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Abstract
Spectral sparsification for directed Eulerian graphs is a key component in the design of fast algorithms
for solving directed Laplacian linear systems. Directed Laplacian linear system solvers are crucial
algorithmic primitives to fast computation of fundamental problems on random walks, such as
computing stationary distributions, hitting and commute times, and personalized PageRank vectors.
While spectral sparsification is well understood for undirected graphs and it is known that for every
graph G, (1+ε)-sparsifiers with O(nε−2) edges exist [Batson-Spielman-Srivastava, STOC ’09] (which
is optimal), the best known constructions of Eulerian sparsifiers require Ω(nε−2 log4 n) edges and
are based on short-cycle decompositions [Chu et al., FOCS ’18].

In this paper, we give improved constructions of Eulerian sparsifiers, specifically:
1. We show that for every directed Eulerian graph G⃗, there exists an Eulerian sparsifier with

O(nε−2 log2 n log2 log n + nε−4/3 log8/3 n) edges. This result is based on combining short-cycle
decompositions [Chu-Gao-Peng-Sachdeva-Sawlani-Wang, FOCS ’18, SICOMP] and [Parter-Yogev,
ICALP ’19], with recent progress on the matrix Spencer conjecture [Bansal-Meka-Jiang, STOC
’23].

2. We give an improved analysis of the constructions based on short-cycle decompositions, giving
an m1+δ-time algorithm for any constant δ > 0 for constructing Eulerian sparsifiers with
O(nε−2 log3 n) edges.
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1 Introduction

Given a graph G(V, E), a sparsifier of G is a graph H on the same set of vertices V, but
hopefully supported on a subset of the edges E′ ⊂ E such that H approximately preserves
certain properties of G. Several notions of graph sparsification have been well studied for
undirected graphs, e.g. spanners (approximately preserving distances), cut sparsifiers, spectral
sparsifiers, etc.
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119:2 Better Sparsifiers for Directed Eulerian Graphs

Spectral sparsification is a particularly influential notion of undirected graph sparsifica-
tion [44]. Spectral sparsifiers generalize cut-sparsifiers introduced by Benczur-Karger [10],
which guarantees that the total weight of every vertex cut is preserved up to a multiplicative
factor of (1 + ε) in the sparsifier. Efficient spectral sparsification was a core development
that led to nearly-linear time solvers for Laplacian linear systems [44]. It further inspired
the Laplacian paradigm, resulting in faster algorithms for many graph problems includ-
ing sampling/counting random spanning trees [16, 17] and approximating edge centrality
measures [31].

The first construction of spectral sparsifiers for undirected graphs by Spielman and
Teng required Ω(nε−2poly(log n)) number of edges with a large, unspecified power of log n.

Subsequently, Spielman and Srivastava [42] constructed a spectral sparsifier with O(nε−2 log n)
edges probabilistically by independently sampling each edge with probability proportional to
its leverage score. In a complete graph, sampling edges independently with probability p

requires p = Ω(ε−2 log n) to achieve (1 + ε)-spectral sparsification; thus such construction
requires Ω(nε−2 log n) edges. Batson-Spielman-Srivastava [7] further improved this to show
that there exist spectral sparsifiers for undirected graphs with O(nε−2) edges and that this is
tight even for the complete graph. Thus, they essentially settled the question of the optimal
size of undirected spectral sparsifiers.

For directed graphs, sparsification has been trickier to define. It is immediate to see that
in a complete bipartite graph with all edges directed from the left vertices to the right vertices,
if one wishes to approximately preserve all directed cuts, one must preserve all the edges.
This means that there is no non-trivial cut-sparsification (or its generalization) for arbitrary
directed graphs. Such pathological cases can be avoided if one restricts to Eulerian directed
graphs, i.e. a graph where each vertex has its total weighted in-degree equal to its total
weighted out-degree, in which case cut sparsification becomes equivalent to cut sparsification
of undirected graphs. Indeed, Cohen-Kelner-Peebles-Peng-Rao-Sidford-Vladu [13] defined a
meaningful generalization of spectral sparsification (and hence cut sparsification) to Eulerian
directed graphs. The standard notion of Eulerian approximation and (sparsification) requires
exact preservation of the differences between in and out degrees while ensuring the difference
in directed Eulerian Laplacians is small with respect to the Laplacian of the undirectification
of the graph. That is, for ϵ ∈ (0, 1),∥∥∥L

+
2

G (LH⃗ − LG⃗)L
+
2

G

∥∥∥ ≤ ϵ.

We call these sparsifiers Eulerian sparsifiers for brevity. In a manner similar to the original
Spielman-Teng construction, [13] gives a nearly-linear time Õ(m)-time algorithm to build an
Eulerian sparsifier with O(nε−2poly(log n)) edges, with a large unspecified power of log n.

Since Eulerian sparsification generalizes undirected spectral sparsification, Ω(nε−2) edges
are necessary for constructing Eulerian sparsifiers. There has been progress in proving the
existence of Eulerian sparsifiers with fewer edges: Chu-Gao-Peng-Sachdeva-Sawlani-Wang [11]
introduced the short-cycle decomposition, a decomposition of an unweighted graph as a
union of short edge-disjoint cycles, and a few extra edges. As a simple lemma, they showed
that every undirected graph can be represented as a union of edge-disjoint cycles of length
2 log n, with at most 2n extra edges. Using this short-cycle decomposition, [11] were able to
prove Eulerian sparsifiers with O(nε−2 log4 n) edges exist. However, the following natural
question remains unanswered:

What is the best possible sparsity guarantee for constructing Eulerian sparsifiers?

In this paper, we make progress on this question. First, we present an improved analysis
of the short-cycle based Eulerian sparsification from [11].
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▶ Theorem 1. For every constant δ > 0, there is an algorithm that takes as input a directed
Eulerian graph G⃗ and returns an ε-Eulerian sparsifier of G⃗ with O(nε−2 log3 n) edges in
m1+δ time.

The above algorithm relies on independently toggling short cycles: with probability 1
2

all clockwise edges are deleted and counter-clockwise edges are doubled, otherwise vice-
versa. Given that the edges in each O(log n) length short-cycle are toggled in a completely
correlated manner, and the cycles are toggled independently, this approach cannot lead to a
sparsity better than O(nε−2 log3 n) (see Remark 9). To go past the above result, we leverage
discrepancy theory, specifically recent progress on the matrix Spencer conjecture by Bansal,
Jiang, and Meka [6]. (See Section 1.1 for a description of the matrix Spencer conjecture.)
While the matrix Spencer conjecture is not directly useful for our application, we utilize the
underlying machinery from [6] and the short-cycle decomposition to prove the following:

▶ Theorem 2 (Informal). There is an algorithm that given an Eulerian graph G⃗, can compute
in poly-time an ε-Eulerian sparsifier of G⃗ with nε−2 log2 n + nε−3/4 log8/3 n edges (up to
log log n factors).

For small ε, e.g. ε−1 = Ω(log n), the above theorem gives an nε−2 log2 n bound, only a
log2 n factor away from the lower bound. In Section 4.1 we show that assuming the matrix
partial colouring conjecture, one can improve this result to prove the existence of ε-Eulerian
sparsifiers with nε−2 log2 n edges for all ε (up to log log n factors).

1.1 Related works
Sparsification

There are four major approaches for undirected spectral sparsification: expander decomposi-
tion [45, 4, 20], spanners [21, 23, 26], importance sampling [43, 22], and potential function
based sparsification [8, 3, 28, 29]. More closely related to Eulerian sparsification is undirected
degree preserving sparsification, introduced by Chu-Gao-Peng-Sachdeva-Sawlani-Wang [11].
Degree preserving sparsification is useful for constructing spectral sketches. More importantly
for us, techniques for degree preserving sparsification can generally be extended to work for
directed Eulerian sparsification.

Cohen-Kelner-Peebles-Peng-Rao-Sidford-Vladu [13] showed the first degree preserving
(implicitly) and Eulerian sparsifier using expander decomposition. The algorithm performs
random sampling of the directed edges with probability related to the degrees within each
expander. Recent work by Ahmadinejad-Peebles-Pyne-Sidford-Vadhan [2] establishes an
“equivalence”, albeit with significantly stronger requirements than spectral approximations,
between degree preserving and Eulerian sparsification under the notion of singular value
approximation. They established the first Eulerian sparsifier with both nearly-linear sparsity
and nearly-linear runtime, albeit with a large poly(log n) factor in both. However, the
expander approach bottlenecks at Ω(nε2 log3 n) due to a lowerbound on the optimal tradeoff
between the expansion factor and the number of expanders [41].

The technique of using short cycles for sparsification [11] also applies to degree preserving
and Eulerian sparsifications with sparsity O(nε−2 log2 n) and O(nε−2 log4 n) respectively.
Improved short cycle decompositions were subsequently designed in [32, 35] to facilitate faster
construction of sparsifiers. Our first result Theorem 1 follows closely to [11] and reduces the
gap between degree-preserving and Eulerian sparsification under this technique.

ICALP 2024



119:4 Better Sparsifiers for Directed Eulerian Graphs

Recently Jambulapati-Reis-Tian [19] constructed new degree preserving sparsifiers using
discrepancy theory. They showed operator norm discrepancy bodies are well conditioned1

for the symmetric and PSD matrices that arise from undirected sparsification and used an
approximate version of the framework from Reis-Rothvoss [39] to give a colouring of the
edges (corresponding to adding and deleting edges) under the linear constraint needed for
degree preservation. However, the underlying discrepancy bodies studied by Jambulapati-
Reis-Tian [19] do not align with Eulerian sparsification where matrices are no longer positive
semidefinite and the primary statistic one has control over is matrix variance (see Section 4).

Directed Laplacian solvers

Cohen-Kelner-Peebles-Peng-Sidford-Vladu [14] initiated the line of work that studies solving
directed Laplacian linear systems. They established a reduction from solving general directed
Laplacian systems to Eulerian Laplacian systems.Cohen-Kelner-Peebles-Peng-Rao-Sidford-
Vladu [13] gave an almost linear time algorithm for solving Eulerian Laplacians using the
squaring identities from Peng-Spielman [37]. Subsequently, Cohen-Kelner-Kyng-Peebles-Peng-
Rao-Sidford [12] gave the first nearly linear time solver using the standard approximate LU
factorization techniques that enjoyed great success in undirected Laplacian solvers [27, 24, 40].
Ahmadinejad-Jambulapati-Saberi-Sidford [1] further established a reduction from solving
systems of (asymmetric) M-matrices to Eulerian Laplacian systems, giving fast computation
of several problems closely associated with the Perron-Frobenius theorem. Peng-Song [36]
extended the approach from [12] and gave an approach for extending an algorithm for building
Eulerian sparsifiers to a fast solver for Eulerian Laplacian linear systems. Combined with
Theorem 1, they give an O(n log4 n log( n

ε )) time solver with m1+δ preprocessing time for any
constant δ > 0. Kyng-Meierhans-Probst-Gutenberg [25] established the first derandomized
directed Laplacian solver in almost linear time.

Discrepancy theory

The Matrix Spencer Conjecture [47, 34] is a major open problem in discrepancy theory:

▶ Conjecture 3 (Matrix Spencer Conjecture). Given n×n symmetric matrices A1, . . . , Am ∈
Rn×n with ∥Ai∥ ≤ 1, there exist signs x ∈ {±1}m such that ∥

∑m
i=1 xiAi∥ ≤ O(

√
m ·

max{1,
√

min{1, log( n
m )}}).

As a natural comparison, for a uniform random colouring x ∈ {±1}m, the matrix Chernoff
bound [46] gives the following bound which has a gap of

√
log n to Conjecture 3 when m ≥ n:

E

[∥∥∥∥∥∑
i

xiAi

∥∥∥∥∥
]

= O
(√

log n
)
·

∥∥∥∥∥∑
i

A2
i

∥∥∥∥∥
1
2

≤ O(
√

m log n).

We refer readers to [30, 18, 15] for recent progress toward solving this conjecture.
Many natural problems in studying the spectra of matrices can be viewed as discrepancy

theory problems, e.g., graph sparsification [8, 38] and the Kadison-Singer problem [33].
Reis-Rothvoss [38] studies the geometry of operator norm balls for a collection of matrices
where, ∥

∑
i |Ai|∥ is small. This was subsequently used in Jambulapati-Reis-Tian [19] to show

optimal degree preserving sparsification. As previously mentioned, this line of work does not
apply to Eulerian sparsification since matrices that emerge from our setting do not satisfy

1 I.e., satisfy certain Gaussian measure lowerbound
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that ∥
∑

i |Ai|∥ is small. Bansal-Jiang-Meka [6] resolved the Matrix Spencer Conjecture for
matrices of rank n/(logO(1) n) using a recent advancement in matrix concentration bounds due
to Bandeira-Boedihardjo-van-Handel [5]. The partial colouring result for controlling operator
norm used in [6] serves as the main machinery in our existential results (see Lemma 4).
Specifically, the matrices we study naturally satisfy ∥

∑
i A2

i ∥ is small.

1.2 Technical overview
Our approach to constructing Eulerian sparsifiers builds on the framework of Chu-Gao-
Peng-Sachdeva-Sawlani-Wang [11]. The sparsification algorithm in [11] combines importance
sampling of edges with a short cycle decomposition. At each iteration, the algorithm restricts
its attention to edges with small “importance” in the undirected graph (edges with leverage
score web⊤

e L+
Gbe at most constant times the average leverage score, O( n

m )). The algorithm
then performs a short cycle decomposition on these edges – expressing the graph as a union
of uniformly weighted edge-disjoint short cycles and a few extra edges. For each short cycle,
the algorithm independently keeps either the clockwise edges or the counter-clockwise edges
with probability 1

2 each. The number of edges reduces by a constant fraction in expectation
at each iteration. After doubling the weights of the cycle edges retained, the algorithm
guarantees that the Eulerianess of each cycle is preserved and, hence, the entire graph.
Moreover, when combined with the undirected leverage score condition above, changes in
directed short cycles also have a small variance overall. The matrix Bernstein inequality for
asymmetric matrices guarantees a small approximation error for this randomized step. We
repeat this process until the desired approximation error is met.

Our improved result of this algorithm is due to th improved variance bounds in Lemma 8
for random matrices corresponding to short cycles. Rather than bounding the variance
through complete graphs as in [11], we bound it with respect to the undirected cycle. This
improved variance also serves a critical role in our partial colouring approach in Section 4.

In the rest of our paper, we present our existential result which uses the partial colouring
lemma, Lemma 4, from [6] to choose how to sparsify the short cycles. The algorithm follows
the same high-level approach as the random sampling construction above. For each directed
short cycle, instead of independently sampling cycle edges, we will use the partial colouring
given by Lemma 4. In each iteration, Lemma 4 gives a partial colouring with sufficiently
many fully coloured entries (i.e., ±1 entries) on all cycles. It then allows us to remove a
constant fraction of the cycle edges with less error than random sampling.

▶ Lemma 4 ([6] Lemma 3.1). There exists constants c, c′ > 0 such that given symmetric
matrices A1, . . . , Am ∈ Rn×n satisfying ∥

∑m
i=1 A2

i ∥ ≤ σ2 and
∑m

i=1 ∥Ai∥2
F ≤ mf2 and a

point y ∈ (−1, 1)m, there is an algorithm PartialColour that returns in polynomial time
a point x ∈ [−1, 1]m such that |{i : xi ∈ {±1}}| > c′m and∥∥∥∥∥

m∑
i=1

(xi − yi)Ai

∥∥∥∥∥ ≤ c(σ + (log
3
4 n)

√
σf). (1)

There are two major challenges in applying Lemma 4. Firstly, within each iteration,
we cannot afford to fully colour all the cycles by recursively applying Lemma 4, since we
might have to perform the partial colouring O(log n) times, resulting in an additional log
factor in the sparsity. Thus, we are always left with fractionally coloured cycles (i.e., entries
with magnitude < 1). Such cycles must still be incorporated into the sparsified graph to
guarantee the error given by Lemma 4. However, we cannot explicitly modify the graph to
include edges corresponding to these cycles, as we would lose the integral and polynomially

ICALP 2024



119:6 Better Sparsifiers for Directed Eulerian Graphs

bounded weight conditions and the short cycle decomposition could no longer be applied to
this new graph. The second challenge also comes from incorporating fractionally coloured
cycles in the next iteration. Unlike the undirected case, the two parts of a directed cycle do
not necessarily have the same number of edges. For example, a directed cycle with all edges
in the same direction has all the edges in one part and none in the other. If we start our
colouring process from a non-zero initial partial colouring (i.e., a non-zero y to Lemma 4),
we could end up at a colouring where almost no edges are removed.

To deal with these problems, our algorithm handles the integral weighted portion G⃗ of
the graph G⃗′ and the fractionally coloured cycles S separately (see Algorithm 4). For the
integral weighted portion, we perform the partial colouring to guarantee at least a constant
fraction of edges are removed. We then add the fractionally coloured cycles into the set S.
For the set of fractionally coloured cycles S, we adjust their colouring by considering the
difference between the partial colours and ±1 to ensure that a good portion of cycles in S

are fully coloured after the procedure to guarantee the size of S does not blow up. In both
cases, the error incurred by the partial colouring operation is controlled to guarantee our
desired final error (Theorem 2).

2 Preliminaries

We use Õ(·) to suppress polylog factors in n, m. We say “with high probability in n” for an
event occuring with probability 1− n−Ω(1). For graphs, n is assumed to be the number of
vertices and is often omitted. All logarithms in the paper are base 2.

Linear Algebra

We use boldface to denote vectors, and use 0 and 1 for the all-zeros and all-ones vectors.
We let eu denote the vector that is 1 in the uth coordinate and 0 elsewhere. We denote
buv = eu − ev for any u ̸= v. For vectors u, v of equal dimension, u ◦ v is the entrywise
product. For a linear subspace W of a vector space V, we denote W⊥ as the orthogonal
complement of W in V.

Matrices are denoted in boldface capticals. We use ker(A), im(A) to denote the kernel
and image of A. For any u, we let (A)u denote the uth column of A. The Kronecker product
of matrices A and B is denoted A⊗B. A symmetric matrix A is positive semidefinite (PSD)
(resp. positive definite (PD)) if, for any vector x of compatible dimension, x⊤Ax ≥ 0 (resp.
x⊤Ax > 0 ). Let A and B be two symmetric matrices of the same dimension, then we write
B ≼ A or A ≽ B if A−B is PSD. The ordering given by ≼ is called Loewner partial order.

▶ Lemma 5. If A ≽ B and C is any matrix of compatible dimension, then CAC⊤ ≽ CBC⊤.

Let ∥A∥ and ∥A∥F =
√

Tr (A∗A) denote the operator norm and Frobenius norm of a matrix
A. The operator norm is equal to the largest singular value of A. For a matrix A ∈ Rn×m,
we define the Hermitian (symmetric) lift of A by

hlift(A) =
[

A
A⊤

]
∈ R(n+m)×(n+m)

The norms of Hermitian lifts satisfy ∥hlift(A)∥ = ∥A∥ and ∥hlift(A)∥F = 2 ∥A∥F . Given
a symmetric matrix with eigenvalue decomposition A =

∑
i λiviv⊤

i , where {vi}i form an
orthonormal basis, the pseudoinverse is defined as A+ =

∑
i:λi ̸=0

1
λi

viv⊤
i . The absolute value

of A on eigenvalues is defined as |A| =
∑

i:λi ̸=0 |λi|viv⊤
i . Note that |A| is PSD. Similarly for

symmetric PSD matrix A we have A1/2 =
∑

i:λi ̸=0
√

λiviv⊤
i and A+/2 =

∑
i:λi ̸=0

1√
λi

viv⊤
i .
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Graphs and Laplacians

G⃗ = (V, E, w) denotes a weighted directed graph (allowing multi-edges) with edge weights
w : E → R≥0. G denotes the undirected graph of G⃗ where directed edgex e ∈ E(G⃗)
correspond to undirected edges between the same vertices with half the weight. G⃗ is Eulerian
if the weighted in degree equals the weighted out degree for each vertex v ∈ V .

We define the adjacency matrix of G⃗ as a non-negative matrix AG⃗ with Auv = wuv if
(u, v) ∈ E and 0 otherwise. The weighted degree matrix of G⃗ is a non-negative diagonal
matrix DG⃗ corresponding to the weighted out-degrees of G⃗. We define the directed Laplacian
of G⃗ as LG⃗ = DG⃗ − A⊤

G⃗
and it satisfies 1⊤LG⃗ = 0⊤, i.e. (LG⃗)uu = −

∑
v ̸=u Lvu for all

u ∈ V . For a weighted Eulerian directed graph G⃗, its graph Laplacian additionally satisfies
LG⃗1 = 0. Assuming Eulerian graph G⃗, the associated undirected graph Laplacian matrix of
G is LG = 1

2 (LG⃗ + L⊤
G⃗

). LG is symmetric and PSD. For an undirected Laplacian LG, the
effective resistance and leverage score of an edge e ∈ E(G) are defined by ReffG(e) = b⊤

e L+
Gbe

and τ G(e) = we ReffG(e) where we fixed an arbitrary orientation for the undirected edge e.
We use n and m for the number of vertices and edges in G. As is standard, we study strongly
connected Eulerian graphs with positive integral and polynomially bounded edge weights
(i.e., weights bounded by nO(1)).

3 Eulerian sparsification via short cycle decomposition

We first present an improved analysis of constructing Eulerian sparsifiers using short cycle
decompositions analogous to [11]. In particular, we provide a better variance analysis of the
error terms in sparsification than what was used by [11]; by Matrix Bernstein [46] this will
allow us to use fewer edges to retain a desired error bound.

We first recall the definition of a short cycle decomposition of a graph G.

▶ Definition 6. An (m̂, L)-short cycle decomposition of an unweighted undirected graph G,
decomposes G into several edge-disjoint cycles, each of length at most L, and at most m̂

edges are not in the union of the cycles.

We let CycleDecomposition be an algorithm that takes as input an unweighted graph
with n vertices and m edges and returns a (m̂, L)-short cycle decomposition in time TCD(m, n).
As in [11], we assume the super-additivity of TCD,

∑
i TCD(mi, n) ≤ TCD (

∑
i mi, n) , for

all mi ≥ n. Relevant to us is a construction of short cycle decompositions which for every
constant δ > 0, gives an (O(n log n), O(log n))-short cycle decomposition in time m1+δ.

▶ Lemma 7 ([35] Theorem 2). For any δ > 0, there is an algorithm that computes an
(O(n log n), O(2 1

δ log n))-short cycle decomposition of an undirected unweighted graph in
2O( 1

δ )mnδ time.

Our random sampling based sparsification algorithm is the same as [11]. We repeatedly
sparsify an Eulerian graph by keeping only the “clockwise” or “counter-clockwise” edges of
each cycle in a short cycle decomposition of the graph, see CycleSparsify in Algorithm 2
and CycleSparsifyOnce in Algorithm 3.

Stated in other words, we will sparsify a cycle by partitioning it into two sets and removing
one randomly. For a directed cycle C⃗, we take F⃗ , S to be the outputs of CorrectOrien-
tation(C⃗). In particular, F⃗ is the cycle C⃗ corrected so that every vertex has an incoming
edge and an outgoing edge, and S is the undirected graph coming from the set of edges in C⃗

whose direction we reversed (where the edge weight in S are the same as the original edge

ICALP 2024



119:8 Better Sparsifiers for Directed Eulerian Graphs

Algorithm 1 CorrectOrientation(C⃗).

1 Pick an arbitrary edge e1 in C⃗ and let v1 be its tail vertex. Define VC⃗ as the vertex
set of C⃗.

2 Initialize ES⃗ ← ∅, EF⃗ → {e1}, VF⃗ = {v1}, i = 1
3 while |VC⃗ \ VF⃗ | > 0 do
4 i← i + 1
5 Take ei+1 be the other edge incident on vi.
6 If ei+1 is outgoing from vi, take vi+1 the head of ei+1 and update

EF⃗ ← EF⃗ ∪ {ei+1}, VF⃗ ← VF⃗ ∪ {vi+1}.
7 Else let vi+1 be the tail of ei+1 and update ES⃗ ← ES⃗ ∪ {ei+1},

EF⃗ ← EF⃗ ∪ {rev(ei+1)}, VF⃗ ← VF⃗ ∪ {vi+1}.
8 return F⃗ defined by EF⃗ and VF⃗ , and S the undirected graph defined by ES⃗ and the

incident vertices of ES⃗.

Algorithm 2 CycleSparsify(G⃗, ε, CycleDecomposition).

1 Decompose each edge by its binary representation.
2 Compute r a 1.5-approximate effective resistances in G.
3 while |E(G⃗)| ≥ O(m̂ log n + ε−2nL2 log n) do
4 G⃗← CycleSparsifyOnce(G⃗, r,CycleDecomposition).
5 return G⃗.

weights). We consider the direction of edges defined by F⃗ as clockwise. Then, the edges in S

are all the counter-clockwise edges in C⃗. For a cycle C and its corresponding directed cycle
C⃗, the directed graph Laplacian added at line 7 in CycleSparsifyOnce is the following:{

LC⃗ + LF⃗ − LS w.p. 1
2

LC⃗ − LF⃗ + LS w.p. 1
2

which means the changes incurred on the directed graph Laplacian is{
L̃ w.p. 1

2

−L̃ w.p. 1
2

, where L̃ = LF⃗ − LS . (2)

Note that this change preserves the difference between the in and out degrees of C⃗. Either a
vertex had an incoming and outgoing edge (and so difference 0), in which case both edges
are either in F⃗ \ S or in S and hence always added together with the same weights (so still
difference 0). Alternatively a vertex had two incoming or outgoing edges, in which case only
one is ever added with twice the weight, which then still preserves the difference between in
and out degree.

To obtain the improved approximation error guarantees, we show Lemma 8 that bounds
the effect of LF⃗ . Compared to Lemma 5.6 in [11], our result improves the bound by a factor
of L.

▶ Lemma 8. If C⃗ is a equal weighted directed cycle of length L contained in a graph G⃗ where
each edge e⃗ ∈ C⃗ satisfies τ G(e) ≤ ρ. Then, L⊤

F⃗
L+

GLF⃗ ⪯ O(L2ρ)LC .
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Algorithm 3 CycleSparsifyOnce(G⃗, r, CycleDecomposition).

Input: A directed Eulerian graph G⃗ where edge weights are integral powers of 2,a
2-approximate effective resistances r in G, a short cycle decomposition
algorithm CycleDecomposition.

Output: A directed Eulerian graph H⃗ where edge weights are integral powers of 2.

1 H⃗ ← G⃗ with only the edges which satisfies were > 4n
m and remove these edges from

G⃗.
2 Partition G⃗ into uniformly weighted graph G⃗1, . . . , G⃗s where G⃗i has all edge weights

2i and s = O(log n).
3 for each G⃗i do
4 {Ci,1, . . . , Ci,t} ← CycleDecomposition(Gi) and let C⃗i,j be the corresponding

directed graph of Ci,j in G⃗i.
5 H⃗ ← H⃗ + G⃗i \

(⋃t
j=1 C⃗i,j

)
.

6 for each cycle C⃗i,j do
7 With probability 1

2 , add all its clockwise edges with twice their weight to H⃗.
Otherwise, add the counter-clockwise edges instead.

8 return H⃗.

Proof. Let ΠC = IC − 1
L 1C1⊤

C be the projection matrix on the support of C except the
all one vector on C. Notice that ker⊥(LC) = im(LC) = im(ΠC). Furthermore, we have
im(LF⃗ ) ⊂ im(ΠC) (as 1C ∈ im⊥(LF⃗ )) so ΠCLF⃗ = LF⃗ , and also im⊥(ΠC) ⊂ ker(L⊤

F⃗
) hence

L⊤
F⃗

ΠC = L⊤
F⃗

. Thus, L⊤
F⃗

L+
GLF⃗ = L⊤

F⃗
ΠCL+

GΠCLF⃗ .
Let w be the weight of each edge in C⃗. Then, LF⃗ = w(I−P) where P is a permutation

matrix on the vertices of C corresponding to the transition matrix F⃗ and LC = w
2 (2I−P−P⊤).

Now, L⊤
F⃗

ΠCLF⃗ = L⊤
F⃗

LF⃗ = w2(I−P⊤)(I−P) = w2(2I−P−P⊤) = 2wLC . As ker(L+
G) ⊆

ker(ΠC), it suffices to show ∥ΠCL+
GΠC∥ = O(L2ρ

w ). We can write out each column of ΠC

by (ΠC)u = 1
L

∑
v∈C,v ̸=u buv for u ∈ C and 0 otherwise. As effective resistance is a metric,

wb⊤
uvL+

Gbuv ≤ (L− 1)ρ for any distinct vertices u, v ∈ C. Note that this factor of L is an
upperbound on the combinatorial distance from u to v in C. Then,

∣∣(ΠC)⊤
x L+

G(ΠC)u

∣∣ =

∣∣∣∣∣∣∣
 1

L

∑
y∈C,y ̸=x

L
+
2

G bxy

⊤ 1
L

∑
v∈C,v ̸=u

L
+
2

G buv


∣∣∣∣∣∣∣

≤
∑

y ̸=x,y∈C

∑
v ̸=u,v∈C

1
wL2

∥∥∥w
1
2 L

+
2

G bxy

∥∥∥ · ∥∥∥w
1
2 L

+
2

G buv

∥∥∥
≤(L− 1)2 × (L− 1)ρ

wL2 ≤ Lρ

w
.

By Gershgorin circle theorem and the length of C, any eigenvalue of ΠCL+
GΠC cannot exceed

L2ρ
w as required. ◀

▶ Remark 9. There is still a gap of factor L when comparing Lemma 8 to the undirected
case. It turns out Lemma 8 is tight. Consider the multi-graph G⃗ that consists of a directed
cycle with edges of weight 1 in the same orientation F⃗ and a undirected cycle C on the same
vertices of edge weight ρ−1 for ρ < 1

2 . Then, each edge of the directed graph has undirected
leverage score Θ(ρ) while L⊤

F⃗
L+

GLF⃗ = Θ( ρ
L )LK where LK is the Laplacian of unit clique on

the vertices of G⃗. Since LK cannot be bounded by o(L3)LF , this gives the lowerbound.
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When combined with Lemma 5.5 of [11], we obtain the following spectral bounds on
matrices which appear later in our variance analysis. We refer readers to [11] and the full
version of our paper for the proofs of all subsequent claims in this section.

▶ Lemma 10. Let C⃗ is an equal weighted directed cycle of length L contained in a graph
G⃗ where each edge e⃗ ∈ C⃗ satisfies τ G(e) ≤ ρ. Then L

+
2

G (L̃
⊤

L+
GL̃)L

+
2

G ⪯ O(L2ρ) · L
+
2

G LCL
+
2

G

and L
+
2

G (L̃L+
GL̃

⊤
)L

+
2

G ⪯ O(L2ρ) · L
+
2

G LCL
+
2

G .

The matrix Bernstein’s inequality [46] then gives the sparsification and error guarantees
of running CycleSparsifyOnce in Lemma 11.

▶ Lemma 11. Given a directed Eulerian graph G⃗ whose edge weights are integral powers of 2,
and additionally 2-approximate effective resistances r in G, the algorithm CycleSparsify-
Once returns in O(m) + TCD(m, n) time a directed Eulerian graph H⃗ with edge weights still
being powers of 2 such that if the number of edges in G satisfy m = Ω(m̂ log n + nL2 log n),
then with high probability, the number of edges in H⃗ is at most 15

16 m and

∥∥∥L
+
2

G (LG⃗ − LH⃗)L
+
2

G

∥∥∥ ≤ O

(√
nL2 log n

m

)
.

We now provide the guarantees of CycleSparsify, which repeatedly calls CycleSpar-
sifyOnce until a criterion on the number of edges is met.

▶ Theorem 12. Given as input an Eulerian graph G⃗ with polynomial bounded integral
edge weights and ε ∈ (0, 1

2 ), the algorithm CycleSparsify returns in O(m log2 n) +
TCD(O(m log n), n) time a Eulerian graph H⃗ with O(m̂ log n + ε−2nL2 log n) edges such
that with high probability,∥∥∥L

+
2

G (LG⃗ − LH⃗)L
+
2

G

∥∥∥ ≤ ε.

Plugging in Lemma 7, we obtain the improved results on constructing Eulerian Sparsifiers
with short cycle decompositions, summarized in Theorem 1.

▶ Theorem 1. For every constant δ > 0, there is an algorithm that takes as input a directed
Eulerian graph G⃗ and returns an ε-Eulerian sparsifier of G⃗ with O(nε−2 log3 n) edges in
m1+δ time.

4 Sparsification via partial colouring

In the previous algorithm CycleSparsify, the approach to sparsifying was to randomly
pick one part of each cycle (out of a partitioning of the cycle into two parts) to remove
from the graph. The analysis then followed by observing on average this leads to a good
approximation, and that furthermore the variance in this random construction is sufficiently
small. In this section, we show, however, that by using recent partial colouring results on
operator norm discrepancy bodies to pick what parts of a cycle to remove, we can obtain
better sparsifiers. The main partial colouring result we use, relevant for picking a subset of
matrices to keep with minimal error, is restated below.
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Algorithm 4 ColourSparsify(G⃗, ε).

1 Decompose each edge by its binary representation.
2 Compute r a 1.5-approximate effective resistances in G.
3 Let S be a set of cycles initialized to empty and let x be its corresponding partial

colouring.
4 Set G⃗′ ← G⃗+ ColourWeights(S, x).
5 while m′ ≥ O(nε−2 log2 n(log log n)2 + nε− 4

3 log
8
3 n) do

6 if 4m ≥ m′ then
7 G⃗, G⃗′, S, x← ColourSparsifyGraph(G⃗, G⃗′, S, x, r).
8 else
9 G⃗, G⃗′, S, x← ColourSparsifyCycle(G⃗, G⃗′, S, x, r).

10 return G⃗′.

Algorithm 5 ColourWeights(S, x).

1 Let H⃗ be an empty directed graph.
2 for each cycle C ∈ S and corresponding directed cycle C⃗ do
3 Add all the clockwise (resp. counter-clockwise) edges in C⃗ with 1 + xC (resp.

1− xC) times their weight to H⃗. Note if 1 + xC = 0 (resp. 1− xC = 0) the
corresponding edge is not added.

4 return H⃗.

▶ Lemma 4 ([6] Lemma 3.1). There exists constants c, c′ > 0 such that given symmetric
matrices A1, . . . , Am ∈ Rn×n satisfying ∥

∑m
i=1 A2

i ∥ ≤ σ2 and
∑m

i=1 ∥Ai∥2
F ≤ mf2 and a

point y ∈ (−1, 1)m, there is an algorithm PartialColour that returns in polynomial time
a point x ∈ [−1, 1]m such that |{i : xi ∈ {±1}}| > c′m and∥∥∥∥∥

m∑
i=1

(xi − yi)Ai

∥∥∥∥∥ ≤ c(σ + (log
3
4 n)

√
σf). (1)

For this section, we assume the short cycle decomposition guarantees by Lemma 7 with
m̂ = O(n log n) and L = O(log n). For each cycle C with its corresponding directed cycle
C⃗, we set A(C) = hlift(L

+
2

G′(LF⃗C
− LSC

)L
+
2

G′) where F⃗C is the cycle C⃗ with all edges set in
clockwise direction and SC is undirected graph with the set of edges corresponding to the
counter-clockwise edges in C⃗, same as in Section 3. Note that this orientation is set initialy
by CorrectOrientation after a short cycle decomposition step and fixed through out the
execution. Given a set of cycles S, we let A[S] be the collection {A(C)}C∈S .

ColourWeights is our partial colouring alternative of the random selection of edges in
a cycle in CycleSparsifyOnce. It similarly does not change the difference between the
in-degree and out-degree and preserves integral weights, stated in Lemma 13.

▶ Lemma 13. Given a set of cycles S where each cycle is uniformly weighted, and any
partial colouring x ∈ [−1, 1]S, the algorithm ColourWeights returns a directed graph H⃗

such that the difference in the in and out degrees are the same as in
∑

C∈S C⃗. If x ∈ {±1}S,
H⃗ also has integral edge weights with the largest edge weight at most twice the largest edge
weight in cycles in S.
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Algorithm 6 ColourSparsifyGraph(G⃗, G⃗′, S, x, r).

Input: A directed Eulerian graph G⃗ where edge weights are integral powers of 2, a
set of cycles S where each cycle is edge disjoint from G, a partial colouring
x ∈ (−1, 1)S , a graph G⃗′ = G⃗+ ColourWeights(S, x), a 2-approximate
effective resistances r in G′.

Output: A directed Eulerian graph H⃗ where edge weights are integral powers of
2, a set of cycles T where each cycle is edge disjoint from H, a partial
colouring z ∈ (−1, 1)T , a graph H⃗ ′ = H⃗+ ColourWeights(T , z).

1 Let H⃗ ← G⃗ with only the edges which satisfy were > 16n
m′ and remove them from G⃗.

2 Partition G⃗ into uniformly weighted graph G⃗1, . . . , G⃗q where G⃗i has all edge weights
2i and q = O(log n).

3 Let S be the set of all cycles after applying CycleDecomposition on G⃗1, . . . , G⃗s

and set H⃗ ← H⃗ +
∑s

i=1 G⃗i\
(⋃t

j=1 C⃗i,j

)
.

4 T ′, T
′
, y, y← ColourTarget(S, 0, 1

8 m).
5 If ColourWeights (T ′, y) has more edges than ColourWeights (T ′,−y), we

take y← −y and y← −y.
6 H⃗ ← H⃗ + ColourWeights(T ′, y).
7 T ← T

′ ∪ S and set z← y + x.
8 H⃗ ′ ← H⃗+ ColourWeights(T , z).
9 return H⃗, H⃗ ′, T , z.

Proof. For the degree condition, it suffices to consider a single cycle C and show that the
reweighted directed cycle, say C⃗ ′ in line 3 preserves the differences of the in and out degrees
of C⃗. Recall the definition of F⃗ and S of C, see CorrectOrientation,and the argument
in Section 3 for showing degree differences preservation under the special case of x ∈ {±1}.
Note first that the edge weights are the same. Either a vertex has an incoming and outgoing
edge (and so difference 0), in which case both edges are either in F⃗ \ S or in S and hence
always added together with the same weights of (so still difference 0). Alternatively a vertex
has two incoming or outgoing edges, in which case one edge gets a new weight of 1 + x and
the other gets 1− x, which then still preserves the difference between in and out degree.

If x ∈ {±1} the edge weights of C⃗ ′ is exactly twice that of C unless C⃗ ′ is emtpy. Thus,
H⃗ still has integral edge weights with largest weight at most doubled. ◀

For the rest of this section, we refer to a set of uniformly weighted cycles (two cy-
cles can have different weights) as a set of cycles for simplicity. We write m(S) =∑

C∈S |E(C)| as the total number of edges in S. In ColourSparsify, ColourSpar-
sifyGraph and ColourSparsifyCycle, by applying ′ to a graph we mean G⃗′ = G⃗+
ColourWeights(S, x). We denote m′ as the number of edges in G⃗′. Note that this is the
primary number of edges we consider rather than m.

Towards analyzing ColourSparsify, we first state the guarantees of the ColourTarget
subroutine which guarantees a partial colouring of at least a specified size.

▶ Lemma 14. The outputs of ColourTarget(S, y, mt) satisfy that m(S) ≤ mt and the
number of calls to PartialColour is O

(
log( |S|L

mt
)
)

. If additionally the set of cycles S

satisfies
∑

C∈S ∥A(C)∥ ≤ σ2 and
∑

C∈S ∥A(C)∥2
F ≤ v, then the outputs also satisfy∥∥∥∥∥∑

C∈S

(x + x− y)A(C)

∥∥∥∥∥ ≤ O

(
σ · log

(
|S|L
mt

)
+ (log

3
4 n)σ 1

2

(
vL

mt

) 1
4
)
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Algorithm 7 ColourSparsifyCycle(G⃗, G⃗′, S, x, r).

Input: A directed Eulerian graph G⃗ where edge weights are integral powers of 2, a
set of cycles S where each cycle is edge disjoint from G, a partial colouring
x ∈ (−1, 1)S , a graph G⃗′ = G⃗+ ColourWeights(S, x), a 2-approximate
effective resistances r in G′.

Output: A directed Eulerian graph H⃗ where edge weights are integral powers of
2, a set of cycles T where each cycle is edge disjoint from H, a partial
colouring z ∈ (−1, 1)T , a graph H⃗ ′ = H⃗+ ColourWeights(T , z).

1 Set S
′ be an empty set of cycles initialy. For each C ∈ S, let C ′ be C with its weight

by (1− |xC |) and add C ′ to S
′.

2 T ′, T
′
, y, y← ColourTarget(S

′
, 0, 1

4 m′)
3 if m({C ′ ∈ T ′ : |xC − (1− |xC |)yC′ | = 1}) > m({C ′ ∈ T ′ : |xC + (1− |xC |)yC′ | = 1})

then
4 y← −y, y← −y.
5 Set z, z to be the parts of x + (1− |x|) ◦ (y + y) with magnitude 1 and < 1

respectively. Here we abused ◦ to let C and C ′ refering to the same index, Set the
partition T, T of S accordingly.

6 H⃗ ← H⃗ + ColourWeights(T, z).
7 H⃗ ′ ← H⃗+ ColourWeights(T ,z).
8 return H⃗, H⃗ ′, T , z.

Proof. Notice that each cycle has its number of edges bounded by L. We have m(S) ≤
L|S| ≤ mt by the terminating condition of the while loop in ColourTarget. Since the size
of S decreases by a factor of 1− c′ by Lemma 4, by the ith round we have |S| ≤ (1− c′)i|S|
and at termination this is ≤ mt

L . This then gives the claimed number of iterations.
Consider the error bound. Combine the number of iterations with the first term in (1)

of Lemma 4, we get our desired first term. For the second term, recall from above that |S|

decreases geometrically. Then f =
(

v

|S|

) 1
2 increases exponentially over the iterations. Hence

the sum of the second terms in (1) is bounded by the last one with f = O
(

( vL
mt

) 1
2

)
, giving

O
(

(log
3
4 n)σ 1

2 f
1
2

)
= O

(
(log

3
4 n)σ 1

2

(
vL

mt

) 1
4
)

as required. ◀

Now, parallel to Lemma 11, we state the approximation guarantees of ColourSparsify-
Graph and ColourSparsifyCycle in Lemmas 15 and 16. The proof of Lemma 15 follows
closely to that of Lemma 16 and we refer reader to the full version of our paper.

▶ Lemma 15. If the input graphs G⃗, G⃗′ satisfy 4m ≥ m′ and the input set of cycles S and
it corresponding partial colours x satisfies that each cycle C ∈ S has were ≤ 4n

m′ for each
edge e ∈ C, the algorithm ColourSparsifyGraph returns H⃗ with edge weights still being
powers of 2 and at most twice the largest weight in G⃗, a set of cycles T with its corresponding
partial colours z satisfying H⃗ ′ = H⃗+ ColourWeights(T , z) is an Eulerian graph and each
cycle C ∈ T also has were ≤ 4n

m′
H

for each edge e ∈ C, where m′
H = |E(H⃗)|. and,

∥∥∥L
+
2

G′(LG⃗′ − LH⃗′)L
+
2

G′

∥∥∥ ≤ O

√n log2 n

m′ log log n +
(

n log
8
3 n

m′

) 3
4
 .
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Algorithm 8 ColourTarget(S, y, mt).

Input: A set of cycles S of size s = |S|, a partial colouring y ∈ (−1, 1)S , and a
target mass of mt edges.

Output: A set of fully coloured cycles S\S with colouring x, A set of partially
coloured cycles S with colouring x satisfying x ∈ (−1, 1)S .

1 Initialize x = 0 be a empty colouring over S.
2 Define S to always be the set of fractionally coloured cycles in S and let s = |S|

always. Set x be the partial colour on S always.
3 while s > mt

L do
4 x[S]← PartialColour(A[S], x).
5 Let x← x with entries of magnitude < 1 and set x← x− x.
6 return S\S, S, x, x.

▶ Lemma 16. If the input set of cycles S and it corresponding partial colours x satisfies
that each cycle C ∈ S has were ≤ 4n

m′ for each edge e ∈ C, the algorithm ColourSparsi-
fyCycle returns H⃗ with edge weights still being powers of 2 and at most twice the largest
weight in G⃗, a set of cycles T with its corresponding partial colours y satisfying H⃗ ′ = H⃗+
ColourWeights(T , y) is an Eulerian graph and each cycle C ∈ T also has were ≤ 4n

m′
H

for
each edge e ∈ C, where m′

H = |E(H⃗)|. and,

∥∥∥L
+
2

G′(LG⃗′ − LH⃗′)L
+
2

G′

∥∥∥ ≤ O

√n log2 n

m′ log log n +
(

n log
8
3 n

m′

) 3
4
 .

Before we prove Lemma 16, we need Lemma 17 regarding scaling matrices in the set of
extra cycles S.

▶ Lemma 17. For directed Eulerian graph G⃗, a set of cycles S where each cycle C ∈ S satisfies
that G⃗ and C⃗, the corresponding directed cycle of C, are edge-disjoint. Let x ∈ (−1, 1)S

be a fractional colouring on S. Then the Eulerian graph G⃗′ = G⃗+ ColourWeights(S, x)
satisfies

LG +
∑
C∈S

(1− |xC |)LC ⪯ LG′ .

Proof. For any C ∈ S, let C⃗ ′ = ColourWeights(C, xC) where we abused the definition
to take in a single cycle instead of a set of cycles. Note that the undirectification LG′ =
LG +

∑
C∈S LC′ . Since |xC | < 1, all edges in C must be present in C ′ and the minimum

edge weight is at least 1 − |xC | times the original uniform edge weights of C. Then,
(1− |xC |)LC ⪯ LC′ . Summing over all C, we get

LG +
∑
C∈S

(1− |xC |)LC ⪯ LG +
∑
C∈S

LC′ = LG′ . ◀

Proof of Lemma 16. The edge weights condition of H⃗ is guaranteed by Lemma 13. Also by
Lemma 13, both H⃗ and H⃗ ′ are Eulerian. Observe that m′

H ≤ m always, and T ⊂ S. Then,
the output cycles still satisfy the approximate leverage score condition. Now, by line 5, the
output Eulerian graph H⃗ ′ satisfies

hlift
(

L
+
2

G′(LH⃗′ − LG⃗′)L
+
2

G′

)
=
∑
C∈S

(zC + zC − xC)A(C) =
∑
C∈S

(1− |xC |)(yC + yC)A(C)
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where all vectors are taken as the final values. By definition A(C ′) = (1− |xC |)A(C) and∑
C∈S

(1− |xC |)(yC + yC)A(C) =
∑

C′∈S
′

(yC + yC)A(C ′)

By definition of hlift, each matrix A(C)2 is block diagonal with blocks L
+
2

G′L̃
⊤
C⃗L+

G′L̃C⃗L
+
2

G′

and L
+
2

G′L̃C⃗L+
G′L̃

⊤
C⃗L

+
2

G′ . Here L̃C⃗ = LF⃗ − LS with fixed orientation (recall CorrectOrien-
tation). Since every cycle C ∈ S satisfies τ G′(e) ≤ ρ for each e ∈ C, by Lemma 10, both
matrices are spectrally bounded by O(Lρ) ·L

+
2

G′LCL
+
2

G′ . Thus, by the disjointness of G and S,

∑
C′∈S

′

A(C ′)2 ⪯
∑
C∈S

(1− |xC |)A(C)2 ⪯ O(Lρ) · I2 ⊗ L
+
2

G′

∑
C∈S

(1− |xC |)LC

L
+
2

G′

⪯ O(L2ρ) · I2n,

where we used the PSD property of A(C)2 and the fact 1− |xC | ≤ 1 for the first inequality
and Lemma 17 for the second inequality. The sum of Frobenius norm squared is then

∑
C′∈S

′

∥A(C ′)∥2
F ≤

∑
C∈S

(1− |xC |) Tr
(
A(C)2) = Tr

∑
C∈S

(1− |xC |)A(C)2

 = O(nL2ρ).

We can now apply Lemma 14 with mt = 1
4 m′, σ2 = O(L2ρ) and v = O(nL2ρ) to get∥∥∥∥∥∥

∑
C′∈S

′

(yC + yC − 0)A(C ′)

∥∥∥∥∥∥ ≤ O

(√
L2ρ · log

(
4|S|L

m′

)
+ (log

3
4 n)(L2ρ) 1

4

(
4nL3ρ

m′

) 1
4
)

= O

√nL2

m′ log L +
(

nL
5
3 log n

m′

) 3
4


where we used |S′| = |S| ≤ m′. Finally, note that

∥∥∥L
+
2

G′(LG⃗′ − LH⃗′)L
+
2

G′

∥∥∥ =
∥∥∥hlift

(
L

+
2

G′(LG⃗′ − LH⃗′)L
+
2

G′

)∥∥∥ =

∥∥∥∥∥∥
∑

C′∈S
′

(yC + yC − 0)A(C)

∥∥∥∥∥∥ .◀

The sparsification induced by ColourSparsifyGraph is conditional, and we state the
condition and sparisification induced in Lemma 18. However, even when the condition is
not met, we are guaranteed each ColourSparsifyCycle will geometrically make progress
towards satisfying the condition needed for Lemma 18. This is stated in Lemma 19.

▶ Lemma 18. For inputs G⃗, G⃗′, S, x, r to ColourSparsifyGraph satisfying that 4m ≥
m′ ≥ Ω(n log2 n), the outputs satisfy that the number of edges in H⃗ ′ is upperbounded by
m′

H ≤ 63
64 m′.

Proof. Since r is 2-approximate effective resistances,
∑

e were ≤ 2(n− 1), we have at most
1
8 m′ ≤ 1

2 m edges are removed from G⃗ in line 1. Since m ≥ 1
4 m′ = Ω(n log2 n) and the

number of edges not in any cycle is m̂q = O(n log2 n), by picking an appropriate constant in
Ω(n log2 n), we can guarantee the total number of edges in all cycles satisfies m(S) ≥ 1

4 m.
Lemma 14 then guarantees m(T ′) ≤ 1

8 m and that m(T ′) ≥ 1
8 m.

Now, by ColourWeights, the total number of edges in ColourWeights(T ′, y) and
ColourWeights(T ′,−y) is exactly m(T ′). Thus, line 5 means at least 1

2 m(T ′) ≥ 1
16 m ≥

1
64 m′ edges are removed in total as required. ◀
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▶ Lemma 19. If inputs G⃗, G⃗′, S, x, r to ColourSparsifyCycle satisfies that 4m < m′ ,
then either the number of edges in H⃗ ′ decreases to m′

H ≤ 63
64 m′, or the number of edges in H⃗

satisfies 4mH ≥ m′
H .

Proof. Suppose m′
H > 63

64 m′. By Lemma 14, m(T ′) ≤ 1
8 m′. Since y ∈ {±1}T ′ , we have

{C ′ ∈ T ′ : |xC − (1− |xC |)yC′ | = 1}∪ {C ′ ∈ T ′ : |xC + (1− |xC |)yC′ | = 1} = T ′. Let the two
sets above be T ′

1 and T ′
2, Then, m(T ′

1) + m(T ′
2) ≥ m(T ′) 2. This means, after re-adjusting

the colouring in line 4,

m(T ) ≤ 1
2m(T ′) + m(T ′) ≤ 1

2m′ + 1
8m′ = 5

8m′ ≤ 40
63m′

H .

Then, we get the desired inequality, mH = m′
H −m(T ) ≥ 23

63 m′
H ≥ 1

4 m′
H . ◀

With these analyses above, we can now formally state and prove Theorem 2.

▶ Theorem 20 (Theorem 2 Formal). Given input a Eulerian graph G⃗ with polynomial bounded
integral edge weights and ε ∈ (0, 1

2 ), the algorithm ColourSparsify returns in polynomial
time a Eulerian graph H⃗ with O(nε−2 log2 n(log log n)2 + nε− 3

4 log
8
3 n) edges satisfying∥∥∥L

+
2

G (LG⃗ − LH⃗)L
+
2

G

∥∥∥ ≤ ε.

Proof. By Lemmas 18 and 19, in every two iterations the number of edges must decreases
by at least a constant fraction, as the condition 4m ≥ m′ must be satisfied at least once.
Note that initialy m = m′ ≥ 1

4 m′ is satisfied. Thus, the total number of iterations is at most
O
(

log( m log n
n )

)
= O(log n) where the extra log n comes from the decomposition by weights.

By Lemmas 15 and 16, the largest edge weight doubles each iteration. Thus, the edge
weights in each G⃗ are still integral and polynomially bounded over O(log n) iterations.

As the number of edges decreases geometrically every O(1) iterations, the total error is
asymptotically bounded by the error in the last round for both terms in Lemmas 15 and 16:

O

√n log2 n

m′ log log n +
(

n log
8
3 n

m′

) 3
4
 .

where m′ is the number of edges in G⃗′ in the last round. Since the algorithm stops at
m′ ≥ Ω(nε−2 log2 n(log log n)2) and m′ ≥ Ω(nε− 3

4 log
8
3 n) edges, the largest of both terms

must be bounded by 1
2 ε by picking appropriate constant for the stopping condition.

This small error also implies that our 1.5-approximate effective resistances r stays as
2-approximate throughout the algorithm. Then, by Lemma 15 and Lemma 16, the set of
cycles S always satisfy were ≤ 4n

m′ where m′ is the number of edges in G⃗′ throughout as
required. Lemma 4 guarantees the polynomial running time of our algorithm. ◀

4.1 Conjectural improvements
In this section we consider an improvement on our existential results due to the partial
colouring conjecture, Conjecture 21. Corollary 22 then follows by changing the termination
condition of the while loop on line 5 to m′ ≥ O(nε−2 log2 n(log log n)2).

2 Contrary to the proof of Lemma 18, this is an inequality since magnitude of 1 can be achieved using
both yC′ and −yC′ if xC = 0.
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▶ Conjecture 21 (Matrix partial colouring conjecture). There exists constants c1, c2 > 0
and c3 > 1 such that the following holds. Given symmetric matrices A1, . . . , Am ∈ Rn×n

that satisfy m ≥ c3n, ∥
∑m

i=1 A2
i ∥ ≤ σ2, and a point y ∈ (−1, 1)m, there exists a point

x ∈ [−1, 1]m such that |{i : xi ∈ {±1}}| > c2m and∥∥∥∥∥
m∑

i=1
(xi − yi)Ai

∥∥∥∥∥ ≤ c1σ. (3)

▶ Corollary 22. Assume Conjecture 21. There is an algorithm that given a Eulerian graph
G⃗, computes a ε-Eulerian sparsifier of G⃗ with nε−2 log2 n edges (up to log log n factors).

▶ Remark 23. While improvements on matrix concentration results for Gaussian random
variables [5] naturally leads to improved matrix partial colouring through the Gaussian
measure analysis of matrix discrepancy bodies, Conjecture 21 need not rely on this approach
(e.g. [9, 15]). On the other hand, even if the matrix concentration guarantees of [5] hold for
Rademacher random variables, it does not lead to an efficient algorithm for Theorem 2. This
is due to the difficulties in controlling the matrix covariance factor in Theorem 1.2 of [5]. We
refer reader to the proof of Lemma 3.1 in [6].
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