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Abstract
We consider the problem of query-efficient global max-cut on a weighted undirected graph in the value
oracle model examined by [31]. Graph algorithms in this cut query model and other query models
have recently been studied for various other problems such as min-cut, connectivity, bipartiteness,
and triangle detection. Max-cut in the cut query model can also be viewed as a natural special case
of submodular function maximization: on query S ⊆ V , the oracle returns the total weight of the
cut between S and V \S.

Our first main technical result is a lower bound stating that a deterministic algorithm achieving
a c-approximation for any c > 1/2 requires Ω(n) queries. This uses an extension of the cut
dimension to rule out approximation (prior work of [20] introducing the cut dimension only rules
out exact solutions). Secondly, we provide a randomized algorithm with Õ(n) queries that finds
a c-approximation for any c < 1. We achieve this using a query-efficient sparsifier for undirected
weighted graphs (prior work of [31] holds only for unweighted graphs).

To complement these results, for most constants c ∈ (0, 1], we nail down the query complexity of
achieving a c-approximation, for both deterministic and randomized algorithms (up to logarithmic
factors). Analogously to general submodular function maximization in the same model, we observe
a phase transition at c = 1/2: we design a deterministic algorithm for global c-approximate max-cut
in O(log n) queries for any c < 1/2, and show that any randomized algorithm requires Ω(n/ log n)
queries to find a c-approximate max-cut for any c > 1/2. Additionally, we show that any deterministic
algorithm requires Ω(n2) queries to find an exact max-cut (enough to learn the entire graph).
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1 Introduction

For the most part, the field of graph algorithms has focused on extensive study in the
“standard” model where the entire graph is given to the algorithm as input e.g. in the form
of an adjacency list or an adjacency matrix. However, another growing body of work focuses
on the case where the algorithm does not know the graph; rather, it has query access to an
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oracle that knows the graph, and aims to make as few queries as possible. Different models
restrict the algorithm to make different types of queries e.g. individual edge queries, linear
measurements [1, 5], matrix-vector products [32], etc.

One model that has attracted particular attention is the cut query model [21, 15, 31,
20, 30, 28, 4, 14]. In this model, the algorithm has query access to the cut function of a
graph G with vertex set [n]: it provides subsets S ⊆ [n] as queries and the oracle returns the
total weight of all edges of G with exactly one endpoint in S. An additional reason for the
wide interest in this model is that the graph’s cut function is in particular a submodular
function; [20] and [28] obtained new lower bounds for the query complexity of submodular
function minimization by considering the special case of graph min-cut in the cut query
model.

A range of graph problems has been studied in the cut query model and related models.
Perhaps the most fundamental is that of learning the entire graph [21, 16, 9, 15, 10]; once
the entire graph is known to the algorithm, it has all the standard graph algorithm literature
at its disposal to solve the problem of interest. A more subtle question is whether the given
problem can be solved with fewer queries than one would need to learn the graph. This was
first answered affirmatively for the case of min-cut [31, 30, 4]: an undirected, unweighted
graph requires Ω(n2/ log n) queries to learn [21] but O(n) queries suffice to find its min-cut.
Since then, novel algorithms have been developed in the cut query model and related models
for problems such as connectivity [1, 32, 5, 4, 14], testing bipartiteness [1], and triangle
detection [32].

In this work, we initiate the study of max-cut in the cut-query model. We aim to
understand how many queries are necessary and sufficient for an algorithm to find a c-
approximate global max-cut in an undirected, weighted graph.

1.1 Our Results
Our two main results are stated below. Both are concerned with the setting where c ∈ (1/2, 1)
i.e. one wants to do better than a straightforward greedy algorithm or guessing a random cut,
but does not want an exact max-cut. The first result is a lower bound against deterministic
algorithms, and the second result is a randomized algorithm.

▶ Theorem 1 (See Corollary 7 for a precise statement). For c > 1/2, any deterministic
algorithm achieving a c-approximation requires Ω(n) queries.

▶ Theorem 2 (See Corollary 29 for a precise statement). For c < 1, there exists a randomized
algorithm with query complexity Õ(n) that achieves a c-approximation.

These results naturally beg the question of how the query complexity behaves for other
ranges of c, for both deterministic and randomized algorithms. We also answer this question
in most cases. The content of all of our results is summarized in the following three theorems,
and also tabulated in Figure 1. Soon after, we provide context for these results.

▶ Theorem 3 (See Theorems A.1 and B.1 in the full version for precise statements). For c = 1,
the query complexity for a deterministic algorithm to achieve a c-approximation is Θ(n2) and
the query complexity for a randomized algorithm to do the same is between Ω̃(n) and O(n2).

▶ Theorem 4 (See Corollary 29, Corollary 7, and Theorem B.1 in the full version for precise
statements). For c ∈ (1/2, 1), the query complexity for a deterministic algorithm to achieve
a c-approximation is between Ω(n) and O(n2) and the query complexity for a randomized
algorithm to do the same is Θ̃(n).
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c Deterministic Randomized

1 Θ(n2) (Ω̃(n), O(n2))
(1/2, 1) (Ω(n), O(n2)) Θ̃(n)
(0, 1/2) Θ(log n) Θ(1)

Figure 1 Summary of our results. For each range of c, we state the query complexity (up
to constant and logarithmic factors) that we show for achieving a c-approximation in both the
deterministic and randomized settings. (n, n2) indicates settings where we have a lower bound of
Ω̃(n) and an upper bound of O(n2).

▶ Theorem 5 (See Corollary E.2, Theorem E.4, and Corollary C.3 in the full version for precise
statements). For c ∈ (0, 1/2), the query complexity for a deterministic algorithm to achieve a
c-approximation is Θ(log n) and the query complexity for a randomized algorithm to do the
same is Θ(1).

We now provide context for each of our results, beginning with Theorem 1. Observe
that there is a straightforward non-adaptive O(n2)-query deterministic algorithm to find the
max-cut exactly (observed in [31], as it applies to the min-cut as well). The algorithm can
query all singletons and sets of size 2 and from this learn wi,j = 1

2 (F ({i})+F ({j})−F ({i, j}))
for all i, j and thus the entire graph. The algorithm can then find the max cut exactly using
brute force, since no more queries need to be made. This addresses all of the O(n2) upper
bounds stated in the theorems. Theorem 3 shows that this trivial algorithm is optimal among
deterministic algorithms: up to constant factors, any deterministic algorithm must learn the
entire graph in order to find the global max-cut with cut queries.

Next, observe that there is a phase transition at c = 1/2. Theorem 5 establishes that
a (1/2− ε)-approximation can be achieved deterministically with O(log n) queries (which
happen to also be necessary). On the other hand, even a randomized algorithm needs Ω̃(n)
queries to guarantee a (1/2 + ε)-approximation.

Finally, observe that we resolve the asymptotic query complexity for most cases. For
randomized algorithms, the only unresolved cases are c = 1/2 and c = 1.1 For deterministic
algorithms, the range [1/2, 1) remains unresolved.

Before continuing, we note several facts about our results. In the positive direction, we
note that all of our algorithms find a set S that is a c-approximation to the global max-cut
(for undirected, weighted graphs with arbitrarily large weights), rather than simply estimating
the value of the max-cut within a factor of c. We refer to these two settings as the cut finding
and value estimation settings respectively. On the other hand, most of our lower bounds
hold even against algorithms in the value estimation setting. The only exception is our Ω̃(n)
lower bound on randomized algorithms for c > 1/2, which we only prove in the cut finding
setting. Similarly, all algorithms we discuss, except for our Õ(n)-query randomized algorithm
for c ∈ (1/2, 1) and the well-known O(n)-query deterministic greedy algorithm for c = 1/2,
are non-adaptive. On the other hand, all of our lower bounds hold even against adaptive
algorithms.

It may appear at first glance that Theorem 1 is subsumed by the randomized lower
bound in Theorem 4. Both results are lower bounds for c > 1/2: the former states that
a deterministic algorithm in this setting requires Ω(n) queries, while the latter says that

1 For the c = 1/2 case, simply outputting a random cut will achieve a (1/2)-approximation in expectation
in O(1) queries. But we are concerned with the algorithm’s ability to achieve a c-approximation with
some probability p > 0. In this setting, there exists a deterministic O(n)-query algorithm (see Section
E.3 of the full version) but we do not have a matching lower bound.
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a randomized algorithm requires Ω̃(n) queries. However, the deterministic lower bound is
interesting on its own for two reasons. The first reason is that the randomized lower bound
is only Ω(n/ log n), which is weaker than the Ω(n) we are able to prove in the deterministic
case. Secondly, and more critically, the deterministic lower bound holds even for the value
estimation setting while the randomized lower bound is only for the cut finding setting. Our
argument for the randomized lower bound does not appear adaptable to the value estimation
setting; indeed, the hard distribution used in our proof is actually very easy in the value
estimation setting.2

In the negative direction, we note here that most of our algorithms have exponential time
complexity even though they are query-efficient. For example, the O(n2)-query algorithm we
just described learns the graph in polynomial time, but then uses exponential brute force
search to actually find its max-cut. This illustrates that, by focusing on query complexity, we
are primarily concerned with the information theoretic question of how much the algorithm
must learn about the graph to be able to estimate its max-cut, even with unlimited computa-
tion. Note that the most query-efficient algorithms for submodular function minimization are
exponential time as well [24], so this is not uncommon when prioritizing query complexity.

1.2 Technical Highlights
Our results follow from a wide array of techniques. Some results (e.g. our Ω̃(n) lower
bound on randomized algorithms for c-approximate max-cut and c > 1/2) follow from direct
constructions of hard distributions – we defer further discussion of these constructions to
the corresponding technical sections and appendices. Some of our results follow from novel
techniques that are likely of independent interest for subsequent work – we quickly highlight
these below.3

The key ingredient in our Ω(n2)-lower bound for exact max-cut is the cut dimension
introduced by [20] for min-cuts (which has also been studied in follow-up work [28]). The
lower bound follows immediately after establishing that the complete graph on n vertices has
max-cut dimension Ω(n2). More interestingly, we extend the concept of the cut-dimension to
what is roughly a notion of “c-approximate cut-dimension” using strong LP duality. We show
that this technique provides a lower bound on the number of queries needed by a deterministic
algorithm to find a c-approximate max-cut for c > 1/2, and that for the complete graph on
n vertices this gives a bound of Ω(n). This approach should also be of independent interest,
given recent interest in the exact cut dimension. Completing this analysis also requires a
technical lemma (Lemma 13) stating a simple geometric property of the Boolean hypercube,
which may additionally be of independent interest.

Our Õ(n)-query randomized c-approximation for c ∈ (1/2, 1) follows from a query-efficient
sparsifier for global cuts in undirected, weighted graphs (once we have learned a sparsifier for
the graph, we can just exhaust to find its max-cut, which is a (1 − ε)-approximation). A
query-efficient sparsifier for unweighted graphs appears in [31], based on ideas by [7]. We
first give a natural extension of their sparsifier that accommodates graphs with weights in
[1, poly(n)]. We then go a step further and provide a novel query-efficient sparsifier for all

2 In more detail, the hard distribution is a random complete bipartite graph with edge weights 1. For this
distribution in the value estimation setting, an algorithm could just immediately output n2/4 without
making any queries at all.

3 Additionally, some of our results are reasonably straightforward (e.g. our O(log n) deterministic algorithm
for c-approximate max-cut when c < 1/2) – we include discussion of these results in Appendices B, C,
and E of the full version for completeness.
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weighted graphs, using other ideas from [7] relating edge strengths to maximum spanning
trees. For completeness, we show in Appendix D of the full version that in fact a slight
modification of the [31] sparsifier also suffices for approximate max-cut for all weighted
graphs (however, this modification may not produce a sparsifier). Our stronger sparsifier is
hence not “necessary” to resolve approximate max-cut, but is of independent interest as not
all weighted graph problems can be reduced to one with weights in [1, poly(n)] (e.g. exact
min-cut). In fact, our stronger sparsifier is already used in recent work [30].4

1.3 Related Work
Learning graphs in the cut-query model. The first natural question when an algorithm has
restricted query access to a graph is how many queries it needs to learn the entire graph. For
the case of cut queries, this was first studied by [21], who show that the query complexity of
deterministically learning an unweighted graph is Θ(n2/ log n), and that this can be attained
non-adaptively. A later line of work [16, 9, 15, 10] answered this question for weighted graphs
while also being sensitive to the number m of edges in the graph with nonzero weight, finding
that the query complexity in this case is Θ(m log n/ log m).

Min-cut in the cut-query model. A very active line of work is that of understanding what
properties an algorithm can learn about a graph that it only has query access to, without
using up enough queries to learn the entire graph. The particular case of most relevance to
this work is that of min-cut in the cut-query model. The first progress on this problem was
the algorithm by [31] for unweighted graphs using Õ(n) queries. This was later improved to
O(n) queries by [4]. For weighted graphs, an algorithm using Õ(n) cut queries was presented
by [30] (as previously noted, their result leverages a query-efficient sparsifier for weighted
graphs, which our paper is the first to provide).

On the lower bound side, [20] show using a linear algebraic argument that Ω(n) queries are
necessary for weighted graphs (the constant-factors have since been improved by [28]), thus
resolving the query complexity of exact min-cut in weighted graphs up to logarithmic factors.
As mentioned earlier, our deterministic lower bounds arise from adapting and extending the
concept of the cut dimension to approximation.

The cut dimension was introduced by [20], and further studied in [28]. [28] further nail
down that undirected graphs have a min-cut dimension of no more than 2n− 3 (and there
exist graphs realizing this bound). They also introduce the ℓ1-approximate cut dimension.
The ℓ1-approximate cut dimension is motivated by a similar thought experiment as our
“c-approximate cut dimension” technique – both consider an adversary changing the original
graph in a way that respects all queries made, and both consider the magnitude of the changes
made to the max/min-cut (rather than just whether or not the cut is changed). However,
their ℓ1-approximate cut dimension does not imply lower bounds on the query complexity
of finding approximately-optimal cuts. Finally, they further consider “the dimension of
approximate min-cuts”, and prove a linear upper bound on this. This concept does not
have any relation to our approximate cut dimension technique (and in particular, only our
technique implies lower bounds on the deterministic query complexity). In summary, the cut
dimension is an active concept of study in related work, but our work is the first to use this
concept to lower bound the query complexity of approximately-optimal cuts.

4 [30, Theorem 5.2] seems to credit [31] for handling weighted graphs (whereas their query-efficient
sparsifier only accommodates unweighted graphs). They use this result as part of their Õ(n) query
algorithm for weighted min-cut.

ICALP 2024
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Other graph algorithms in other query models. Many works have considered other graph
problems in other query models as well. These query models include cut queries [14],
linear measurements [1, 5], matrix-vector products [32], OR queries [5, 8], XOR queries [8],
and AND queries [8]. Some of these models e.g. linear measurements and matrix-vector
products generalize the cut query model, while the others do not appear directly related.
These works also consider a variety of graph problems, including connectivity [1, 32, 5, 4,
14], bipartiteness [1], triangle detection [32], minimum spanning tree [1], and maximum
matching [1, 8].

Graph sparsification. [31] also provide an algorithm for graph sparsification in Õ(n) queries
for unweighted graphs, based on the idea of edge strength-based sampling used by [7] to
construct sparsifiers in the classical computational model. There are also other lines of work
that adapt the ideas from [7] to construct sparsifiers in other limited-access computational
models, particularly (semi-)streaming [1, 2, 3, 25, 32]. Some of these algorithms are adaptable
to the cut-query model. However, these algorithms either only support unweighted graphs
or incur a performance cost for weighted graphs. For example, the natural extension of
the algorithm in [31] to weighted graphs requires Õ(n log W ) queries, where W is the ratio
between the largest and smallest nonzero edge weight in the graph. Our novel sparsifier
avoids this pitfall by using results from [7] connecting edge strengths to maximum spanning
trees to remove the log W factor.

While these results and ours all use randomization to construct a sparsifier, there are
also classical algorithms for constructing sparsifiers deterministically [6, 17]. Implementing
such an algorithm directly would require being able to learn the spectrum of the graph’s
Laplacian. It may indeed be possible to do this (exactly or approximately) in a query-efficient
way, but doing so would require significantly new ideas. A deterministic query-efficient
implementation of these algorithms would also yield a deterministic query-efficient algorithm
for a (1− ϵ)-approximation to max cut.

Max-cut in the classical computational model. Max-cut is extremely well-studied in the
computational model, but algorithms in the cut-query model differ significantly. For ex-
ample, [19] present a randomized polynomial-time algorithm using semidefinite programming
that achieves a ≈ 0.878 approximation in expectation. However, this algorithm does not
imply anything in our model; even formulating the necessary SDP requires access to the
entire graph.

It has since been shown by [23] that it is NP-hard to beat a 16/17 ≈ 0.941 approximation.
Moreover, [27] show that it is NP-hard to beat the constant achieved by Goemans and
Williamson assuming the unique games conjecture [26]. These lower bounds do not imply
anything in our model either. In fact, many of our algorithms (and those in prior work)
involve exponential computation even if they use an efficient number of queries. Once we have
either learned the entire graph (c = 1) or constructed a sparsifier of the graph (c ∈ (1/2, 1)),
we use brute force search to find the exact max cut on the graph we have learned.

Submodular function maximization. Our problem can be viewed as a special case of
symmetric submodular function maximization, by taking f(·) to be the cut function of a
graph. However, the additional structure imposed by the cut function of a graph opens
up possibilities for new algorithms and requires new lower bound arguments. For example,
when c > 1/2, [18] show that achieving a c-approximation to symmetric submodular function
maximization requires exp(Ω(n)) queries to the oracle. For global max-cut, the situation
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is significantly different: O(n2) queries suffice to trivially learn the entire function (and
therefore, there seems to be little hope of embedding hard SFM instances as graphs). Still,
we show that this trivial algorithm is optimal among deterministic algorithms when c = 1,
and show that Ω̃(n) queries are necessary for even a randomized algorithm to achieve a
c-approximation for c > 1/2.

For c ≤ 1/2, randomized [12] and deterministic [11] algorithms are known that achieve
a 1/2-approximation with O(n) and O(n2) queries respectively, even when the submodular
function is not symmetric. [18] show in the symmetric case that picking a random set (O(1)
queries) achieves a 1/2-approximation in expectation. They also provide a deterministic
algorithm based on local search that achieves a c-approximation for any c < 1/2 in Õ(n3)
queries. When restricting to max-cut, [18] immediately implies a randomized algorithm for
all c ≤ 1/2 with O(1) queries (which is optimal). For deterministic algorithms, however, our
bound of Θ(log n) is again an exponential improvement over the general case of submodular
function maximization.

In summary, global max-cut demonstrates a similar phase transition at c = 1/2 as general
submodular function maximization: the query complexity for c < 1/2 is exponentially smaller
than the query complexity for c > 1/2. However, the distinction for max-cut is between
logarithmic and polynomial queries, whereas the distinction for general submodular functions
is between polynomial and exponential.

Submodular function minimization. Just as submodular function maximization generalizes
max-cut in the cut query model, submodular function minimization generalizes min-cut.
Unlike the maximization case which requires exponentially many queries, general submodular
function minimization can be solved exactly with polynomially many queries; state-of-the-art
algorithms use Õ(n2) queries [24, 29].

However, until relatively recently, most query lower bounds for submodular function min-
imization were only Ω(n) [22, 20, 28]. The last two results proceed using the aforementioned
cut dimension technique. This was recently improved to Ω(n log n) by [13], using different
ideas unrelated to graph cuts.

2 Preliminaries

G is an undirected, weighted graph with weights wi,j on the edge (i, j). G induces a cut
function F . We denote the cut function by F (·), so F (S) :=

∑
i∈S,j /∈S wi,j . Additionally, for

any cut S ⊆ [n], we define the indicator vector vS ∈ R(n
2) by (vS)i,j = 1 if (i, j) crosses the

cut defined by S and 0 otherwise.
We consider algorithms that have black-box access to F (·), and aim to find

arg maxS⊆[n]{F (S)} (exact maximization) or a set T such that F (T ) ≥ c ·maxS⊆[n]{F (S)}
(c-approximation). We refer to the query complexity as the number of queries to F (·) that the
algorithm makes (the algorithm has no other access to G or F , and may perform unlimited
computation).

3 Lower Bound for Deterministic (1/2 + ϵ)-approximation

In this section, we extend the cut dimension technique by [20] using linear programming and
the strong duality theorem to show the deterministic hardness part of Theorem 4. (We refer
the reader to Appendix A of the full version for a discussion of this technique and its direct
application to show the deterministic lower bound in Theorem 3.) Our exact result is as
follows:

ICALP 2024
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▶ Theorem 6. Suppose we have c ∈ (1/2, 1), ϵ ∈ (0, 1), α > 0 such that c > 1
1+ϵ2 and

α < (1−ϵ)3

108(1+ϵ) . Then for n sufficiently large, αn queries do not suffice for a deterministic
algorithm to estimate the max cut value within a factor of c.

Before proving this theorem, we state a cleaner lower bound as a corollary:

▶ Corollary 7. For c ∈ (1/2, 1), a deterministic algorithm that estimates the max cut value
within a factor of c requires at least n( (

√
c−

√
1−c)4

108c(2c−1) − o(1)) queries.
This implies that the query complexity for a deterministic algorithm to achieve a c-

approximation for global max-cut on a weighted undirected graph in the value estimation
setting is Ω(n).

Proof. See Appendix F.1 of the full version. ◀

The first step is conceptually similar to the cut dimension argument from Theorem A.1
in the full version. We consider an adversary that answers all queries as if the graph were
Kn (there is an edge of weight 1 between all pairs of vertices). Then we would like to find a
perturbation z to the weight vector of Kn such that w, w + z agree on all queries but have
differing max cut values. The difference here is that we would like to show that the algorithm
cannot even achieve a c-approximation, so we require the perturbation to be so large that
the max cut value of w + z is a multiplicative factor greater than the max cut of w. To
do this, we will have to go beyond linear algebraic tools and consider linear programming
instead. Our argument comprises the following steps:
1. Write the conditions we require of the perturbation z as linear constraints and thus

formulate a linear program LP1, which we would like to show has high value.
2. LP1 works with vectors in R(n

2) that represent cuts, which are unwieldy and unnatural.
Rewrite this in terms of indicator vectors in Rn.

3. Define another linear program LP2 and show that a high value for LP2 implies that LP1
must also have high value.

4. Show that LP2 has high value by taking its dual, and showing that the dual has high value.
This comes down to showing a key technical lemma, which essentially states that the
n-dimensional hypercube cannot be covered by an ℓ1 neighborhood of an αn-dimensional
subspace of Rn. We show this using an ℓ1 ϵ-net argument.

We now work through each step in detail. We retain all notation used in Appendix A
of the full version for the cut dimension argument, and introduce additional notation as
necessary.

3.1 Step 1: Formulating LP1

Throughout these proofs, we use 1 to denote a vector with all entries equal to 1 in either
Rn or R(n

2). It will be clear from context which of these we are referring to at any given
time, but for now we are taking 1 ∈ R(n

2) to denote the weight vector of Kn. Let q = αn

and Q1, Q2, . . . , Qq ⊆ [n] be the q queried cuts. As in Appendix A of the full version, they
have the corresponding 0/1 indicator vectors vQ1 , vQ2 , . . . , vQq

∈ R(n
2). We are interested

in finding a perturbation z such that 1, 1 + z are both weighted, undirected graphs (with
non-negative edge weights) and agree on all queries but have max cut values differing by a
multiplicative factor.
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First, we require 1 + z to define a valid graph i.e. its entries should all be non-negative
since these correspond to edge weights:

1 + z ≥ 0⇔ z ≥ −1. (1)

Next, we need 1, 1 + z to agree on all queries. This guarantees that the algorithm cannot
tell the difference between 1 and 1 + z based only on the queries made so far.

1T vQi
= (1 + z)T vQi

, ∀i⇔ zT vQi
= 0, ∀i. (2)

Finally, we would like the graph corresponding to 1 + z to have a much larger max cut value
than the graph corresponding to 1. We capture this in the following definition and lemma:

▶ Definition 8. Define a near-max cut to be any cut C ⊆ [n] such that n/2−
√

n log n ≤
|C| ≤ n/2 +

√
n log n.

Note that a near-max cut is nearly a max-cut in Kn. As hinted at earlier, we will show
that we can find a near-max cut C and a perturbation z to the graph that will preserve
the value of all queries while blowing up the value of C by a factor of c. In this case, the
algorithm cannot distinguish between Kn and the perturbed graph and thus cannot achieve
a c-approximation.

▶ Lemma 9. To prove Theorem 6, it suffices to show that there exists a near-max cut C such
that the following linear program has value at least ϵ2n2/4. We call this linear program LP1.

Maximize zT vC

subject to zT vQj
= 0 for all j ∈ [q], and

z ≥ −1.

Proof. We have already explained how the constraints arise. To justify that the objective
corresponds to a bound on the approximation ratio, see Appendix F.2 of the full version. ◀

3.2 Step 2: Rewriting LP1

As already mentioned, the vectors vS ∈ R(n
2) are unnatural and difficult to work with.

Intuitively, the reason for this is that a cut only has n degrees of freedom (each vertex can
be included or not included in S), but we are representing it with a vector with

(
n
2
)

entries,
thereby creating unwanted dependencies between entries of these vectors.

We would thus like to find a more natural parametrization of these cuts that can still be
connected naturally to the vectors vS . To construct such a parametrization, we assign to
each cut S a ±1 indicator vector uS ∈ Rn. Entries are indexed by vertices in [n], and for
each i ∈ [n] we have (uS)i = 1 if i ∈ S and −1 otherwise.

Now we connect these new indicator vectors to vS as follows. Define the matrix MS ∈
Rn×n by MS = 11T −uSuT

S

2 . (Note that from here onwards, 1 now refers to the vector in
Rn with all entries equal to 1.) MS ’s entries are indexed by ordered pairs of vertices. Now
observe that:
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(MS)i,j = 1i1j − (uS)i(uS)j

2

= 1− (uS)i(uS)j

2

=
{

0, i, j ∈ S or i, j /∈ S,

1, otherwise

=
{

(vS)i,j , i ̸= j,

0, i = j.

Thus if we flatten MS into a vector, it consists of two copies of vS (each unordered vertex
pair (i, j) in vS appears twice in MS since the vertex pairs indexing MS are ordered) and n

0’s (corresponding to vertex pairs (i, i) for i ∈ [n]). This allows us to rewrite LP1 in terms
of the uS ’s as stated in the following lemma. For matrices A, B of the same shape, we use
⟨A, B⟩ to denote the matrix inner product tr(AT B) =

∑
i,j Ai,jBi,j .

▶ Lemma 10. For any C, LP1 has value ≥ ϵ2n2/4 if and only if the following LP has value
at least ϵ2n2/2. We call this the “matrix LP”. Here, Z ∈ Rn×n.

Maximize ⟨Z, MC⟩
subject to ⟨Z, MQj

⟩ = 0 for all j ∈ [q], and
Z ≥ −1.

Proof. See Appendix F.3 of the full version. ◀

3.3 Step 3: Defining LP2 and Connecting LP2 to LP1

For a near-max cut C, define a new linear program which we call LP2 as follows. Here
y ∈ Rn.

Maximize yT uC

subject to yT uQj
= 0 for all j ∈ [q],

yT 1 = 0, and
− 1 ≤ y ≤ 1.

We claim that it suffices to show that LP2 has value at least ϵn:

▶ Lemma 11. If there exists a near-max cut C such that LP2 has value at least ϵn then the
matrix LP for C has value at least ϵ2n2/2, which would imply Theorem 6.

Proof Sketch. Take such a near-max cut C and y ∈ Rn such that y is in the feasible region of
LP2 and yT uC ≥ ϵn. Then we claim that Z = −yyT is feasible for the matrix LP and attains
a value ≥ ϵ2n2/2. Intuitively, y can be thought of as a vector representing a “pseudo-cut” in
the same way that uS represents S. LP2 having high value means that y aligns non-trivially
with C, and what we are claiming is that perturbing towards the “pseudo-cut” corresponding
to y will align the graph’s weights with the cut corresponding to C. We provide details in
Appendix F.4 of the full version. ◀
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3.4 Step 4: Showing that LP2 has High Value
Finally, we show that we can find a near-max cut C such that LP2 has value at least ϵn,
which by Lemma 11 will complete the proof of Theorem 6. We do this by taking the dual of
LP2, which has a simple characterization captured by the following lemma:

▶ Lemma 12. Consider vectors w, w1, w2, . . . , wk ∈ Rd, and the following LP:

Maximize zT w

subject to zT wi = 0 for all i ∈ [k], and
− 1 ≤ z ≤ 1.

Let W = span(w1, w2, . . . , wk). Then the value of this LP is minv∈W ||v − w||1. (If there is
no such v then by this minimum we mean ∞.)

Proof. See Appendix F.5 of the full version. ◀

To use this lemma, let V = span(uQ1 , . . . , uQq
, 1). Then Lemma 12 tells us that LP2 has

value equal to minu∈V ||u− uC ||1.
Now note that V depends only on the set of queries and not at all on C. Thus we would

like to show that there exists a near-max cut C such that minu∈V ||u− uC ||1 ≥ ϵn. We will
show the strict version of this inequality i.e. that minu∈V ||u− uC ||1 > ϵn. Denote by Br

the ℓ1 ball of radius r in Rn. Then what we want to show is that there exists a near-max cut
C such that uC /∈ V + Bϵn. This brings us to our key technical lemma, which has little to
do with graphs and may be of independent interest:

▶ Lemma 13. Let ϵ ∈ (0, 1) and d ≤ α′n for α′ < (1−ϵ)3

108(1+ϵ) . Suppose D is a d-dimensional
subspace of Rn. Denote by Br the ℓ1 ball of radius r in Rn. Then there exists p ∈ {−1, 1}n

such that p /∈ D + Bϵn and |1T p| ≤ 2
√

n log n.

Proof. We show this by a volume argument. Specifically, we estimate the size of (D + Bϵn)∩
{−1, 1}n using an ℓ1 ϵ-net argument and show that this must be much less than 2n. We
provide details in Appendix F.6 of the full version. ◀

With this lemma, we can complete this step and thus the proof of Theorem 6:

▶ Corollary 14. For n sufficiently large, there exists a near-max cut C such that uC /∈ V +Bϵn.

Proof. See Appendix F.7 of the full version. ◀

4 Sparsifier-based Randomized Algorithms for (1 − ϵ)-approximation

Here we address the randomized upper bound part of Theorem 4, namely that a (1 − ϵ)-
approximation can be achieved in the cut finding setting with Õ(n) queries. Our algorithms
are adaptive. The key notion is that of a sparsifier :

▶ Definition 15. Given weighted graphs G, H on the same set of n vertices with non-negative
weights, we say H is an ϵ-sparsifier of G if all of the following conditions hold:
1. H has Õϵ(n) edges with nonzero weight.
2. For any cut S ⊆ [n], we have (1− ϵ)F (S; G) ≤ F (S; H) ≤ (1 + ϵ)F (S; G).
Here F (S; G) denotes the value of the cut defined by S on the graph G, and similarly for
F (S; H).

ICALP 2024



115:12 On the Cut-Query Complexity of Approximating Max-Cut

▶ Lemma 16. If an algorithm can compute an ϵ-sparsifier of G in Õ(n/ϵ2) queries with high
probability, then it can also find a (1− 2ϵ)-approximate max cut with no additional queries.

Proof. Once the algorithm has a sparsifier H, it can just try all possible cuts and output
the cut U maximizing F (U ; H). Indeed, for any other cut S, we would have F (U ; G) ≥
F (U ;H)

1+ϵ ≥ F (S;H)
1+ϵ ≥ (1−ϵ)F (S;G)

1+ϵ ≥ (1− 2ϵ)F (S; G), so U is indeed a (1− ϵ)-approximate max
cut. ◀

Throughout this section, let d > 5 be constant, and let δ ∈ (1/2, 1) be a constant
sufficiently close to 1. Then let c0 and c1 be sufficiently large positive constants. Also, let
Wtot be the total weight of all edges in the graph, and W the ratio between the largest
and smallest nonzero edge weights. Finally, for a vertex set S ⊆ V (G), let G[S] denote the
vertex-induced subgraph of G on S. Note that we do not require that G be connected. We
organize the remainder of this section as follows:
1. In Section 4.1, we set up and analyze the algorithmic tools necessary to adapt [31]’s

algorithm to weighted graphs.
2. In Section 4.2, we present the direct adaptation of [31]’s algorithm to weighted graphs

and show that it constructs a sparsifier in Õ(n log W ) queries.
3. In Section 4.3, we use ideas introduced by [7] relating edge strengths to maximum

spanning trees in order to construct a sparsifier for weighted graphs in Õ(n) queries, thus
eliminating the dependence of the query complexity on W .

4. Additionally, in Appendix D of the full version, we show that we can achieve a (1− ϵ)-
approximation for max-cut in Õ(n) queries without needing the optimizations in Section
4.3. This is achieved by essentially stopping our adaptation of [31]’s algorithm early. This
will not construct a sparsifier, but it will construct something “close enough” to suffice
for max-cut. Intuitively, we do this by discarding edges of weight < Wtot/poly(n) since
these will not have much effect on the max cut, thereby reducing the problem to one
where W = poly(n).
Given this result, our sparsifier for weighted graphs in Section 4.3 is not necessary for
max-cut specifically, but it makes for a conceptually cleaner algorithm for max-cut and
may be applicable to other problems.

4.1 Setup and Algorithmic Tools
The key idea is the notion of edge strength introduced by [7].

▶ Definition 17 (([7], as stated in [31]). The strong connectivity of G, denoted K(G), is the
value of G’s min cut.

▶ Definition 18 ([7], as stated in [31]). Given an edge e in G, the strong connectivity or edge
strength ke of e is the maximum min cut over all vertex-induced subgraphs of G containing e:

ke = max
S⊆V :u,v∈S

K(G[S]).

The idea introduced by [7] and used by [31] is that subsampling edges of G with probabil-
ities inversely proportional to their strength will give a sparsifier. We cannot do exactly this
in the cut query model, but we can subsample in a way that is “close enough” to independent.
We need some basic primitives to support our algorithm, and we capture all of them in the
following lemma:
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▶ Lemma 19. There exists a data structure supporting the following operations.
1. InitializeDS(H): Initialize the structure’s state and carry out any preprocessing needed

with the starting graph H.
2. Contract(S): Contract a given supernode set S.
3. GetEdge(): Find and return an edge from H (that has not been contracted) with weight

at least 2W (H)
n2 . Here W (H) is the total weight of not-yet-contracted edges.

4. GetTotalWeight(S): Return the total weight of all edges with both endpoints in S (that
have not yet been contracted). S must once again be a set of supernodes.

5. Sample(S): Sample a random edge with both endpoints in S (that has not yet been
contracted), with probability proportional to its weight. S must be a set of supernodes here
as well.

It takes O(n) queries for each call to InitializeDS, O(1) queries for each call to Contract,
O(log n) queries for each call to GetEdge, O(1) queries for each call to GetTotalWeight, and
O(log n) queries for each call to Sample.

Proof. The pre-processing and queries when contracting are due to having to keep track of
(super)node degrees. GetEdge and Sample can be handled using recursive bisection procedures
similar to that used to prove Corollary 2.2 in [31]. We provide details in Appendix G.1 of
the full version. ◀

Before we go any further, we make an important comment about how we regard contraction
in our algorithms (including Lemma 19). When we contract a set of vertices, we regard that
set of vertices as one supernode as usual, but we do not merge any edges that have now
become parallel. So the set of edges will always be a subset of the edges from the original
graph.

It will be convenient to regard our algorithms as having two separate stages, although the
two stages share some ingredients. In the first stage, the algorithm iteratively subsamples
and contracts the graph to estimate the strengths of all edges within a constant factor. In
the second stage, the algorithm uses these edge strength estimates to construct the sparsifier,
following the ideas of [7]. We address these two stages in the next two subsections respectively.

We note that these algorithms are very similar to those presented by [31]; the key
difference is that whenever the sparsification algorithm in [31] subsamples the graph, it does
so independently for each edge. This works because [31] focuses on unweighted graphs. With
weighted graphs, we would like to sample edges proportionately to their weight, and this
cannot be done independently without knowledge of the graph. We modify their subsampling
procedures to obtain algorithms that do not sample completely independently, but still have
the concentration properties that we need.

4.1.1 Constant-Factor Edge Strength Estimates
We next describe the main tool of our edge strength estimation, which we call EstimateAnd-
Contract. It takes in the input graph G where some vertex sets Si have already been
contracted and a strength parameter κ, and further contracts G while also estimating the
strength of any edges that get contracted. For any graph H, let W (H) denote the total edge
weight of H.

We state some key properties of Algorithm 4.1 and defer their proofs to Appendix G.4 of
the full version:

▶ Lemma 20 (Analogous to claim 3.6 from [31]). With probability 1−O(n1−d), for all e such
that ke ≥ κ and e is not contracted by any of the sets in C, it will be assigned k′

e = κ/2 and
contracted.

ICALP 2024



115:14 On the Cut-Query Complexity of Approximating Max-Cut

Algorithm 4.1 EstimateAndContract(G, C, κ, X).

Data: Initial graph G with vertex set V (G) ⊆ [n], disjoint collection C of contracted
sets, strength parameter κ, partial list X of strength estimates

Result: Updated collection of contracted sets C, updated list X of strength estimates
Let G′ be G with all sets from C contracted and λ = c0 log2 n

κ W (G′). (We can find
W (G′) using GetTotalWeight from Lemma 19.)

1. Sample λ edges from G′, proportionally to their weights, with replacement.
If an edge e is sampled at least once, assign weight w(e)

p(e) to it, where
p(e) = 1− (1− we

W (G′) )λ. These newly weighted edges form a new graph G′′.
2. While there exists a connected component of G′′ with a cut of size ≤ (1− δ)κ,

delete all edges of that cut from G′′. Let the resulting connected components of
G′′ be C1, C2, . . . , Cr.

3. For each i ∈ [r], append the tuple (Ci, κ/2) to X. (Here, what we are saying is
“assign a strength estimate of κ/2 to any edge with both endpoints in Ci that
has not already been contracted”, but we phrase it differently to account for the
fact that the algorithm may not actually know these edges.)

4. Add Ci to C (and remove any subsets of Ci to maintain disjointness) for all i ∈ [r].

▶ Lemma 21 (Analogous to claim 3.7 from [31]). Assume that any edge contracted by C has
strength ≥ κ/2. Then with probability 1−O(n1−d), no edge e such that ke < κ/2 is assigned
a strength estimate or contracted.

4.1.2 Sparsifier Construction
Next, we describe our algorithm that will construct a sparsifier if provided constant-factor
strength estimates for all edges in the graph, which we call ConstructSparsifier.

We capture the desired sparsification properties in the following lemma:

▶ Lemma 22. Fix X = [(C1, β1), (C2, β2), . . . , (Cr, βr)] as in ConstructSparsifier (X might
be random, but we condition on a particular list of values for now). Then for each i, define:

E(Ci) = {e ∈ G : both endpoints of e are in Ci}

Ẽ(Ci) = E(Ci)\
⋃

j:Cj⊂Ci

E(Cj)

(Thus Ẽ(Ci) is the set of edges that will be contracted at the time that Ci is contracted.)
Assume each of the following conditions:

1. Each connected component of G is contained in at least one Ci (every edge in G gets
contracted), and

2. For all i and edges e ∈ Ẽ(Ci), we have βi ∈ [ke/4, ke] (edge strength estimates are correct
within a constant factor).

Then with probability 1 − O(n−d), ConstructSparsifier will output a sparsifier H that
approximates the cuts of G within a factor of 1±2ϵ. (Thus this probability is only considering
the randomness of ConstructSparsifier.)

Proof. This follows using similar ideas to [7], but we need to take some extra care because
the subsampling we use to construct the sparsifier is not independent. We provide details in
Appendix G.2.2 of the full version. ◀
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Algorithm 4.2 ConstructSparsifier(G, X).

Data: Graph G with vertex set [n], list X = [(C1, β1), (C2, β2), . . . , (Cr, βr)] of
strength estimates. We assume that {C1, . . . , Cr} is a laminar family of
vertex sets and that if Ci ⊂ Cj then i < j. (This is because we will be
contracting C1, . . . , Cr in that order.) Note that we do not assume here that
X includes a strength estimate for every edge.

Result: Potential sparsifier H

Initialize G′ = G and H to be empty.
InitializeDS(G′). (This is just to reset and ignore any previous contractions we may
have done in EstimateAndContract.)

for i← 1 to r do
1. Let µi = c1 log2 n

ϵ2βi
W (Ci). (Here W () is with respect to G′, and once again can

be found using GetTotalWeight from Lemma 19.)
2. Sample µi edges from Ci proportionally to their weights, with replacement.

If an edge e is sampled at least once, add it to H with weight we

pe
, where

pe = 1− (1− we

W (Ci) )µi is the probability that e is sampled at least once.
(Note that this sampling would be done by calling Sample(Ci) from Lemma 19.)

3. Contract Ci in G′.
end

4.2 Sparsification with Õ(n log W ) Queries
Here we analyze the naive generalization of [31]’s sparsifier to weighted graphs. The procedure
is described in Algorithm 4.3.

Algorithm 4.3 NaiveWeightedSubsample(G, T ).

Data: Graph G on n vertices, positive real parameter T

Result: A potential (2ϵ)-sparsifier H of G.
Initialize C = ∅ and X as an empty list.
InitializeDS(G).
Find Wtot by running GetTotalWeight(G).
Initialize κ to be the smallest power of 2 that is at least Wtot.
while GetTotalWeight(G) > 0 and κ > Wtot/T do

EstimateAndContract(G, C, κ, X)
κ← κ/2

end
H ← ConstructSparsifier(G, X).

▶ Theorem 23. NaiveWeightedSubsample(G,∞) runs in O(n log3 n(log n + log W + 1
ϵ2 ))

queries and outputs a (2ϵ)-sparsifier H with probability 1−O(n1−d(log n + log W )).

Proof. We outline the proof here and provide details in Appendices G.5 (correctness) and
G.8 (efficiency) of the full version. The proof proceeds in two parts.

First, we address the calls to EstimateAndContract. Given Lemmas 4.6 and 4.7, Estim-
ateAndContract can be thought of as estimating the strengths of and then contracting edges
whose strengths are within a window that is a factor of 4 wide. The lemmas tell us that
these strength estimates are accurate within a factor of 4. Then NaiveWeightedSubsample
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essentially “slides” this window across all possible edge strengths so that all edges of G are
assigned a strength estimate. This part has query complexity O(n log3 n(log n + log W )); the
log W term is because the outer loop could run for O(log n + log W ) iterations. This is also
why the success probability depends on W , as this is obtained by taking a union bound over
all iterations.

Secondly, because all edges are assigned an accurate strength estimate (within a constant
factor), Lemma 22 tells us that ConstructSparsifier will output a (2ϵ)-sparsifier with high
probability. This part has query complexity O(n log3 n/ϵ2). ◀

4.3 Sparsification with Õ(n) Queries
We now show how to eliminate the dependence of the query complexity and success probability
on W , thus constructing sparsifiers in Õ(n) queries. We begin by setting up the necessary
ideas.

4.3.1 Crude Edge Strength Estimates
Recall that the key problem with Algorithm 4.3 was that our “sliding window” for edge
strength estimation could potentially repeat O(log n + log W ) times. The key idea is to
mitigate this by finding very crude (within a factor of n4) estimates for the edge strengths
for all edges in G, before refining these estimates using EstimateAndContract. We do this
using the idea of [7] to estimate edge strengths from the maximum spanning forest (MSF) of
G. Fix an MSF T of G. Then for any edge e with endpoints i, j, define de = di,j to be the
minimum weight of an edge on the MSF path between the endpoints of e. We first state a
lemma shown in [7]:

▶ Lemma 24 ([7]). For all edges e, we have de ≤ ke ≤ n2de.

This would immediately give us sufficient edge strength estimates but we do not know of
a way to find the MSF efficiently in the cut query model. In fact, we can adapt the max cut
dimension argument from Lemma A.3 in the full version to a “max tree dimension” argument
to show that deterministically finding the MSF requires Ω(n2) queries; see Appendix A.1 of
the full version for details. So instead, we run what we call “approximate Kruskal” using the
primitives we have available from Lemma 19.

Algorithm 4.4 ApproximateKruskal(G).

Data: Graph G on n vertices
Result: A forest T̃ using the edges of G.
Initialize T̃ to be the empty graph on n vertices.
InitializeDS(G).
while GetTotalWeight(G) > 0 do

e = GetEdge()
Contract(e)
Add e to T̃ .

end

It follows from Lemma 19 that ApproximateKruskal can be run in O(n log n) queries.
Once we run ApproximateKruskal, we will have a spanning forest of G so we will also know
its connected components. Moreover, the following lemma tells us that even this crude
approximation to the MSF suffices to give us edge strength estimates. We defer the proofs of
this lemma and its straightforward corollary to Appendix G.6.1 of the full version.
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▶ Lemma 25. For any distinct i, j, define d̃i,j as follows:
If i, j are connected in G, then let d̃i,j be the minimum weight of an edge on the path in
T̃ connecting i and j.
Otherwise, let d̃i,j = 0.

Then for any i, j that are connected in G, we have 2
n2 di,j ≤ d̃i,j ≤ di,j for all i, j.

Note that we only assume here that T is maximal; any assumptions we make about T̃ are
baked into GetEdge.

▶ Corollary 26. For all distinct i, j, we have ki,j ∈ [d̃i,j , n4

2 d̃i,j ].

4.3.2 Fast Weighted Subsampling
We now describe how to use our crude edge strength estimates to construct a sparsifier
in Õ(n) queries. The idea is that by Lemma 21, any edges with strength < κ/2 will be
deleted in Step 2 of Algorithm 4.1. But we can use our crude edge strength estimates
to preemptively identify some edges that will definitely be deleted, and then delete these
edges to disconnect the graph a bit before running EstimateAndContract. We describe this
procedure in Algorithm 4.5.

Algorithm 4.5 FastWeightedSubsample(G).

Data: Graph G on n vertices
Result: A potential (2ϵ)-sparsifier H of G.
Run ApproximateKruskal on a copy of G and calculate d̃i,j for all i, j.
Initialize L to a list of all nonzero values of d̃i,j .
Initialize C = ∅, κ =∞, and X as an empty list.
InitializeDS(G).
while L ̸= ∅ do

Let D̃ = max L and C =
{

(i, j) : d̃i,j < D̃/(2n5)
}

.
Let S1, . . . , Sr be the connected components of Kn after we remove all edges from
C.

Let κ′ be the smallest power of 2 that is at least n4D̃/2.
κ← min(κ, κ′)
while κ ≥ D̃/(2n) do

for i← 1 to r do
EstimateAndContract(G[Si], C, κ, X)
Remove all contracted edges from L.

end
κ← κ/2

end
end
H ← ConstructSparsifier(G, X).

We make one comment here about FastWeightedSubsample: for the algorithm as presented
to even be well-defined, we need to check that each Si at any stage of the algorithm is the union
of some collection of supernodes. If not, it does not make sense to run EstimateAndContract
on each G[Si]. This condition is also necessary to ensure the applicability of Lemma 19 to
each call to EstimateAndContract; Contract, GetTotalWeight, and Sample all require that
their input S be a union of supernodes. We defer the verification of this and the proof of our
final theorem to Appendices G.7 (correctness) and G.8 (efficiency) of the full version:
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▶ Theorem 27. FastWeightedSubsample runs in O(n log3 n(log n + 1
ϵ2 )) queries and outputs

a (2ϵ)-sparsifier H with probability 1−O(n5−d).

▶ Corollary 28. For any ϵ > 0, the query complexity for a randomized algorithm to construct
an ϵ-sparsifier with 1−o(1) probability for a weighted undirected graph is Õ(n). This algorithm
is adaptive.

By Lemma 16, this yields our desired algorithmic result for max-cut:

▶ Corollary 29. For any c < 1, the query complexity for a randomized algorithm to achieve
a c-approximation with 1− o(1) probability for global max-cut on a weighted undirected graph
in the cut finding setting is Õ(n). This algorithm is adaptive.

We remind the reader that Theorem 27 extends the query-efficient sparsifier of [31] to
weighted graphs (as we saw in Section 4.2, a naive generalization of [31] requires Õ(n log W )
queries).
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