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Abstract
In 1986 Robertson and Seymour proved a generalization of the seminal result of Erdős and Pósa
on the duality of packing and covering cycles: A graph has the Erdős-Pósa property for minors if
and only if it is planar. In particular, for every non-planar graph H they gave examples showing
that the Erdős-Pósa property does not hold for H. Recently, Liu confirmed a conjecture of Thomas
and showed that every graph has the half-integral Erdős-Pósa property for minors. Liu’s proof is
non-constructive and to this date, with the exception of a small number of examples, no constructive
proof is known.

In this paper, we initiate the delineation of the half-integrality of the Erdős-Pósa property for
minors. We conjecture that for every graph H, there exists a unique (up to a suitable equivalence
relation on graph parameters) graph parameter EPH such that H has the Erdős-Pósa property in a
minor-closed graph class G if and only if sup{EPH(G) | G ∈ G} is finite. We prove this conjecture
for the class H of Kuratowski-connected shallow-vortex minors by showing that, for every non-
planar H ∈ H, the parameter EPH(G) is precisely the maximum order of a Robertson-Seymour
counterexample to the Erdős-Pósa property of H which can be found as a minor in G. Our results
are constructive and imply, for the first time, parameterized algorithms that find either a packing, or
a cover, or one of the Robertson-Seymour counterexamples, certifying the existence of a half-integral
packing for the graphs in H.
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1 Introduction

In 1965 Erdős and Pósa published a paper [9] proving the following min-max duality theorem.

For every positive integer k and every graph G, either G contains k pairwise vertex-disjoint
cycles, or there exists a set S ⊆V (G) with |S| = O(k · log(k)) such that G−S has no cycles.

This result has since become central in both graph theory and algorithm design [36, 4,
21, 45, 26]. A collection of pairwise vertex-disjoint cycles is called a (cycle) packing, while a
set S as above is commonly referred to as a (cycle) cover or transversal. In a more general
context, one may consider any family M of graphs and define packM(G) to be the largest
size of a packing of members of M in G, while coverM(G) is the minimum size of a set
S ⊆ V (G) such that G − S contains1 no member of M. Clearly packM(G) ≤ coverM(G).
We say that M has the Erdős-Pósa property (EP-property) in a graph class G if there exists
a function f such that, for every G ∈ G, it holds that coverM(G) ≤ f(packM(G)).

If we now fix some graph H and select MH to be the class of all graphs containing H

as a minor, we enter the realm of the Graph Minors Series of Robertson and Seymour. In
Graph Minors V. [36], as an implication of their min-max duality between the treewidth of a
graph and its largest grid-minor, they prove that
For every graph H, MH has the EP-property in the class of all graphs if and only if H

is planar. (1)

The tools and ideas of Erdős-Pósa-type dualities have since found many applications and
interpretations [34, 27, 18, 3, 12, 33]. Moreover, the study of Erdős-Pósa dualities has led to
important advances in structural graph theory. As an example, the proof for the directed
version of Erdős and Pósa’s result [35], known as Younger’s Conjecture has paved the way
for proving the Directed Grid Theorem [24].

Half-integral Erdős-Pósa. We call a collection C of subgraphs of G a half-integral packing
of M in G if every graph in C belongs to M and no vertex of G belongs to more than two
of them. We define 1/2-packM(G) to be the maximum size of such a half-integral packing.
Accordingly, M has the 1/2EP-property in a graph class G if there exists a function f such
that, for every G ∈ G, it holds that coverM(G) ≤ f(1/2-packM(G)).

Attempting to generalize Robertson and Seymour’s seminal result on planar graphs,
Robin Thomas conjectured the following relaxation of the EP-property (see [22, 26]).

For every graph H, MH has the 1/2EP-property in the class of all graphs. (2)

The above conjecture was recently proven by Liu [26]. As before, it is apparent from the
definition that 1/2-packM(G) ≤ 2·coverM(G). Hence, Liu’s theorem reveals a min-max duality
between half-integral packing and covering in all graphs. Moreover, it is a consequence
of the Graph Minors Theorem [37] that for every graph H and every graph parameter
p ∈ {packMH

, 1/2-packMH
, coverMH

} one can decide in time fH,p(k)|V (G)|3 if p(G) ≥ k (or
p(G) ≤ k in the case where p = coverMH

) [10] for some function fH,p.

In light of the above results, it appears that the story of the Erdős-Pósa property in
the regime of graph minors, from both a structural and an algorithmic perspective, is quite
complete. However, we should stress the following two points.
First: The algorithm from [10] is inherently non-constructive. Indeed, while for packMH

and
coverMH

constructive algorithms are known [40, 39, 23], with the exception of some small
special cases [22], no such results exist for 1/2-packMH

, not even approximation algorithms.

1 At this point we consider containment to be defined through the subgraph relation.
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Second: Let C be a graph class and let p be a graph parameter. We say that p is bounded
in G if there exists c ∈ N such that, for every G ∈ G, it holds that p(G) ≤ c. The proof of
the “if” direction of (1) was based on the fact that, for every H, MH has the EP-property
in every graph class of bounded treewidth. This leads to the following intermediate question:
For which graph parameters p it holds that MH has the EP-property in every class where p
is bounded? To be specific, if we fix some graph H, is it possible to find a graph parameter
EPH such that MH has the EP-property in some minor-closed2 graph class G if and only if
EPH is bounded in G? Indeed, we conjecture that for every graph H, such a graph parameter
exists and precisely delineates the half-integrality of the Erdős-Pósa property of MH .

▶ Conjecture 1. For every graph H, there exists a minor-monotone graph parameter EPH

such that MH has the Erdős-Pósa property in a minor-closed graph class G if and only if
EPH is bounded in G.

Notice that for any planar graph P, we can simply set EPP to be the constant zero-function
and thus, Conjecture 1 trivially holds for all planar graphs, because of (1). However, for
non-planar graphs, the existence of such a parameter does not follow from any known results.
Even if EPH would exist for some particular non-planar graph H, it would be desirable to
have some constructive, and ideally canonical, characterization of EPH . That is, we aim at a
description of EPH that allows for algorithmic applications.

There are reasons to believe that EPH exists and moreover has some canonical representa-
tion. It has recently been shown in [31], that this assertion is tied to the conjecture that
graphs are ω2-well quasi ordered by minors, which is a wide open question in order theory
(see the classic result of Thomas in [44] for the most advanced result on this conjecture).

The contribution of this paper is resolving Conjecture 1 for an infinite family of non-planar
graphs. Moreover, our results are constructive and provide a canonical representation of EPH

yielding parameterized approximation algorithms3 for 1/2-packH for any H in our family.

1.1 The threshold of half-integrality
In Graph Minors V [36], towards proving the “only if” direction of (1), Robertson and
Seymour gave counterexamples of graphs where non-planar graphs cannot have the EP-
property. Let us investigate such an example for the graph K5. One may embed K5 in both
the projective plane and the torus, but it is impossible to have two disjoint drawings of K5
in either of them.

Consider the two graphs in the middle of Figure 1 and notice that the number of cycles
and paths can be scaled. We call the infinite sequences defined by such “scalable graphs”
parametric graphs4. These parametric graphs are the handle grid H and the cross-cap grid
C and represent the torus and the projective plane respectively. None of them contains two
disjoint copies of graphs from MK5 , both have a half-integral packing of Ω(k) members of
MK5 , and any minimum-size cover of all MK5 has Ω(k) vertices.

The seminal theorem of Reed [34] on the 1/2EP-property of odd cycles exhibits exactly this
kind of behaviour. Reed showed that odd cycles have the EP-property in every odd-minor5-
closed graph class excluding an Escher-wall, while the Escher-wall itself is a counterexample

2 A graph class is minor-closed if it contains all minors of its graphs.
3 This means that our algorithms run in time f(k) · |V (G)|O(1) for some computable function f where k

is the size of the half-integral packing we are looking for.
4 We postpone the formal definition of parametric graphs to a later point. See Section 2.
5 Odd-minors are a variant of the minor relation that preserves the parity of cycles. For example, bipartite

graphs are exactly the K3-odd-minor-free graphs. We refer the interested reader to [14] for a formal
definition.

ICALP 2024



114:4 Delineating Half-Integrality of the Erdős-Pósa Property

Annulus grid A9 Cross-cap grid C9Handle grid H9 Shallow-vortex grid V9

Figure 1 The parametric graphs representing the annulus grid Ak, the handle grid Hk, the
cross-cap grid Ck, and the shallow-vortex grid Vk.

to the EP-property of odd cycles. Here, the k-Escher-wall is obtained by taking exactly
the bipartite graphs from the parametric graph C, representing the projective plane, and
subdividing each of the “crossing” edges once. The result is a non-bipartite graph where every
odd cycle must use an odd number of these subdivided edges. In the realm of odd-minors,
this establishes a positive instance of Conjecture 1: pick EPK3 as the maximum k for which
G contains the k-Escher-wall as an odd minor.

It is tempting to suspect that Reed’s strategy can apply for the Erdős-Pósa property
for minors. That is, for K5, the two parametric graphs H and C are essentially the only
counterexamples for the EP-property of MK5 and excluding both of them as minors always
yields a class in which MK5 exhibits the EP-property. Notice that this would imply that the
⊆-minimal minor-closed classes where the EP-property fails for MK5 are precisely two: the
class of graphs embeddable in the projective plane and the class of graphs embeddable in the
torus. Clearly, both these two classes have bounded Euler genus. Our next step is to observe
that this is not true in general.

Kuratowski-connectivity. We say that a graph G is Kuratowski-connected if for every
separation (A, B) of G of order at most 3, if there is a component C of G[A \ B] and a
component D of G[B \ A], such that every vertex in A ∩ B has a neighbour in V (C) and a
neighbour in V (D), then one of G[A], G[B] can be drawn in a disc ∆ with A∩B drawn in the
boundary of ∆. We denote by K the set of all Kuratowski-connected graphs. This definition
was introduced by Robertson, Seymour, and Thomas as a tool for their characterization of
linklessly embeddable graphs via a finite set of minimal obstructions [38] (see also [46, 30]).

Figure 2 The two first parametric graphs serve as counterexamples for the Erdős-Pósa property
of the graph J . The third parametric graph is a counterexample for the Erdős-Pósa property of K8.

All three parametric graphs have unbounded Euler-genus. For the first two this is witnessed by a
large packing of K3,3 while the last one can be observed to contain K3,r as a minor.



C. Paul, E. Protopapas, D. M. Thilikos, and S. Wiederrecht 114:5

Consider the graph J obtained by identifying two adjacent vertices of K3,3 with two
vertices of K5 and observe that J is not Kuratowski-connected. Similar to K5, there cannot
be two disjoint drawings of K3,3 on the torus. So, if we take the parametric graph representing
the torus (Hk) or the projective plane (Ck) from Figure 1 and paste “many” copies of K3,3
around the “outer cycle”, we obtain a parametric graph without two disjoint J-minors but
where no small vertex-set can hit all J-minors (see the two first graphs in Figure 2).

Shallow-vortex minors. There is a second property, that poses a similar issue. In [41]
Thilikos and Wiederrecht introduced the parametric graph V of shallow-vortex grids where
Vk is obtained from the annulus grid Ak by adding k consecutive crossings in its internal
cycle (see the fourth graph in Figure 1 for an illustration of V9). The class V of shallow-vortex
minors was defined in [41] as the class containing all minors of Vk, for all k ∈ N. Notice that
K8 is a Kuratowski-connected graph. It was shown by Curticapean and Xia [6] that K8
is not a shallow-vortex minor. However, this is the case for K3,r, for every r ∈ N, which
implies that the parametric graph Vk has unbounded Euler-genus. If we now paste the
k extra crossings of Vk to the “outer cycle” of Ck, we obtain a parametric graph that is
a counterexample for the EP-property of K8 but which is of unbounded Euler-genus (see
the last graph in Figure 2). These observations indicate that, if we want to understand
the graphs for which the counterexamples of Robertson and Seymour precisely define the
boundary to the 1/2EP-property, we have to consider the graphs in K ∩ V.

Our contribution. The main combinatorial result (stated in Theorem 2 in its full generality)
is that Conjecture 1 holds, for every graph H that is Kuratowski-connected and a shallow
vortex minor. Moreover, for every such non-planar H, EPH(G) is equivalent to the exclusion
of the parametric graphs representing some particular set of surfaces where H embeds.
Therefore, for the non-planar graphs H ∈ K ∩ V, the boundary between the Erdős-Pósa
property and its half-integral relaxation is drawn precisely by a set of surfaces, depending on
H. Notice, that the class K ∩ V encompasses, apart from planar graphs, several important
graphs such as K5, K3,3, K4,4, K6, K7, and the entire Petersen family. These last observations
imply that our results extend, both algorithmically and combinatorially, to the half-integral
packing of links and knots.

2 Notation and definitions

Let us introduce some notation in order to present our results in full generality. A minor
antichain is a family A of graphs such that no graph G1 ∈ A is a minor of another graph
G2 ∈ A \ {G1}. Since we focus on the minor relation, we refer to minor antichains simply
as antichains. Let us denote by K the collection of all antichains A where every member
of A is Kuratowski-connected. Moreover, let us denote by V the collection of all antichains
containing at least one shallow-vortex minor. Finally, let P be the collection of all antichains
containing at least one planar graph and set H := K ∩ V and H− := H \ P.

The Erdős-Pósa property for antichains. Let H and G be graphs. A subgraph H ′ ⊆ G

is an H-host in G if H is a minor of H ′. An H-packing in G is a collection of pairwise
vertex-disjoint H-hosts in G. An H-cover is a set S ⊆ V (G) such that G − S is H-minor-free.
A half-integral H-packing is a collection of H-hosts in G such that no vertex of G belongs to
more than two of them.

ICALP 2024
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Given an antichain Z, we say that a subgraph H ′ ⊆ G is a Z-host in G if it is an H-host
for some H ∈ Z. A Z-packing is an H-packing of some H ∈ Z and a Z-cover is an H-cover
for all H ∈ Z, finally a half-integral Z-packing is a half-integral H-packing for some H ∈ Z.

We define the two graph parameters coverZ and packZ as follows.

coverZ(G) := min{k | G has an Z-cover of size k} and

packZ(G) := max{k | G has an Z-packing of size k.

We say that Z has the Erdős-Pósa property in a graph class G if there exists some function
f : N → N such that coverZ(G) ≤ f(packZ(G)), for all G ∈ G.

Equivalence of graph parameters. We use Gall for the class of all graphs. Given two graph
parameters p, q : Gall → N, we say that p and q are equivalent, and write p ∼ q, if there exists
a function f : N → N such that, for every graph G, p(G) ≤ f(q(G)) and q(G) ≤ f(p(G)). We
refer to the function f as the gap of this equivalence.

Our result is the identification of a graph parameter EP such that Z has the Erdős-Pósa
property in a minor-closed graph class G with single-exponential gap if and only if EP is
bounded in G, for every Z ∈ H.

Surfaces and embeddability. We consider a containment relation ⪯ between surfaces where
we write Σ ⪯ Σ′ if the surface Σ′ can be obtained by adding handles or cross-caps to the
surface Σ. The empty surface will be denoted by Σ∅ and the surface obtained by adding h

handles and c cross-caps to the sphere Σ(0,0) is denoted by Σ(h,c). Its Euler-genus is defined
to be 2h + c. Notice that, by Dyck’s Theorem [8], we may assume that c ≤ 2 for all surfaces.
Let S be a set of surfaces. We say that S is closed, if Σ ∈ S and Σ′ ⪯ Σ imply that Σ′ ∈ S
and that it is proper, if it does not contain all surfaces. If S is closed and proper we define
the “surface obstruction set” sobs(S) as the set of all ⪯-minimal surfaces which do not belong
to S. It is easy to observe that sobs(S) always consists of one or two surfaces [43]. Notice
that sobs(∅) = {Σ∅}, sobs({Σ∅}) = {Σ(0,0)}, sobs({Σ∅, Σ(0,0)}) = {Σ(1,0), Σ(0,1)}, and, for
a more complicated example, sobs({Σ∅, Σ(0,0), Σ(0,1), Σ(0,2)}) = {Σ(1,0)}.

We say that a graph G is embeddable in a surface Σ (or Σ-embeddable) if it has a drawing
in Σ without crossings. The Euler genus of a graph G, denoted by eg(G), is the smallest
Euler genus of a surface where G is embeddable.

Parametric graphs and Dyck-grids. A parametric graph is a sequence G = ⟨Gi⟩i∈N of
graphs indexed by non-negative integers. We say that G is minor-monotone if for every
i ∈ N we have that Gi is a minor of Gi+1. All parametric graphs considered in this paper are
minor-monotone. We write G(1) ≲ G(2) for two minor-monotone parametric graphs G(1) and
G(2) if there exists a function f : N → N such that for every i ∈ N it holds that G(1)

i is a minor
of G(2)

f(i). A minor-monotone parametric family is a finite collection of G = {G(j) | j ∈ [r]} of
minor-monotone parametric graphs such that for distinct i, j ∈ [r] it holds that G(i) ̸≲ G(j)

and G(j) ̸≲ G(i). We define the minor-monotone parameter

pG(G) := max{k | there exists i ∈ [r] such that G contains G
(i)
k as a minor}. (3)
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The three parametric graphs A = ⟨Ak⟩k∈N, H = ⟨Hk⟩k∈N, and C = ⟨Ck⟩k∈N are defined
as follows: The annulus grid Ak is the (4k, k)-cylindrical grid6 depicted in the far left of
Figure 1. The handle grid Hk (resp. cross-cap grid Ck) is obtained by adding in Ak edges
as indicated in the middle left (resp. middle right) part of Figure 1. We refer to the added
edges as transactions of the handle grid Hk or of the cross-cap grid Ck.

Let now h ∈ N and c ∈ [0, 2]. We define the parametric graph D(h,c) = ⟨D(h,c)
k ⟩k∈N by tak-

ing one copy of Ak, h copies of Hk, and c ∈ [0, 2] copies of Ck, then “cut” them along the dotted
red line, as in Figure 1, and join them together in the cyclic order Ak,Hk, . . . ,Hk,Ck, . . . ,Ck,

as indicated in Figure 3.

exceptional cycle

simple cycle

Figure 3 The Dyck-grid D
1,2
8 . The simple and the exceptional cycles are drawn in orange.

We call the graph D
(h,c)
k the Dyck-grid of order k with h handles and c cross-caps. Given

some surface Σ = Σ(h,c), we say that the graph D is the (Σ; d)-Dyck-grid if D = D
(h,c)
d and

we use DΣ to denote the parametric graph ⟨DΣ
i ⟩i∈N, where DΣ

i is the (Σ; i)-Dyck-grid.
Let us return to our antichain Z ∈ H−. We denote by SZ the set of surfaces where none

of the graphs in Z can be embedded. Notice that SZ is closed and proper and, for every
Σ ∈ sobs(SZ), there exists some H ∈ Z such that H embeds in Σ.

3 Our results

We associate with Z the parametric family DZ := {DΣ | Σ ∈ sobs(SZ)}. Let EPZ := pDZ .
Our combinatorial result determines precisely when a member in H− has the Erdős-Pósa in
some minor-closed graph class.

▶ Theorem 2. For every Z ∈ H−, for every minor-closed graph class G, Z has the Erdős-Pósa
property in G if and only if EPZ is bounded in G.

Let hZ := max{|V (H)| | H ∈ Z} and γZ := max{eg(H) | H ∈ Z}. The engine that
drives the proof of Theorem 2 and which represents our first main algorithmic result is the
following.

▶ Theorem 3. There exists a function f3 : N4 → N such that, for every antichain Z ∈ H−,

there exists an algorithm such that, given k, t ∈ N and a graph G, outputs one of the following:
a DΣ

t -host in G, for some Σ ∈ sobs(SZ), or
an Z-packing of size at least k in G, or
an Z-cover of size at most f3(γZ , hZ , t, k) in G.

Moreover, the algorithm runs in time 22OγZ (poly(t))+OhZ
(poly(k))

· |V (G)|3 ·
(

log(|V (G)|)
)2 and

f3(γZ , hZ , t, k) = 2OγZ (poly(t))+OhZ (poly(k)).

By a recent result of Gavoille and Hilaire [13], it holds that there exists some constant
c such that for every Z ∈ H− and Σ ∈ sobs(SZ), there exists some H ∈ Z such that H

is a minor of DΣ
cγ4

Z h2
Z

. Moreover, as observed in [43], every Dyck-grid of big enough order

6 An (n×m)-cylindrical grid is a Cartesian product of a cycle on n vertices and a path on m vertices.

ICALP 2024
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contains a large half-integral packing of itself of smaller order. Combining these two results
with Theorem 3, yields the following (constructive) parameterized approximation algorithm
for 1/2-packZ .

▶ Theorem 4. There exists a function f4 : N2 → N such that, for every antichain Z ∈ H−,

there exists an algorithm such that, given k ∈ N and a graph G, outputs one of the following:
1. a half-integral Z-packing of size at least k in G, or
2. an Z-cover of size at most f4(hZ , k) in G.
Moreover, the algorithm runs in time7 22polyhZ

(k)
· |V (G)|3 ·

(
log(|V (G)|)

)2 and f4(hZ , k) =
2polyhZ

(k).

We wish to stress that, given the combinatorial bounds of Theorem 3, we may directly
apply the minor-checking algorithm of [23] for the two first outcomes of Theorem 3 and the
algorithm of [29] for its third outcome. Both these algorithms are quadratic on |V (G)| and
this implies alternative quadratic algorithms to those in Theorem 3 and Theorem 4. However,
this would come with the cost of enormous parametric dependencies on k.

3.1 Some implications of our results
Half-integral Erdős-Pósa for linked pairs and knots. As mentioned above, H = K ∩ V
contains several antichains of particular interest. A first example is the Petersen family,
which is exactly the (minor) obstruction set8 for the so-called linklessly embeddable graphs
(in short, link-less graphs). Indeed, the origin of the definition of Kuratowski-connectivity
comes from the paper of Robertson, Seymour, and Thomas [38], where this obstruction set
was found. All obstructions for link-less graphs as well as those for knot-less graphs are
Kuratowski-connected. Moreover, as the shallow-vortex minor K6 (resp. K7) is a member
of the obstruction set of link-less (resp. knot-less) graphs, we also have that both these
obstruction sets belong to H−. This insight allows us to apply Theorem 4 to topological
objects such as links and knots.

Let G be a graph and let C = {C1, . . . , Ck} be a collection of subgraphs of G. The
intersection graph of C is the graph I(C) = (C, EC) where CC ′ ∈ EC if and only if C ∩ C ′ is
not the empty graph. We say that C is a collection of double cycles (resp. cycles) if each Ci

is union of two disjoint cycles (resp. a cycle).
Given a collection C of double cycles (resp. cycles) of G, and some R3-embedding of G,

we say that C is a 1/2-packing of links (resp. knots) if for every i ∈ [k], the two components
of Ci are linked (resp. the cycle Ci is knotted) in this particular embedding (see [1] for
more on links and knots). The half-integral linked pair (resp. knot) packing number of a
graph G, denoted by 1/2-lppack(G) (resp. 1/2-knpack(G)), is the maximum k such that, for
every R3-embedding of G, there exists a 1/2-packing of links (resp. knots) in G of size k.

Both 1/2-lppack(G) and 1/2-knpack(G) are minor-monotone parameters, therefore we know
(non-constructively) that there exists an algorithm for checking whether 1/2-lppack(G) ≥ k

(1/2-knpack(G) ≥ k) in time f(k) · |V (G)|2. Up to now, no constructive (on k) algorithm is
known for these problems. Our results imply the following.

7 Given two functions χ, ψ : N → N, we write χ(n) = Ox(ψ(n)) in order to denote that there exists a
computable function f : N → N such that χ(n) = O(f(x) · ψ(n)). We also use χ(n) = polyx(ψ(n))
instead of χ(n) = Ox((ψ(n))c), for some c ∈ N.

8 The obstruction set of some minor-closed class G is the set obs(G) of the minor-minimal graphs that are
not in G.



C. Paul, E. Protopapas, D. M. Thilikos, and S. Wiederrecht 114:9

▶ Theorem 5. There exists a function f : N → N and algorithms that, given a graph G and
a k ∈ N, outputs either that 1/2-lppack(G) ≥ k (resp. 1/2-knpack(G) ≥ k) or a vertex set A

of at most f(k) vertices such that G − A has a link-less (knot-less) R3-embedding. Moreover,
both algorithms run in time 22poly(k) · |V (G)|3 ·

(
log(|V (G)|)

)2 and f(k) = 2poly(k).

Theorem 5 implies that both the parameter 1/2-lppack as well as the parameter 1/2-knpack
admit FPT-approximation algorithms with exponential approximation gap. Moreover, in
case the output is that 1/2-lppack(G) ≥ k (resp. 1/2-knpack(G) ≥ k), the algorithms output a
1/2-packing of k graphs certifying that, every R3-embedding of G contains a 1/2-packing C of
k links (resp. knots) such that I(C) is either edgeless or a clique. We stress that the above
algorithms become constructive (on k) as we know the obstructions of link-less/knot-less
graphs or at least an upper bound to their size. For the later class not such bound is known.

Other implications of our results, related to canonical approximate characterizations of
the parameters we study, are discussed in the conclusion section (Section 4).

3.2 Outline of the proof
We begin the description of the main ideas of our proof with the definition of a tree
decomposition.

Tree decompositions. Let G be a graph. A tree decomposition of a graph G is a pair (T, β)
where T is a tree and β : V (T ) → 2V (G) is a function, whose images are called the bags of
T , such that

⋃
t∈V (T ) β(t) = V (G), for every e = xy ∈ E(G), there exists t ∈ V (T ) with

{x, y} ⊆ β(t), and for every v ∈ V (G), the set {t ∈ V (T ) | v ∈ β(t)} induces a subtree of T.

We refer to the vertices of T as the nodes of the tree decomposition T . The width of T is the
value maxt∈V (T ) |β(t)| − 1. The treewidth of G, denoted by tw(G), is the minimum width
over all tree decompositions of G.

The classic approach. In order to facilitate the presentation of our proof, let us briefly
explain the two main ideas of the proof that planar graphs enjoy the Erdős-Pósa property in
the set of all graphs. The key ingredient is that every planar graph is a minor of a graph of
sufficiently large treewidth. The proof follows in two steps.

Step 1. Assuming that packH(G) ≤ k, based on the grid theorem by Robertson and
Seymour, we may assume that the treewidth of G is bounded by some function of k.

Step 2. With the tree decomposition (T, β) of G at hand, we build an H-cover A of
G by adding to it (if any exists) an adhesion Dxy = β(x) ∩ β(y) such that both Gx :=
G[β(V (Tx)) \ Dxy] and Gy := G[β(V (Ty)) \ Dxy] contain H as a minor (here Tx and Ty are
the two components of T − xy) and then recursing on the corresponding tree decompositions
of Gx and Gy. If packH(G) ≤ k, eventually this procedure returns an H-cover of size at most
k · (tw(G) + 1).

Throughout the present outline we describe arguments that can be paralleled to the two
steps above. Moreover, in each step we explain the challenges that are met and the way we
deal with them in our proof.

For simplicity, instead of an antichain Z, we consider a non-planar graph H that is
Kuratowski-connected and a shallow-vortex minor. We denote by SH the set of all surfaces
where H cannot be embedded and by S′

H := sobs(SH) the corresponding surface obstruction
set. We stress that the graphs in DH = {DΣ | Σ ∈ S′

H} can be seen as “generators of
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half-integrality”. Indeed, it is possible to prove that, for every t ∈ N, packH(DΣ
t ) ≤ 1,

and coverH(DΣ
t ) = Θ(1/2-packH(DΣ

t )) = Ω(t). This already proves the easy direction of
Theorem 2.

Let T = (T, β) be a tree decomposition of a graph G. For each t ∈ V (T ), we define the
adhesions of t as the sets in {β(t) ∩ β(d) | d adjacent with t} and the maximum size of them
is called the adhesion of t. The adhesion of T is the maximum adhesion of a node of T . The
torso of T on a node t is the graph, denoted by Gt, obtained by adding edges between every
pair of vertices of β(t) which belongs to a common adhesion of t.

We now consider a graph G where packH(G) ≤ k and we assume that G excludes as a
minor the Dyck grid DΣ

t , for every Σ ∈ S′
H . Under these circumstances, our aim is to find an

H-cover whose size is bounded by some function of t and k.

Graphs excluding Dyck grids. As a first step, we need a deeper understanding of how the
graphs excluding DΣ

t look like. In general, the structure of graphs excluding a given graph
as a minor is given by the Graph Minors Structure theorem (in short GMST). However, the
formal definition of GMST involves complicated concepts which we prefer not to introduce
in this brief outline. Instead we give a more compact statement, proved in [43].

Given a graph H and a set A ⊆ V (G), we say that H is an A-minor of G if there is a
collection S = {Sv | v ∈ V (H))} of pairwise vertex-disjoint connected9 subsets of V (G), each
containing at least one vertex of A and such that, for every edge xy ∈ E(H), the set Sx ∪ Sy

is connected in G. Given an annotated graph (G, A) where G is a graph and A ⊆ V (G), we
define tw(G, A) as the maximum treewidth of an A-minor of G. A streamlined way to restate
the GMST is the following.

▶ Proposition 6 ([43]). There exists a function f : N → N such that every graph G excluding
a graph on k vertices as a minor, has a tree decomposition (T, β) where, for every t ∈ V (T ),
the torso Gt contains some set At where tw(Gt, At) ≤ f(k) and such that Gt − At can be
embedded in a surface of Euler genus at most f(k).

To deal with the exclusion of Dyck grids (corresponding to surfaces), we need a more
refined version of Proposition 6 that works for every (closed and proper) set of surfaces S. In
this direction, Thilikos and Wiederrecht defined in [43] an extension of treewidth, namely
S-tw, where for a graph G,

S-tw(G) is the minimum k for which G has a tree decomposition (T, β) where, for every
t ∈ V (T ), the torso Gt contains some set At where tw(Gt, At) ≤ k and Gt − At is
embeddable in a surface in S.

(4)

The main result of [43] is that in order to exclude the graphs in DH = {DΣ
t | Σ ∈ cobs(S)},

we have to fix the surface of Proposition 6 to be one of the surfaces in S.

▶ Proposition 7. For every closed and proper set of surfaces S, there exists some function
f : N → N such that, for every graph G, if G excludes all graphs in {DΣ

t | Σ ∈ sobs(S)} as
minors, then S-tw(G) ≤ f(t).

Notice that the above proposition already gives us the grid theorem when applied for
the set S∅ containing the empty surface Σ∅. It is easy to verify that tw + 1 = S∅-tw. As
sobs(S∅) = {Σ(0,0)}, Proposition 7 implies that graphs excluding DΣ(0,0)

t = At have bounded
treewidth (see Figure 1 for an example of an annulus grid).

9 A set X ⊆ V (G) is connected in G if the induced subgraph G[X] is a connected graph.
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From small treewidth modulators to small size modulators. Proposition 7 gives valuable
information on the structure of the graphs that exclude the “half-integrality generators” in
DH = {DΣ

t | Σ ∈ sobs(SH)}. Therefore, we can assume that S-tw(G) ≤ f(k), which provides
a tree decomposition as the one in (4). In order to make progress, we need to further refine
this decomposition as small treewidth modulators are not particularly helpful in finding an
H-cover of small size. For this we exploit the assumption that H is a shallow-vortex minor.

To elaborate, we need some additional information, analogous to the exclusion of a
planar graph in Step 1. This corresponds to the assumption that H is a minor of the
shallow-vortex grid Vh′ for some h′ depending on H. One can observe that V3(k+1)h′ contains
a Vh′-packing of size (k + 1). Therefore, the assumption that H-pack(G) ≤ k gives us the
right to additionally assume that G also excludes the shallow-vortex minor V3(k+1)h′ . Using
this and the fact that S-tw(G) ≤ f(k), we are able to further restrict the decomposition of
(4). To quantify this, we introduce a new graph parameter S-twapex defined as follows.

S-twapex(G) is the minimum k for which G has a tree decomposition (T, β) where, for
every t ∈ V (T ), the torso Gt contains some set At where |At| ≤ k and Gt − At is
embeddable in a surface in S.

(5)

Notice that the only difference between (4) and (5) is the measure defined on the
“modulator” At. While in (4) it is the treewidth of the annotated graph (Gt, At), in (5)
it is the size of At. The first ingredient of our proof is that, under the absence of some
shallow-vortex minor, the two parameters S-twapex and S-tw are equivalent. This is proved by
combining the results of [43] with the results of [41] on the structure of the graphs excluding
a shallow-vortex grid.

As a consequence, we may now assume that we have a tree decomposition (T, β) as the
one in (5). This decomposition is not yet in position to play the role of the tree decomposition
in Step 2, as its torsos may have unbounded size. To circumvent this issue, we instead prove
a local structure theorem for the exclusion of DH ∪ {V}, that can be extended to a global
one (the desired tree decomposition), using the results of [42]. The general approach is to
consider some big enough wall Wt and locally focus on a torso Gt that contains most of the
essential part of Wt.

exceptional cycle of length 6(2h+ c) + 8k

simple cycle of length 8k(c+ h+ 1)

Figure 4 The elementary (h, c; k)-Dyck wall, where h = 1, c = 1, and k = 6.

Torsos with Dyck walls. According to Proposition 7, (5), and the equivalence of S-twapex
and S-tw, Gt comes together with a set At such that the graph G′

t := Gt − At is accompanied
by some Σ-embedding for a surface Σ ∈ SH , where H cannot be embedded. However, we
require some additional infrastructure in Gt that will come in the form of a large wall-like
object that is controlled by our Σ-embedding.

Notice that every adhesion β(t) ∩ β(t′) of t defines a separation (Xt′ , Yt′) of G − At of
order at most 3 where G[Xt′ ∩ Yt′ ] is drawn in Σ as a clique. We fix the orientation (Xt′ , Yt′)
such that V (Gt) ⊆ Yt′ , thereby indicating that Yt′ is the “important” part of the separation.
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Due to the results in [43], Gt contains a (Σ; d)-Dyck wall10 Dt, which is highly linked to the
wall Wt above. Here d is chosen “large enough” so as to ensure the applicability of the next
steps of our proof. Also, we may assume that the “essential” part of Dt is drawn “inside” Gt

in the sense that, for each (Xt′ , Yt′), at most one branch vertex of Dt is in Yt′ \ Xt′ . The wall
Wt is chosen large enough to represent some tangle, that is an orientation of the separations
of G of some suitably bounded order. The way to algorithmically detect such a big wall Wt

is given in [43].

The role of Kuratowki-connectivity. We next make some observations on how “models” of
H can behave with respect to the Σ-embedding of Gt. These observations will play a key
role in understanding how to “attack” and later “kill” copies of H in our graph.

The first comes from the non-Σ-embeddability property of H: “minimal” H-hosts in G,

called H-inflated copies, cannot be entirely inside Gt, otherwise we would be able to embed
H in a surface where it cannot be embedded. Another important feature comes from the fact
that H is Kuratowski-connected: every H-inflated copy M in G is “well oriented” with respect
to the adhesions of t in the sense that, when M traverses some adhesion Xt′ ∩Yt′ = β(t)∩β(t′)
of G, exactly one of the two parts of M induced by Xt′ and Yt′ should not be embeddable in
the disk bounding β(t) ∩ β(t′) with the vertices of β(t) ∩ β(t′) on its boundary. This implies
that the “non-disk-embeddable” part will always lie inside the set Xt′ of the separation
(Xt′ , Yt′) above. Given now some adhesion β(t) ∩ β(t′), we say that it is H-red if it is
intersected by the (unique, due to Kuratowski-connectivity) non-disk-embeddable part of
some H-inflated copy M in G. That way, it is convenient to visualize H-red adhesions as the
“entrances” from which the H-inflated copies of G “invade” Gt.

Updating the Σ-embedding. From our previous observations it follows that to eliminate
all copies of H locally in Gt it suffices to deal with all H-inflated copies that invade Gt

through H-red adhesions. Therefore, our next objective is to update At, G′
t = Gt − At, and

the Σ-embedding of G′
t in a way that the remaining part of G′

t will not contain any H-red
adhesions, i.e., in a way that no invading H-inflated copy survives.

During our proof, this updating procedure will focus on some closed disk ∆ containing
some collection of H-red adhesions (these disks will be gathered together in what we call
H-red railed flat vortices) and detect some separation (X, Y ) of G where X \ Y contains
the vertices of the Dyck wall Dt and Y contains all H-red adhesions in ∆. We call such a
separation a carving separation. Each time we find such a separation, we move X ∩ Y to
A and also move Y \ X “outside” Gt. As the set X ∩ Y adds up to the size of A we also
need that X ∩ Y has “small” order. We refer to this operation as taking a carving of our
Σ-embedding at the carving separation (X, Y ). When the whole procedure terminates, none
of the adhesions of the updated G′

t is H-red. This implies that (V (Gt), At) is what we call
an H-dominion of G, that is: if the non-disk-embeddable part of some H-inflated copy in G

intersects V (Gt) then it also intersects At.
To achieve the previously described objective we adopt the following strategy. Recall

that in the Σ-embedding of Gt, H-red adhesions are cliques of size at most three that may
be drawn all around Σ. Our first step is to show that H-red adhesions can be cornered
in the “interior” of less than k pairwise-disjoint territories of Σ, each maintaining a large
enough “buffer” around a disk where the H-red adhesions reside. Afterwards we refine these
territories in order to bound their complexity in the sense that there is no large flow in Gt

10 Here a (Σ; d)-Dyck wall is certifying the existence of the Dyck grid DΣ
d as a minor. See Figure 4.
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that crosses through these territories. Through this refinement step we obtain some some
additional structural information so that in the last part of the proof, these territories along
with their infrastructure will allow us to finally eliminate all H-inflated copies by removing a
bounded number of vertices from their interiors.

Redrawing H-inflated copies inside a railed flat vortex. To formalize the aforementioned
territories that will encapsulate the H-red adhesion of our embedding, we utilize the concept
of a railed nest (C, P) of G around some closed disk ∆int of Σ. Here C = ⟨C1, . . . , Cℓ⟩ is a
sequence of ℓ disjoint cycles of Gt, where each Ci bounds some closed disk ∆i in Σ, where
∆int ⊆ ∆1 ⊊ · · · ⊊ ∆ℓ, along with a set of paths P = ⟨P1, . . . , Pℓ⟩, drawn in ∆ext := ∆ℓ, not
traversing the interior of ∆int, joining vertices of C1 with vertices of Cℓ, and traversing the
cycles in C orthogonally, that is Pi ∩ Cj is connected for every (i, j) ∈ [ℓ]2. We refer to such
a railed nest, as a railed flat vortex and we refer to the disk ∆int (resp. ∆ext) as its internal
(resp. external disk). Moreover, if all H-red adhesions drawn in ∆ext are also drawn inside
∆int, then we call it an H-red railed flat vortex. An important ingredient of our proof is to
show that we may use the infrastructure of the cycles and the paths in (C, P) in order to
redraw inside ∆ext every H-inflated copy M that invades Gt via an H-red adhesion of ∆ext.

Even if the part of M that is embedded inside ∆ext is not necessarily a disk embedding, we
can make this redrawing possible by using disk embedability properties emerging from the
Kuratowski-connectivity of H and the “linkage combing” lemma from [17, 16, 15]. We refer
to this as the redrawing lemma.

Gathering H-adhesions in railed flat vortices. The next step of our strategy, is to corner
all H-red adhesions in the interior of less than k H-red railed flat vortices. Towards this, we
take advantage of the infrastructure provided by the (Σ; d)-Dyck wall Dt. A brick of Dt is
called H-red if it “contains” an H-red adhesion. More precisely, this is formalized by the
notion of the influence of a brick which roughly corresponds to a set of H-red adhesions that
are intersected or contained by a closed disk in Σ that bounds the “area” that is enclosed
by the corresponding brick. This assigns each H-red adhesion to the influence of at most
three neighbouring H-red bricks and defines a notion of distance between H-red adhesions
expressed by the distance of the corresponding H-red bricks in Dt. Next, we prove that
under this distance notion, no scattered enough set of H-red bricks of size k can exist.
For this, we use the fact that each H-red brick B implies the existence of an H-inflated
copy in G that, due to the aforementioned “redrawing lemma”, can be redrawn in a small
radius around B. This radius is bounded but also big enough so as to permit the redrawing.
Likewise, we prove that there are few H-red bricks away from the exceptional and the simple
cycle of Dt (see Figure 4 for a visualization of these two cycles). Next we use a greedy
procedure in order to group together this bounded number of bricks and maintain enough
railed nest infrastructure around them to cluster them into less than k railed flat vortices.
The construction is completed by creating two more railed flat vortices, one for the simple
cycle of Dt and one for the exceptional one.

Refining H-red railed flat vortices. We are now in the position where we have defined
a set of less than k many H-red railed flat vortices whose internal disks contain all H-red
adhesions and whose external disks are pairwise disjoint. The next step is to further refine
these flat vortices.

In our proof, we treat what is drawn in the external disk ∆ext as a vortex in the classic
sense and our goal is to bound their depth, that is to ensure that no large transaction
goes through the society defined by each railed flat vortex. Each of them consists of a
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subgraph G∆ext of G (the one that is drawn in ∆ext) where the vertices in the boundary
of the external disk ∆ext are arranged in some cyclic ordering Ω∆ext . A segment of Ω∆ext

is a set S ⊆ V (Ω∆ext) such that there do not exist s1, s2 ∈ S and t1, t2 ∈ V (Ω∆ext) \ S such
that s1, t1, s2, t2 occur in Ω∆ in the order listed. A transaction in (G∆ext , Ω∆ext) is a set of
pairwise disjoint paths, drawn in ∆, between two disjoint segments A, B of Ω∆ext . The depth
of (G∆ext , Ω∆ext) is the maximum size of a transaction in (G∆ext , Ω∆ext). Our next objective
is to refine each of our H-red railed flat vortices so that, in the end, some disk ∆′ ⊆ ∆ext

defines a vortex (G∆′ , Ω∆′) of bounded depth and, moreover, the vertices in the boundary of
∆′ are all connected with disjoint paths to the boundary of the external disk ∆ext. We do
this as follows: If there is no transaction in (G∆ext , Ω∆ext) where a big part of its paths also
traverse ∆int, we make use of the “nest tightening”-lemma from [41] in order to either update
the nest to a “tighter” one (which allows us to recurse), or find the disk ∆′ claimed above, or
find a small-order carving separation (X, Y ) (again defined by some closed disk) at which we
may take a carving of our Σ-embedding. If there is a transaction in (G∆ext , Ω∆ext) where a
big enough part of its paths also traverse ∆int, then we use this transaction in order to split
the vortex into two vortices and recurse. This split is performed using the path infrastructure
offered by the transaction, along with the cycles of the railed nest and may result in either a
“tighter” H-red railed flat vortex around ∆int or in two H-red railed flat vortices. In both
cases, this allows us to recurse. As we know by the redrawing lemma, that k such H-red
railed flat vortices may give an H-packing, this procedure will end and will produce less than
k H-red railed flat vortices, each with some closed disk ∆′ defining a bounded depth vortex,
as above.

Killing H-red flat vortices. In the next and final step we exploit all the additional structure
we obtained via the refinement step and “attack” each of the obtained H-red railed flat
vortices separately. For each of them we “kill” all H-red adhesions residing in its internal
disk ∆int ⊆ ∆′ by identifying a bounded set of vertices drawn within ∆int.

Towards this, recall that the refinement step ensures that the vortex (G∆′ , Ω∆′) has
bounded depth. Using a known result of [19], we construct a bounded width linear decomposi-
tion of G∆′ , that is a path decomposition ⟨X1, X2, . . . , Xn⟩ where every bag Xi contains some
vertex xi of the boundary of ∆′ in a way that these x1, . . . , xn are the vertices of V (Ω∆′),
appearing in the same order as they appear in Ω∆′ . We next partition ⟨X1, X2, . . . , Xn⟩ into r

segments {⟨Xpi−1 , . . . , Xpi−1, Xpi⟩, i ∈ [r]} each “minimally capable” to host some H-red ad-
hesion from which an H-inflated copy invades Gt. Likewise, we find equally many H-inflated
copies in G where the parts drawn inside ∆′ are disjoint. Then we bound the number of
these segments by proving that they may be extended to an H-packing of size r, inside ∆ext.

For this, we use the full power of the redrawing lemma along with the infrastructure offered
by the railed nest. As long as there are less than k segments in {⟨Xpi−1 , . . . , Xpi

⟩, i ∈ [r]}
we define a carving separation (X, Y ) of G where Y contains the union of all Xpi−1 ∪ Xpi

,

i ∈ [r] and X ∩ Y contains the union of all (Xpi−1 ∩ Xpi) ∪ (Xpi ∩ Xpi+1), i ∈ [r]. As the size
of X ∩ Y depends on k and the width of the decomposition (that is bounded), we have that
(X, Y ) has bounded order. Therefore, we may take a carving of our Σ-embedding at the
carving separation (X, Y ). When this is done for all H-red flat vortices, we know that what
remains from G′

t has a Σ-embedding that has no H-red adhesions.

From local to global. Recall that all above steps were applied to an initial torso Gt and, in
particular, to the corresponding Σ-embedding of G′

t = Gt − At. In the end, what we obtained
is a new G′

t and At and a Σ-embedding of G′
t with no H-red adhesions. The elimination
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of H-red adhesions was done by taking successive carvings of the Σ-embedding of G′
t at a

bounded number of carving separations (X, Y ), each of bounded order. This came at some
cost: By taking these carvings, we added all X ∩Y ’s to At and, moreover, removed all Y \X’s
from G′. As we already mentioned above, the resulting pair (V (Gt), At) is an H-dominion of
G, which means that if the non-disk-embeddable part of some H-inflated copy in G intersects
V (Gt), then it also intersects At. At this point we should forget the initial tree decomposition
and just keep in mind that we started with a wall Wt of some torso Gt and we finally
computed an H-dominion (Xt, At) of G where Xt still maintains a big part of the Dyck grid
Dt that is the “essential” part of Wt. This constitutes the proof of a “local structure theorem”
that, apart from excluding the Dyck graphs in {DΣ

t | Σ ∈ sobs(SH)}, assumes that G has no
H-packing of size k, and, given a big enough wall W, returns an H-dominion (X, A) of G

where the “essential part” of W is intact in X. What we need now is to bring this result to
the form of a global structure theorem, that is a new tree decomposition (T, β) where each
node t is accompanied by a set α(t) ⊆ β(t) where (β(t), α(t)) is an H-dominion of G. This
decomposition may serve as the analogue of the tree decomposition in Step 2. For this we
use an appropriate application of a recent result in [5].

From connected to disconnected. Given the decomposition (T, β) from above, we may now
delete adhesions, as it was performed in Step 2. After this, we obtain an Z-dominion (X, A)
of G such that G − X is H-minor-free and |A| is bounded. With some more preprocessing,
this decomposition may be used to obtain a separation (X, Y ) of G of bounded order where
(X, X ∩ Y ) is an Z-dominion and G[Y \ X] is H-minor-free. Notice that at this point, if
H is connected, then we are done. To deal with the case where H is not connected, we set
up a recursive algorithm which uses the connected case as the base case and each time it
is called, it is called for the union of a smaller number of connected components of H. The
final outcome is an H-cover of G whose size depends single-exponentially on the size of the
excluded Dyck grids from DH and the size of the maximum H-packing in G.

4 Conclusion and open problems

Obstructions of graph classes. The (minor)-obstruction set of a graph class G, denoted
by obs(G), consists of the minor-minimal elements of Gall \ G. Clearly obs(G) is an antichain.
Moreover, it is finite by Robertson’s & Seymour’s theorem. Obstruction sets permit the
following equivalent statement of Theorem 2.

▶ Theorem 8. Let Z be an antichain in H− and let G be a minor-closed graph class. Z has
the Erdős-Pósa property in G if and only if, for every surface Σ ∈ sobs(SZ), there exists an
obstruction in obs(G) which is Σ-embeddable.

Universal obstructions. Let p : Gall → N be a minor-monotone graph parameter. We say
that a set H of minor-monotone parametric graphs is a (minor-)universal obstruction for p if
p ∼ pH (recall (3) for the definition of pH). Universal obstruction may serve as canonical
representations of graph parameters. (For more on the foundation of universal obstructions
of parameters, see [31, 32].) From this point of view, Theorem 2 can be restated follows:

▶ Theorem 9. For every Z ∈ H−, the set of parametric graphs DZ = {DΣ | Σ ∈ sobs(SZ)}∪
{⟨k · H⟩k∈N | H ∈ Z} is a universal obstruction for both coverZ and 1/2-packZ .

Given some Z ∈ H, for every k ∈ N, we define CZ
k = {G | coverZ(G) ≤ k}. Theorem 9

(or the equivalent Theorem 8) gives us some valuable information about the obstructions in
obs(CZ

k ), for every k.

ICALP 2024
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Certainly, the simplest antichain in H− is the one consisting of the two Kuratowski
graphs K = {K5, K3,3}. The parameter coverK is the planarizer number that is the minimum
number of vertices whose removal can make a graph planar. The obstruction obs(CK

k ) is
unknown for every positive value of k and its size is expected to grow rapidly as a function
of k (see [7] for an exponential lower bound and [40] for a triply exponential upper bound).
The identification of obs(CK

k ) is a non-trivial problem even for small values of k. In particular,
it has been studied extensively for the case where k = 1 in [25, 28, 47]. In this direction,
Mattman and Pierce conjectured that obs(CK

k ) contains the Y ∆Y -families of Kn+5 and
K32,2n and provided evidence towards this in [11]. Recently, Jobson and Kézdy identified all
graphs in obs(CK

1 ) of connectivity two in [20], where they also reported that |obs(CK
1 )| ≥ 401.

It is easy to see that {(k + 1) · K5, (k + 1) · K3,3} ⊆ obs(CK
k ), for every k ∈ N. Our

results, together with the fact that sobs(SK) = {Σ(1,0), Σ(0,1)}, provide the following extra
information about obs(CK

k ): for every k ∈ N, it contains some graph, say Gt
k, embeddable in

the torus and some graph, say Gp
k, embeddable in the projective plane. Most importantly,

our results indicate, that the four-member subset {(k + 1) · K5, (k + 1) · K3,3, Gt
k, Gp

k} of
obs(CK

k ) is sufficient to determine the approximate behaviour of the planarizer number.
Similar implications can be derived for every Z ∈ H−. For instance, if P is the Petersen

family, we again have that sobs(SP) = {Σ(1,0), Σ(0,1)}. Therefore the parameter defined as
the minimum number of vertices to remove so as to make a graph linkless, is approximately
characterized by picking only nine graphs of obs(CP

k ), for every k ∈ N.

Other examples of surface obstructions corresponding to graphs that are known to be
both Kuratowski-connected and shallow-vortex minors are sobs(S{K5}) = sobs(S{K6}) =
sobs(S{M2n}) = {Σ(1,0), Σ(0,1)}, where M2n is the 2n-Möbius ladder,11 for n ∈ N≥3. Two
other examples are sobs(S{K4,4}) = {Σ(1,0), Σ(0,2)} and sobs(S{K7}) = {Σ(1,0)}.

Another implication of our results is the following.

▶ Theorem 10. For every closed and proper set of surfaces S, the set of parametric graphs
VZ = {DΣ | Σ ∈ sobs(S)} ∪ {⟨Vk⟩k∈N} is a universal obstruction for S-twapex.

The theorem above is a direct consequence of the second step in our proof outline, that
is the step “From small treewidth modulators to small size modulators”, where we obtain a
local structure theorem for graphs excluding the parametric graphs in VZ , i.e., graphs where
pVZ is bounded. The parameter S-twapex (defined in (5)) corresponds to the global version
of this theorem. In particular, the equivalence between S-twapex and pVZ follows directly
by [42, Theorem 5.18] or, alternatively, by applying [5, Theorem 6.17]. Notice that S-twapex
can be seen as a parametric extension of graph embeddability and that the exclusion of
shallow-vortex minors is pivotal for its definition. The potential algorithmic applications of
S-twapex are open to investigate.

Notice that for both the equivalences in Theorem 9 and in Theorem 10 we have a single
exponential gap which, in turn, determines the gap of our FPT-approximations. Is it possible
to reduce this to a polynomial one? Certainly, this requires a polynomial dependency on k

and t in Theorem 3. There are two sources of exponentiality in the proof of Theorem 3. The
first is in the exclusion of the Dyck grid DΣ′

t , for Σ′ ∈ sobs(S) that comes from [43], where
we have an exponential dependency on t. This dependency already emerges from the bounds
in [19]. On the other hand the exponential dependency on k emerges from the redrawing
lemma, where the exponential bound comes from the dependencies of the planar linkage

11 The Möbius ladder M2n is formed if we consider a cycle on 2n vertices and then connect by edges the n
anti-diametrical pairs of vertices. Notice that M6 = K3,3. M8 is called the Wagner Graph.
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theorem in [2]. Avoiding these two sources of exponentiality appears to be a hard task. An
alternative approach is to try instead to “enlarge” the size of the universal obstructions to
obtain a polynomial parametric graph. This would also be desirable for the purposes of
better FPT-approximation algorithms.

Going further than K ∩ V. The central question proposed by this work is to chart the
threshold of half-integrality when covering and packing graphs as minors. In this paper
we resolved this question for every antichain in K ∩ V. The wide open question is whether
and how this can be done for more general families of antichains. For this, one needs to
prove structure theorems on the exclusion of parameterized graphs of unbounded genus, as
those in Figure 2. The challenges that have to be met for this, when going beyond K, are
different from those encountered when going beyond V. We believe that the proof strategy of
our paper can serve as a starting point for both directions towards the general case. The
resolution of the general case is highly non-trivial and requires new tools and ideas.

We conclude with a conjecture. Our guess is that when we insist on universal obstructions
of bounded genus, then we cannot go much further than the horizon of K ∩ V. Let B be
the set of all antichains consisting of graphs where each of them can be embedded in both
the torus and the projective plane. As an example, observe that {K3,4} ∈ B \ K, while
{K3,5} ̸∈ B. We conjecture the following.

▶ Conjecture 11. Let Z be an antichain and let EPZ : Gall → N be a graph parameter such
that Z has the Erdős-Pósa property in a minor-closed graph class G if and only if EPZ is
bounded in G. Then Z ∈ (K ∩ V) ∪ B if and only there exists some gZ such that all universal
obstructions of EPZ consist of parametric graphs of Euler genus ≤ gZ .
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