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Abstract
We consider the matroid intersection problem in the independence oracle model. Given two
matroids over n common elements such that the intersection has rank k, our main technique reduces
approximate matroid intersection to logarithmically many primal-dual instances over subsets of
size Õ(k). This technique is inspired by recent work by [2] and requires additional insight into
structuring and efficiently approximating the dual LP. This combination of ideas leads to faster
approximate maximum cardinality and maximum weight matroid intersection algorithms in the
independence oracle model. We obtain the first nearly linear time/query approximation schemes for
the regime where k ≤ n2/3.
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1 Introduction

Matroid intersection is a classical problem in combinatorial optimization for which faster
algorithms have been a recent topic of interest.

A matroid, M = (N , I), consists of a set of n elements N and a collection of subsets I
of N , known as the independent sets, that satisfy the following properties: (i) the empty set
is independent, (ii) every subset of an independent set is independent (hereditary property),
and (iii) if A and B are two independent sets with |A| > |B|, then there exists an element in
A \ B that can be added to B to still have an independent set (exchange property). These
properties imply that every maximal set also has maximum cardinality. The maximum
cardinality of any independent set is called the rank. Examples of matroids include the family
of forests of a graph (the graphic matroid) and the family of independent sets of vectors in a
vector space (the linear matroid).

Matroid intersection. The problem of matroid intersection considers two matroids, M1 =
(N , I1) and M2 = (N , I2), defined on a common ground set N , and seeks the largest set
that is independent in both matroids. Formally, the goal is to maximize the size of a set
S ⊆ N such that S ∈ I1 ∩ I2. Unlike matroids, a maximal cardinality independent set in
the matroid intersection is not necessarily a maximum cardinality independent set. The
maximum cardinality, denoted OPT, is also called the rank of the matroid intersection and
denoted by k. Matroid intersection generalizes bipartite matching, and has other connections
in combinatorial optimization. For example, by Edmonds’ directionless tree packing theorem,
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matroid intersection captures the maximum number of rooted arborescences that can be
packed into a directed graph, and the directed rooted connectivity [11]. See [27, 15] for
additional background and connections.

Algorithms addressing matroid intersection in general are commonly framed in the
independence oracle model. Here the algorithm is allowed to query if a given set S is
independent in a matroid. When stating running times in this model, we let Q denote the
running time of a single independence oracle.

The first polynomial time algorithm for matroid intersection was given by [10] by reduction
to matroid union [12]. This algorithm ran in O

(
n4Q

)
time. More direct augmenting path

algorithms were developed by [1, 21]. The algorithm in [21] ran in O
(
nk2Q

)
time. Generalizing

ideas from bipartite matching [17], [9] gave a faster matroid intersection algorithm running
in O

(
nk1.5Q

)
time. Truncating the algorithm early implies a (1 − ϵ)-approximation in

O(nkQ/ϵ) time for ϵ ∈ (0, 1) [8].
Recently there has been a resurgence of interest in faster algorithms in the independence

oracle model. [7, 23] gave O(nk log(k)Q) time algorithms, leveraging the observation that
the auxiliary graph can be searched faster than it can be built out explicitly. [5] pushed
this direction further and obtained Õ

(
n9/5Q

)
randomized and Õ

(
n11/6Q

)
deterministic time

algorithms, the first o(n2) time algorithms for k = Ω(n).1 Finally, [4] obtained a Õ
(

n
√

kQ/ϵ
)

time deterministic algorithm for (1 − ϵ)-matroid intersection. This faster approximation
algorithm implied faster exact algorithms running in Õ

(
nk3/4Q

)
randomized time and

Õ
(
nk5/6Q

)
deterministic time. [4]’s algorithms represent the state of the art.

Weighted matroid intersection. In the weighted matroid intersection problem, we are also
given weights c : N → R>0. The goal is to compute I ∈ I1 ∩ I2 of maximum weight c(I).
Edmonds [10] gave the first polynomial time algorithm. Faster algorithms were developed in
[21, 13, 6, 16, 22]. Frank’s citeFrank1981a algorithm runs in O(k(T + n log n)) time, where
T is the running time of any exact matroid intersection algorithm. The algorithm in [22]
runs in O

(
n2 log(n)Q + n3 polylog(n)

)
time.

There is also recent interest in fast (1 − ϵ)-approximation algorithms [18, 8]. The (1 − ϵ)-
approximation algorithm in [8] runs in Õ

(
nkQ/ϵ2) time.

1.1 Results
Our primary focus is on faster approximation algorithms. As alluded to above, approximation
algorithms can play a role in exact algorithms. (The fastest algorithms use augmenting paths
to extend approximate solutions to exact ones.) They are also useful in their own right when
one is willing to tolerate some error in exchange for scalability.

We introduce adaptive sparsification to matroid intersection in order to develop faster
approximation algorithms. The new sparsification technique reduces approximate matroid
intersection to O(log(n)) instances of approximate matroid intersection and the dual prob-
lem over a subset of O(k log(n)) elements. The technique holds for both weighted and
unweighted matroid intersection. We leverages these ideas to obtain improved running times
for approximating the unweighted and weighted settings.

Maximum cardinality matroid intersection. Henceforth, let M1 = (N , I1) and M2 =
(N , I2) be two matroids over a common groundset of n elements, let k be the rank of their
intersection, and let ϵ ∈ (0, 1). In the following, the “dual” refers to the dual of the standard

1 Õ(· · ·) hides polylogarithmic factors.
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packing LP for matroid intersection, and is introduced formally below in Section 1.2. We
first show how to reduce approximate matroid intersection over n elements to approximating
O(log n) primal-dual instances of matroid intersection over Õ(k) elements.

▶ Lemma 1. Suppose a (1 − ϵ)-maximum matroid intersection and a (1 + ϵ)-approximate dual
solution in I1∩I2, over a subset of m elements, can be computed with high probability in Tϵ(m)
time in the independence oracle model. Then a (1 − ϵ)-approximate matroid intersection can
be computed with high probability in O(n log(n)Q/ϵ + Tϵ(k log(n)/ϵ)/ϵ) randomized time in
the independence oracle model, where Q represents an independence query.

To apply Lemma 1 to matroid intersection, we need a fast algorithm to compute both a
(1 − ϵ)-maximum matroid intersection and an (1 + ϵ)-dual solution. Recall that [4] computes
a (1 − ϵ)-maximum matroid intersection in Õ

(
n

√
kQ/ϵ

)
time. The solution returned by [4]

has stronger properties (based on the length of augmenting paths), and we leverage these
properties to compute a (1 + ϵ)-approximate dual solution without increasing the running
time.

▶ Lemma 2. A (1 − ϵ)-maximum matroid intersection I, and an (1 + ϵ)-dual solution (S, T ),
can be computed in Õ

(
n

√
kQ/ϵ

)
deterministic time.

Using this as a (1 ± ϵ)-primal dual approximation algorithm in Lemma 1, with Tϵ(n) =
Õ
(

n
√

kQ/ϵ
)

, we have the following improved running time for approximate matroid inter-
section.

▶ Theorem 3. A (1 − ϵ)-maximum matroid intersection and an (1 + ϵ)-dual solution can be
computed with high probability in O

(
n log(n)Q/ϵ + k3/2 logO(1)(k)Q/ϵ3

)
randomized time in

the independence oracle model.

Compared to previous results, the improved running time in Theorem 3 removes the
poly(k)-factor from the dominant term of n. Theorem 3 gives the first nearly linear time
approximation scheme for the regime where k ≤ n2/3.

Theorem 3 does not imply a faster algorithm for exact matroid intersection, but brings
us significantly closer. This is because there are two bottlenecks in [4]. Theorem 3 addresses
one of them. The remaining bottleneck is a subroutine augmenting an independent set
one element at a time. The current best bound for this subroutine is Õ

(
n

√
kQ
)

time per
augmenting path [5].

Maximum weight matroid intersection. We now consider maximum weight matroid
intersection. In addition to the inputs M1, M2, and ϵ ∈ (0, 1), let c : N → R≥0 be
an input weight vector.

As in the unweighted case, we show how to reduce approximate maximum weight matroid
intersection to approximating O(log(n)) primal-dual instances over subsets of Õ(k) elements.
Here the “dual” refers to the dual LP, introduced later in Section 3. For the weighted setting,
the sparsification technique requires particularly structured dual solutions which we call
“compact” dual solutions. We elaborate more on compact dual solutions in Section 3 and for
the time being state the lemma informally.

▶ Lemma 4 (Informal). Suppose that a (1 − ϵ)-maximum weight matroid intersection and
a “compact” (1 + ϵ)-minimum dual solution over a subset of m elements can be com-
puted in Tϵ(m) time with high probability. Then a (1 − ϵ)-maximum weight matroid in-
tersection and a (1 + ϵ)-minimum dual solution can be computed with high probability in
O(n log(n)Q/ϵ + Tϵ(k log(n)/ϵ)/ϵ) randomized time in the independence oracle model.

ICALP 2024



118:4 Adaptive Sparsification for Matroid Intersection

Using this technique requires a (1 ± ϵ)-primal-dual approximation algorithm where the
dual solution has nice “compact” properties. A fast primal algorithm is given by [8] (acceler-
ated by [4]) and we extend it to give an approximate dual solution that is also compact.

▶ Lemma 5 (Informal). A (1 − ϵ)-maximum weight matroid intersection and a “compact”
(1 + ϵ)-minimum dual solution can be computed in Õ

(
n

√
kQ/ϵ2

)
time.

Putting these two results together gives the following improved running time for approxi-
mate maximum weight matroid intersection.

▶ Theorem 6. A (1 − ϵ)-maximum weight matroid intersection and a (1 + ϵ)-minimum dual
solution can be computed with high probability in O

(
n log(n)Q/ϵ + k3/2Q/ϵ4) randomized

time in the independence oracle model.

Compared to the previous state of the art, Theorem 6 removes the poly(k)-factor from the
dominant term n. It also reduces the poly(1/ϵ)-factor against n, from 1/ϵ2 to 1/ϵ. Theorem 6
is the first approximation scheme for weighted matroid intersection running in nearly linear
time for all k ≤ n2/3.

1.2 High-level overview of the algorithms and techniques
The first technique we introduce to matroid intersection is adaptive sparsification. In graph
algorithms, sparsification is a powerful and (by now) standard technique where a dense input
graph is reduced to a sparse one, while (approximately) preserving salient properties like
the size of every cut [3] or the Laplacian [29, 28]. These algorithms are also fast. There is
previous work sparsifying matroids individually [20, 25, 26], generalizing cut sparsification.

For matroid intersection, we are aware of two instances of sparsification. [7] sparsifies
matroid intersection by first approximating a linear relaxation for matroid intersection. They
then randomly round their solution x to a solution y with support of size O

(
k log(n)/ϵ2).

Concentration bounds from [20] imply that the support of y contains a (1 − ϵ)-approximate
matroid intersection with high probability. The only catch to this approach is that it takes
Õ
(
n2Q/kϵ2) time to compute the point x. The second instance is the very recent work

of [19], which reduces the number of elements to Õ
(
k/ϵO(1)) while preserving the value of

the matroid intersection up to a (3/2 + ϵ)-factor. However this is far from preserving the
intersection up to a (1 + ϵ)-factor. (We note that the techniques of [19] have additional
motivating factors including communication complexity and the streaming model.) It seems
difficult to accurately preserve the matroid intersection via a “one-shot” static sparsifier
without introducing another bottleneck in the running time.

This work pivots away from static sparsifiers to adaptive ones, where a large instance
of matroid intersection is reduced to a limited number of sparse instances. The sparse
instances are generated sequentially by random samples, where the distribution of each
sample adapts to the outcomes of previous iterations. We are inspired by and build upon
a recent and elegant work by Assadi [2], which used adaptive sampling to compute (1 − ϵ)-
approximate maximum weight matchings in the semi-streaming model. We briefly sketch the
ideas from [2]. While [2]’s techniques extend to general graphs, we restrict our discussion to
bipartite matching as it is a special case of matroid intersection. The input is a bipartite
graph G = (V, E), and we are constrained to memory of size Õ(|V |). In particular, for dense
graphs, one cannot hold the entire graph in memory. The algorithm may read the edges E

one by one in a streaming fashion; each iteration over E is called a “pass”.
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There are several known results in this model and the contribution of [2] was to give
a simpler algorithm competitive with the state of the art. [2] reduces (1 − ϵ)-maximum
weight matching to O(log(n)/ϵ) successive instances of (1 − ϵ)-maximum weight matching
and (1 + ϵ)-minimum vertex cover over subgraphs of Õ(|V |/ϵ) edges. Each Õ(|V |/ϵ)-size
instance is obtained by a nonuniform sample of the edges that can be implemented in a
single pass over the edges.

The probabilities are based on multiplicative weights. Initially, all edges have the same
weight and are sampled uniformly. Each iteration, the algorithm obtains a (1 + ϵ)-minimum
vertex cover that covers all the sampled edges, but not necessarily all the input edges. The
sampling probability of each uncovered edge is doubled. Intuitively the algorithm is trying to
sample a small set of edges that forces the dual covering solutions of the sample to cover all
the edges, at least on average. Edges that are frequently covered have exponentially smaller
weight; edges that are not covered much have exponentially larger weight.

While [2] gives a direct analysis, one can interpret their algorithm a little more generally
within a standard MWU framework applied to the dual vertex cover LP. We broaden the
argument to covering problems in general. In the following, a (1 + ϵ)-approximation algorithm
refers to a point x ∈ P such that ⟨b, x⟩ ≤ (1 + ϵ) OPT and (1 + ϵ)Ax ≥ 1.

▶ Lemma 7. Consider a covering LP of the form

mimimize ⟨b, x⟩ over x ∈ P s.t. Ax ≥ 1,

where P is a convex set, and A has nonnegative coefficients and m constraints. Suppose one
has access to an oracle that, given any nonnegative set of weights w ∈ Rm

≥0, computes a point
x such that:
(a) ⟨b, x⟩ ≤ (1 + ϵ) OPT
(b)

∑
i:(Ax)i≥1 wi ≥ (1 − ϵ)

∑
i wi.

Suppose the oracle also returns a list of all constraints i ∈ [m] covered by x (i.e., such
that (Ax)i ≥ 1). Then one can compute a (1 + ϵ)-approximation solution as the average of
L = O(log(m)/ϵ) solutions returned by the oracle for an adaptively chosen sequence of L

weight vectors.

The intuition for the oracle problem is as follows. We are given a covering LP, and
the challenge is to satisfy all the covering constraints simultaneously. The oracle problem
relaxes this uniform requirement by assigning nonnegative weights to each constraint, and
asks for a solution that satisfies most of the constraints by weight. The small difference
between satisfying all constraints, and satisfying almost all the constraints, is just large
enough to permit random sampling and other techniques that trade a controlled amount of
error for significantly faster running times. The surrounding framework adjusts the weights
dynamically so that on average, the oracle solutions (approximately) cover all the constraints
simultaneously.

Matroid intersection. To apply this framework to matroid intersection we must understand
the dual covering problem, which requires the notions of a rank function and a span function.
For a given matroid M = (N , I), and set S ⊆ N , the rank of S, denoted rank(S), is the
maximum cardinality of any independent subset of S. For S ⊆ N , the span of S, span(S),
is the set of elements whose inclusion does not increase the rank, including the elements in
S: span(S) = {e ∈ N : rank(S + e) = rank(S)}. A set S is closed if S = span(S). Let rank1
and rank2 denote the rank functions of M1 and M2, respectively. Similarly, let span1 and
span2 denote the span functions of M1 and M2, respectively.

ICALP 2024



118:6 Adaptive Sparsification for Matroid Intersection

The standard LP relaxation for matroid intersection asks for the maximum nonnegative
modular function dominated by rank1 and rank2:

maximize x(N ) over x : N → R≥0

s.t. x(S) ≤ rank1(S) and x(S) ≤ rank2(S) for all S ⊆ N .
(1)

Here we denote the sum x(S) def=
∑

e∈S xe for S ⊆ N .
From a dual perspective, for all partitions (S, S̄) of the ground set (where S̄ = N \ S),

rank1(S) + rank2(S̄) is an upper bound on the size of any matroid intersection I ∈ I1 ∩ I2.
(We have |I ∩ S| ≤ rank1(S) and |I ∩ S̄| ≤ rank2(S̄)). It is also an upper bound on the LP
relaxation as can be seen from duality as follows.

Consider the problem of minimizing rank1(S) + rank2(S̄) over all S ⊆ V . The standard
LP relaxation is the dual LP of the matroid intersection LP (1):

minimize
∑

S⊆N

yS rank1(S) + zS rank2(S) over y, z : 2N → R≥0

s.t.
∑

S:e∈S

y(S) + z(S) ≥ 1 for all e ∈ N .
(2)

A classical theorem by [10] states that maxI∈I1∩I2 |I| = minS⊆V rank1(S) + rank2(S̄), hence
both LPs (1) and (2) have integral optimum solutions.

Lemma 7 applies a variation of the MWU framework to the dual covering LP (2). The
MWU framework incrementally builds a fractional solution (y, z) over L = O(log(n)/ϵ)
iterations. Initially (y, z) = (0, 0). Each iteration ℓ queries the oracle for a particular set of
weights w(ℓ) ∈ RN

≥0, returning (ỹ(ℓ), z̃(ℓ)) as described in Lemma 7. We increase y by ỹ(ℓ)/L

and z by z̃(ℓ)/L. The key point is how the weights are chosen. For each element e, in the ℓth
iteration, we have

w(ℓ)(e) = exp(−(# iterations k < ℓ where (ỹ(k), z̃(k)) covers e)).

The weight of an element e decays exponentially with the number of oracle solutions that
cover e.

To implement the oracle for matroid intersection, given a set of weights w : 2N → R≥0,
we sample O(k log(n)/ϵ) elements N ′ ⊆ N in proportion to w. We then compute a (1 − ϵ)-
maximum matroid intersection I and a dual (1 + ϵ)-minimum dual integral solution (S′, T ′),
where S′, T ′, ⊆ N ′, for the subproblem over N ′. Of course S′ and T ′ do not cover any
elements outside of N ′, and would fail to satisfy Item b of Lemma 7. We enlarge these sets
by taking their spans, S = span1(S′) and T = span2(T ′), which hopefully includes most
of the elements from N \ N ′ (by weight w). (S, T ) (encoded in the LP by their indicator
vectors) is the solution returned by our oracle.

Assuming each iteration implements the oracle of Lemma 7, Lemma 7 asserts that
the average of the dual solutions gives a (1 + ϵ)-approximate dual solution to the matroid
intersection problem. We really want a (1 − O(ϵ))-approximate matroid intersection. Recall
that each iteration also gives a matroid intersection I within a (1 − O(ϵ))-factor of a dual
solution over the subproblem. Therefore the maximum cardinality of I over all iterations is
within a (1 − O(ϵ))-factor of the average dual solution. The average dual solution is feasible
(up to scaling by (1 + O(ϵ))), certifying that I is a (1 − O(ϵ))-matroid intersection.

This describes the approximation algorithm for maximum cardinality matroid intersection.
Pseudocode is given in Figure 1. The analysis requires both an MWU analysis of Lemma 7,
and a more matroid-specific analysis to implement the oracle. The former is similar to
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1. Let w(d) = 1 for all d ∈ N .
2. For ℓ = 1, . . . , L, where L = O(log(n)/ϵ):

A. Let N ′ ⊆ N sample O(k log(n)/ϵ) elements with repetition in proportion to w(e).
// Õ(n + k/ϵ)

B. Compute a (1 − ϵ)-approximate matroid intersection I(ℓ) and a
(1 + ϵ)-approximate dual solution (S̃(ℓ), T̃ (ℓ)). // Õ

(
k3/2Q/ϵ2)

C. Let S(ℓ) = span1(S̃(ℓ)) and T (ℓ) = span2(T̃ (ℓ)). // Õ(nQ)
D. For all elements d ∈ S(ℓ) ∪ T (ℓ), set w(d) = w(d)/e. // Õ(n)

3. Let I(ℓ) maximize |I(ℓ)| over all iterations ℓ ∈ [L]. Define (y, z) to be the fractional
average of the dual solutions,

y = 1
L

L∑
ℓ=1

1S(ℓ) and z = 1
L

L∑
ℓ=1

1T (ℓ) ,

where 1X denotes the indicator vector of X ⊆ N .
Return (I(ℓ), (1 + O(ϵ))y, (1 + O(ϵ))z).

Figure 1 A randomized, (1 ± ϵ)-approximation algorithm for maximum cardinality matroid
intersection and the dual LP.

the analysis given in [2]. Implementing the oracle has two components. First we need to
show how to extend (1 − ϵ)-approximate matroid intersection algorithms to also produce
a (1 + ϵ)-approximate dual solutions, without increasing the running time. We also need
to prove that a (1 + ϵ)-approximate dual solution on the sampled subset N ′ extends to a
solution satisfying the oracle model of Lemma 7.

Consider this latter point regarding sampling and the oracle problem. For the special
case of bipartite matching, where dual solutions are vertex covers, the argument in [2] takes
a union bound over all 2|V | possible subsets of vertices; the logarithm of this bound is then
approximately the size of the sample that is needed. For matroid intersection the dual is more
abstract. There are naively 2n dual integral solutions, which is too large. To transfer [2]’s
argument to matroid intersection, we need a bound of the order of nO(k) on the number
of dual solutions. We obtain this bound by restricting our attention to closed sets, and
identifying closed sets with maximal independent subsets.

Weighted matroid intersection. One can approach weighted matroid intersection similarly.
At a high level, to implement the oracle of Lemma 7, we reduce the input size in each iteration
by random sampling, and build on previous (1 + ϵ)-maximum weight matroid intersection
algorithms to extract good dual solutions. The weights inject additional technical details
to each component. Greater effort is needed to bound the number of dual solutions, and
this motivates the notion of “compact” dual solutions (defined in Section 3). Computing a
compact dual solution efficiently requires a closer examination of the “approximate weight
splitting” certificate of [8]. To this end, we give a new primal-dual proof of correctness that
also efficiently constructs a compact dual solution. After addressing these combinatorial
components, we recover the high-level theme of using adaptive sampling to reduce a problem
over n elements to smaller primal-dual instances of the problem over roughly k elements.

Pseudocode for the approximate maximum weight matroid intersection algorithm is
given in Figure 2. Several of the steps require technical elaboration and we defer a detailed
discussion to Section 3.

ICALP 2024



118:8 Adaptive Sparsification for Matroid Intersection

1. Let w(e) = 1 for all e ∈ N .
2. For ℓ = 1, . . . , L, where L = O(log(n)/ϵ):

A. Let N ′ ⊆ N sample O(k log(n)/ϵ) elements with repetition in proportion.
// Õ(k/ϵ)

B. Compute a (1 − ϵ)-approximate matroid intersection I(ℓ) and a ϵ-approximate
cost-splitting certificate (c1,ℓ, c2,ℓ). // Õ

(
k3/2/ϵ2)

C. Extract from (I(ℓ), c1,ℓ, c2,ℓ) a compact, (1 + ϵ)-approximate dual solution
ỹ(ℓ), z̃(ℓ) : 2N ′ → R≥0 over N ′. // Õ(kQ)

D. Define y(ℓ), z(ℓ) : 2N → R≥0 by

y(ℓ)(span1(S′)) = ⌈ỹ(ℓ)(S′)⌉1+ϵ for all S′ ∈ support(ỹ(ℓ)),
z(ℓ)(span2(T ′)) = ⌈z̃(ℓ)(T ′)⌉1+ϵ for all T ′ ∈ support(z̃(ℓ)),

where ⌈x⌉1+ϵ

def= (1 + ϵ)⌈log1+ϵ x⌉ rounds x up to the nearest power of 1 + ϵ.
// Õ(nQ)

E. For all elements e ∈ N , if e is covered by (y(ℓ), z(ℓ)), set w(e) = e−1w(e).
// O(n log(k)Q)

3. Let I(ℓ) maximize c(I(ℓ)) over ℓ ∈ [L]. Return I(ℓ) and 1+O(ϵ)
L

∑L
ℓ=1(y(ℓ), z(ℓ)).

Figure 2 A randomized, (1 − O(ϵ))-approximation algorithm for weighted matroid intersection
and the dual LP.

Conclusion. These algorithms are natural extensions of [2]’s algorithm for approximate
bipartite matching. Conceptually, they highlight two new perspectives beyond improved
running times for approximate matroid intersection. The first is exposing the versatility of
the techniques in [2], beyond matchings in graphs. While we focus on matroid intersection
abstractly in the independence oracle model, the techniques are simple and high-level enough
to be applied to the diverse family of concrete instances of matroid intersection studied
elsewhere. We also give an explicit interface to an oracle model for positive LPs that extends
beyond matroid intersection. The second is to reiterate the importance of the dual of
matroid intersection problems, at least from the perspective of fast approximation algorithms.
Improvements for the dual approximation problems were critical to sparsifying and ultimately
accelerating approximation algorithms for the primal problem.

The clear open problem is improving the running time for exact unweighted matroid
intersection. We were surprised to realize that the improved approximation algorithm did
not immediately imply a faster exact running time. We hope this work draws attention to
the remaining bottleneck mentioned above.

Organization. We divide the rest of the article into three main parts:

Section 2: The full details of the matroid intersection algorithm and analysis, completing
the description in Section 1.2, assuming and interfacing with the oracle framework of
Lemma 7.

Section 3: The weighted matroid intersection algorithm and analysis, again interfacing with
the oracle framework of Lemma 7.

Section 4: An MWU analysis of the general oracle framework described in Lemma 7.
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2 Matroid intersection

The matroid intersection algorithm was described in Section 1.2, along with an overview of
the techniques and the analysis. Pseudocode was presented in Figure 1. To briefly review,
the overall algorithm follows the MWU framework described in Lemma 7, applied to the dual
LP for matroid intersection, (2). The dual LP has a constraint for each element, so the MWU
framework maintains a weight for each element reflecting how well the constraint is being met.
The oracle problem in Lemma 7 is a relaxation of (2) where we are only required to satisfy
most, rather than all, of the dual covering constraints by weight. To solve the oracle problem
quickly, we first randomly sample O(k log(n)/ϵ) elements in proportion to their weights.
Then we compute a (1 − ϵ)-approximate matroid intersection, and a (1 + ϵ)-approximate
dual solution over the sampled elements. We then extend the dual solution to an infeasible
dual solution over all the elements, that satisfies the oracle.

The MWU framework has O(log(n)/ϵ) iterations. Each iteration has two bottlenecks.
The first bottleneck comes from sampling and updating the weights of each element, and
takes O(nQ) time. The second bottleneck is approximating the matroid intersection and its
dual over the sampled set of elements. If we let Tϵ(m) denote the time of this step, then the
algorithm takes O(n log(n)/ϵ + Tϵ(k log(n)/ϵ) log(n)/ϵ) randomized time overall.

To complete the proof of Theorem 3, there are two points to address:
Section 2.1: Given an (1 ± ϵ)-primal dual oracle for matroid intersection running in Tϵ(m)

time, we implement the oracle from Lemma 7 in O(nQ + Tϵ(k log(n)/ϵ)) randomized
time. This implies Lemma 1, which formalizes the reduction to approximate primal-dual
matroid intersection.

Section 2.2: Recall that the framework requires solutions to both matroid intersection and
its dual LP. We extend the (1 − ϵ)-maximum matroid intersection algorithm for [4] to
give a (1 + ϵ)-dual solution without increasing the running time. This gives Tϵ(m) =
Õ
(
m1.5Q/ϵ

)
, hence Lemma 2, and completes the proof of Theorem 3 via Lemma 1.

2.1 Implementing the oracle
In this section, we assume access to a (1 ± ϵ)-primal dual approximation algorithm for
matroid intersection in M1 and M2, running in Tϵ(m) time for any subset of m elements.
We show how to use this algorithm to implement an oracle satisfying Lemma 7 for the dual
LP of matroid intersection.

Recall that the algorithm takes as input w, samples Õ(k/ϵ) elements N ′ ⊆ N in proportion
to w, computes (1 ± ϵ)-primal and dual solutions over N ′, and expands out the dual solution
by taking their spans in all of N . The key point of the analysis is understanding the random
sample N ′. We want to ensure that any approximate dual solution (S′, T ′) over N ′, when
expanded out to (S, T ) where S = span1(S′) and T = span2(T ′), covers most of N by weight.
The approach is based on [2] and will use an upper bound the number of distinct pairs (S, T )
with certain nice properties. The first step in this direction is to count the number of closed
sets in a given matroid.

▶ Lemma 8. Let M = (N , I) be a matroid with n elements and rank k. Then there are at
most nk closed sets in M.

Proof. For every closed set S, let IS be a maximum independent subset of S. We have, IS ∈ I,
IS ⊆ S, and span(IS) = span(S). We claim the mapping from S to IS is injective. Indeed, if
S and T are closed and IS = IT , then S = span(S) = span(IS) = span(IT ) = span(T ) = T,

so S = T . Thus the sets IS are distinct. Meanwhile, every I ∈ I has cardinality at most k.
So there are at most nk closed sets. ◀

ICALP 2024



118:10 Adaptive Sparsification for Matroid Intersection

The following lemma shows that with high probability, any closed pair of sets (S, T ) (with
S closed in M1 and T closed in M2) either covers almost all of N by weight, or with high
probability, does not cover at least one element in the random sample N ′.

▶ Lemma 9. Let w : N → R≥0 be a set of nonnegative weights. Let N ′ sample O(k log(n)/ϵ)
elements from N with repetition. Then with high probability we have the following: for all
A, B ⊆ N such that A is closed in M1, B is closed in M2, rank1(A) = rank2(B) ≤ O(k),
and w(A ∪ B) < (1 − ϵ)w(N ), N ′ samples at least one element outside A ∪ B.

Proof. Since rank1(A), rank2(B) ≤ O(k), we can assume that M1 and M2 each have rank
O(k). Then, by Lemma 8, there are at most nO(k) choices of sets A, B ⊆ N such that A is
closed in M1 and B is closed in M2.

Now fix such a pair A, B, and suppose w(A ∪ B) ≤ (1 − ϵ)w(N ). The probability that
N ′ ⊆ A ∪ B is(

w(A ∪ B)
w(N )

)|N ′|
≤ e−ϵ|N ′| ≤ n−Ck

for an arbitrarily large constant C. The claim now follows by taking the union bound over
A, B. ◀

Now we put everything together. The following lemma gives a subroutine satisfying the
requirements of the oracle in Lemma 7.

▶ Lemma 10. Let w : N → R≥0 be a set of nonnegative weights.
In O(n log(n)Q + Tϵ(k log(n)/ϵ)) randomized time, one can compute an independent set I

and sets S closed in M1 and T closed in M2 such that, with high probability:
i rank(S) + rank(T ) ≤ (1 + ϵ)|I|.
ii w(S ∪ T ) ≥ (1 − ϵ)w(N ).

Proof. For ease of convention, we prove the claim with ϵ replaced by O(ϵ); the constant can
then be removed by decreasing ϵ by a constant factor. (We adopt the same convention in
subsequent proofs.)

Let N ′ sample O(k log(n)/ϵ) elements with repetition in proportion to w. In Tϵ(k log(n)/ϵ)
time, we compute a (1 − ϵ)-maximum matroid intersection I and a (1 + ϵ)-dual solution
(A′, B′) in the restriction to N ′. We compute A = span1(A′) and B = span2(B′) in O(nQ)
time. We claim that I, A, and B satisfy the lemma.

First, we have rank1(A) + rank2(B) = rank1(A′) + rank2(B′) ≤ (1 + O(ϵ))|I|. Second, by
Lemma 9, with high probability; since N ′ ⊆ A′ ∪ B′ ⊆ A ∪ B, A is closed in M1, and B is
closed in M2; we have w(A ∪ B) ≥ (1 − ϵ)w(N ), as desired. ◀

2.2 Fast primal-dual approximations for matroid intersection
It remains to give a fast primal-dual approximation for matroid intersection. The algorithm
in [4] gives a (1 − ϵ)-maximum matroid intersection but not a (1 + ϵ)-dual solution. That
said, one might expect a (1 + ϵ)-dual solution to be implicit in any given (1 − ϵ)-maximum
matroid intersection algorithm in order to certify that the solution I is (1 − ϵ)-maximum.
Such is the case here and we show how to extract a (1 + ϵ)-dual solution efficiently.

The (1 − ϵ)-maximum matroid intersection algorithm in [4], like other (1 − ϵ)-approximation
algorithms, outputs an independent set I ∈ I1 ∩ I2 for which the length of the minimum
“augmenting path” (defined in a moment) is at least 2/ϵ. This length implies that I is a
(1 − ϵ)-maximum matroid intersection (just as in bipartite matching). We use this bound on
the minimum length of an augmenting bound to extract a (1 + ϵ)-dual solution.
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To go into further detail we must first introduce augmenting paths in the context of
matroid intersection. The notion generalizes augmenting paths in bipartite matching. In
the context of matroid intersection, for a fixed independent set I, an augmenting path is a
sequence P = (e0, e1, . . . , eh) of elements alternating between N \ I and I. Additionally, an
augmenting path must start and end with elements in N \ I, and its symmetric difference
with I, I△P , must be independent in both matroids.

Augmenting paths are paths in an auxiliary directed bipartite graph between N \ I and I

called the exchange graph. We have a directed edge (e, d) from N \ I to I iff I − d + e ∈ I2.
We have a directed edge (d, e) from I to N \ I iff I − d + e ∈ I1.

Let F1 = N \span1(I) be the set of free/uncovered elements in M1, and F2 = N \span2(I)
be the free elements in M2. All augmenting paths are between F1 and F2, but unlike bipartite
matching, not all paths from F1 to F2 in the exchange graph are augmenting paths. However,
all shortest paths from F1 to F2 are always augmenting paths. Thus many matroid intersection
algorithms augment along shortest (F1, F2)-paths in the exchange graph.

If the minimum length of any augmenting path for I is at least 2/ϵ, then the typical
argument that I is (1 − ϵ)-maximum is as follows. Given an optimal solution I∗, by contracting
I ∩ I∗, we may assume I∗ and I are disjoint. I△I∗ decomposes into even-length cycles
and augmenting paths in the exchange graph. I and I∗ have the same number of elements
in each even-length cycle. For an augmenting path P , if P has length at least 2/ϵ, then
|I∗ ∩ P | ≤ (1 + ϵ)|I ∩ P |. It follows that |I∗| ≤ (1 + ϵ)|I|.

This argument does not imply an algorithm for a (1 + ϵ)-dual solution. (We do not have
access to I∗.) Still, we can use the length bound to obtain a (1 + ϵ)-dual solution, giving
another proof that I is (1 − ϵ)-maximum. Formally we prove the following.

▶ Lemma 11. Let I ∈ I1 ∩ I2 be an independent point in the intersection. Suppose the
minimum length of any augmenting path is at least 2/ϵ. Then in O(n log(k)Q/ϵ) time, one
can compute sets S, T ⊆ N such that S ∪ T = N and rank1(S) + rank2(T ) ≤ (1 + ϵ)|I|.

Proof. The desired sets S and T will be induced by the distances layers from F1 in the
exchange graph. For each index i ∈ Z≥0, let Li be the set of elements at distance i from F1.
For example, L0 = F1, Li ⊆ N \ I for even i, and Li ⊆ I for odd i.

To extract a good dual solution from these layers, we first need to construct them quickly.
[7, 23] provide the following.

▶ Fact 12. For h = O(1/ϵ), the first h layers L0, L1, . . . , Lh−1 of the exchange graph can be
computed in O(n log(k)Q/ϵ) time.

To refer to elements in I and N by distance layer, we introduce the following notation.
For all i, let Ni = N ∩ Li, and for odd i, let Ii = I ∩ Li. These layers partition the ground
set, with the even layers partitioning N \ I and the odd layers partitioning I.

Suppose we construct the layers (L0 = F1), . . . , Lh up to distance h from F1 for h ≥ 2/ϵ.
Since h ≥ 2/ϵ, there is an odd index i with 1 ≤ i ≤ h such that |Ii| ≤ ϵ|I|. Let S =
N \

(⋃
j<i Ni

)
be all elements in layer i and beyond, and T =

⋃
j≤i Nj be all the elements up

to layer i. (S, T ) is a discrete and feasible solution to the dual because S ∪ T = N . To prove
that it is a (1 + ϵ)-dual solution, it suffices to show that rank1(S) + rank2(T ) ≤ (1 + ϵ)|I|.

Let I+ = I \
(⋃

j<i Ij

)
= I ∩ S. We claim that S ⊆ span1(I+). Clearly S ∩ I = I+ ⊆

span1(I+). Now consider an element e ∈ S \ I. We have e ∈ span1(I) because e /∈ N0. If
e /∈ span1(I+), then I − d + e ∈ I1 for some d ∈ I \ I+. Then (d, e) is an exchange in the
exchange graph. We have d ∈ Ij for some j ≤ i − 2, hence d ∈ Nℓ for some ℓ < i. But then
e /∈ S, a contradiction.
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Now let I− =
⋃

j≤i Ij = I ∩T . We claim that T ⊆ span2(I−). We have T ∩I ⊆ span2(I−).
Consider any element e ∈ T \ I. We have e ∈ span2(I) since e ∈ Lj for some j < i ≤ h, and
there are no (F1, F2)-paths of length < h. If e /∈ span2(I−), then I − d + e ∈ I2 for some
d ∈ I \ I−. That is, (e, d) is an edge in the exchange graph. e ∈ T implies that the distance
from F1 to e is at most i − 1, and the distance from F1 to d is at most i. But d /∈ I− implies
that the distance from F1 to d is at least i + 2, a contradiction.

Thus S ⊆ span1(I+) and T ⊆ span2(I−) where I+ and I− are subsets of I overlapping
on I−. Since I+ ∩ I− = Ii, we have

rank(S) + rank(T ) ≤ rank(span1(I+)) + rank(span2(I−))
= |I+| + |I−| = |I| + |Ii| ≤ (1 + ϵ)|I|,

as desired.
To recap, given an independent set I ∈ I1 ∩ I2 for which the length of the minimum

augmenting path is at least 2/ϵ, we build out the first O(1/ϵ) layers of the exchange graph
in O(n log(k)Q/ϵ) time. We identify an index i such that |Ii| ≤ ϵ|I|. We assemble the
set S = N \ (L0 ∪ L1 ∪ · · · ∪ Li−1) of all elements in the ith layer and beyond, and the
set T = L0 ∪ L1 · · · ∪ Li of all elements up to the ith layer. This takes O(n) time given
the first O(1/ϵ) layers. (S, T ) is the desired (1 + ϵ)-dual solution, completing the proof of
Lemma 11. ◀

This concludes our discussion on maximum cardinality matroid intersection.

3 Weighted matroid intersection

We now consider the weighted matroid intersection problem. Similar to the unweighted
setting, the high-level approach combines adaptive sparsification with a fast (1 ± ϵ)-primal-
dual approximation algorithm to improve the running time dependence on the input n. These
components are more technically challenging in the weighted setting.

Recall that M1 = (N , I1) and M2 = (N , I2) are two matroids over the same ground set
N , c : N → R≥1 is a set of input costs over N , and ϵ ∈ (0, 1) is an input parameter.2 The
goal is to compute I ∈ I1 ∩ I2 with cost c(I) at least a (1 − ϵ)-fraction of the maximum cost
of any such I. We assume without loss of generality that c(e) ∈ [1, poly(n)] for all e.3

We start by introducing the LP relaxation of weighted matroid intersection:

maximize ⟨c, x⟩ over x ∈ RE
≥0

s.t. x(S) ≤ rank1(S) and x(S) ≤ rank2(S) for all S ⊆ N .
(3)

The dual LP is as follows.

minimize
∑

S

rank1(S)yS + rank2(S)zS over y, z : 2N → R≥0

s.t.
∑

S:e∈S

yS + zS ≥ ce for all e ∈ N .
(4)

For e ∈ N , we say that (y, z) covers e if it meets the covering constraint for e in the dual
LP (4).

2 c is normally called “weights” in the weighted matroid intersection problem, but we will refer to them
as “costs” to help distinguish them from the auxiliary weights generated by the framework.

3 We assume each singleton set {e} is independent for all e by removing all violating e in a preprocessing
step. Then OPT ≥ maxe c(e), and we can drop any element e with c(e) ≤ (ϵ/k) maxf c(f) without
decreasing the optimum value by more than an ϵ-fraction. Rescaling, all weights lie in the range [1, k/ϵ].
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Recall that the overall framework maintains auxiliary weights w : N → R≥0. For a fixed
set of weights w : N → R≥0, we say that y, z covers a (1 − ϵ)-fraction of elements by w if
the total weight of elements covered by e is at least (1 − ϵ)-fraction of the total weight of all
elements.

To apply Lemma 7 to the LPs (3) and (4), we need to fulfill an oracle problem defined
as follows. The oracle takes as input a set of auxiliary weights w : N → R≥0. With high
probability, the oracle must return a dual solution y, z that covers a (1 − ϵ)-fraction of
elements by weight.

Our implementation of the oracle is broken down into two components: (a) a randomized
sparsification step applying a (1 ± ϵ)-primal-dual approximation algorithm to a randomly
sampled subset of Õ(k log(n)/ϵ) elements; and (b) the (1 ± ϵ)-primal-dual approximation
oracle. Formally stating the interface of these two parts requires the notion of “compact”
dual solutions and compact primal-dual algorithms. We define these now and give further
background in appropriate subsections later.

We say that (y, z) is compact if the supports of y and z are of the form

support(y) ⊆ {span1(e1), span1(e1, e2), . . . , span1(e1, . . . , ek)}
support(z) ⊆ {span2(f1), span2(f1, f2), . . . , span2(f1, . . . , fk)}

for two sequences of k elements e1, . . . , ek ∈ N and f1, . . . , fk ∈ N . We define a compact
(1 ± ϵ)-primal-dual weighted matroid intersection algorithm that takes as input M1 = (N , I1),
M2 = (N , I2), and c : N → R≥0, and returns (1 − ϵ)-maximum weight independent set and
a compact (1 + ϵ)-minimum solution to the dual LP (4).

Now we can state the guarantees of part (a).

▶ Lemma 13. Let w : N → R≥0, and suppose there is a compact (1 ± ϵ)-primal-dual
weighted matroid intersection algorithm running in Tϵ(m) on subsets of N of size m. Then in
O(Tϵ(k log(n)/ϵ)) time, one can compute an independent set I and a compact dual solution
(y, z) such that (y, z) covers a (1 − ϵ)-fraction of N by w.

Now we formally state the guarantees for part (b); namely, a compact (1 ± ϵ)-primal-dual
approximation algorithm for weighted matroid intersection. The following algorithm extends
the (1 − ϵ)-approximation for weighted matroid intersection to also give a compact dual
solution.

▶ Lemma 14. There is a compact (1 ± ϵ)-primal dual algorithm running in Tϵ(m) =
Õ
(

m
√

kQ/ϵ2
)

time.

We prove Lemma 13 in Section 3.1 and Lemma 14 in Section 3.2. Combining Lemmas 13
and 14 gives a subroutine implementing the oracle of Lemma 7 running in Õ

(
nQ/ϵ + k1.5/ϵ3)

time. Because the dual solution (y, z) returned by the oracle is compact, we can identify all
the elements covered by (y, z) in O(n log(k)Q) time.4 Lemma 7 repeats these two steps for
O(log(n)/ϵ) iterations, giving a total running time of O

(
n log(n)Q/ϵ + k1.5 logO(1)(n)Q/ϵ4

)
.

4 For example, suppose the support of y is generated by the elements e1, . . . , ek. Given an element
d, one can binary search for the first index i such that d ∈ span1(e1, . . . , ei). Then d is covered by
span1(e1, . . . , ej) for all j ≥ i. With simple preprocessing, one then extracts the total amount that y
covers d in O(1) time. Similarly the amount that z covers d can be computed in O(log(k)Q) time with
simple preprocessing.
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3.1 Sparse reduction to compact (1 ± ϵ)-primal-dual approximations:
proof of Lemma 13

In this section we prove Lemma 13. Let w : N → R≥0. We need to compute an independent
set I ∈ I1 ∩ I2 and a compact y, z : 2N → R≥0 such that:

(i) (1 + O(ϵ))c(I) ≥
∑

S rank1(S)yS + rank2(S)zS .
(ii) (y, z) covers a (1 − ϵ)-fraction of N by w.

The algorithm is as follows.
1. Let N ′ ⊆ N sample O(k log(n)/ϵ) elements, with repetition, in proportion to w.
2. Run the (1 ± ϵ)-primal dual approximation algorithm on N ′, producing I ⊆ N ′ with

I ∈ I1 ∩ I2 and a compact solution y′, z′ : 2N ′ → R≥0. Without loss of generality, the
nonzero coordinates of y′ and z′ are in the range [1/ poly(n), poly(n)].

3. Define y, z : 2N → R≥0 by setting y(span1(S)) = ⌈y′(S)⌉1+ϵ for S ∈ support(y′) and sim-
ilarly set z(span2(T )) = ⌈z′(T )⌉1+ϵ for T ∈ support(z′), where ⌈x⌉1+ϵ

def= (1 + ϵ)⌈log1+ϵ x⌉

rounds x up to the nearest power of 1 + ϵ.
4. Return I and (y, z).

Consider the range of (y, z) output by the algorithm. We first observe that (y, z) is
compact. Indeed, since (y′, z′) was compact, there is a sequence of elements e1, . . . , ek such
that all sets in the support of y′ have the form S′

i = span1(e1, . . . , ei) ∩ N ′ for some prefix
e1, . . . , ei. Then the sets in the support of y have the form Si = span1(S′

i) = span1(e1, . . . , ei).
Thus the support of y is generated by prefixes of e1, . . . , ek. Symmetrically the same holds
for z for a different sequence of k elements depending on z′. Thus (y, z) is compact.

We also observe that each nonzero value of y or z is one of the O(log(n)/ϵ) powers of
(1 + ϵ) in the range [1/ poly(n), poly(n)].

For y, there are at most nk ways to choose the sequence e1, . . . , ek that determines its
support, and (C log(n)/ϵ)k ways to assign their values for some constant C > 0. Likewise
for z. Altogether, there are at most nO(k) choices of (y, z) in the range of the algorithm.

Call a solution (y, z) in the range good if it covers an (1 − ϵ)-fraction of N by w, and bad
otherwise. We want to argue that with high probability, the solution (y, z) returned by the
algorithm is good. We know that the output (y, z) covers all the elements in N ′. Thus it
suffices to show that for all bad (y, z) in the range, N ′ samples at least one element that is
not covered by (y, z).

To this end, fix a bad (y, z) in the range. A random element sampled from N in proportion
to w is covered by (y, z) with probability at most 1 − ϵ. The probability that all of N ′ is
covered by (y, z) is bounded above by (1 − ϵ)|N

′| = n−O(k). Taking the union bound over all
bad (y, z) in the range, we conclude with high probability, N ′ samples at least one uncovered
element for every bad (y, z). In this event, since the output (y, z) covers N ′, (y, z) must be
good.

This completes the proof of Lemma 13.

3.2 Compact (1 ± ϵ)-primal-dual weighted matroid intersection: proof
of Lemma 14

In this section we prove Lemma 14. We are given two matroids M1 = (N , I1) and M2 =
(N , I2) over a common set N of size n, c : N → R≥1, and ϵ ∈ (0, 1). We let k be the
rank of the intersection I1 ∩ I2. We will compute I ∈ I1 ∩ I2 and a compact dual solution
y, z : 2N → R≥0 such that (1 + O(ϵ))c(I) ≥

∑
S rank1(S)y(S) + rank2(S)z(S).
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As mentioned previously, a fast approximation algorithm for weighted matroid intersection
is given by [8]. The stated running time is Õ

(
nkQ/ϵ2) and breaks down as follows. There are

Õ(1/ϵ) outer iterations. Each iteration invokes an approximation algorithm for unweighted
matroid intersection that returns an independent set I with minimum augmenting path length
O(1/ϵ). [8] truncate Cunningham’s algorithm to execute an inner iteration in Õ(nkQ/ϵ)
time. The subroutine using Cunningham’s algorithm can be replaced by the Õ

(
n

√
kQ/ϵ

)
-

time algorithm of [4].5 This gives a (1 − ϵ)-approximation algorithm for weighted matroid
intersection running in Õ

(
n

√
kQ/ϵ2

)
time.

The real challenge is to also compute a compact (1 + ϵ)-approximate dual solution within
the same running time. This requires additional background on the framework of [8].

Cost-splitting. The fast approximation algorithm in [8] is based on the cost-splitting
approach to matroid intersection described in [14]. A cost-splitting of c is a decomposition
c1 + c2 where c1, c2 : N → R≥0.6 A cost-splitting can be used to certify a maximum cost
independent set as follows.

▶ Fact 15 ([14]). Suppose I ∈ I1 ∩ I2 and c = c1 + c2 is a cost-splitting such that I is a
c1-maximum independent set in M1 and c2-maximum independent set in M2. Then I is a
maximum cost independent set in the intersection of M1 and M2.

The proof is immediate: given (I, c1, c2) as in fact 15, and letting I∗ denote an optimum
solution, we have c1(I) ≥ c1(I∗) and c2(I) ≥ c2(I∗). Since c = c1 + c2, c(I) ≥ c(I∗). Note
that this proof does not involve the dual LP.

An approximate version of fact 15 is given in [8] to certify (1 − ϵ)-approximate solutions.
This proof also does not construct a dual solution, let alone compact one.

Before describing how to extract the desired dual solution from [8], we give additional
background on the LPs Equations (3) and (4). This background is not necessary for our
analysis, but it gives some intuition for the eventual claim.

[10] proved that LP (3) is totally dual integral. Moreover, any optimal solution (y, z) can
be uncrossed and merged so that the supports of y and z each form a chain. Expanding on
the latter point, suppose the support of y is a chain of the form S1 ⊊ S2 ⊊ · · · ⊊ Sℓ. We can
replace each Si with span(Si) without increasing the objective or decreasing the coverage
on any element. Thus, replacing each Si with span(Si), we can assume each Si is closed.
We have 0 < rank1(S1) < rank1(S2) < · · · < rank1(Sℓ) ≤ rank1(N ). Let I0 = ∅, and for
i = 1, 2, . . . , ℓ in sequence, let Ii extend Ii−1 to a maximum cardinality independent set of
Si. Then Si = span(Ii) for each i. Let e1, . . . , eh enumerate the elements of I1, then I2 \ I1,
and so forth, so that each Ii is a prefix of the form Ii = {e1, . . . , eji

} for some index ji ∈ [h].
Since Iℓ = {e1, . . . , eh} ∈ I1, h ≤ rank1(N ).

This exercise shows that if the support of y is a chain, then it is induced by prefixes of a
sequence of h ≤ rank1(N ) elements e1, . . . , eh. Symmetrically if the support of z is a chain,
then it is also generated by a sequence of rank2(N ) elements. Consequently there are at
most nrank1(N )+rank2(N ) ways for y and z to have chain supports.

5 A minor technical point to address is that the unweighted matroid intersection is not over M1 and M2,
but auxiliary “weight-induced matroids” M1,c1 and M2,c2 induced by weights c1 and c2. Fortunately
it is easy to identify edges of the exchange graph of M1,c1 and M2,c2 via independence oracles to
the input matroids M1 and M2. The algorithm in [4] can be adapted to M1,c1 and M2,c2 just as
Cunningham’s algorithm was adapted in [8].

6 [14] calls this a “weight-splitting”. We refer to this as a “cost-splitting” because we are referring to c as
costs.
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Thus a compact solution (y, z) is similar to a solution (y, z) where the support is a chain.
However, compact solutions restrict the generating sequences of elements to have length at
most k, and k ≤ min{rank1(N ), rank2(N )}.

As alluded to earlier, [8] computes a (1 − ϵ)-approximation I along with vectors c1, c2
that approximate the (exact) cost-splitting describe in [14]. We formalize the approximation
conditions as follows: For fixed I and ϵ ∈ (0, 1), an ϵ-approximate cost-splitting certificate is
a pair of weight vectors c1, c2 : N → R≥0 with the following properties:
(a) (1 + ϵ)(c1 + c2) ≥ c elementwise.
(b) c1(I) + c2(I) ≤ (1 + ϵ)c(I).
(c) I is a c1-maximum independent set in M1 restricted to span1(I).
(d) I is a c2-maximum independent set in M2 restricted to span2(I).
(e) c1(e) ≤ ϵ for all e ∈ N \ span1(I).
(f) c2(e) ≤ ϵ for all e ∈ N \ span2(I).

[8] produces an independent set I ∈ I1 ∩I2 and an ϵ-approximate cost-splitting certificate
c1, c2. We show how to extract a compact (1 + ϵ)-approximate dual solution from I, c1, and
c2.

▶ Lemma 16. Let I ∈ I1 ∩ I2 and let c1, c2 : N → R≥0 be an ϵ-approximate cost-splitting
certificate. Then in Õ(nQ) time, one can compute y, z : 2N → R≥0 such that

(i) (y, z) are feasible for the dual LP (4).
(ii) (y, z) are compact.
(iii)

∑
S rank1(S)yS + rank2(S)yS ≤ (1 + O(ϵ))c(I)

The last point says that I and (y, z) mutually certify each other to be (1 ± O(ϵ))-approxi-
mations to their respective problem. Taking ϵ down to 0 gives an exact compact dual
optimum solution certifying I to be exactly optimum.

Proof of Lemma 16. For t ∈ R≥0, let

Yt = span1({e ∈ I : c1(e) ≥ t}) and Zt = span2({e ∈ I : c2(e) ≥ t}).

Let y, z : 2N → R≥0 be defined by

y = (1 + O(ϵ))
∫ ∞

0
1Yt

dt and z = (1 + O(ϵ))
∫ ∞

0
1Zt

dt,

where 1S denotes the indicator vector for S ⊆ N in R2N . Observe that y is supported by a
chain of elements listing I in decreasing order of c1, and z is supported by a chain of elements
listing I in decreasing order of c2. It remains to show that y, z is feasible for the dual LP (4),
and has objective value within a (1 + O(ϵ))-factor of c(I).

To show that (y, z) is feasible, fix e ∈ N . If c1(e) ≥ ϵ, then e ∈ span1(I). Since I is
c1-maximum in M1, e ∈ span(Yt) for all t ≤ c1(e). Therefore,

∑
S:e∈S

yS ≥ (1 + O(ϵ))
∫ c1(e)

0
1 dt = (1 + O(ϵ))c1(e).

Symmetrically, if c2(e) ≥ ϵ, then
∑

S:e∈S zS ≥ (1 + O(ϵ))c2(e).
Now we have three cases. If c1(e) ≥ ϵ and c2(e) ≥ ϵ, then∑
S:e∈S

yS + zS ≥ (1 + O(ϵ))c1(e) + (1 + O(ϵ))c2(e) ≥ c(e).
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If c1(e) ≤ ϵ, then c1(e) ≤ ϵc(e), and∑
S:e∈S

yS + zS ≥
∑

S:e∈S

zS ≥ (1 + O(ϵ))c2(e) ≥ (1 + O(ϵ))((1 − ϵ)c(e) − c1(e))

≥ (1 + O(ϵ))(1 − 2ϵ)c(e) ≥ c(e).

Symmetrically, if c2(e) ≤ ϵ, then
∑

S:e∈S yS + zS ≥ (1 − 2ϵ)c(e). Thus (y, z) forms a feasible
dual solution if c1(e) ≤ ϵ, c2(e) ≤ ϵ, or neither.

Now consider the objective value. The contribution from y is∑
S

rank1(S)yS = (1 + O(ϵ))
∫ ∞

0
rank(Yt) dt

= (1 + O(ϵ))
∫ ∞

0
|Yt ∩ I| dt = (1 + O(ϵ))c1(I).

Symmetrically, z contributes
∑

S rank2(S)zS = (1 + O(ϵ))c2(I). Together, we have∑
S

rank1(S)yS + rank2(S)zS = (1 + O(ϵ))(c1(I) + c2(I)) ≤ (1 + O(ϵ))I,

as desired. ◀

Now we complete the proof of Lemma 13. Using the algorithm of [8] with the (1 − ϵ)-
approximated unweighted matroid intersection algorithm of [4] as a subroutine, we compute
an (1 − ϵ)-approximate maximum cost independent set I and a ϵ-approximate cost-splitting
certificate c1, c2, in Õ

(
n

√
kQ/ϵ2

)
time. By Lemma 16, we extract a feasible compact (1 + ϵ)-

dual solution (y, z) in Õ(nQ/ϵ) time. We return I and (y, z). The overall running time is
Õ
(
nQ/ϵ + k3/2/ϵ3). This completes the proof of Lemma 13 and of the faster approximate

matroid intersection algorithm.

4 MWU analysis

In this section we prove Lemma 7, which claims that given a covering LP, solving a certain
relaxed coverage problem for Õ(1/ϵ) iterations leads to a (1 − ϵ)-approximation overall.

Like other proofs, we fix ϵ, and describe and analyze an algorithm that returns a point
x ∈ P with objective value ⟨b, x⟩ ≤ (1 + O(ϵ)) OPT and coverage Ax ≥ (1 − O(ϵ))1. The
claimed (1 ± ϵ) bounds then follow by decreasing ϵ by a constant factor.

There are multiple perspectives on the MWU framework presenting essentially the same
proof in different styles. Our presentation follows the conventions of the analysis from [24].

The algorithm builds a solution x incrementally over L = O(log(m)/ϵ) iterations. We let
x(ℓ) denote the value of x after ℓ iterations. It starts with x(0) = 0. Each iteration ℓ invoke the
oracle for a set of weights w(ℓ) and produces a point y(ℓ), and updates x(ℓ) = x(ℓ−1) + y(ℓ)/L.
The output, x(L) =

∑
ℓ y(ℓ)/L, is the average of the points returned by the oracle. The exact

steps in the ℓth iteration are as follows:
1. For each i ∈ [m], compute w(ℓ)

i = e− load(ℓ−1)(i), where

load(ℓ−1)(i) = |{k ∈ {1, . . . , ℓ − 1} : (Ay(k))i ≥ 1}|

is the number of previous iterations k where y(k) covers wi.
2. Invoke the oracle with respect to w(ℓ), returning y(ℓ).
3. Set x(ℓ) = x(ℓ−1) + y(ℓ)/L.
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Each call to the randomized oracle succeeds with high probability, and there are L =
O(log(m)/ϵ) iterations. By the union bound, all oracle calls succeed with high probability.
For the remainder of the analysis we assume this is the case.

We want to show that x(L) =
∑L

ℓ=1 y(ℓ)/L is a (1 + O(ϵ)) approximation. It is easy to
see that the objective value is good: we have

⟨b, x(L)⟩ = 1
L

L∑
ℓ=1

⟨b, y(ℓ)⟩ ≥ (1 + ϵ) OPT

because the oracle guarantees ⟨b, y(ℓ)⟩ ≥ (1 + ϵ) OPT for all ℓ. It remains to show that
Ax(L) ≥ (1 − O(ϵ))1. The key to the analysis is understanding why the weights are selected
as they are.

For each iteration ℓ, let Mℓ = {i ∈ [m] : (Ay(ℓ))i ≥ 1} be the set of coordinates covered
in the ℓth iteration. The oracle guarantees that for each iteration ℓ ∈ [L],∑

i∈Mℓ

w(ℓ−1)
i ≥ (1 − ϵ)⟨w(ℓ−1), 1⟩.

We claim that∑
i∈Mℓ

w(ℓ)
i ≥ (1 − O(ϵ))⟨w(ℓ), 1⟩ (5)

for all ℓ ∈ [L]. To this end, we have∑
i/∈Mℓ

w(ℓ)
i

(a)
≤
∑

i/∈Mℓ

w(ℓ−1)
i ≤ ϵ⟨w(ℓ−1), 1⟩ ≤ ϵ

(1 − ϵ)
∑

i∈Mℓ

w(ℓ−1)
i

(b)= ϵe

(1 − ϵ)
∑

i∈Mℓ

w(ℓ)
i ≤ ϵe

(1 − ϵ) ⟨w(ℓ), 1⟩,

as desired. Here, (a) is because w(ℓ) is decreasing in ℓ. (b) is because for each i ∈ Mℓ, the
weight decreases by e−1.

To complete the analysis, define f(ℓ) by

f(ℓ) = − 1
L

log
(

m∑
i=1

e− load(ℓ)(i)

)
= − 1

L
log
(

m∑
i=1

w(ℓ)
i

)
.

f(ℓ) gives a smooth approximation of the minimum value of load(ℓ); we have

min
i

load(ℓ)(i)
L

− ϵ ≤ f(x) ≤ min
i

load(ℓ)(i)
L

because L ≥ log(m)/ϵ. Since (Ax(L))i ≥ load(L)(i) for all i, it suffices to show that
f(L) ≥ 1 − O(ϵ). We have

f(L) = f(0) +
L∑

ℓ=1
f(ℓ) − f(ℓ − 1) = −ϵ − 1

L

L∑
ℓ=1

log
( ∑m

i=1 w(ℓ)
i∑m

i=1 w(ℓ−1)
i

)
For each iteration ℓ, we have

m∑
i=1

w(ℓ)
i

(c)
≤ (1 + O(ϵ))

∑
i∈Mℓ

w(ℓ)
i

(d)= (1 + O(ϵ))e−1
∑

i∈Mℓ

w(ℓ−1)
i

≤(1 + O(ϵ))e−1
∑

i

w(ℓ−1)
i ≤ e−(1−O(ϵ))

∑
i

w(ℓ−1)
i .
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Here (c) critically uses inequality (5). (d) is because all elements i ∈ Mℓ are covered by y(ℓ),
increasing their loads by 1 and their weight by e−1. Thus

log
(∑m

i=1 w(ℓ)
i∑

i w(ℓ−1)
i

)
≤ −(1 − O(ϵ)).

Plugging back in, we have f(L) ≥ −ϵ − 1
L

∑L
ℓ=1(−(1 − O(ϵ))) = 1 − O(ϵ), as desired.
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