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Abstract
We show that the minimum total coefficient size of a Nullstellensatz proof of the pigeonhole principle
on n + 1 pigeons and n holes is 2Θ(n). We also investigate the ordering principle and construct
an explicit Nullstellensatz proof for the ordering principle on n elements with total coefficient size
2n − n.
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1 Introduction

Given a system {pi = 0 : i ∈ [m]} of m polynomial equations, a Nullstellensatz proof
of infeasibility is an equality of the form 1 =

∑m
i=1 piqi for some polynomials {qi = 0 :

i ∈ [m]}. Hilbert’s Nullstellensatz1 says that the Nullstellensatz proof system is complete
over algebraically closed fields, i.e., a system of polynomial equations has no solutions over
an algebraically closed field if and only if there is a Nullstellensatz proof of infeasibility.
However, Hilbert’s Nullstellensatz does not give any bounds on the degree or size needed for
Nullstellensatz proofs.

The degree of Nullstellensatz proofs has been extensively studied. Grete Hermann showed
a doubly exponential degree upper bound for the ideal membership problem [24] which
implies the same upper bound for Nullstellensatz proofs. Several decades later, W. Dale
Brownawell gave an exponential upper bound on the degree required for Nullstellensatz
proofs over algebraically closed fields of characterisic zero [11]. A year later, János Kollár
showed that this result holds for all algebraically closed fields [27].

For specific problems, the degree of Nullstellensatz proofs can be analyzed using designs
[14]. Using designs, Nullstellensatz degree lower bounds have been shown for many problems
including the pigeonhole principle, the induction principle, the housesitting principle, and
the mod m matching principles [6, 5, 15, 16, 12]. More recent work showed that there is
a close connection between Nullstellensatz degree and reversible pebbling games [19] and
that lower bounds on Nullstellensatz degree can be lifted to lower bounds on monotone span
programs, monotone comparator circuits, and monotone switching networks [28].

1 Technically, this is the weak form of Hilbert’s Nullstellensatz. Hilbert’s Nullstellensatz actually says that
given polynomials p1, . . . , pm and another polynomial p, if p(x) = 0 for all x such that pi(x) = 0 for
each i ∈ [m] then there exists a natural number r such that pr is in the ideal generated by p1, . . . , pm.
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117:2 Nullstellensatz Total Coefficient Size Bounds for the Pigeonhole Principle

For analyzing the size of Nullstellensatz proofs (i.e., the number of monomials in the
proof), a powerful technique is the size-degree relation shown by Russell Impagliazzo, Pavel
Pudlák, and Jiří Sgall for polynomial calculus [25], which also holds for resolution proofs [7]
and for sum of squares proofs with {0, 1} variables [3]. The size-degree relation says that if
there is a size S polynomial calculus proof then there is a polynomial calculus proof of degree
O(

√
n log S). Thus, if we have an Ω(n) degree lower bound for polynomial calculus, this

implies a 2Ω(n) size lower bound for polynomial calculus (which also holds for Nullstellensatz
as Nullstellensatz is a weaker proof system). However, the size-degree relation does not give
any size lower bound when the degree is O(

√
n), and we know of few other techniques for

analyzing the size of Nullstellensatz proofs.
In this paper, instead of investigating the degree or size of Nullstellensatz proofs, we

investigate the total coefficient size of Nullstellensatz proofs, i.e., the sum of the magnitudes
of the coefficients of the monomials in the proof. Total coefficient size is a reasonably
natural measure which is relatively unexplored (though as we discuss below, there has been
considerable research on closely related measures such as unary Nullstellensatz size, unary
Sherali-Adams size, and the total bit complexity of proofs [2, 1, 9, 20, 31]). There are several
reasons why total coefficient size bounds in particular are interesting.

First, analyzing the total coefficient size of proofs may give insight into proof size in
settings where we currently cannot prove size lower bounds. If we can prove a large total
coefficient size lower bound, this shows that any proof must either have large size or involve
large coefficients. Unless there is a reason to suspect that large coefficients are helpful for
making the proof shorter, this gives considerable evidence for a lower bound on proof size.

Second, lower bounds on total coefficient size have some direct implications. As observed
by [20], a total coefficient size lower bound for the stronger Sherali-Adams proof system
implies a lower bound for the reversible resolution proof system which captures the Max-SAT
resolution proof system (see [10]) for Max SAT. Similarly, [20] observes that a total coefficient
size lower bound for Nullstellensatz implies a lower bound for the reversible resolution with
terminals proof system, which is a weaker variant of reversible resolution.

Finally, investigating the total coefficient size of proofs gives insight into the following
question. Are there natural examples where having fractional coefficients greatly reduces the
total coefficient size needed for Nullstellensatz and/or Sherali-Adams proofs? We note that
this question is not addressed by [20]. For example, [20] shows that there are n-variate CNF
formulas F such that F can be refuted by constant width resolution proofs but any Sherali-
Adams proof of F requires either exponentially many monomials or requires coefficients of
exponential size (see Theorem 1 and the last paragraph of Section 1.1 in [20]). However, this
does not rule out the existence of a proof where there are exponentially many monomials
but the coefficient for each monomial is exponentially small so the total coefficient size is
still small.

Proving total coefficient size lower bounds for a problem rules out this possibility. Con-
versely, if there is a natural example where the minimum proof size is large but the total
coefficient size is small, that would be quite interesting.

1.1 Our results
In this paper, we show that the minimum total coefficient size of a Nullstellensatz proof of
the pigeonhole principle is 2Θ(n). More precisely, we show the following bounds.

▶ Theorem 1. For all n ≥ 1, any Nullstellensatz proof of the pigeonhole principle with n + 1
pigeons and n holes has total coefficient size Ω

(
n

3
4

(
2√
e

)n)
.
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We note that this lower bound also holds for the functional pigeonhole principle, where
each pigeon must go to exactly one hole (instead of at least one hole).

▶ Theorem 2. For all n ≥ 1, there is a Nullstellensatz proof of the pigeonhole principle with
n + 1 pigeons and n holes with total coefficient size at most 25(n+1).

▶ Remark 3. Note that Nullstellensatz size lower bounds do not imply total coefficient size
lower bounds, because we could have a proof with many monomials but a small coefficient
(absolute value less than 1) on each monomial. Indeed, in Appendix A, we show an example
where the minimum total coefficient size of a Nullstellensatz proof is smaller than the
minimum size of a Nullstellensatz proof. Thus, the exponential size polynomial calculus lower
bounds for the pigeonhole principle from Razborov’s Ω(n) degree lower bound for polynomial
calculus [30] and the size-degree relation [25] do not imply total coefficient size lower bounds
for the pigeonhole principle.

In addition, we investigate the total coefficient size of Nullstellensatz proofs of the ordering
principle in Appendix C. We show the following upper bound by constructing an explicit
Nullstellensatz proof.

▶ Theorem 4. For all n ≥ 3, there is a Nullstellensatz proof of the ordering principle on n

elements with size and total coefficient size 2n − n. This upper bound is tight for n ≤ 5.

In the full version of this paper [29], we also discuss total coefficient size for the Sherali-
Adams and sum of squares proof systems. We observe that even though resolution is a
dynamic proof system, the O(n3) size resolution proof of the ordering principle found by
Gunnar Stålmark [32] can be captured by a one line sum of squares proof with small size
and coefficients.

1.2 Comparison with related work
Like previous resolution, polynomial calculus, and Sherali-Adams lower bounds for the
pigeonhole principle (e.g. [22, 30, 18]), our analysis is inspired by the idea that if we only
look at a small number of pigeons, we cannot detect a problem. That said, our analysis
differs considerably from previous analyses of the pigeonhole principle as we need to bound
the value of a linear program by constructing a dual certificate (see Proposition 12). To
construct this dual certificate, we need to assign a value to every possible assignment of the
variables, so we need to consider all n pigeons at once which requires a different analysis.

In terms of the overall framework, the work which is most similar to ours is that of
De Rezende, Potechin, and Risse [31] which shows a total coefficient size Sherali-Adams
lower bound for showing that a random graph does not contain a large clique. Like our
paper, [31] constructs a dual certificate which assigns a value to every possible assignment of
the variables. That said, [31] uses different techniques to construct and analyze their dual
certificate. In particular, while the construction in [31] is inspired by the pseudo-calibration
technique used to prove SoS lower bounds for planted clique [4] and the analysis heavily uses
the fact that the graph is random, our construction and analysis is combinatorial and takes
advantage of symmetry.

Another work which is closely related to ours is that of Göös et al. [20]. [20] analyzes the
size of unary Nullstellensatz and Sherali-Adams proofs, which is equivalent to analyzing the
total coefficient size of Nullstellensatz and Sherali-Adams proofs with the added restriction
that all coefficients are integers. The authors show that there are deep connections between
unary Nullstellensatz, unary Sherali-Adams, resolution, and total NP search problems
(TFNP). In particular, they prove the following results (among others) which show that there
are considerable advantages to having the restriction that all coefficients are integers.

ICALP 2024
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1. Resolution is not polynomially simulated by unary Sherali-Adams, and reversible resolution
is not polynomially simulated by Nullstellensatz. Since unary Sherali-Adams can simulate
reversible resolution, this implies that resolution is not simulated by reversible resolution.

2. Roughly speaking, unary Nullstellensatz corresponds to the TFNP class PPAD which
corresponds to the principle that every directed graph with an unbalanced node (i.e., a
node whose indegree is not equal to its outdegree) must have another unbalanced node.
Similarly, unary Sherali-Adams corresponds to the TFNP class PPADS which corresponds
to the principle that every directed graph with a postitively unbalanced node (outdegree
exceeds indegree) must have a negatively unbalanced node (indegree exceeds outdegree).

3. There is a reversible resolution refutation of a CNF F if and only if there is both a
resolution refutation of F and a unary Sherali-Adams refutation of F . Similarly, there is
a reversible resolution with terminals refutation of a CNF F if and only if there is both a
resolution refutation of F and a unary Nullstellensatz refutation of F .

In this paper, we show that there are also advantages to allowing fractional coefficients.
Proving a total coefficient size lower bound when fractional coefficients are allowed removes
the possibility of having a proof with many monomials but a small total coefficient size.
In addition, allowing fractional coefficients gives us a linear program for minimum total
coefficient size which can be analyzed directly. As a result, while [20] needs several steps to
show their separations, we show our bounds directly.

Finally, a natural alternative to analyzing the size or total coefficient size of proofs is to
analyze the bit complexity of proofs. One way to prove a lower bound on the bit complexity
of a proof is to show an exponentially larger lower bound on the total coefficient size of the
proof. Hakoniemi [23] uses this approach to give an example where there is a polynomial size
sum of squares proof of degree 2 but every sum of squares proof requires doubly exponential
total coefficient size and thus exponential bit complexity.

While it is generally hard to lower bound the bit complexity of a proof without lower
bounding the proof size or total coefficient size, this has been done for the binary value
principle which says that a number written in binary with no minus sign must be non-negative.
More precisely, if x1, . . . , xn ∈ {0, 1} then we cannot have that 1+x1 +2x2 + . . .+2n−1xn = 0.
By considering the primes p ∈ [1, 2n] and showing that the proof must involve a coefficient
which is divisible by all such primes, [1] and [2] show bit complexity lower bounds for
powerful proof systems, namely polynomial calculus with extensions and the ideal proof
system (see [21]) where the latter bound is conditional on the Shub-Smale hypothesis. This
technique is powerful but is specialized to this problem and is very different from our
techniques.

2 Nullstellensatz total coefficient size

We start by defining total coefficient size for Nullstellensatz proofs and describing a linear
program for finding the minimum total coefficient size of a Nullstellensatz proof. In this
paper, we only consider problems on Boolean variables, so we give definitions which are
specialized for this setting.

▶ Definition 5. For each Boolean variable xi, we define the twin variable x̄i to be x̄i = 1−xi.

▶ Definition 6. Given Boolean variables x1, . . . , xN , we define a monomial to be a product
of the form

(∏
i∈S xi

) (∏
j∈T x̄j

)
for some disjoint subsets S, T of [N ].
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▶ Definition 7. Given a polynomial f on Boolean variables x1, . . . , xN , we define the total
coefficient size T (f) of f to be the minimum sum of the magnitudes of coefficients when we
decompose f into monomials. For example, if f(x1, x2) = 1 − x1 − x2 + 2x1x2, then T (f) = 2
as we can write f = x̄1x̄2 + x1x2 = (1 − x1)(1 − x2) + x1x2.

We will use the following terminology:

▶ Definition 8. Given a system {pi = 0 : i ∈ [m]} of polynomial equations, we call each of
the pi an axiom. We say that a polynomial W is a weakening of the axiom pi if W = rpi for
some monomial r.

We now define Nullstellensatz proofs and their total coefficient size.

▶ Definition 9. Given a system {pi = 0 : i ∈ [m]} of polynomial equations on Boolean
variables x1, . . . , xN , a Nullstellensatz proof of infeasibility is an equality of the form

1 =
m∑

i=1
piqi +

N∑
j=1

(x2
j − xj)gj +

N∑
j=1

(xj + x̄j − 1)hj

for some polynomials {qi : i ∈ [m]}, {gj : j ∈ [N ]}, and {hj : j ∈ [N ]}. We define the total
coefficient size of such a Nullstellensatz proof to be

∑m
i=1 T (qi).

▶ Remark 10. We do not include the total coefficient size of pi, gj , or hj in the total
coefficient size of the proof as we want to focus on the complexity of the proof as opposed to
the complexity of the axioms and manipulating the Boolean variables. That said, in this
paper we only consider systems of polynomial equations where each pi is a monomial, so
this choice does not matter: in this setting T (pi) = 1 for all i, and it is both possible and
optimal to take gj = 0 for all j.2 In terms of weakenings, in this setting a Nullstellensatz
proof is an equality

1 =
∑
W

cW W,

where W ranges over all possible weakenings of axioms and cW ∈ R. The total coefficient
size of a Nullstellensatz proof is

∑
W |cW |.

The minimum total coefficient size of a Nullstellensatz proof can be found using a linear
program. To illustrate this, we now give an example.

▶ Example 11. Consider the following system of equations on two variables x1, x2:

1 − x1 = 0
1 − x2 = 0

x1x2 = 0

Given these axioms, the possible weakenings W (modulo the Boolean axioms) are 1 − x1,
(1 − x1)x2, (1 − x1)(1 − x2), 1 − x2, x1(1 − x2), and x1x2.

2 In other words, we can assume without loss of generality that all terms in a Nullstellensatz proof have
degree at most 1 in each variable. If an axiom contains a variable xi, there is no point in multiplying
the axiom by xi or x̄i = (1 − xi), because x2

i = xi and xi(1 − xi) = 0 modulo the Boolean axioms. The
reasoning is similar in the case that an axiom contains a variable x̄i = (1 − xi).

ICALP 2024
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To find a Nullstellensatz proof with minimum total coefficient size, we write a linear
program with a variable cW for each weakening W . We also have a variable bW for each
weakening W representing the absolute value of cW with the constraints bW − cW ≥ 0 and
bW + cW ≥ 0. The objective is to minimize

∑
W bW .

To ensure that
∑

W cW W = 1, we have a constraint for each of the 4 possible assignments
of values to the variables. For example, one possible assignment is x1 = 0, x2 = 0. We ensure
that

∑
W cW W evaluates to 1 on this assignment by having the constraint

c(1−x1) + c(1−x2) + c(1−x1)(1−x2) = 1,

because the weakenings 1 − x1, 1 − x2, and (1 − x1)(1 − x2) evaluate to 1 on this assignment
while the other weakenings evaluate to 0. The analogous constraints for the other 3 possible
assignments of values to the variables are as follows:
1. c(1−x1) + c(1−x1)x2 = 1 for the assignment x1 = 0, x2 = 1
2. c(1−x2) + cx1(1−x2) = 1 for the assignment x1 = 1, x2 = 0
3. cx1x2 = 1 for the assignment x1 = 1, x2 = 1.

The set of optimal solutions to this linear program is

{cx1x2 = 1, c(1−x1) = cx1(1−x2) = a, c(1−x1)x2 = c(1−x2) = 1−a, c(1−x1)(1−x2) = 0 : a ∈ [0, 1]}

which corresponds to the equality

1 = x1x2 + a ((1 − x1) + x1(1 − x2)) + (1 − a) ((1 − x1)x2 + (1 − x2)) .

In the same way as the above example, we can find the minimum total coefficient size
of any system of equations with a linear program. In order to show a lower bound on total
coefficient size, we will analyze the dual of this linear program. Because the primal has a
constraint for each assignment of values to the variables x ∈ {0, 1}N , the dual has a variable
for each assignment x ∈ {0, 1}N . We will let D : {0, 1}N → R denote the dual.

We observe that D induces a linear map D̂ from polynomials to R in a natural way, by
taking D̂(f) =

∑
x∈{0,1}N D(x)f(x). It turns out that the dual is equivalent to:

Maximize D̂(1) subject to the constraint that for each weakening W , |D̂(W )| ≤ 1.

Weak duality, which is what we need to prove lower bounds on total coefficient size, can
be seen directly as follows.

▶ Proposition 12. If D̂ is a linear map from polynomials to R such that |D̂(W )| ≤ 1 for all
weakenings W , then any Nullstellensatz proof has total coefficient size at least D̂(1).

Proof. Given a Nullstellensatz proof 1 =
∑m

i=1 piqi, applying D̂ to both sides gives D̂(1) =∑m
i=1 D̂(piqi) ≤

∑m
i=1 T (qi). The inequality holds because for any qi, for any way of writing

qi in terms of monomials r as qi =
∑

r cirr, we have D̂(piqi) =
∑

r cirD̂(rpi) ≤
∑

r |cir|
because rpi is a weakening. ◀

3 Total coefficient size lower bound for the pigeonhole principle

In this section, we prove Theorem 1, our total coefficient size lower bound for the pigeonhole
principle. We start by formally defining the pigeonhole principle.
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▶ Definition 13 (pigeonhole principle (PHPn)). Intuitively, the pigeonhole principle says that
if n + 1 pigeons are assigned to n holes, then some hole must have more than one pigeon.
Formally, for n ≥ 1, we define PHPn to be the statement that the following system of axioms
is infeasible:

For each i ∈ [n + 1] and j ∈ [n], we have a variable xi,j and the Boolean axiom
x2

i,j − xi,j = 0. xi,j = 1 represents pigeon i being in hole j, and xi,j = 0 represents pigeon
i not being in hole j.
For each i ∈ [n + 1], we have the axiom

∏n
j=1 x̄i,j = 0 representing the constraint that

each pigeon must be in at least one hole.
For each pair of distinct pigeons i1, i2 ∈ [n + 1] and each hole j ∈ [n], we have the axiom
xi1,jxi2,j = 0 representing the constraint that pigeons i1 and i2 cannot both be in hole j.

We prove our lower bound on total coefficient size for PHPn by constructing and analyzing
a dual solution D : {0, 1}(n+1)n → R. In our dual solution, the only assignments of values to
the variables x ∈ {0, 1}(n+1)n for which D(x) ̸= 0 are those where each pigeon goes to exactly
one hole, i.e., for each pigeon i, exactly one of the xi,j is 1. As a result, Theorem 1 also
applies to the functional pigeonhole principle. Note that there are nn+1 such assignments. In
the rest of this section, when we refer to assignments or write a summation or expectation
over assignments x, we refer specifically to these nn+1 assignments.

Recall that the dual constraints are

D̂(W ) =
∑

x∈{0,1}N

D(x)W (x) ∈ [−1, 1]

for all weakenings W . Note that since D(x) is only nonzero for assignments x where each
pigeon goes to exactly one hole, for any weakening W of an axiom of the form

∏n
j=1 x̄i,j = 0, we

have D̂(W ) = 0. Thus, it is sufficient to consider weakenings W of the axioms xi1,jxi2,j = 0.
For simplicity, in order to construct a dual solution, we first ignore the constraints

|D̂(W )| ≤ 1. Then, we obtain a dual solution by normalizing D, i.e., dividing D by
maxW |D̂(W )|. Thus, we can rewrite the objective value of the dual program as D̂(1)

maxW |D̂(W )|
.

Letting E denote the expectation over a uniform assignment where each pigeon goes to
exactly one hole, D̂(1)

maxW |D̂(W )|
= E(D)

maxW |E(DW )| . Thus, it is sufficient to construct D and
analyze E(D) and maxW |E(DW )|.

Before constructing and analyzing D, we provide some intuition for our construction.
The idea is that if we consider a subset of n pigeons then D should behave like the indicator
function for whether those n pigeons all go to different holes. More concretely, for any
polynomial p which does not depend on some pigeon i (i.e., p does not contain xi,j or x̄i,j

for any j ∈ [n]), we want

E(Dp) = n!
nn

E(p | all pigeons in [n + 1] \ {i} go to different holes)

Given this intuition, we now present our construction. Our dual solution D will be a
linear combination of the following functions:

▶ Definition 14 (functions JS). For each subset of pigeons S ⊊ [n + 1] of size at most n,
we define the function JS that maps assignments to {0, 1} so that for each assignment x,
JS(x) = 1 if all pigeons in S are in different holes according to x and JS(x) = 0 otherwise.

Note that if |S| = 0 or |S| = 1, then JS is the constant function 1. In general, the
expectation of JS over a uniform assignment is E(JS) =

(∏|S|
k=1(n + 1 − k)

)
/n|S|.

ICALP 2024
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▶ Definition 15 (dual solution D). Our dual solution D is:

D =
∑

S⊊[n+1]

cSJS ,

where the coefficients cS are cS = (−1)n−|S|(n−|S|)!
nn−|S| .

We will lower-bound the dual value E(D)/ maxW |E(DW )| by computing E(D) and then
upper-bounding maxW |E(DW )|. In both calculations, we will use the following key property
of D which we introduced in our intuition for the construction:

▶ Lemma 16. If p is a polynomial which does not depend on pigeon i (i.e., p does not contain
any variables of the form xi,j or x̄i,j), then E(Dp) = E(J[n+1]\{i}p).

Proof. Without loss of generality, suppose p does not contain any variables of the form x1,j

or x̄1,j . Let T be any subset of pigeons that does not contain pigeon 1 and that has size at
most n − 1. Observe that

E(JT ∪{1}p) = n − |T |
n

E(JT p)

because when the pigeons in T go to different holes, the probability that pigeon 1 goes to a
different hole is n−|T |

n , and p does not depend on the location of pigeon 1. Since

cT ∪{1} = (−1)n−1−|T |(n − 1 − |T |)!
nn−1−|T |

= − n

n − |T |
· (−1)n−|T |(n − |T |)!

nn−|T | = − n

n − |T |
cT

we have that for all T ⊊ {2, . . . , n + 1}, E(cT ∪{1}JT ∪{1}p) + E(cT JT p) = 0. Thus, all terms
in the sum E(Dp) =

∑
S⊊[n+1] E(cSJSp) cancel, except J{2,3,...,n+1}. Since c{2,3,...,n+1} = 1,

we have that E(Dp) = E(J{2,3,...,n+1}p), as needed. ◀

The value of E(D) follows immediately:

▶ Corollary 17.

E(D) = n!
nn

.

Proof. Let p = 1. By Lemma 16, E(D) = E(J{2,...,n+1}) = n!
nn . ◀

3.1 Upper bound on maxW |E(DW )|
We now upper bound maxW |E(DW )|. To do this, we introduce the following notation:

▶ Definition 18 (HW,i). Given a weakening W , we define a set of holes HW,i ⊆ [n] for each
pigeon i ∈ [n + 1] so that W (x) = 1 if and only if each pigeon i ∈ [n + 1] is mapped to one of
the holes in HW,i. More precisely,

If W contains terms xi,j1 and xi,j2 for distinct holes j1, j2, then HW,i = ∅ (i.e., it is
impossible that W (x) = 1 because pigeon i cannot go to both holes j1 and j2).
If W contains exactly one term of the form xi,j, then HW,i = {j}. (i.e., for all x such
that W (x) = 1, pigeon i goes to hole j).
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If W contains no terms of the form xi,j, then HW,i is the subset of holes j such that W

does not contain the term x̄i,j . (i.e., if W contains the term x̄i,j , then for all x such that
W (x) = 1, pigeon i does not go to hole j.)

The key property we will use to bound maxW |E(DW )| follows immediately from
Lemma 16:

▶ Lemma 19. Let W be a weakening. If there exists some pigeon i ∈ [n + 1] such that
HW,i = [n] (i.e., W does not contain any terms of the form xi,j or x̄i,j), then E(DW ) = 0.

Proof. Without loss of generality, suppose W is a weakening of the axiom x2,1x3,1 = 0 and
HW,1 = [n]. By Lemma 16, E(DW ) = E(J{2,...,n+1}W ). However, E(J{2,...,n+1}W ) = 0
because if W (x) = 1, then pigeons 2 and 3 must both go to hole 1. ◀

We now make the following definition and then state a corollary of Lemma 19.

▶ Definition 20 (W flip
S ). Let W be a weakening of the axiom xi1,jxi2,j = 0 for pigeons i1, i2

and hole j. Let S ⊆ [n + 1] \ {i1, i2}. We define W flip
S , which is also a weakening of the

axiom xi1,jxi2,j = 0, as follows.
For each pigeon i3 ∈ S, we define W flip

S so that HW flip
S

,i3
= [n] \ HW,i3 .

For each pigeon i3 /∈ S, we define W flip
S so that HW flip

S
,i3

= HW,i3 .

Note: Technically, there are multiple possible weakenings W flip
S which satisfy these properties

(e.g. if n = 2, W = x1,1x2,1x3,1, and S = {3}, then W flip
S can be x1,1x2,1x̄3,1 or x1,1x2,1x3,2

or even x1,1x2,1x̄3,1x3,2, among others). We arbitrarily choose any such weakening W flip
S .

In other words, W flip
S is obtained from W by flipping the sets of holes that the pigeons in

S can go to in order to make the weakening evaluate to 1.

▶ Corollary 21. Let W be a weakening of the axiom xi1,jxi2,j = 0 for pigeons i1, i2 and hole
j. Let S ⊆ [n + 1] \ {i1, i2}. Then

E
(

DW flip
S

)
= (−1)|S| · E(DW ).

Proof. It suffices to show that for i3 ∈ [n + 1] \ {i1, i2}, we have E
(

DW flip
{i3}

)
= −E(DW ).

Indeed, let W ′ be a weakening such that W ′(x) = W (x) + W flip
{i3}(x) for all assignments

x where each pigeon goes to exactly one hole. (For example, if n = 2, W = x1,1x2,1x3,1,
and i3 = 3, then we can take W flip

{3} to be x1,1x2,1x3,2, in which case W ′ = x1,1x2,1.) Then

E(DW ′) = 0 by Lemma 19 because HW ′,i3 = [n], so E
(

DW flip
{i3}

)
= −E(DW ). ◀

Using Corollary 21, we can bound maxW |E(DW )| using Cauchy-Schwarz. We first show
an approach that does not give a strong enough bound. We then show how to modify the
approach to achieve a better bound.

▶ Definition 22. Given functions F, G on the assignments mapping each pigeon to exactly
one hole, we define ⟨F, G⟩ = E(FG). We define ∥F∥ =

√
⟨F, F ⟩ =

√
E(F 2).
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3.1.1 Unsuccessful approach to upper bound maxW |E(DW )|
Consider maxW |E(DW )|. By Lemma 21, it suffices to take the max over weakenings W such
that, if W is a weakening of the axiom xi1,jxi2,j = 0, then for all pigeons i3 ∈ [n+1]\{i1, i2},
we have |HW,i3 | ≤ ⌊n/2⌋ (because if |HW,i3 | > ⌊n/2⌋, we can flip HW,i3 without changing
|E(DW )|). For any such W , we have

∥W∥ =
√
E(W 2) ≤

√(
1
n

)2(1
2

)n−1
= n−12−(n−1)/2.

By Cauchy-Schwarz,

|E(DW )| ≤ ∥D∥∥W∥

≤ ∥D∥n−12−(n−1)/2.

Using the value of E(D) from Corollary 17, the dual value E(D)/ maxW |E(DW )| is at least

n!
nn

· n2(n−1)/2

∥D∥
= Θ̃

((
e√
2

)−n

· 1
∥D∥

)

by Stirling’s formula. Thus, in order to achieve an exponential lower bound on the dual value,
we would need 1/∥D∥ ≥ Ω(cn) for some c > e/

√
2. However, this requirement is too strong,

as we will show in Lemma 26 that 1/∥D∥ = Θ̃
(
(
√

e)n). Directly applying Cauchy-Schwarz
results in too loose of a bound on maxW |E(DW )|, so we now modify our approach.

3.1.2 Successful approach to upper bound maxW |E(DW )|

▶ Definition 23 (W {−1,0,1}
i1,i2

). Let W be a weakening of the axiom xi1,jxi2,j = 0 for pigeons
i1, i2 and hole j. We define a function W

{−1,0,1}
i1,i2

that maps assignments to {−1, 0, 1}. For
an assignment x,

If pigeons i1 and i2 do not both go to hole j, then W
{−1,0,1}
i1,i2

(x) = 0.
Otherwise, let V (x) = |{i3 ∈ [n + 1] \ {i1, i2} : pigeon i3 does not go to HW,i3}|. Then
W

{−1,0,1}
i1,i2

(x) = (−1)V (x).

Note that W
{−1,0,1}
i1,i2

is a linear combination of the W flip
S :

▶ Lemma 24. Let W be a weakening of the axiom xi1,jxi2,j = 0 for pigeons i1, i2 and hole
j. We have:

W
{−1,0,1}
i1,i2

=
∑

S⊆[n+1]\{i1,i2}

(−1)|S| · W flip
S .

It follows that:

E
(

DW
{−1,0,1}
i1,i2

)
= 2n−1 · E(DW ).

Proof. To prove the first equation, consider any assignment x. If pigeons i1 and i2 do not
both go to hole j, then both W

{−1,0,1}
i1,i2

and all the W flip
S evaluate to 0 on x. Otherwise,

exactly one of the W flip
S (x) equals 1, and for this choice of S we have W

{−1,0,1}
i1,i2

(x) = (−1)|S|.
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The second equation follows because:

E
(

DW
{−1,0,1}
i1,i2

)
=

∑
S⊆[n+1]\{i1,i2}

(−1)|S| · E
(

DW flip
S

)
=

∑
S⊆[n+1]\{i1,i2}

(−1)|S|(−1)|S| · E(DW ) (Corollary 21)

= 2n−1 · E(DW ). ◀

Using Lemma 24, we now improve on the approach to upper-bound maxW |E(DW )| from
section 3.1.1:

▶ Lemma 25. The dual value E(D)/ maxW |E(DW )| is at least n!
nn · n2n−1

∥D∥ .

Proof. If W is a weakening of the axiom xi1,jxi2,j = 0 for pigeons i1, i2 and hole j,

|E(DW )| = 2−(n−1) ·
∣∣∣E(DW

{−1,0,1}
i1,i2

)∣∣∣ (Lemma 24)

≤ 2−(n−1) · ∥D∥∥W
{−1,0,1}
i1,i2

∥ (Cauchy-Schwarz)

= 2−(n−1) · ∥D∥

√
E
((

W
{−1,0,1}
i1,i2

)2
)

= n−12−(n−1) · ∥D∥.

Using the value of E(D) from Corollary 17, the dual value E(D)/ maxW |E(DW )| is at least
n!
nn · n2n−1

∥D∥ . ◀

It only remains to compute ∥D∥:

▶ Lemma 26.

∥D∥2 = n!
nn

· (n + 1)! ·
n∑

c=0

(−1)n−c

n + 1 − c
· 1

nn−cc!

Proof. Recall the definition of D (Definition 15):

D =
∑

S⊊[n+1]

cSJS ,

cS = (−1)n−|S|(n − |S|)!
nn−|S| .

We compute ∥D∥2 = E(D2) as follows.

E(D2) =
∑

S⊊[n+1]

∑
T⊊[n+1]

cScTE(JSJT ).

Given S, T ⊊ [n + 1], we have:

E(JSJT ) = E(JS)E(JT | JS = 1)

=

 |S|∏
i=1

(n + 1 − i)

 /n|S|

 |T |∏
j=|S∩T |+1

(n + 1 − j)

 /n|T \S|

 .
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Therefore,

cScTE(JSJT ) =

cS

 |S|∏
i=1

(n + 1 − i)

 /n|S|

cT

 |T |∏
j=|S∩T |+1

(n + 1 − j)

 /n|T \S|

 .

Note that the product of (−1)n−|S| (from the cS) and (−1)n−|T | (from the cT ) is
(−1)−|S|−|T | = (−1)|S|−|T |, so the above equation becomes:

cScTE(JSJT ) = (−1)|S|−|T |
(

n!
nn

)(
(n − |S ∩ T |)!

nn−|S∩T |

)
.

Now, we rearrange the sum for E(D2) in the following way:

E(D2) =
∑

S⊊[n+1]

∑
T⊊[n+1]

cScTE(JSJT )

= n!
nn

n∑
c=0

(n − c)!
nn−c

∑
S,T⊊[n+1],

|S∩T |=c

(−1)|S|−|T |.

To evaluate this expression, fix c ≤ n and consider the inner sum. Consider the collection
of tuples {(S, T ) | S, T ⊊ [n + 1], |S ∩ T | = c}. We can pair up most of these tuples in the
following way. For each S, let mS denote the minimum element in [n + 1] that is not in S

(note that mS is well defined because S cannot be [n + 1]). We pair up the tuple (S, T ) with
the tuple (S, T△{mS}), where △ denotes symmetric difference. The only tuples (S, T ) that
cannot be paired up in this way are those where |S| = c and T = [n + 1] \ {mS}, because T

cannot be [n + 1]. There are
(

n+1
c

)
unpaired tuples (S, T ), and for each of these tuples, we

have (−1)|S|−|T | = (−1)n−c. On the other hand, each pair (S, T ), (S, T△{mS}) contributes
0 to the inner sum. Therefore, the inner sum equals (−1)n−c

(
n+1

c

)
, and we have:

E(D2) = n!
nn

n∑
c=0

(−1)n−c(n − c)!
nn−c

(
n + 1

c

)

= n!
nn

n∑
c=0

(−1)n−c(n − c)!
nn−c

· (n + 1)!
c!(n + 1 − c)!

= n!
nn

· (n + 1)! ·
n∑

c=0

(−1)n−c

n + 1 − c
· 1

nn−cc! . ◀

▶ Corollary 27. E(D2) ≤ (n+1)!
nn

Proof. Observe that the sum
∑n

c=0
(−1)n−c

n+1−c · 1
nn−cc! is an alternating series where the mag-

nitudes of the terms decrease as c decreases. The two largest magnitude terms are 1
n! and

− 1
2 · 1

n! . Therefore, the sum is at most 1
n! , and we conclude that E(D2) ≤ n!

nn · (n+1)!
n! = (n+1)!

nn ,
as needed. ◀

We can now complete the proof of Theorem 1.

Proof of Theorem 1. By Lemma 25, any Nullstellensatz proof for PHPn has total coefficient
size at least n!

nn · n2n−1

∥D∥ . By Corollary 27, ∥D∥ ≤
√

(n+1)!
nn . Combining these results, any

Nullstellensatz proof for PHPn has total coefficient size at least
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n!
nn

· n2n−1√
(n+1)!

nn

= n2n−1√
(n + 1)

·
√

n!
n

n
2

= n2n−1
√

n + 1

√
n!
nn

Using Stirling’s approximation that n! is approximately
√

2πn
(

n
e

)n,
√

n!
nn is approximately

4
√

2πn
(

1√
e

)n

, and this expression is Ω
(

n
3
4

(
2√
e

)n)
, as needed. ◀

4 Open problems

Our work raises a number of open problems. First, while we showed that the minimum total
coefficient size of a Nullstellensatz proof of the pigeonhole principle on n + 1 pigeons and n

holes is 2Θ(n), it is natural to ask what happens when we increase the number of pigeons.
1. If we increase the number of pigeons from n + 1 to n + 2 while still having n holes, our

lower bound proof no longer applies. Can we prove a total coefficient size lower bound on
Nullstellensatz when there are m pigeons where m ≥ n + 2? More ambitiously, how does
the minimum total coefficient size of a proof depend on m and whether or not we add the
axioms that pigeons can only go to one hole (i.e., considering the functional pigeonhole
principle rather than the pigeonhole principle)?

Second, we are still far from understanding the total coefficient size of Nullstellensatz
proofs of the ordering principle. In Appendix C we construct an explicit Nullstellensatz proof
for the ordering principle on n elements with total coefficient size 2n − n, but we have no
non-trivial lower bounds.
2. Can we prove superpolynomial lower bounds on the total coefficient size of Nullstellensatz

proofs of the ordering principle and/or improve the O(2n) upper bound?

In the full version of this paper [29], we also discuss total coefficient size for the Sherali-
Adams and sum of squares proof systems. Some questions regarding these related proof
systems are:
3. Are there Sherali-Adams proofs for the ordering principle with polynomial total coefficient

size? If so, this shows that the seemingly dynamic O(n3) size resolution proof of the
ordering principle [32] can be captured by a one line Sherali-Adams proof. If not, this
gives a natural example separating resolution proof size and the total coefficient size of
Sherali-Adams proofs. We note that this separation has been shown by [20] for unary
Sherali-Adams using pebbling principles.

4. Are there natural examples where the minimum total coefficient size is very different
(either larger or smaller) than the minimum size for Nullstellensatz, Sherali-Adams, or
sum of squares proofs?

5. Can the minimum total coefficient size of a strong proof system be used to lower bound
the size of another proof system? For example, can resolution proof size be lower bounded
by the minimum total coefficient size of a sum of squares proof, or can we find an example
where there is a polynomial size resolution proof but any sum of squares proof has
superpolynomial total coefficient size?
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A Nullstellensatz total coefficient size can be smaller than size

The following example shows that Nullstellensatz total coefficient size can be smaller than
Nullstellensatz proof size. (See Section 2 for the definition of total coefficient size.)

The idea behind our example is as follows. If we have three points p1, p2, p3 and three
polynomials f1, f2, f3 such that
1. f1(p1) = 1, f1(p2) = 1, f1(p3) = 0
2. f2(p1) = 1, f2(p2) = 0, f2(p3) = 1
3. f3(p1) = 0, f3(p2) = 1, f3(p3) = 1
then given the axioms f1 = 0, f2 = 0, and f3 = 0, the equality 1

2 f1 + 1
2 f2 + 1

2 f3 = 1 is a
Nullstellensatz proof of infeasibility which has total coefficient size 3

2 . However, if we want
to use integer coefficients then we need coefficient size 2 as we need two of f1, f2, and f3 in
order to cover the three points p1, p2, p3.

Our actual example is as follows. We have variables x1, x2, x3, x4, x5, x6 and we have the
following axioms:
1. For all I ⊆ {4, 5, 6}, x1

(∏
i∈I xi

) (∏
j∈{4,5,6}\I x̄j

)
= 0

2. For all I ⊆ {4, 5, 6}, x2
(∏

i∈I xi

) (∏
j∈{4,5,6}\I x̄j

)
= 0

3. For all I ⊆ {4, 5, 6}, x3
(∏

i∈I xi

) (∏
j∈{4,5,6}\I x̄j

)
= 0

4. x1x2x3 = 0
5. x̄1x̄2 = 0, x̄1x̄3 = 0, x̄2x̄3 = 0

We now observe that 1 = 1
2 x̄1x̄2 + 1

2 x̄1x̄3 + 1
2 x1x̄2x̄3 + 1

2 (x1 + x2 + x3) − 1
2 x1x2x3. We

can show this by checking that the right hand side is 1 for all (x1, x2, x3) ∈ {0, 1}3.
1. If x1 = x2 = x3 = 0 then the first two terms are 1

2 and the remaining terms are 0.
2. If x1 + x2 + x3 = 1 then the fourth term and exactly one of the first three terms are 1

2
and the remaining terms are 0.

3. If x1 + x2 + x3 = 2 then the fourth term is 1 and the remaining terms are 0.
4. If x1 = x2 = x3 = 1 then the fourth term is 3

2 , the fifth term is − 1
2 , and the remaining

terms are 0.

Using this equation, we have that

1 = 1
2 x̄1x̄2 + 1

2 x̄1x̄3 + 1
2x1x̄2x̄3 − 1

2x1x2x3

+ 1
2(x1 + x2 + x3)

∑
I⊆{4,5,6}

(∏
i∈I

xi

) ∏
j∈{4,5,6}\I

x̄j


This Nullstellensatz proof has total coefficient size 4 ∗ 1

2 + 3∗8
2 = 14. However, for each

I ⊆ {4, 5, 6}, two of the axioms of the form xk

(∏
i∈I xi

) (∏
j∈{4,5,6}\I x̄j

)
= 0 for k ∈ {1, 2, 3}

are needed to prove infeasibility. We also need one of the three axioms x̄1x̄2 = 0, x̄1x̄3 = 0,
and x̄2x̄3 = 0. Thus, any Nullstellensatz proof of infeasibility must have size at least
2 ∗ 8 + 1 = 17.

B Total coefficient size upper bound for the pigeonhole principle

In this section, we use a divide and conquer approach to give a unary Nullstellensatz proof of
the pigeonhole principle with size 2O(n). Before giving our proof, we discuss other potential
approaches for constructing a Nullstellensatz proof for the pigeonhole principle and why they
were insufficient for our purposes.



A. Potechin and A. Zhang 117:17

One approach is to use the observation that if we have a tree-like resolution proof with S

leaves, this gives us a Nullstellensatz proof of size S where every coefficient is 1.
There is a simple tree-like resolution proof of size O((n + 1)!) which works as follows. For

each pigeon i, we query the variables {xij : j ∈ [n]} one by one and stop when we find a j

such that xi,j = 1 or we have queried all of these variables. If we already had that xi′,j = 1
for some i′ < i then this contradicts the axiom ¬xi′,j ∨ ¬xi,j . If none of the xi,j are 1 then
this contradicts the axiom

∨
j∈[n] xi,j . If pigeon i was placed in a new hole j then we continue

on to pigeon i + 1.
This gives an upper bound of O((n + 1)!). However, it has been shown [8, 17, 26] that

every tree-like resolution proof for the pigeonhole principle has size nΩ(log(n)) so this is
essentially the best that we can do with this approach.

Buss and Pitassi [13] showed that there is a resolution proof of size O(n32n) for the
pigeonhole principle. The idea behind this proof is as follows.

▶ Definition 28. Given S = {s1, . . . , sj} ⊆ [n + 1], define CS,[j,n] to be the clause

CS,[j,n] =
∨

i∈[j],k∈[j,n]

xsi,k.

In other words, the clause CS,[j,n] says that at least one of the j pigeons in S must go into
one of the holes in [j, n].

At stage j, we start with the clauses {CS,[j,n] : S ⊆ [n + 1], |S| = j} and derive the clauses
{CS′,[j+1,n] : S′ ⊆ [n + 1], |S′| = j + 1}. After stage n, this gives us the empty clause, which
proves that the pigeonhole axioms are infeasible. However, it is not clear how to translate
this proof into a Nullstellensatz proof without blowing up the size and total coefficient size.

We now give a unary Nullstellensatz proof of the pigeonhole principle which has size
2O(n).

▶ Theorem 29. For all n ∈ N, there is a unary Nullstellensatz proof of size at most 25(n+1)

for the pigeonhole principle with n + 1 pigeons and n holes.

Proof. We construct this proof recursively as follows. Given k ∈ N, a set S = {p1, . . . , pk+1}
of k + 1 pigeons, and a set H = {h1, . . . , hk} of k holes, we want to show the equality

k+1∏
a=1

(
1 −

k∏
b=1

(1 − xpa,hb
)
)

=
k+1∏
a=1

(
1 −

k∏
b=1

x̄pa,hb

)
= 0

using the hole axioms. Note that this equality coresponds to the statement that there is at
least one pigeon in S which does not go to any of the holes in H.

We do this as follows. If k = 1 then this equality is a hole axiom. If k > 2 then
1. For each a ∈ [k], we decompose the term

(
1 −

∏k
b=1 x̄pa,hb

)
as

(
1 −

k∏
b=1

x̄pa,hb

)
=

1 −
⌊ k+1

2 ⌋∏
b=1

x̄pa,hb

+

⌊ k+1
2 ⌋∏

b=1
x̄pa,hb

1 −
k∏

b=⌊ k+1
2 ⌋+1

x̄pa,hb


This gives us the equality
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k+1∏
a=1

(
1 −

k∏
b=1

x̄pa,hb

)
=

∑
A⊆[k+1]

∏
a∈A

1 −
⌊ k

2 ⌋∏
b=1

x̄pa,hb

 ∏
a∈[k+1]\A

⌊ k+1
2 ⌋∏

b=1

x̄pa,hb

1 −
k∏

b=⌊ k+1
2 ⌋+1

x̄pa,hb


2. For each of the 2k+2 resulting terms, we check whether |A| ≥ ⌊ k+1

2 ⌋ + 1 or |A| ≤ ⌊ k+1
2 ⌋.

If |A| ≥ ⌊ k+1
2 ⌋ + 1 then letting A′ be the first ⌊ k+1

2 ⌋ + 1 = ⌈ k+2
2 ⌉ elements of A, we

recursively construct a proof that
∏

a∈A′

(
1 −

∏⌊ k+1
2 ⌋

b=1 x̄pa,hb

)
= 0. If |A| ≤ ⌊ k+1

2 ⌋ then

|[k + 1] \ A| ≥ ⌈ k+1
2 ⌉ so letting A′′ be the first ⌈ k+1

2 ⌉ elements of [k + 1] \ A, we recursively
construct a proof that

∏
a∈A′′

(
1 −

∏k
b=⌊ k+1

2 ⌋+1 x̄pa,hb

)
= 0.

To obtain our Nullstellensatz proof, we construct this proof for S = [n + 1] and H = [n]. We
then use the following equality (recall that the pigeon axioms are {

∏n
b=1 x̄a,b = 0 : a ∈ [n+1]}):

1 =
n+1∏
a=1

(
1 −

n∏
b=1

x̄a,b

)
+

n+1∑
j=1

(
n∏

b=1
x̄j,b

)(
j−1∏
a=1

(
1 −

n∏
b=1

x̄a,b

))

The size of the resulting unary Nullstellensatz proof can be upper bounded by S(n) + 2n+1

where S(n) is the solution to the recurrence relation S(n) = 22(n+1)S(⌈ n+2
2 ⌉) where S(1) = 1.

It is not hard to show by induction that S(n) ≤ 25(n+1) −2(n+1) so this gives an upper bound
of 25(n+1). ◀

C Total coefficient size upper bound for the ordering principle

In this section, we construct an explicit Nullstellensatz proof for the ordering principle on
n elements with total coefficient size 2n − n. In the full version of this paper [29], we also
present experimental results obtained by implementing the linear program for minimum total
coefficient size. One of our experimental results is that the 2n − n upper bound is tight for
n ≤ 5.

We start by formally defining the ordering principle.

▶ Definition 30 (ordering principle (ORDn)). Intuitively, the ordering principle says that any
well-ordering on n elements must have a minimum element. Formally, for n ≥ 1, we define
ORDn to be the statement that the following system of axioms is infeasible:

We have a variable xi,j for each pair i, j ∈ [n] with i < j, with the Boolean axiom
x2

i,j −xi,j = 0. xi,j = 1 represents element i being less than element j in the well-ordering,
and xi,j = 0 represents element i being more than element j in the well-ordering. We
write xj,i as shorthand for x̄i,j = 1 − xi,j.
For each i ∈ [n], we have the axiom

∏
j∈[n]\{i} xi,j = 0 which represents the constraint

that element i is not a minimum element. We call these axioms non-minimality axioms.
For each triple i, j, k ∈ [n] where i < j < k, we have the two axioms xi,jxj,kxk,i = 0 and
xk,jxj,ixi,k = 0 which represent the constraints that elements i, j, k satisfy transitivity.
We call these axioms transitivity axioms.

In our Nullstellensatz proof 1 =
∑

W cW W , each cW is either 0 or 1. Non-minimality
axioms have coefficient 1, and all weakenings of transitivity axioms that have coefficient 1
must have a special form:
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▶ Definition 31 (nice transitivity weakening). Let W be a weakening of the axiom xi,jxj,kxk,i

or the axiom xk,jxj,ixi,k for some i < j < k. Let G(W ) be the following directed graph.
The vertices of G(W ) are [n]. For distinct i′, j′ ∈ [n], G(W ) has an edge from i′ to j′ if W

contains the term xi′,j′ . We say that W is a nice transitivity weakening if G(W ) has exactly
n edges and all vertices are reachable from vertex i.

In other words, if W is a weakening of the axiom xi,jxj,kxk,i or the axiom xk,jxj,ixi,k,
then G(W ) contains a 3-cycle on vertices {i, j, k}. W is a nice transitivity weakening if and
only if contracting this 3-cycle results in a directed spanning tree rooted at the contracted
vertex. Note that if W is a nice transitivity weakening and x is an assignment with a
minimum element, then W (x) = 0.

▶ Theorem 32. There is a Nullstellensatz proof for ORDn satisfying:
1. The total coefficient size is 2n − n.
2. Each cW is either 0 or 1.
3. If A is a non-minimality axiom, then cA = 1, and cW = 0 for all other weakenings W of

A.
4. If W is a transitivity weakening but not a nice transitivity weakening, then cW = 0.

Proof. We prove Theorem 32 by induction on n. When n = 3, the desired Nullstellensatz
proof sets cA = 1 for each axiom A. It can be verified that

∑
W cW W evaluates to 1 on each

assignment, and that this Nullstellensatz proof satisfies the properties of Theorem 32.
Now suppose we have a Nullstellensatz proof for ORDn satisfying Theorem 32, and let

Sn denote the set of transitivity weakenings W for which cW = 1. The idea to obtain a
Nullstellensatz proof for ORDn+1 is to use two copies of Sn, the first copy on elements
{1, . . . , n} and the second copy on elements {2, . . . , n + 1}. Specifically, we construct the
Nullstellensatz proof for ORDn+1 by setting the following cW to 1 and all other cW to 0.
1. For each non-minimality axiom A in ORDn+1, we set cA = 1.
2. For each W ∈ Sn, we define the transitivity weakening W ′ on n + 1 elements by

W ′ = W · x1,n+1 and set cW ′ = 1.
3. For each W ∈ Sn, first we define the transitivity weakening W ′′ on n + 1 elements by

replacing each variable xi,j that appears in W by xi+1,j+1 (e.g., if W = x1,2x2,3x3,1, then
W ′′ = x2,3x3,4x4,2). Then, we define W ′′′ = W ′′xn+1,1 and set cW ′′′ = 1.

4. For each i ∈ {2, . . . , n}, for each of the 2 transitivity axioms A for elements {1, i, n + 1},
we set cW = 1 for the following weakening W of A:

W = A

 ∏
j∈{2,...,n}\{i}

xi,j

 .

In other words, W (x) = 1 if and only if A(x) = 1 and i is the minimum element among
{2, . . . , n}.

The desired properties 1 through 4 in Theorem 32 can be verified by induction. It remains
to show that for each assignment x, there is exactly one nonzero cW for which W (x) = 1.
If x has a minimum element i ∈ [n + 1], then the only nonzero cW for which W (x) = 1 is
the non-minimality axiom for i. Now suppose that x does not have a minimum element.
Consider two cases: either x1,n+1 = 1, or xn+1,1 = 1. Suppose x1,n+1 = 1. Consider the two
subcases:
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1. Suppose that, if we ignore element n+1, then there is still no minimum element among the
elements {1, . . . , n}. Then there is exactly one weakening W in point 2 of the construction
for which W (x) = 1, by induction.

2. Otherwise, for some i ∈ {2, . . . , n}, we have that i is a minimum element among {1, . . . , n}
and xn+1,i = 1. Then there is exactly one weakening W in point 4 of the construction for
which W (x) = 1 (namely, the weakening W of the axiom A = xi,1x1,n+1xn+1,i).

The case xn+1,1 = 1 is handled similarly by considering whether there is a minimum
element among {2, . . . , n + 1}. Assignments that do have a minimum element among
{2, . . . , n + 1} are handled by point 3 of the construction, and assignments that do not are
handled by point 4 of the construction. ◀
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