Ohsaka [26], which makes the alphabet size gigantic depending on ε−1.
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1 Introduction

1.1 Background
Combinatorial reconfiguration is a brand-new field in theoretical computer science that
concerns the reachability and connectivity over the solution space of a combinatorial problem.
One canonical PSPACE-complete reconfiguration problem is 2-CSP Reconfiguration: given
a binary constraint graph G over alphabet Σ and its two satisfying assignments ψini and
ψtar, we are requested to transform ψini into ψtar by repeatedly changing the value of a single
vertex while the feasibility of intermediate assignments is maintained. Such a sequence of
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feasible solutions is referred to as a reconfiguration sequence. Since the establishment of
the unified framework due to Ito, Demaine, Harvey, Papadimitriou, Sideri, Uehara, and
Uno [16], the complexity of many reconfiguration problems has been investigated, including
those of Satisfiability, Coloring, Independent Set, Vertex Cover, and Clique. We refer the
readers to the survey by Bousquet, Mouawad, Nishimura, and Siebertz [6], Mynhardt and
Nasserasr [20], Nishimura [21], and van den Heuvel [31]. One latest trend is to study ap-
proximate reconfigurability [23, 24, 26], which affords to relax the feasibility of intermediate
solutions during reconfiguration. For example, in Maxmin 2-CSP Reconfiguration [23], which
is an optimization version of 2-CSP Reconfiguration, we can adopt any non-satisfying as-
signments, but are required to maximize the minimum fraction of edges satisfied during
reconfiguration. Such optimization versions would be come up with naturally to deal with
PSPACE-hardness of many reconfiguration problems. See Section 1.5 for other optimization
versions of reconfiguration problems.

One of the most important questions concerning approximate reconfigurability was
PSPACE-hardness of approximation for reconfiguration problems, posed by Ito, Demaine,
Harvey, Papadimitriou, Sideri, Uehara, and Uno [16, Section 5] as an open problem. Though
NP-hardness of approximation for reconfiguration problems (e.g., Maxmin SAT Reconfigura-
tion) was shown by [16], their proofs do not imply PSPACE-hardness because of relying
on the NP-hardness of approximating the corresponding optimization problems (e.g., Max
SAT). The significance of showing PSPACE-hardness compared to NP-hardness is that it
disproves the existence of a witness (especially a reconfiguration sequence) of polynomial
length under NP ̸= PSPACE. Ohsaka [23] showed that a host of (optimization versions
of) reconfiguration problems are PSPACE-hard to approximate under the Reconfiguration
Inapproximability Hypothesis (RIH), which postulates that a gap version of Maxmin CSP
Reconfiguration is PSPACE-hard. Very recently, Hirahara and Ohsaka [14] and Karthik
C. S. and Manurangsi [17] independently announced the proof of RIH, thereby affirmatively
resolving the open problem of Ito, Demaine, Harvey, Papadimitriou, Sideri, Uehara, and
Uno [16]. The proof is based on a construction of probabilistically checkable reconfiguration
proof (PCRP) systems for PSPACE. The present study delves deeper into PSPACE-
hardness of approximation for reconfiguration problems given the resolution of RIH.

The limitation of [23] along with the PCRP theorem [14, 17] is that the degree of
inapproximability is not explicitly shown: although the PCRP theorem implies that Maxmin
2-CSP Reconfiguration is PSPACE-hard to approximate within a factor of 1 − ε, its gap
parameter ε ∈ (0, 1) is implicit and thus might be very tiny. To circumvent this limitation,
Ohsaka [26] successfully developed Dinur’s style gap amplification [7] for Maxmin 2-CSP
Reconfiguration, which amplifies the 1 vs. 1− ε gap for arbitrarily small ε ∈ (0, 1) up to the 1
vs. 0.9942 gap. This result can be used to show 1.0029-inapproximability for Minmax Set
Cover Reconfiguration [26]. Unfortunately, there still remains another issue: the alphabet
size becomes gigantic depending on ε−1.1 Consider for example reducing Maxmin 2-CSP
Reconfiguration with alphabet size W to Maxmin 3-SAT Reconfiguration in a gap-preserving
manner. According to [23], if the former problem has a δ-gap, the latter problem’s gap turns
out to be δ

2Ω(W ) . This is undesirable if W depends on ε. Our target in this paper is thus a
reconfiguration analogue of alphabet reduction, i.e., a polynomial-time reduction from Maxmin
2-CSP Reconfiguration to itself that makes a large alphabet into a tiny one without much
deteriorating the gap value.

1 Precisely, the alphabet size becomes W dO(ε−1)
for some W,d ∈ N by [26], which is doubly exponential in

ε−1.
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Table 1 Gap-preserving reductions used in Corollary 1.2. We can reduce Gap1,1−ε q-CSPW

Reconfiguration (i.e., the PCRP theorem) to Gap1,1−ε0 2-CSPW0 Reconfiguration regardless of the
values of ε ∈ (0, 1) and q,W ∈ N.

gap problem ref. technique gap value alphabet size

q-CSP Reconf — — arbitrarily small ε arbitrarily large W
2-CSP Reconf [23] degree reduction depends on ε, q,W universal const.
2-CSP Reconf [26] gap amplification universal const. depends on ε, q,W

2-CSP Reconf (this paper) alphabet reduction universal const. ε0 universal const. W0

1.2 Our Results
We present alphabet reduction for Maxmin 2-CSP Reconfiguration à la Dinur [7] and its
applications. Given an instance of Maxmin 2-CSP Reconfiguration with arbitrarily large
alphabet, we are able to reduce the alphabet size to a universal constant W0 ∈ N preserving
the gap value by up to a constant factor:

▶ Theorem 1.1 (Alphabet reduction; informal; see Theorem 3.1). There exist universal
constants W0 ∈ N and κ ∈ (0, 1) and a polynomial-time reduction from Maxmin 2-CSP
Reconfiguration with arbitrarily large alphabet size W ∈ N to itself with alphabet size W0 such
that
1. the perfect completeness is preserved, and
2. if any reconfiguration for the former violates ε-fraction of edges, then κ · ε-fraction of

edges must be unsatisfied during any reconfiguration for the latter.
Our reduction is independent of ε; namely, ε does not have to be constant, e.g., ε =
(# of edges)−1. The main ingredient of its construction is the reconfigurability of Hadamard
codes, which appears later in Section 1.3.

As a corollary of Theorem 3.1 and [23, 26], we are able to amplify the 1 vs. 1 − ε gap
for arbitrarily small ε ∈ (0, 1) up to the 1 vs. 1 − ε0 gap for some universal ε0 ∈ (0, 1)
without blowing up the alphabet size. Slightly more formally, for any ε ∈ (0, 1) and W ∈ N,
Gap1,1−ε 2-CSPW Reconfiguration requests to distinguish whether, for a binary constraint
graph with alphabet size W and its two satisfying assignments ψini and ψtar, (1) there exists
a reconfiguration sequence from ψini to ψtar consisting only of satisfying assignments, or (2)
every reconfiguration sequence violates more than ε-fraction of edges.

▶ Corollary 1.2 (from Theorem 3.1 and [23, 26]). There exist universal constants ε0 ∈ (0, 1)
and W0 ∈ N such that for arbitrarily small ε ∈ (0, 1) and large q,W ∈ N, there exists
a gap-preserving reduction from Gap1,1−ε q-CSPW Reconfiguration to Gap1,1−ε0 2-CSPW0

Reconfiguration. In particular, the latter problem is PSPACE-hard.

Since both ε0 and W0 do not depend on either ε, q, or W , Corollary 1.2 makes the degree
of inapproximability and alphabet size of Maxmin 2-CSP Reconfiguration oblivious to the
soundness error, query complexity, and alphabet size of any PCRP system [14, 17]. Concretely,
we would have ε0 = κ · (1 − 0.9942) > 10−18 and W0 < 2,000,000, where number 0.9942
comes from [26]. See also the proof of Theorem 3.1. This may not be achieved only by
gap amplification due to Ohsaka [26]. See also Table 1 for a sequence of gap-preserving
reductions used in Corollary 1.2.

By Corollary 1.2, we immediately obtain the following gap-preserving reducibility from
any PCRP system to many popular reconfiguration problems:

ICALP 2024
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▶ Theorem 1.3 (from Corollary 1.2 and [23, 26]). There exists a universal constant ε0 ∈ (0, 1)
such that for every ε ∈ (0, 1) and q,W ∈ N, Gap1,1−ε q-CSPW Reconfiguration is polynomial-
time reducible to a 1 vs. 1− ε0 gap version of the following reconfiguration problems:

2-CSP Reconfiguration, 3-SAT Reconfiguration, Independent Set Reconfiguration, Vertex Cover
Reconfiguration, Clique Reconfiguration, Dominating Set Reconfiguration, Set Cover

Reconfiguration, and Nondeterministic Constraint Logic.

In particular, optimization versions of the above problems are PSPACE-hard to approximate
within a factor of 1− ε0.

Once again, Theorem 1.3 is different from a consequence of gap-preserving reductions due to
Ohsaka [23] in a sense that it renders ε0 independent of the value of ε.2 Such PSPACE-
hardness results seem to be known only for (optimization versions of) 2-CSP Reconfiguration
(0.9942-factor) [26], Set Cover Reconfiguration (1.0029-factor) [26], and Clique Reconfiguration
(n−Ω(1)-factor) [14] (to the best of our knowledge).

Proofs marked with ∗ are omitted and can be found in the full version of this paper [25].

1.3 Proof Overview
The construction of alphabet reduction for Maxmin 2-CSP Reconfiguration (Theorem 3.1) is
based on that for Max 2-CSP due to Dinur [7], which comprises two partial steps: The first
step is robustization, which replaces each constraint πe of edge e by a Boolean circuit Ce
that accepts f ◦ g if and only if f ◦ g = Had(α) ◦ Had(β) such that (α, β) satisfies πe, where
Had is the Hadamard code (see Section 2 for the definition).3 The soundness case ensures
that for “many” edges e, the restricted assignment is Θ(1)-far from any satisfying truth
assignment to Ce. The second step is composition, which composes each circuit Ce with
an assignment tester [7, 8] (a.k.a. PCP of proximity [4]) of constant size to break down Ce
into a system of binary constraints over small alphabet while sharing the common variables
for different circuits.

The main challenge to achieving alphabet reduction for Maxmin 2-CSP Reconfiguration
is its robustization. Simply applying the above robustization procedure to Maxmin 2-CSP
Reconfiguration, we are required to reconfigure between a pair of codewords, say, Had(α1) and
Had(α2) for α1 ̸= α2. Such reconfiguration must pass through a function ⪆ 1

4 -far from the
codeword and thus from any satisfying truth assignment to the above circuit Ce, sacrificing
the perfect completeness. There is a dilemma that distinct codewords should be far from each
other, yet they need to be reconfigurable with each other. One might thus think of enforcing
Ce to accept functions that are 1

4 -close to the codeword. Unfortunately, this modification
reduces the robustness to o(1) in the soundness case, as shown in an example below (see
also Example 3.7). This explains why robustization for Maxmin 2-CSP Reconfiguration is
nontrivial.

▶ Example 1.4 (Failed attempt). Define a binary constraint πe := {(α1, β1), (α2, β2)} ⊂ Σ×Σ
and a Hadamard code Had : Σ→ Fℓ2. Construct a (seemingly promising) circuit C̃e such that
C̃e(f ◦ g) = 1 if and only if

2 We stress that Theorem 1.3 is essentially different from the following statement (where ε0 can depend
on ε, q, and W ), which is immediate from [23]: “For arbitrarily small ε ∈ (0, 1) and large q,W ∈ N,
there exists ε0 ∈ (0, 1) such that Gap1,1−ε q-CSPW Reconfiguration is polynomial-time reducible to a 1
vs. 1 − ε0 gap version of the reconfiguration problems listed in Theorem 1.3.”

3 Though Dinur [7] used an error-correcting code enc : Σ → Fℓ
2 having linear dimension (i.e., ℓ = O(log |Σ|)),

we can afford to use the Hadamard code for our purpose because |Σ| = O(1).
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1. both f and g are 1
4 -close to some Hadamard codewords;

2. if f and g are 1
4 -close to Had(α) and Had(β), respectively, then (α, β) must satisfy πe.

Then, the following issue arises: even if f is closest to Had(α) and g is closest to Had(β) such
that (α, β) /∈ π, we cannot exclude the possibility that f ◦ g is o(1)-close to some satisfying
truth assignment to C̃e. Suppose f is 1

4 -close to both Had(α1) and Had(α2) and g is 1
4 -close

to both Had(β1) and Had(β2). Changing particular two bits of f ◦ g, we obtain f⋆ ◦ g⋆ that
is
( 1

4 −
1
ℓ

)
-close to Had(α1) ◦ Had(β1). Since C̃(f⋆ ◦ g⋆) = 1, f ◦ g is 1

ℓ -close to a satisfying
truth assignment to C̃e. ⌟

The crux of a reconfiguration analogue of robustization is what we call the reconfigurability
of Hadamard codes:

▶ Lemma 1.5 (Reconfigurability of Hadamard codes; informal; see Lemma 3.2). There exists
a universal constant δ0 ∈ (0, 1) such that for any n ⩾ 9 and α ̸= β ∈ Fn2 , there exists a
reconfiguration sequence from Had(α) to Had(β) such that every function in it is

1
4 -close to either Had(α) or Had(β), and( 1

4 + δ0
)
-far from Had(γ) for every γ ̸= α,β.

Lemma 3.2 enables us to reconfigure between a pair of codewords, avoiding getting too (say,
1
4 + δ0) close to the other codewords. The existence of such a reconfiguration sequence is
shown by a simple application of the structural property of a triple of distinct Hadamard
codewords and the probabilistic method. Lemma 3.2 is still nontrivial in that it does not
hold if n = 3 (see Observation 3.3). Using the reconfigurability of Hadamard codes, we
implement alphabet reduction of Maxmin 2-CSP Reconfiguration as follows:

Robustization (Lemma 3.6): Convert a binary constraint πe for edge e into a circuit Ce
such that Ce(f ◦ g) = 1 if and only if

1. both f and g are 1
4 -close to some Hadamard codewords;

2. if f and g are
( 1

4 + δ0
2
)
-close to Had(α) and Had(β), respectively, then (α, β) must

satisfy πe.
(The difference from C̃e of Example 1.4 is highlighted. ) Consider πe, f , and g appearing
in Example 1.4 again for the soundness case. Suppose Ce is constructed from πe. To
make f ◦ g to satisfy Ce, we must modify them so that f and g are

( 1
4 + δ0

2
)
-far from

Had(α2) and Had(β2) (or Had(α1) and Had(β1)), respectively; namely, f ◦ g is δ0
2 -far from

any satisfying truth assignment to Ce. Even though Ce demands stricter conditions than
C̃e of Example 1.4, the perfect completeness can be derived using Lemma 3.2.
Composition (Proposition 3.10): Just feeding each circuit Ce to an assignment tester P
of [7] breaks the perfect completeness; instead, we apply P to Ce twice to create twins of
binary constraint systems sharing the input variables to Ce. Our 4-query verifier then
picks a pair of edges from each of the twins uniformly at random, and accepts if either
of them is satisfied, which may be thought of as rectangular PCPs [5]. This kind of
redundancy is crucial for ensuring the perfect completeness of reconfiguration problems.
On the other hand, if δ-fraction of the edges are unsatisfied in both of the twins, the
verifier rejects with probability δ2 owing to its rectangularity.

In the language of probabilistic proofs, the above alphabet reduction may be thought of
as a composition of (PCRPs) due to Hirahara and Ohsaka [14], where the outer PCRP is a
2-query PCRP verifier and the inner PC(R)P is an assignment tester. To make the outer
PCRP enjoy a reconfiguration analogue of the robustness as in Lemma 3.6, we replace each
variable by a block of bits and modify the original circuit associated with each edge e (i.e.,
binary constraint πe) appropriately so as to reflect the reconfigurability of Hadamard codes.

ICALP 2024
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1.4 Towards Dinur’s Style Proof of RIH?

Given degree reduction [23], gap amplification [26], and alphabet reduction (this paper) for
Maxmin 2-CSP Reconfiguration, one might think of proving RIH imitating Dinur’s proof of the
PCP theorem [7]. Though the resolution of RIH is not the main motivation for developing
alphabet reduction and RIH has already been proven by Hirahara and Ohsaka [14] and
Karthik C. S. and Manurangsi [17], such a different proof is still useful in a sense that it
would rely only on (slightly) simpler tools. Unfortunately, merely putting them together does
not work as expected because some of the reductions are only gap-preserving, which requires
that there is already a constant gap ε ∈ (0, 1) between completeness and soundness, and thus
weaker than those of Dinur [7]. Consider for example degree reduction of Maxmin 2-CSP
Reconfiguration. Unlike Papadimitriou–Yannakakis’s degree reduction for Max 2-CSP [28],
Ohsaka’s degree reduction [23] uses near-Ramanujan graphs [2, 19] of degree Θ(ε−2). Since
we need to begin gap amplification with ε = (# of edges)−1 = o(1), applying the degree
reduction step of [23] results in a superconstant degree, failing to reduce the degree of Maxmin
2-CSP Reconfiguration. Gap amplification of Ohsaka [26] also relies on the assumption that
the gap value is a constant, see [26, Claim 3.7]. Note that alphabet reduction in the present
study works for any subconstant gap.

1.5 Additional Related Work

In [16], NP-hardness of approximation is shown for optimization versions of Clique Recon-
figuration and SAT Reconfiguration using NP-hardness of approximating Max Clique [12]
and Max SAT [13], respectively. Other reconfiguration problems whose approximability was
investigated include Subset Sum Reconfiguration, which admits a PTAS [15] and Submodular
Reconfiguration, which admits a constant-factor approximation [27]. It is known that a naive
parallel repetition for Maxmin 2-CSP Reconfiguration fails to decrease the soundness error [24]
unlike the parallel repetition theorem due to Raz [30]; in fact, Maxmin 2-CSP Reconfiguration
is approximable within a factor of nearly 1

4 [24] while NP-hard to approximate within a
factor better than 3

4 [26]. Karthik C. S. and Manurangsi [17] demonstrate matching lower
and upper bounds, i.e., NP-hardness of

( 1
2 + ε

)
-factor approximation and a

( 1
2 − ε

)
-factor

approximation algorithm for every ε ∈
(
0, 1

2
)
.

The overlap gap property [10, 1, 18, 11, 32] refers to the separation phenomena of the
overlaps between near-optimal solutions on random instance, which implies approximate
reconfigurability; see also [26].

2 Preliminaries

2.1 Notations

For a nonnegative integer n ∈ N, let [n] := {1, 2, . . . , n}. Denote by Sn the set of all
permutations over [n]. A sequence S of a finite number of objects S(1), . . . , S(T ) is denoted
by (S(1), . . . , S(T )), and we write S(t) ∈ S to indicate that S(t) appears in S . The symbol
◦ stands for a concatenation of two strings, ⟨·, ·⟩ for the inner product, F2 = {0, 1} for the
finite field with two elements. We use ⊎ to emphasize that the union is taken over disjoint
sets. Let Σ be a finite set called alphabet. For a length-n string f ∈ Σn and index set I ⊆ [n],
we use f |I to denote the restriction of f to I. The relative distance between two strings
f, g ∈ Σn, denoted ∆(f, g), is defined as the fraction of positions on which f and g differ;
namely,
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∆(f, g) := P
i∼[n]

[
fi ̸= gi

]
= |{i ∈ [n] | fi ̸= gi}|

n
. (2.1)

We say that f is ε-close to g if ∆(f, g) ⩽ ε and ε-far from g if ∆(f, g) > ε. For a set
of strings S ⊆ Σn, analogous notions are used; e.g., ∆(f, S) := ming∈S ∆(f, g) and f is
ε-close to S if ∆(f, S) ⩽ ε. For a string α ∈ Fn2 , its Hadamard code is defined as a
function Had(α) : Fn2 → F2 such that Had(α)(x) = ⟨α,x⟩ for all x ∈ Fn2 . We call Had(α) for
each α a codeword of the Hadamard code, and write Had(·) for the set of all codewords.
Note that the relative distance between any pair of distinct codewords of Had(·) is 1

2 ; i.e.,
∆(Had(α),Had(β)) = 1

2 for all α ̸= β ∈ Fn2 .

2.2 Constraint Satisfaction Problem and Reconfigurability
We introduce reconfiguration problems on constraint satisfaction. The notion of constraint
graphs is first introduced.

▶ Definition 2.1. A q-ary constraint graph is defined as a tuple G = (V,E,Σ,Π) such that
(V,E) is a q-uniform hypergraph called the underlying graph, Σ is a finite set called the
alphabet, and Π = (πe)e∈E is a collection of q-ary constraints, where each constraint πe ⊆ Σe
is a set of q-tuples of acceptable values that q vertices in e can take. ⌟

For an assignment ψ : V → Σ, we say that ψ satisfies hyperedge e = {v1, . . . , vq} ∈ E (or
constraint πe) if ψ(e) := (ψ(v1), . . . , ψ(vq)) ∈ πe, and ψ satisfies G if it satisfies all hyperedges
of G. For two satisfying assignments ψini and ψtar for G, a reconfiguration sequence from
ψini to ψtar over ΣV is any sequence (ψ(1), . . . ψ(T )) such that ψ(1) = ψini, ψ(T ) = ψtar, and
every two neighboring assignments ψ(t) and ψ(t+1) differ in at most one vertex. In the q-CSP
Reconfiguration problem, for a q-ary constraint graph G and its two satisfying assignments
ψini and ψtar, we are asked to decide if there is a reconfiguration sequence of satisfying
assignments for G from ψini to ψtar. Hereafter, the suffix “W ” designates the restricted case
that the alphabet size |Σ| is integer W ∈ N.

Subsequently, we formulate an optimization version of q-CSP Reconfiguration [16, 23],
which allows going through non-satisfying assignments. For a constraint graph G =
(V,E,Σ,Π) and an assignment ψ : V → Σ, its value is defined as the fraction of edges
of G satisfied by ψ; namely,

valG(ψ) := 1
|E|
·
∣∣∣{e ∈ E ∣∣∣ ψ satisfies e

}∣∣∣ . (2.2)

For a reconfiguration sequence ψψψ = (ψ(1), . . . , ψ(T )) of assignments, let valG(ψψψ) denote the
minimum fraction of satisfied edges over all ψ(t)’s in ψψψ; namely,

valG(ψψψ) := min
ψ(t)∈ψψψ

valG(ψ(t)). (2.3)

In Maxmin q-CSP Reconfiguration, we wish to maximize valG(ψψψ) subject to ψψψ = (ψini, . . . , ψtar).
For two assignments ψini, ψtar : V → Σ for G, let valG(ψini ↭ ψtar) denote the maximum
value of valG(ψψψ) over all possible reconfiguration sequences ψψψ from ψini to ψtar; namely,

valG(ψini ↭ ψtar) := max
ψψψ=(ψini,...,ψtar)

valG(ψψψ). (2.4)

The gap version of Maxmin q-CSP Reconfiguration is defined as follows.

ICALP 2024



113:8 Alphabet Reduction for Reconfiguration Problems

▶ Problem 2.2. For every numbers 0 ⩽ s ⩽ c ⩽ 1 and integer q ∈ N, Gapc,s q-CSP
Reconfiguration requests to determine for a q-ary constraint graph G and its two assignments
ψini and ψtar, whether valG(ψini ↭ ψtar) ⩾ c (the input is a yes instance) or valG(ψini ↭
ψtar) < s (the input is a no instance). Here, c and s are respectively called completeness and
soundness. ⌟

We can assume ψini and ψtar satisfy G whenever c = 1. The Reconfiguration Inapproximability
Hypothesis (RIH) [23] postulates that Gap1,1−ε q-CSPW Reconfiguration is PSPACE-hard for
some ε ∈ (0, 1) and q,W ∈ N, which has been recently proven by Hirahara and Ohsaka [14]
and Karthik C. S. and Manurangsi [17].

3 Alphabet Reduction for Maxmin 2-CSP Reconfiguration

In this section, we prove the main result of this paper, i.e., an explicit construction of alphabet
reduction for Maxmin 2-CSP Reconfiguration, as formally stated below.

▶ Theorem 3.1 (Alphabet reduction). There exist universal constants W0 ∈ N and κ ∈ (0, 1),
and a polynomial-time algorithm A that takes an instance (G,ψini, ψtar) of Maxmin 2-CSPW
Reconfiguration with alphabet size W ∈ N and produces an instance (G′, ψ′ini, ψ′tar) of Maxmin
2-CSPW0 Reconfiguration with alphabet size W0 such that the following hold:

(Perfect completeness) If valG(ψini ↭ ψtar) = 1, then valG′(ψ′ini ↭ ψ′tar) = 1.
(Soundness) If valG(ψini ↭ ψtar) < 1− ε, then valG′(ψ′ini ↭ ψ′tar) < 1− κ · ε.

In particular, for every ε ∈ (0, 1) and W ∈ N, A is a gap-preserving reduction from Gap1,1−ε
2-CSPW Reconfiguration to Gap1,1−κ·ε 2-CSPW0 Reconfiguration.

The remainder of this section is organized as follows: Section 3.1 introduces and proves
the reconfigurability of Hadamard codes, which will be applied to robustization of Maxmin
2-CSP Reconfiguration in Section 3.2. Subsequently, Section 3.3 composes the assignment
tester of [7, 22] into Circuit SAT Reconfiguration, concluding the proof of Theorem 3.1.

3.1 Reconfigurability of Hadamard Codes
Here, we prove the reconfigurability of Hadamard codewords. A reconfiguration sequence
from f ini to f tar over FN2 is a sequence (f (1), . . . , f (T )) such that f (1) = f ini, f (T ) = f tar, and
every two neighboring functions f (t) and f (t+1) differ in at most one bit.

▶ Lemma 3.2 (Reconfigurability of Hadamard codes). Let n be a positive integer at least 9,
δ0 := 1

400 be a universal constant, and α,β ∈ Fn2 be two distinct strings. Then, there exists
a reconfiguration sequence Π = (Had(α), . . . ,Had(β)) from Had(α) to Had(β) such that for
every string γ ∈ Fn2 \ {α,β} and every function f : Fn2 → F in Π,

min
{

∆(f,Had(α)),∆(f,Had(β))
}
⩽

1
4 , (3.1)

∆(f,Had(γ)) > 1
4 + δ0. (3.2)

Before going to its proof, we remark that Lemma 3.2 does not hold if n = 3.

▶ Observation 3.3 (∗). For n = 3 and α ̸= β ∈ Fn2 , let Π be a reconfiguration sequence from
Had(α) to Had(β) such that min{∆(f,Had(α)),∆(f,Had(β))} ⩽ 1

4 for every function f in
Π. Then, Π contains a function f◦ such that ∆(f◦,Had(γ)) ⩽ 1

4 for some γ ∈ Fn2 \ {α,β}.
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Had(α) 0 1

Had(β) 0 1 0 1

Had(γ) 0 1 0 1 0 1 0 1
P= Pγ Pβ Pα Pα Pβ Pγ P=

Figure 1 Illustration of (Pα, Pβ , Pγ , P=) for three distinct nonzero vectors α,β,γ ∈ Fn
2 .

To prove Lemma 3.2, we first analyze the partial sum of a random sequence consisting of
an equal number of plus ones and minus ones.

▶ Lemma 3.4 (∗). Let N > N0 := 100 be any positive integer, η0 := 1
100 , and a =

(a1, . . . , a2N ) be a random sequence made up of N plus ones and N minus ones obtained by
applying a random permutation of S2N to (+1, . . . ,+1︸ ︷︷ ︸

N times

,−1, . . . ,−1︸ ︷︷ ︸
N times

). Then, the minimum

k-partial sum over all k ∈ [2N ]; i.e.,

argmin
1⩽k⩽2N

∑
1⩽i⩽k

ai = argmin
1⩽k⩽2N

∑
k+1⩽i⩽2N

ai, (3.3)

is at most −(1− η0)N = −0.99N with probability at most 0.9N .

Besides, given the Hadamard codewords of any three distinct strings, we partition their
bits into four equal-sized groups.

▷ Claim 3.5 (∗). For three distinct vectors α,β,γ ∈ Fn2 , the following hold:

P
x∈Fn

2

[
⟨α,x⟩ ≠ ⟨β,x⟩ = ⟨γ,x⟩

]
= 1

4 , P
x∈Fn

2

[
⟨β,x⟩ ≠ ⟨γ,x⟩ = ⟨α,x⟩

]
= 1

4 ,

P
x∈Fn

2

[
⟨γ,x⟩ ≠ ⟨α,x⟩ = ⟨β,x⟩

]
= 1

4 , P
x∈Fn

2

[
⟨α,x⟩ = ⟨β,x⟩ = ⟨γ,x⟩

]
= 1

4 .
(3.4)

Using Lemma 3.4 and Claim 3.5, we now prove Lemma 3.2.

Proof of Lemma 3.2. Fix two strings α ̸= β ∈ Fn2 for n ⩾ 9. Let D ⊂ Fn2 be a set of strings
on which Had(α) and Had(β) disagree with each other; namely,

D :=
{

x ∈ Fn2
∣∣∣ ⟨α,x⟩ ≠ ⟨β,x⟩

}
. (3.5)

The random subsum principle ensures |D| = 2n−1 (cf. [3, Claim A.31]). Consider a random
reconfiguration sequence Π = (Had(α), . . . ,Had(β)) obtained by the following procedure:

Random reconfiguration Π from Had(α) to Had(β).

1: (x1, . . . ,x2n−1)← a sequence obtained by applying a random permutation of S2n−1

to D.
2: for i = 1 to 2n−1 do
3: flip xith entry of the current function.

Observe easily that any intermediate function of Π is always 1
4 -close to either Had(α) or

Had(β). Fix any string γ ∈ Fn2 \ {α,β}. We would like to show that with probability at
least 1− 0.92n−2 , every function of Π is

( 1
4 + δ0

)
-far from Had(γ); i.e.,

∆(Had(γ),Π) := min
f∈Π

∆(Had(γ), f) > 1
4 + δ0. (3.6)

ICALP 2024
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0 8 16 24 32 40 48 56 64
t

0

1
8

1
4

3
8

1
2

5
8

∆(f
(t) ,Had(α)) ∆(f (t),Had(β))

∆(f (t),Had(γ))

Figure 2 Plot of the distance from f (t) to Had(α), Had(β), and Had(γ) for a random reconfigu-
ration Π from Had(α) to Had(β) described in the proof of Lemma 3.2.

By Claim 3.5, there exists a partition (Pα, Pβ , Pγ , P=) of Fn2 such that |Pα| = |Pβ | = |Pγ | =
|P=| = 2n−2 and

⟨α,x⟩ ≠ ⟨β,x⟩ = ⟨γ,x⟩ for all x ∈ Pα, ⟨β,x⟩ ≠ ⟨γ,x⟩ = ⟨α,x⟩ for all x ∈ Pβ ,
⟨γ,x⟩ ≠ ⟨α,x⟩ = ⟨β,x⟩ for all x ∈ Pγ , ⟨α,x⟩ = ⟨β,x⟩ = ⟨γ,x⟩ for all x ∈ P=.

(3.7)

See also Figure 1. Here, we always have Pα ⊎Pβ = D (though Pα and Pβ themselves depend
on γ).

For any intermediate function f : Fn2 → F2 of Π, if its entry on Pα is flipped, its Hamming
distance to Had(γ) must decrease by 1, whereas if its entry on Pβ is flipped, its Hamming
distance to Had(γ) must increase by 1; see also Figure 2. Since |Pα| = |Pβ | = 2n−2 > 100 and
∥Had(α)−Had(γ)∥ = ∥Had(β)−Had(γ)∥ = 2n−1, we can apply Lemma 3.4 with N = 2n−2

to conclude that

P
Π

[
min
f∈Π
∥Had(γ)−Π∥ ⩽ 2n−1 − 0.99N

]
⩽ 0.9N

=⇒ P
Π

[
∆(Had(γ),Π) ⩽ 1

4 + 1
400

]
⩽ 0.92n−2

.

Taking a union bound over all possible strings γ ∈ Fn2 \ {α,β}, we derive

P
Π

[
∃γ /∈ {α,β} s.t. ∆(Had(γ),Π) ⩽ 1

4 + 1
400

]
⩽

∑
γ /∈{α,β}

P
Π

[
∆(Had(γ),Π) ⩽ 1

4 + 1
400

]
< 2n · 0.92n−2

< 1 (for all n ⩾ 9).
(3.8)

Consequently, the probabilistic method guarantees the existence of a reconfiguration sequence
Π = (Had(α), . . . ,Had(β)) that is entirely

( 1
4 + δ0

)
-far from Had(γ) for every γ /∈ {α,β}. ◀

3.2 Robustization
Subsequently, we advance to robustization of Maxmin 2-CSP Reconfiguration, relying on
the reconfigurability of Hadamard codes. For a system of Boolean circuits C and its two
satisfying truth assignments σini, σtar : FN2 → F2, Circuit SAT Reconfiguration requires to
decide the existence of a reconfiguration sequence from σini to σtar over FFN

2
2 consisting only

of satisfying truth assignments to C .
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▶ Lemma 3.6 (Robustization). There exists a polynomial-time algorithm that takes an instance
(G,ψini, ψtar) of Maxmin 2-CSPW Reconfiguration with alphabet size W ∈ N, where ψini and
ψtar satisfy G, and then produces an instance (C , σini, σtar) of Circuit SAT Reconfiguration,
where C = (Ce)e∈E is a system of circuits and σini and σtar satisfy C , such that the following
hold:

(Perfect completeness) If valG(ψini ↭ ψtar) = 1, there exists a reconfiguration sequence
from σini to σtar made up of satisfying truth assignments to C .
(Soundness) If valG(ψini ↭ ψtar) < 1− ε, any reconfiguration sequence from σini to σtar

includes assignment σ◦ such that for more than ε-fraction of edges e of G, σ◦|JeK is δ0
8 -far

from any satisfying truth assignment to Ce, where δ0 = 1
400 as in Lemma 3.2.

Reduction. Our polynomial-time robustization of Maxmin 2-CSPW Reconfiguration into
Circuit SAT Reconfiguration is described as follows. Let (G,ψini, ψtar) be an instance of Maxmin
2-CSPW Reconfiguration, where G = (V,E,Σ,Π) is a binary constraint graph, and ψini and
ψtar satisfy G. Without loss of generality, we can assume that W = |Σ| = 2n for some integer
n ⩾ 9,4 and we can identify Fn2 with Σ.

Consider replacing binary constraints of G by a system of circuits. We first specify a truth
assignment to the entire circuit system by a function σ : Fn2 × V → F2, which can be thought
of as a concatenation of functions σv : Fn2 → F2 associated with each vertex v ∈ V . For
vertex v ∈ V , let JvK denote the set of 2n Boolean variables associated with v, and for edge
e = (v, w) ∈ E, let JeK := JvK ⊎ JwK.5 By this representation, we can identify Fn2 × V with⊎
v∈V JvK. In particular, for edge e = (v, w) ∈ E, σ|JeK is equal to σ|JvK ◦ σ|JwK. For each edge

e = (v, w) of G and its constraint πe, we define a circuit Ce : (JvK→ F2)× (JwK→ F2)→ F2
(or equivalently, Ce : FJvK

2 × FJwK
2 → F2) that depends only on σ|JeK = σ|JvK ◦ σ|JwK such that

Ce(σ|JvK ◦ σ|JwK) = 1 if and only if

∆(σ|JvK,Had(·)) ⩽ 1
4 and ∆(σ|JwK,Had(·)) ⩽ 1

4 ,

∀α, β ∈ Σ,∆(σ|JvK,Had(α)) ⩽ 1
4 + δ0

2 and ∆(σ|JwK,Had(β)) ⩽ 1
4 + δ0

2 =⇒ (α, β) ∈ πe,
(3.9)

where δ0 = 1
400 as in Lemma 3.2. Note that each Ce has constant size and can be constructed

in constant time since n = O(1). Consequently, we obtain a system of circuits, denoted
C = (Ce)e∈E . Given a satisfying assignment ψ : V → Σ for G, we can construct a satisfying
truth assignment σ : Fn2 × V → F2 such that σ|JvK := Had(ψ(v)) for all v ∈ V . Constructing
σini from ψini and σtar from ψtar according to this procedure, we obtain an instance (C , σini, σtar)
of Circuit SAT Reconfiguration. Observe that the above reduction completes in polynomial
time.

Proof of Lemma 3.6. We first prove the perfect completeness. It suffices to consider the
case that ψini and ψtar differ in exactly one vertex, say, v⋆ ∈ V . Using Lemma 3.2, we obtain
a reconfiguration sequence (f (1), . . . , f (T )) from Had(ψini(v)) to Had(ψtar(v)). Construct
then a reconfiguration sequence σσσ = (σ(1), . . . , σ(T )) from σini to σtar such that for all t,
σ(t)|JwK := σini|JwK = σtar|JwK for all w ̸= v⋆, and σ(t)|Jv⋆K := f (t). For each edge e = (v⋆, w)
of G, any intermediate function σ(t) of σσσ satisfies the following:

4 Otherwise, we can augment Σ by padding so that |Σ| ⩾ 29.
5 Similar notations are used in [7].

ICALP 2024



113:12 Alphabet Reduction for Reconfiguration Problems

By Lemma 3.2, σ(t)|Jv⋆K is 1
4 -close to Had(ψini(v)) or Had(ψtar(v)), but

( 1
4 + δ0

)
-far from

Had(γ) for every γ /∈ {ψini(v), ψtar(v)}.
σ(t)|JwK is equal to Had(ψini(w)) = Had(ψtar(w)); i.e., it is

( 1
2 − o(1)

)
-far from Had(γ) for

every γ /∈ {ψini(w), ψtar(w)}.
Since {ψini(v⋆), ψtar(v⋆)} × {ψini(w), ψtar(w)} = {(ψini(v⋆), ψini(w)), (ψtar(v⋆), ψtar(w))} ⊆ πe,
it turns out that σ(t)|JeK satisfies Ce, and thus every σ(t) in σσσ satisfies C entirely.

We then prove the soundness. Suppose valG(ψini ↭ ψtar) < 1 − ε and we are given a
reconfiguration sequence σσσ = (σ(1), . . . , σ(T )) from σini to σtar. Construct then a reconfigura-
tion sequence ψψψ = (ψ(1), . . . , ψ(T )) from ψini to ψtar such that ψ(t)(v) is defined as a value of
Σ whose Hadamard codeword is closest to σ(t)|JvK; namely,6

ψ(t)(v) := argmin
α∈Σ

∆(σ(t)|JvK,Had(α)). (3.10)

Since ψψψ is a valid reconfiguration sequence, there exists some ψ(t) that violates more than
ε · |E| edges.

Hereafter, we denote ψ := ψ(t) and σ := σ(t) for notational simplicity. Suppose ψ violates
edge e = (v, w); i.e., (ψ(v), ψ(w)) /∈ πe. We would like to show that σ|JeK is δ0

8 -far from
any satisfying truth assignment to Ce. Let f ◦ g : JeK→ F2 be a satisfying truth assignment
to Ce. In particular, there exists a pair (α⋆, β⋆) ∈ πe such that ∆(f,Had(α⋆)) ⩽ 1

4 and
∆(g,Had(β⋆)) ⩽ 1

4 . Observe now that “f is
( 1

4 + δ0
2
)
-far from Had(ψ(v))” or “g is

( 1
4 + δ0

2
)
-far

from Had(ψ(w))” because otherwise, Ce(f ◦ g) = 0.
Suppose first ∆(f,Had(ψ(v))) > 1

4 + δ0
2 , implying that α⋆ ̸= ψ(v). Putting together, we

have the following three inequalities in hand:

∆(f,Had(α⋆)) ⩽ 1
4 by assumption, (3.11)

∆(f,Had(ψ(v))) > 1
4 + δ0

2 by assumption, (3.12)

∆(σ|JvK,Had(ψ(v))) ⩽ ∆(σ|JvK,Had(α⋆)) by construction of σ|JvK. (3.13)

Simple calculation using the triangle inequality derives

∆(f,Had(ψ(v))) ⩽ ∆(f, σ|JvK) + ∆(σ|JvK,Had(ψ(v)))
⩽ ∆(f, σ|JvK) + ∆(σ|JvK,Had(α⋆))
⩽ ∆(f, σ|JvK) + ∆(σ|JvK, f) + ∆(f,Had(α⋆))
= 2 ·∆(σ|JvK, f) + ∆(f,Had(α⋆))

(3.14)

=⇒ 2 ·∆(σ|JvK, f) ⩾ ∆(f,Had(ψ(v)))︸ ︷︷ ︸
> 1

4 + δ0
2

−∆(f,Had(α⋆))︸ ︷︷ ︸
⩽ 1

4

(3.15)

=⇒ ∆(σ|JvK, f) > δ0

4 . (3.16)

Consequently, σ|JeK should be δ0
8 -far from f ◦ g.

Suppose next ∆(g,Had(ψ(w))) > 1
4 + δ0

2 , implying that β⋆ ≠ ψ(w). Similarly to the
first case, we can show that ∆(σ|JwK, g) > δ0

4 , deriving that σ|JeK is δ0
8 -far from f ◦ g. This

completes the proof of the soundness. ◀

6 Ties are broken according to any prefixed order of Σ.
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Example 3.7 explains why the reconfigurability of Hadamard codes is needed, by using a
slightly different definition of circuits that fails robustization.

▶ Example 3.7. For edge e = (v, w), define a binary constraint πe := {(α1, β1), (α2, β2)} ⊂
Fn2×Fn2 . Construct a circuit C̃e : (JvK→ F2)×(JwK→ F2)→ F2 such that C̃e(σ|JvK◦σ|JwK) = 1
if and only if

∆(σ|JvK,Had(·)) ⩽ 1
4 and ∆(σ|JwK,Had(·)) ⩽ 1

4 ,

∀α, β ∈ Σ,∆(σ|JvK,Had(α)) ⩽ 1
4 and ∆(σ|JwK,Had(β)) ⩽ 1

4 =⇒ (α, β) ∈ πe.
(3.17)

Note that reconfiguring from (α1, β1) to (α2, β2) over Σ× Σ (not Fn2 × Fn2 ) must break πe
(at some point). Analogously, we might expect that any reconfiguration sequence from
Had(α1) ◦Had(β1) to Had(α2) ◦Had(β2) over FJvK

2 × FJwK
2 includes a function that is Θ(1)-far

from any satisfying truth assignment to C̃e. Consider now the following reconfiguration:
Reconfiguration Π from Had(α1) ◦ Had(β1) to Had(α2) ◦ Had(β2).

1: f := a function 1
4 -close to both Had(α1) and Had(α2).

2: g := a function 1
4 -close to both Had(β1) and Had(β2).

3: change Had(α1) to f one by one.
4: change Had(β1) to g one by one.
5: ▷ obtain f ◦ g. ◁

6: change f to Had(α2) one by one.
7: change g to Had(β2) one by one.

Changing particular two bits of f ◦ g, we obtain f⋆ ◦ g⋆, which is
( 1

4 −
1

2n

)
-close to Had(α1) ◦

Had(β1), implying C̃e(f⋆ ◦g⋆) = 1. Thus, f ◦g is 1
2n -close to some satisfying truth assignment

to C̃e. Similarly, every intermediate function of Π is 1
2n -close to some satisfying truth

assignment to C̃e. ⌟

3.3 Composition of Assignment Testers
We are now ready to compose an assignment tester into Circuit SAT Reconfiguration to
accomplish alphabet reduction of Maxmin 2-CSP Reconfiguration. Here, we recapitulate
assignment testers [7, 8], a.k.a. PCPs of proximity [4], and refer to an explicit construction
due to Dinur [7] and O’Donnell [22].7

▶ Definition 3.8 ([8, 4]). An assignment tester over alphabet Σ0 ⊃ F2 with rejection rate
ρ ∈ (0, 1) is an algorithm P that takes a circuit Φ: FX2 → F2 over Boolean variables X
as input, and produces a binary constraint graph G = (V = X ⊎ Y,E,Σ0,Π) over X and
auxiliary variables Y such that the following hold for any truth assignment σ : X → F2 for Φ:

(Perfect completeness) If σ satisfies Φ, there exists an assignment τ : Y → Σ0 such that
valG(σ ◦ τ) = 1.
(Soundness) If σ is δ-far from any satisfying truth assignment to Φ, for every assignment
τ : Y → Σ0, valG(σ ◦ τ) < 1− ρ · δ. ⌟

7 Note that an assignment tester of O’Donnell [22, Theorem 7.16] takes the form of verifiers, which can
be represented as a binary constraint graph by a standard reduction from probabilistically checkable
proofs to two-prover games, e.g., [9, 29].
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▶ Theorem 3.9 ([7, Theorem 5.1] and [22, Theorem 7.16]). There exists an explicit construction
of an assignment tester P with alphabet Σ0 = F3

2 and rejection rate ρ := 1
10,000 .

▶ Proposition 3.10 (Composition). There exist universal constants W̃0 := 8 and κ̃ := δ2
0ρ

2

64 ∈
(0, 1), and a polynomial-time algorithm that takes an instance (G,ψini, ψtar) of Maxmin 2-
CSPW Reconfiguration with alphabet size W ∈ N, where ψini and ψtar satisfy G, and then
produces an instance (G′, ψ′ini, ψ′tar) of Maxmin 4-CSP

W̃0
Reconfiguration with alphabet size

W̃0, where ψ′ini and ψ′tar satisfy G′, such that the following hold:
(Perfect completeness) If valG(ψini ↭ ψtar) = 1, then valG′(ψ′ini ↭ ψ′tar) = 1.
(Soundness) If valG(ψini ↭ ψtar) < 1− ε, then valG′(ψ′ini ↭ ψ′tar) < 1− κ̃ · ε.

Reduction. We now describe a polynomial-time reduction from Circuit SAT Reconfiguration
introduced in the previous subsection to Maxmin 4-CSP8 Reconfiguration. Let (C , σini, σtar)
be an instance of Circuit SAT Reconfiguration obtained by applying Lemma 3.6 to an instance
(G,ψini, ψini) of Maxmin 2-CSPW Reconfiguration. Here, C = (Ce)e∈E is a system of circuits
over Boolean variables Fn2 × V , associated with underlying graph (V,E), and σini and σtar

entirely satisfy C .
Running the assignment tester P of Theorem 3.9 on each circuit Ce : FJeK

2 → F2 for edge
e ∈ E produces a binary constraint graph Ge = (Ve = JeK⊎Ye, Ee,Σ0, Π̃e = (π̃

ẽ
)
ẽ∈Ee

), where
Ye is the set of auxiliary variables and |Σ0| = 8. Create a pair of copies of Ge “sharing” JeK,
denoted G1

e and G2
e; namely,

G1
e := (V 1

e = JeK ⊎ Y 1
e , E

1
e ,Σ0, Π̃1

e), (3.18)

G2
e := (V 2

e = JeK ⊎ Y 2
e , E

2
e ,Σ0, Π̃2

e). (3.19)

We then “superimpose” G1
e and G2

e to obtain a 4-ary constraint graph G′
e = (V ′

e , E
′
e,Σ0,Π′

e =
(π′

(ẽ1 ,̃e2)
)(ẽ1 ,̃e2)∈Ee

), where

V ′
e := JeK ⊎ Y 1

e ⊎ Y 2
e , and E′

e := E1
e × E2

e ,

π′
(ẽ1 ,̃e2)

:= π̃
ẽ1
× π̃

ẽ2
=
{

(α1, β1, α2, β2) ∈ Σ4
∣∣∣ (α1, β1) ∈ π̃

ẽ1
∨ (α2, β2) ∈ π̃

ẽ2

}
for all (ẽ1, ẽ2) ∈ E1

e × E2
e .

(3.20)

Note that each pair of edges from E1
e and E2

e forms a hyperedge of G′
e, which would be

satisfied if so is either of the two edges. We can safely assume that E′
e has the same size for

all e ∈ E.
Finally, the new 4-ary constraint graph G′ = (V ′, E′,Σ0,Π′) is defined as follows:

V ′ :=
⋃
e∈E

V ′
e =

(⊎
v∈V

JvK

)
⊎

(⊎
e∈E

Y 1
e ⊎ Y 2

e

)
,

E′ :=
⊎
e∈E

E′
e and Π′ :=

⊎
e∈E

Π′
e.

(3.21)

For any satisfying truth assignment σ :
⊎
v∈V JvK→ F2 of C , consider an assignment ψ′ : V ′ →

Σ0 such that ψ′|JvK := σ|JvK for all v ∈ V and ψ′|Y 1
e

= ψ′|Y 2
e

= τe for all e ∈ E, where
τe : Ye → Σ0 is an assignment to auxiliary variables Ye such that σ|JeK ◦ τe satisfies G′

e, whose
existence is guaranteed by Definition 3.8. Observe easily that ψ′ satisfiesG′. Constructing ψ′ini

from σini and ψ′tar from σtar according to this procedure, we obtain an instance (G′, ψ′ini, ψ′tar)
of Maxmin 4-CSP8 Reconfiguration, completing the reduction.
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Proof of Proposition 3.10. Recall that (G,ψini, ψtar) is an instance of Maxmin 2-CSPW
Reconfiguration, (C , σini, σtar) is an instance of Circuit SAT Reconfiguration obtained by
applying Lemma 3.6, and (G′, ψ′ini, ψ′tar) is an instance of Maxmin 4-CSP8 Reconfiguration
obtained by composing the assignment tester [7] as described above.

We first prove the perfect completeness. By Lemma 3.6, it suffices to consider the case that
σini and σtar differ in exactly one variable, say, (x, v⋆) ∈ Fn2 × V . Consider a reconfiguration
sequence ψψψ

′ from ψ′ini to ψ′tar obtained by the following procedure:
Reconfiguration ψψψ

′ from ψ′ini to ψ′tar.

1: for all edge e = (v⋆, w) ∈ E do
2: let τ tar

e : Ye → Σ0 be assignment such that σtar|JeK ◦ τ tar
e satisfies Ge.

3: change the entries on Y 1
e to τ tar

e one by one.
4: flip xth entry of Jv⋆K.
5: for all edge e = (v⋆, w) ∈ E do
6: change the entries on Y 2

e to τ tar
e one by one.

Observe easily that for any edge e = (v⋆, w) ∈ E, either of G1
e or G2

e is entirely satisfied by
any intermediate assignment, implying that valG′(ψψψ

′) = 1, as desired.
We then prove the soundness. Suppose we are given a reconfiguration sequence ψψψ

′ =
(ψ′(1), . . . , ψ′(T )) from ψ′ini to ψ′tar such that valG′(ψψψ

′) = valG′(ψ′ini ↭ ψ′tar). Consider a
reconfiguration sequence σσσ = (σ(1), . . . , σ(T )) such that σ(t) := ψ′(t)|⊎

v∈V
JvK for all t. Since σσσ

is a valid reconfiguration sequence from σini to σtar, by Lemma 3.6, there exists some σ(t) such
that for more than ε-fraction of edges e of G, σ(t)|JeK = ψ′(t)|JeK is δ0

8 -far from any satisfying
truth assignment to Ce. Let F ⊂ E be the set of such edges of G; note that |F | ⩾ ε|E|.
By Theorem 3.9, ψ′(t) violates more than δ0ρ

8 -fraction of edges of each G1
e and G2

e for any
e ∈ F . Since ψ′(t) violates hyperedge (ẽ1, ẽ2) ∈ E1

e × E2
e if and only if it violates ẽ1 ∈ E1

e

with respect to Π̃1
e and ẽ2 ∈ E2

e with respect to Π̃2
e simultaneously, there are more than(

δ0ρ
8

)2
-fraction of hyperedges of G′

e that are violated by ψ′(t); i.e., 1− valGe(ψ′(t)) > δ2
0ρ

2

64 .
Consequently, we derive

1− valG′(ψψψ
′) ⩾ 1− valG′(ψ′(t))

= 1
|E|

∑
e∈E

(
1− valG′

e
(ψ′(t))

)
(since every Ee has the same size)

⩾
1
|E|

∑
e∈F

(
1− valG′

e
(ψ′(t))

)
>
|F |
|E|

δ2
0ρ

2

64 > ε · δ
2
0ρ

2

64︸ ︷︷ ︸
=κ̃

,

(3.22)

implying that valG′(ψ′ini ↭ ψ′tar) = valG′(ψψψ
′) < 1− κ̃ · ε, as desired. ◀

Proof of Theorem 3.1. Our construction of alphabet reduction for Maxmin 2-CSP Reconfig-
uration follows from Lemma 3.6 and Proposition 3.10 and a gap-preserving reduction [26,
Lemma 5.4] (which is in fact approximation-preserving) from Gap1,1−ε 4-CSP

W̃0
Reconfigura-

tion to Gap1,1− ε
4

2-CSPW0 Reconfiguration, where W0 =
(
W̃0(W̃0+1)

2

)4
= 364. The value of κ

in Theorem 3.1 should be κ̃
4 = δ2

0ρ
2

256 = 1
256·4002·10,0002 = 1

8,0004 . ◀
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4 Conclusions

We presented Dinur’s style alphabet reduction [7] for Maxmin 2-CSP Reconfiguration, which
now makes both the degree of inapproximability and alphabet size oblivious to the soundness
error of the PCRP system [14, 17]. The main ingredient of its construction is the reconfigura-
bility of Hadamard codes, which may be of independent interest and have further applications.
We leave some open questions:

(Question 1). Can we prove RIH [23] by Dinur’s style gap amplification [7]? As
discussed in Section 1.4, an approximation-preserving version for degree reduction and
gap amplification of Maxmin 2-CSP Reconfiguration [23, 26] seems mandatory.
(Question 2). Can we derive more meaningful inapproximability factors? Alas, we ac-
knowledge that the current inapproximability factor is so small as to be almost meaningless
in practice.
(Question 3). Given the reconfigurability of Hadamard codes (Lemma 3.2), it is natural
to ask that of other error-correcting codes: One may say that an error-correcting code
enc is (δ, µ)-reconfigurable if for any α ̸= β, there exists a reconfiguration sequence from
enc(α) to enc(β) such that every function in it is
δ-close to either enc(α) or enc(β), and
(δ + µ)-far from enc(γ) for every γ ̸= α,β.

Is there any such reconfigurable error-correcting code? Also, is there any general compo-
sition scheme for PCRPs [14]?
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