
From Proof Complexity to Circuit Complexity via
Interactive Protocols
Noel Arteche #

Lund University, Sweden
University of Copenhagen, Denmark

Erfan Khaniki #

Institute of Mathematics of the Czech Academy of Sciences, Prague, Czech Republic

Ján Pich #

University of Oxford, UK

Rahul Santhanam #

University of Oxford, UK

Abstract
Folklore in complexity theory suspects that circuit lower bounds against NC1 or P/poly, currently
out of reach, are a necessary step towards proving strong proof complexity lower bounds for systems
like Frege or Extended Frege. Establishing such a connection formally, however, is already daunting,
as it would imply the breakthrough separation NEXP ̸⊆ P/poly, as recently observed by Pich and
Santhanam [58].

We show such a connection conditionally for the Implicit Extended Frege proof system (iEF)
introduced by Krajíček [45], capable of formalizing most of contemporary complexity theory. In
particular, we show that if iEF proves efficiently the standard derandomization assumption that a
concrete Boolean function is hard on average for subexponential-size circuits, then any superpolyno-
mial lower bound on the length of iEF proofs implies #P ̸⊆ FP/poly (which would in turn imply,
for example, PSPACE ̸⊆ P/poly). Our proof exploits the formalization inside iEF of the soundness
of the sum-check protocol of Lund, Fortnow, Karloff, and Nisan [54]. This has consequences for the
self-provability of circuit upper bounds in iEF. Interestingly, further improving our result seems to
require progress in constructing interactive proof systems with more efficient provers.

2012 ACM Subject Classification Theory of computation → Proof complexity; Theory of computa-
tion → Circuit complexity; Theory of computation → Complexity theory and logic

Keywords and phrases proof complexity, circuit complexity, interactive protocols

Digital Object Identifier 10.4230/LIPIcs.ICALP.2024.12

Category Track A: Algorithms, Complexity and Games

Related Version Full Version: https://arxiv.org/abs/2405.02232

Funding Noel Arteche: This work was supported by the Wallenberg AI, Autonomous Systems and
Software Program (WASP) funded by the Knut and Alice Wallenberg Foundation.
Erfan Khaniki: This work was supported by the Institute of Mathematics of the Czech Academy of
Sciences (RVO 67985840) and GAČR grant 19-27871X.
Ján Pich: This work received support from the Royal Society University Research Fellowship
URF\R1\211106 “Proof complexity and circuit complexity: a unified approach”.

Acknowledgements Independently, Albert Atserias suggested to us to consider using interactive
proof systems to derive this type of connections. We thank Pavel Pudlák for useful comments, and
the anonymous reviewers for relevant comments and references. This work was done in part while
the first author was visiting the University of Oxford and the Institute of Mathematics of the Czech
Academy of Sciences. For the purpose of Open Access, the authors have applied a CC BY public
copyright license to any Author Accepted Manuscript version arising from this submission.

EA
T
C
S

© Noel Arteche, Erfan Khaniki, Ján Pich, and Rahul Santhanam;
licensed under Creative Commons License CC-BY 4.0

51st International Colloquium on Automata, Languages, and Programming (ICALP 2024).
Editors: Karl Bringmann, Martin Grohe, Gabriele Puppis, and Ola Svensson;
Article No. 12; pp. 12:1–12:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:noel.arteche@cs.lth.se
https://orcid.org/0000-0001-8461-4592
mailto:e.khaniki@gmail.com
https://orcid.org/0000-0002-5843-7315
mailto:jan.pich@cs.ox.ac.uk
https://orcid.org/0000-0002-2731-1330
mailto:rahul.santhanam@cs.ox.ac.uk
https://orcid.org/0000-0002-8716-6091
https://doi.org/10.4230/LIPIcs.ICALP.2024.12
https://arxiv.org/abs/2405.02232
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

12:2 From Proof Complexity to Circuit Complexity via Interactive Protocols

1 Introduction

At a high level, both circuit complexity and proof complexity can be thought of as an
approach towards the P versus NP question. The circuit complexity program, which met
with considerable success in the 1980s, tries to prove lower bounds against gradually larger
circuit classes, hoping to eventually show NP ̸⊆ P/poly. Proof complexity, often identified
with the so-called Cook-Reckhow program, intends to show NP ̸= coNP and, in turn,
P ̸= NP, by proving lower bounds against gradually more powerful proof systems for
propositional logic.

While both enterprises share the motivation to study concrete computational models of
increasing power hoping to build up techniques to attack the long-sought separations, there
exist notable differences. Circuit complexity looks at deterministic models of computation,
while proof complexity deals with proof systems, which are inherently non-deterministic.
Furthermore, while circuit complexity has a clear end-goal (lower bounds against general
Boolean circuits), it remains wide open whether the Cook-Reckhow program can be realized
even in principle. It is not known whether lower bounds against strong systems like Extended
Frege can imply lower bounds for every other system and, as such, one could potentially keep
proving lower bounds for ever-stronger systems without ever settling whether NP ̸= coNP.

The parallels between circuit complexity and proof complexity are made clearer by Frege
systems. For each circuit complexity class C, one can define the proof system C-Frege, in
which proof lines are restricted to be circuits from C. In this setting strong systems like
Frege and Extended Frege correspond to NC1-Frege and P/poly-Frege, respectively, and
thus the natural question arises: Can we turn explicit lower bounds for C circuits into lower
bounds for C-Frege systems, and vice versa?

While the question is essentially open, work on weaker systems and circuit classes has
proven successful. In one direction, the method of feasible interpolation [43, 65, 50] (see
[51, §17.9.1] for the history of the method) has been extensively applied to obtain proof
complexity lower bounds. The framework of feasible interpolation formalizes the idea of
extracting computational content from proofs: given short proofs in a given system, one can
extract a small Boolean circuit in some restricted classes for a related interpolant function.
Contrapositively, circuit lower bounds for such functions (often coming from unconditional
results such as lower bounds against monotone circuits [64, 4, 3]), turn into lower bounds for
proofs systems like Resolution [50] or Cutting Planes [61] (and conditionally for other systems,
such as Polynomial Calculus or Sum-of-Squares [32]). Unfortunately, this connection breaks
for stronger proof systems: already AC0-Frege and TC0-Frege are known to lack feasible
interpolation properties1 under standard cryptographic hardness assumptions [52, 13, 12],
and this holds even if we allow feasible interpolation by quantum circuits [6].

In the other direction (circuit complexity from proof complexity), the theory of lifting
has unveiled deep connections between proofs, circuits and communication protocols. Here,
so-called query-to-communication lifting theorems translate query complexity lower bounds
(corresponding to weak systems, like Resolution) into communication complexity lower bounds
(e.g. [63, 53]). The latter provide restricted circuit lower bounds, such as for monotone
circuits (see e.g. [27, 24, 25] and references therein). It is, however, not known how to derive
non-monotone lower bounds for unrestricted Boolean circuits by lifting proof complexity
lower bounds.

1 Some of these systems are known to admit some form of interpolation by stronger computational models,
see e.g. [62, 23], but we are interested in Boolean circuits.

N. Arteche, E. Khaniki, J. Pich, and R. Santhanam 12:3

For proper Frege systems, the connection has worked mostly in one direction, from circuits
to proofs, particularly at the level of techniques. The method of random restrictions and
the celebrated switching lemmas used to show constant-depth circuit lower bounds in the
1980s [26, 1, 33] were successfully transferred into AC0-Frege lower bounds shortly after
[2, 10, 43, 8, 59, 49]. This suggests that understanding what makes proof lines large might
be necessary to understand why proofs are long. Intriguingly, understanding the proof lines
alone does not seem to suffice: the AC0[p] lower bounds of Razborov and Smolensky [66, 68]
are yet to be successfuly translated to proof complexity, with lower bounds for AC0[2]-Frege
being one of the prominent frontier problems in the field.

The current situation seems to suggest that in order to make progress towards proof
complexity lower bounds, it is necessary (though seemingly not sufficient) to first obtain
strong enough circuit lower bounds. In particular, under this folklore belief, circuit lower
bounds against NC1 or P/poly, currently out or reach, would be a necessary step towards
proving strong proof complexity lower bounds for systems like Frege or Extended Frege.
However, the suspicion remains unproven, and no generic way of deriving explicit circuit lower
bounds for unrestricted Boolean circuits from proof complexity lower bounds for concrete
propositional proof systems has been discovered2.

The first result giving such a connection under relatively conventional assumptions which
are presumably weaker than the conclusion of the connection itself was presented recently by
Pich and Santhanam [58]. Specifically, they showed that any superpolynomial lower bound
on the length of tautologies in the Extended Frege system EF implies NP ̸⊆ P/poly assuming
hypotheses (1) and (2) below:
(1) (Provable circuit lower bound.) EF proves efficiently that a concrete Boolean function in

E is average-case hard for subexponential-size circuits.
(2) (Provable reduction of OWFs to P ̸= NP.) EF proves efficiently that a polynomial-time

function transforms circuits breaking one-way functions into circuits solving SAT.

We remark that Hypothesis (1) above presupposes E ̸⊆ P/poly, which is however believed
to be a significantly weaker statement than NP ̸⊆ P/poly. Alternatively, Hypotheses (1)
and (2) can be replaced by a single assumption on the feasible provability of the existence
of anticheckers in EF. These results remain valid even if we replace EF by an essentially
arbitrary proof system simulating EF.

Crucially, improving this and related results by dropping the hypotheses is surprisingly
daunting. As noted by Pich and Santhanam [58, Prop. 1], if one unconditionally establishes
the implication “if S is not polynomially bounded, then NP ̸⊆ P/poly” for a concrete
proof system S, then the breakthrough separation NP ̸⊆ SIZE[nk], for every fixed k (and
NEXP ̸⊆ P/poly) follows!

In short, proving a formal connection between proof complexity and circuit complexity
provably requires breakthrough circuit lower bounds! Despite this setback, one can still
hope to get evidence that points at these connections, possibly by shifting some of the
components of the ingredients. Namely, one may try to (a) adopt some hardness assumption,
in the style of [58]; (b) conclude lower bounds weaker than NP ̸⊆ P/poly; or (c) look at
non-Cook-Reckhow proof systems (such as MA proof systems or proof systems for languages
beyond coNP).

2 We note that the issue lies in establishing such a connection for a concrete system. Of course, the
statement “there is a proof system S such that if S is not polynomially bounded, then P ̸= NP”
is true: if NP = coNP the implication is vacuously true by taking a polynomially bounded proof
system; if NP ≠ coNP, then P ̸= NP and thus the statement holds for any proof system. It would be
dramatically different to obtain such a connection for a concrete system.

ICALP 2024

12:4 From Proof Complexity to Circuit Complexity via Interactive Protocols

In this style, Grochow and Pitassi [31] showed that the Ideal Proof System (IPS) does
satisfy such a connection, to algebraic circuit complexity. Indeed, any superpolynomial lower
bound in the length of proofs in IPSF implies VPF ̸= VNPF. Grochow and Pitassi avoid
the Pich-Santhanam barrier by means of (b) and (c) above: first, IPS is not known to be
a Cook-Reckhow system, since proofs are verified by randomized machines via polynomial
identity testing; second, the lower bounds are algebraic and not Boolean. Recall that while
separating VP and VNP is a necessary step3 towards NP ̸⊆ P/poly [14], the converse is not
known.

Another interesting connection has been established in the realm of quantified Boolean
formulas, where the connection can be made essentially optimal. Beyersdorff, Bonacina,
Chew, and Pich [11] showed that for every circuit class C, the quantified system C-Frege +
∀red is not polynomially bounded if and only if either PSPACE ̸⊆ C or C-Frege is not
polynomially bounded. Here, C-Frege + ∀red stands for the natural quantified system
obtained by extending C-Frege with a universal reduction rule, which takes care of universal
quantifiers by instantiating concrete values for its variables in the hope of refuting the
formula. The reason this avoids the Pich-Santhanam barrier is the disjunct in the conclusion.
That is, in the context of QBF the conclusion of the Pich-Santhanam barrier becomes that
that either NEXP ̸⊆ P/poly or C-Frege is not polynomially bounded. But this disjunction
is no breakthrough, since it follows directly by a diagonalization argument anyway: if a
propositional system is polynomially bounded, then NEXP is hard for P/poly [44].

Contributions
We prove a new conditional connection between proof complexity and circuit complexity,
giving further evidence that strong proof complexity lower bounds require circuit lower
bounds. This constitutes the first example of a natural proof system that is conditionally
Cook-Reckhow and whose lower bounds imply Boolean circuit lower bounds.

The system in question is (an extension of) the Implicit Extended Frege (iEF) proof system
of Krajíček [45], capable of formalizing most of contemporary complexity theory. Our result
can be informally stated as follows, where iEFtt(h) stands for the proof system extending iEF
by axioms ttavg

1/4(hn, 2n/4) claiming there are no circuits of size 2n/4 approximating a concrete
function h on more than a (1/2 + 1/2n/4)-fraction of the inputs.4

▶ Theorem 1 (Main theorem, informal). Suppose there is a Boolean function h ∈ NE ∩ coNE
that is hard on average for subexponential-size circuits. If the Cook-Reckhow proof system
iEFtt(h) is not polynomially bounded, then #P ̸⊆ FP/poly.

In the theorem above one could instead consider the system iEFtt(h) for some uncondi-
tionally hard function family h that is guaranteed to exist. The only problem in this case
is that we might need non-uniform advice to verify the proofs, and so the system would
not be Cook-Reckhow (we refer to Cook and Krajíček [19] for a systematic treatment of
non-uniform proof systems).

One can interpret our theorem as improving on the connection of Pich and Santhanam [58]
from proof complexity to circuit complexity. Our result improves that of Pich and Santhanam
by completely dropping their second assumption (the one about EF proving the existence of
one-way functions under P ̸= NP). The price to pay for these changes is two-fold:

3 Unconditionally over finite fields, and assuming the Generalized Riemann Hypothesis for infinite fields.
4 For technical reasons, we define iEFtt(h) using a system which is polynomially equivalent to iEF instead

of iEF itself, see Definition 17.

N. Arteche, E. Khaniki, J. Pich, and R. Santhanam 12:5

1. we need to replace EF by the seemingly stronger Implicit Extended Frege system (iEF).
Informally, iEF extends EF with an extra rule allowing us to derive a formula φ after we
have derived that a truth table of a given circuit encodes an EF-proof of φ. Such a circuit
is called an implicit proof;

2. we can conclude only #P ̸⊆ FP/poly from iEF lower bounds, instead of NP ̸⊆ P/poly.

One may also compare our result to that of Grochow and Pitassi [31], who showed
VP ̸= VNP (and hence hardness of computing the permanent) would follow from IPS
lower bounds. Like our result, the IPS proof system is only conditionally Cook-Reckhow.
Indeed, IPS is a Merlin-Arthur proof system which can be derandomized5 under standard
assumptions, like E being hard to approximate by subexponential-size circuits. Our result is
in some sense stronger in that the lower bounds obtained are Boolean rather than algebraic.
However, we seem to be getting to lower bounds for the same problem as Grochow and
Pitassi, since computing the permanent is both VNP-complete and #P-complete.

We note that the requirement that h ∈ NE ∩ coNE is not strictly needed and, in
fact, one can phrase the result in a more general style (as we do in the technical part)
in which the connection holds for any extension of iEF by truth table formulas for any
hard function. Observe, however, that iEF is a very strong proof system, with its bounded
arithmetic counterpart being the theory V1

2 (or S1
2 + 1-EXP, in the first-order setting), and

so it is plausible that iEF already proves such a circuit lower bound. For example, already
EF can prove efficiently the PCP theorem [57], AC0, AC0[2] and monotone circuit lower
bounds [67, 55], or the hardness amplification producing average-case hard functions in E
from worst-case hard functions in E [36]. Furthermore, iEF proves efficiently the correctness
of Zhuk’s algorithm from a CSP dichotomy [28, 29]. Hence, it is plausible to imagine that if
circuit lower bounds are at all provable, they may well be provable already in iEF. If that
turned out to be the case, then the concrete proof system in our main theorem becomes iEF
itself.

▶ Corollary 2 (Main theorem, restated). Assume that iEF proves efficiently ttavg
1/4(hn, 2n/4) for

some function family h and each sufficiently big n. Then, if iEF is not polynomially bounded,
#P ̸⊆ FP/poly.

Let us note that one cannot make big improvements to this result without hitting the
Pich-Santhanam barrier that implies NEXP ̸⊆ P/poly unconditionally: if we managed to
prove Theorem 1 for a Cook-Reckhow proof system, then NEXP ̸⊆ P/poly would follow
unconditionally. On the other hand, if our final goal is to prove FP ̸= #P, then the
assumption of Theorem 1 is given to us for free even for some hard h ∈ E, as otherwise, if E
can be computed by subexponential-size circuits, it is not hard to show that P ̸= NP [44].

Consequences for self-provability of circuit upper bounds
Our result has consequences for the self-provability of circuit upper bounds. Suppose that
#P ⊆ FP/poly. Then, there is a sequence of polynomial-size circuits {Cn}n∈N that on input
a formula φ of size n, outputs a satisfying assignment if one exists. This means that the
propositional formula SATn(φ, α) → SATn(φ,Cn(φ)) claiming the correctness of Cn as a
SAT solver is tautological (where SATn is the satisfiability predicate, taking a formula φ and

5 In fact, derandomizing IPS at all by simulating it by a Cook-Reckhow system implies a non-trivial
derandomization of polynomial identity testing to NP [30]; this, in turn, implies some circuit lower
bounds, as shown by Kabanets and Impagliazzo [38].

ICALP 2024

12:6 From Proof Complexity to Circuit Complexity via Interactive Protocols

an assignment α and evaluating the formula). But by Theorem 1, iEFtt is now polynomially
bounded, and so the proof system is able to efficiently argue for the correctness of the circuits.
Namely, the mere validity of the upper bound #P ⊆ FP/poly would imply the efficient
propositional provability of SAT ∈ P/poly.

Outline of the proof
Our main result follows from a derandomization of the known fact that coNP ̸⊆ MA implies
#P ̸⊆ FP/poly (see, for example, [5, Thm. 8.22]), together with a formalization of the
underlying MA system in a suitable theory of bounded arithmetic. The implication holds,
actually, for the MA system given by the sum-check protocol of Lund, Fortnow, Karloff,
and Nisan [54] in which proofs consist of a circuit simulating the moves of the Prover in the
protocol, so that given such a circuit, the Verifier can simulate the entire protocol on their
own with the aid of randomness. If #P ⊆ FP/poly, then the #P-powerful Prover in the
sum-check protocol can be replaced by a polynomial-size circuit and thus the system is a
polynomially bounded Merlin-Arthur system. Clearly, lower bounds on the length of proofs
in this system are exactly circuit lower bounds against #P.

Since MA can be derandomized under standard hardness assumptions, assuming, for
example, that E is hard for subexponential-size circuits, the proof system R based on the
sum-check protocol above becomes a Cook-Reckhow system such that if R is not polynomially
bounded, then #P ̸⊆ FP/poly. This is almost our goal. Our task now is to replace this
system by a different more standard Cook-Reckhow system S. This can be achieved by
proving efficiently the reflection principle of the system R in S, which essentially amounts to
proving the soundness of the sum-check protocol in S. Here, we employ a recent work of
Khaniki [40], in which the soundness of the sum-check protocol was formalized in S1

2 + 1-EXP.
In order to translate the formalization inside S1

2 + 1-EXP into propositional logic, we
need to express the soundness of the sum-check protocol by propositional formulas. This
is achieved using the machinery of approximate counting of Jeřábek [37], which exploits
Nisan-Wigderson generators based on a hard Boolean function.

Open problems
Improving our result seems to require significant conceptual work. Of course, simultaneously
dropping the circuit lower bound assumption as well as getting the stronger separation
NP ̸⊆ P/poly would already imply NEXP ̸⊆ P/poly, but one may hope to improve the
existing connection by improving on one of the two fronts only. Interestingly, this seems
to require progress in some of the central open questions in the theory of interactive proof
systems or in hardness magnification.

The power of the prover

Is it possible to strengthen the conclusion of the main theorem all the way down to NP ̸⊆
P/poly? This would follow, for example, if we managed to design an interactive protocol for
Taut with a prover solving only NP problems and prove its correctness in iEF (unlike the
current situation, where the prover is required to compute a #P-complete function). The
general question of constructing a protocol for a language L where the prover’s power is
limited to PL is a well-known open problem in the theory of interactive proof systems (see,
for example, [5, §8.4]).

N. Arteche, E. Khaniki, J. Pich, and R. Santhanam 12:7

Note, of course, that the existence of such a protocol does not suffice, since its soundness
must be provable inside iEF. In fact, the reason why we require iEF (or S1

2 + 1-EXP) to carry
out the formalization of the existing sum-check protocol is that one cannot feasibly talk
about #SAT directly in EF or S1

2 (unless FP = #P).

Hardness magnification

Is it possible to replace iEF in the main theorem by Gentzen’s system G, or even by Extended
Frege? One option would be to carry out the existing formalization inside EF, as mentioned
above. The caveat would be, however, that we would then have to make the assumption
on truth table tautologies for EF. Whether EF can prove general circuit lower bounds at
all seems much less believable than for iEF, and so the plausibility of our hypotheses seems
affected.

Instead, one may choose to keep everything in iEF and obtain the connection indirectly for
EF via hardness magnification. Is there a natural class of formulas over which EF simulates
iEF (and which are believably hard for EF)? If so, assuming hardness of these formulas for
EF would imply iEF lower bounds. By our main theorem, #P ̸⊆ P/poly would follow. To
the best of our knowledge, no such type of hardness magnification is known for strong proof
systems.

2 Preliminaries

We assume familiarity with the central concepts of computational complexity theory, pro-
positional proof complexity and mathematical logic. Below we review the central concepts
needed in this paper and fix some notation.

2.1 Proof complexity

Following Cook and Reckhow [22], a propositional proof system S for the language Taut of
propositional tautologies is a polynomial-time surjective function S : {0, 1}∗ → Taut taking
as input a proof π ∈ {0, 1}∗ and outputting S(π) = φ, the theorem that π proves. Soundness
follows from the fact that the range is exactly Taut, and implicational completeness is
guaranteed by the fact that S is surjective. We sometimes drop the term proof in proof
system and use the term system alone to refer to a function S that is not guaranteed to
be a Cook-Reckhow proof system (perhaps because it is unsound, or not deterministically
computable).

We denote by sizeS(φ) the size of the smallest S-proof of φ plus the size of φ. A proof
system S is polynomially-bounded if for every φ ∈ Taut, sizeS(φ) ≤ |φ|O(1). We say that a
proof system S polynomially simulates a system Q, written S ≥ Q, if for every φ ∈ Taut,
sizeS(φ) ≤ sizeQ(φ)O(1). Note that the notion of size and the definition of simulation do not
exploit the soundness requirement of Cook-Reckhow systems. In particular, an unsound
system can be polynomially bounded and simulate every other system. In some cases
simulations hold only for some set T of tautologies, such as the set of tautologies written
as 3DNFs, and not for all formulas, and then we say that S polynomially simulates Q
over T . Given a family {φn}n∈N of propositional tautologies, we write S ⊢ φn whenever
sizeS(φn) ≤ |φn|O(1).

ICALP 2024

12:8 From Proof Complexity to Circuit Complexity via Interactive Protocols

2.1.1 Frege systems
Proof complexity studies a wide variety of proof systems. The most important ones for us
are Frege systems. A Frege system is a finite set of axiom schemas and inference rules that
are sound and implicationally complete for the language of propositional tautologies built
from the Boolean connectives negation (¬), conjunction (∧), and disjunction (∨). A Frege
proof is a sequence of formulas where each formula is obtained by either substitution of an
axiom schema or by application of an inference rule on previously derived formulas. The
specific choice of rules does not affect proof size up to polynomial factors, as long as there
are only finitely many rules and these are sound and implicationally complete. Indeed, Frege
systems polynomially simulate each other [51, Thm. 4.4.13]. Alternatively, one may choose
to think of Frege systems as some variant of Natural Deduction or the Sequent Calculus for
classical propositional logic.

Particularly important for us is the Extended Frege (EF) system, in which proof lines can
be Boolean circuits and not just formulas, which would allow in principle for more succinct
proofs. We shall often consider extensions of Extended Frege by sets of additional axioms.
For a set A ⊆ Taut of tautologies recognizable in polynomial time, the system EF +A refers
to Extended Frege extended with substitution instances of any formula in A. Note that if
A were to contain contingent formulas, then EF + A would not be sound; in particular, it
would not be a Cook-Reckhow system, though it would be polynomially bounded.

A useful property of EF is the fact that EF + RefS ≥ S for every propositional system
S [47]. Here RefS is the sequence of tautologies encoding the reflection principle for
S, which states that S is sound. Namely, RefS := {RefS,n,m}n,m∈N where the formulas
RefS,n,m := PrfS,n,m(π, φ) → Satn,m(φ, α) encode the soundness of S, and φ is a formula
of size n, π is a purported S-proof of size m and α is an assignment to the variables in φ,
which are all encoded by free variables. The formula PrfS,n,m encodes that π is a correct
S-proof of φ, and Satn,m(φ, α) encodes the standard satisfaction relation for propositional
formulas. Alternatively, one may exploit the same relation with respect to the consistency
of S, ConS := {ConS,m}m∈N, where ConS,m := ¬ PrfS,1,m(π,⊥) and π encodes a purported
proof of size m.

2.1.2 Quantified propositional systems
It is often convenient to operate on systems capable of reasoning with quantified Boolean
formulas, where the quantification ranges over {0, 1}. We denote by Σq

i (respectively, Πq
i)

the class of quantified Boolean formulas with i alternations between existential and universal
quantifiers, starting with an existential (respectively, universal) one.

We are particularly interested in Gentzen’s Sequent Calculus for quantified propositional
logic. The system extends the usual propositional Sequent Calculus by four new rules to
handle quantifiers (see [51, Def. 4.1.2] for a formal definition of the rules). We denote this
system by G, and by G∗ its tree-like counterpart. The system Gi, for i ∈ N, corresponds to G
where the quantified formulas appearing in the sequents can only be in the class Σq

i ∪ Πq
i .

The tree-like counterpart of Gi is naturally denoted G∗
i . It is useful to know that EF and G∗

1
are polynomially equivalent with respect to Πq

1 formulas [51, Thm. 4.1.3].

2.1.3 Implicit proof systems
Implicit proof systems constitute a systematic way of obtaining, for every proof system
S, a potentially stronger system S′, and were introduced by Krajíček [45]. The essential
idea is to encode a given proof in the system S as a multi-output Boolean circuit taking

N. Arteche, E. Khaniki, J. Pich, and R. Santhanam 12:9

as input a number i in binary and outputting the i-th step of the proof. More formally,
given propositional proof systems S and Q, a proof of a tautology φ in the implicit system
[S,Q] is a pair (π,C) consisting of a proof and a circuit, such that the truth table of C
encodes a valid Q-proof of φ (the implicit proof), while π is an explicit S-proof of the formula
CorrectQ(φ,C), which is the formula stating that the truth table of C is a correct Q-proof
of φ. If S and Q are Cook-Reckhow proof systems, then so is [S,Q].

For a system S, the implicit system [S, S] is denoted by iS. In particular, we shall work
with the Implicit Extended Frege proof system, iEF := [EF,EF]. The system iEF is particularly
strong, and it can in fact simulate all of Gentzen’s G with respect to propositional tautologies
[45, Cor. 2.4].

2.2 Bounded arithmetic
Our proofs exploit the connections between propositional proof complexity and theories of
bounded arithmetic. Below we cover the essential preliminaries, which should be accessible
to any reader with basic knowledge of first-order logic.

2.2.1 The theories S1
2 and S1

2 + 1-EXP
Theories of bounded arithmetic capture various levels of feasible reasoning and act as a
uniform counterpart of propositional systems. Intuitively, feasibility is achieved by restricting
the complexity of formulas over which one can apply general reasoning schemes like induction.

The central theory for us is Buss’s S1
2, which we think of as corresponding to polynomial-

time reasoning. In this context, we work over the first-order language of bounded arithmetic,
LBA := {0, S,+, ·, <, |x|, ⌊x/2⌋, x#y}, which extends the language of Peano Arithmetic by
the symbols |x|, ⌊x/2⌋ and x#y. The standard interpretation of ⌊x/2⌋ is clear. The notation
|x| denotes the length of the binary encoding of the number x, ⌈log(x+ 1)⌉, while the smash
symbol x#y stands for 2|x|·|y|.

The definition of bounded formulas is analogous to the bounded quantification one
encounters in the polynomial hierarchy. For a quantifier Q ∈ {∃,∀} and a term t in the
language of bounded arithmetic, a formula of the form Qx < t.φ(x) stands for either
∀x.(x < t → φ(x)) or ∃x.(x < t ∧ φ(x)). These are called bounded quantifiers. Whenever the
bounded quantifier is of the form Q < |s| for some term s, we talk about sharply bounded
quantifiers. The hierarchy of bounded formulas consists of the classes Σb

n and Πb
n, for n ≥ 1,

which are defined by counting the alternations of bounded quantifiers ignoring the sharply
bounded ones, starting with an existential (respectively, universal) one. The class ∆b

n consists
of all formulas that admit an equivalent definition in both Σb

n and Πb
n. In particular, the

class ∆b
0 stands for all formulas with sharply bounded quantifiers only.

The theory S1
2 of Buss [15] extends Robinson’s arithmetic Q by some basic axioms for

the new function symbols and the polynomial induction scheme (PInd) for Σb
1-formulas: for

every φ ∈ Σb
1, the theory contains the axiom

φ(0) ∧ ∀x(φ(⌊x/2⌋) → φ(x)) → ∀xφ(x). (PInd)

An alternative system intended to capture polynomial-time reasoning is Cook’s equational
theory PV [21]. In the formalism of PV one has some basic function symbols and introduces
new ones recursively by composition and limited recursion on notation, in the style of
Cobham’s functional definition of FP [17]. In this way, the function symbols obtained in PV
are precisely those of all polynomial-time functions over the naturals. The first-order version
of PV is PV1 [48, 16, 18]. Without loss of generality, we shall work in the theory S1

2(PV),

ICALP 2024

12:10 From Proof Complexity to Circuit Complexity via Interactive Protocols

which is the theory S1
2 in the language of bounded arithmetic extended by all PV function

symbols, meaning that we have a fresh symbol for each function in FP, and induction is now
available for all Σb

1(PV) formulas. We abuse notation and refer to this directly as S1
2.

While S1
2 is able to formalize a significant amount of complexity theory and some

mathematics, it suffers from the drawback of being unable to even state the existence of
exponentially large objects. For certain more elaborate arguments we shall work instead
inside S1

2 + 1-EXP, which patches this issue. We follow here the definition of the theory given
by Krajíček [45, Cor. 2.2]: we write S1

2 + 1-EXP ⊢ ∀xφ(x) for some arithmetic formula φ if
there exists a term t such that

S1
2 ⊢ ∀x∀y(t(x) ≤ |y| → φ(x)).

The definition is somewhat indirect and may be hard to grasp at first glance. Intuitively, it
allows one to derive properties about x under the assumption that y = 2x exists.

The theory S1
2 corresponds to polynomial-time computations in the sense that the provably

total relations in S1
2 are precisely the polynomial-time-computable ones. The same relation

holds for S1
2 + 1-EXP and the complexity class EXP.

2.2.2 Approximate counting
Many of the formalizations carried out in bounded arithmetic require the ability to count.
In some cases, small sets can be counted exactly, but one often requires more sophisticated
machinery for approximate counting, needed to formalize many probabilistic arguments.

For a ∈ N, a bounded definable set is a set of naturals X = {x < a | φ(x)} ⊆ [0, a), where
φ ∈ Σb

∞ is some arithmetic formula. For X ⊆ a and Y ⊆ b, we define X × Y := {bx+ y | x ∈
X, y ∈ Y } ⊆ ab and X ∪̇ Y := X ∪ {y + a | y ∈ Y } ⊆ a+ b. Rational numbers are assumed
to be represented by pairs of integers in the natural way. We also use the unfortunate but
standard Log-notation widespread in bounded arithmetic, by which n ∈ Log stands for the
formula ∃x(n = |x|) and n ∈ LogLog stands for ∃x(n = ||x||).

Intuitively, from the point of view of the theory, numbers in Log are “small” numbers.
For a circuit C : 2k → 2, where we adopt the set-theoretic custom of identifying {0, 1} with
the number 2, we can consider the bounded definable set XC := {x < 2k | C(x) = 1}, and
ask about the task of counting the size of XC .

There exists a PV-function Count(C, y) = |XC ∩ |y||. This means that if 2k ∈ Log, then
one can do exact counting of |XC | efficiently. We use the notation Prx<|y|[C(x) = 1] ≤ z/w

for the PV-relation w · Count(C, y) ≤ |y| · z.
If 2k ̸∈ Log, exact counting becomes problematic. To avoid this, Jeřábek [36, 37]

systematically developed the theory APC1 capturing probabilistic polynomial-time reasoning
by means of approximate counting. The theory APC1 is defined as PV1 +dWPHP(PV) where
dWPHP(PV) stands for the dual (surjective) pigeonhole principle for all PV-functions. That
is, the set of all formulas

x > 0 → ∃v < x(|y| + 1).∀u < x|y|. f(u) ̸= v, (dWPHP)

where f is a PV-function which might involve other parameters not explicitly shown.
We write C : X ↠ Y if C is a surjective mapping from X to Y . Let X,Y ⊆ 2n be

definable sets, and ϵ ≤ 1. The size of X is approximately less than the size of Y with error ϵ,
written as X ⪯ϵ Y , if there exists a circuit C, and v ̸= 0 such that

C : v × (Y ∪̇ ϵ2n) ↠ v ×X.

N. Arteche, E. Khaniki, J. Pich, and R. Santhanam 12:11

In this context, the notation X ≈ϵ Y stands for X ⪯ϵ Y and Y ⪯ϵ X. As with exact
counting, the notation Prx<y[C(x) = 1] ◦ϵ z/w stands for w · (XC ∩ y) ◦ϵ y · z, for ◦ ∈ {⪯,≈}.
Since a number s is identified with the interval [0, s), X ⪯ϵ s means that the size of X is at
most s with error ϵ.

The definition of X ⪯ϵ Y is an unbounded ∃Πb
2 formula even if X and Y are defined by

circuits, so it cannot be used freely in bounded induction. This problem can be solved by
working in sHARDA, defined as the relativized theory S1

2(α) extended with axioms postulating
that α(x) is a truth table of a function on ||x|| variables hard on average for circuits of size
2||x||/4. In sHARDA there is a PV(α) function Size approximating the size of any set X ⊆ 2n

defined by a circuit C so that X ≈ϵ Size(α,C, 2n, 2ϵ−1) for ϵ−1 ∈ Log (by combination of [37,
Lemma 2.14] and [35, Cor. 3.6]).

The following key definition allows us to express that a function is indeed hard on average.

▶ Definition 3 (HardA
ϵ (f), in PV1 [37]). Let f : 2k → 2 be a truth table of a Boolean function

with k inputs (with f encoded as a string of 2k bits, and hence with k ∈ LogLog). We say
that f is average-case ϵ-hard, written as HardA

ϵ (f), if for every circuit C of size at most 2ϵk,

|{u < 2k | C(u) = f(u)}| < (1/2 + 2−ϵk)2k.

Note that HardA
ϵ (f) is Πb

1-definable in PV1.

We write ttavg
ϵ (fk, 2ϵk) := || HardA

ϵ (f)||m for the propositional translation (see Section
2.2.3) of the formula HardA

ϵ (f) above and an appropriately chosen parameter m depending
on k and ϵ. We also consider the polynomial-time function CorrectFracTTδ(s, n, C, f), that
checks whether f is a string of length 2n, C encodes a circuit of size at most s, and finally
verifies whether the fraction of accepted inputs is larger than (1/2 + 2−δn)2n.

The theory APC1 is strong enough to show that hard-on-average functions do exist.

▶ Proposition 4 (Jeřábek [35]). For every rational constant ϵ < 1/3, there exists a constant
c such that APC1 proves that for every k ∈ LogLog such that k ≥ c, there exist a function
f : 2k → 2 that is average-case ϵ-hard.

The theory S1
2 can be relativized to S1

2(α). This means, in particular, that the language
of S1

2(α), denoted also S1
2(α), contains symbols for all polynomial-time machines with access

to the oracle α.

▶ Definition 5 (sHARDA [35]). The theory sHARDA is an extension of the theory S1
2(α) by

the axioms stating
1. the number α(x) encodes the truth table of a Boolean function in ||x|| variables;
2. x ≥ c → HardA

1/4(α(x)), where c is the constant from the previous proposition;
3. ||x|| = ||y|| → α(x) = α(y).

The key technical tool from the framework of approximate counting is the following
theorem by Jeřábek.

▶ Theorem 6 (Jeřábek [37]). There is a PV(α)-function Size such that sHARDA proves that
if X ⊆ 2n is definable by a circuit C, then X ≈ϵ Size(α,C, 2n, e), where ϵ = |e|−1.

For a circuit C : 2n → 2, we introduce the notation

Pr
x<y

[C(x) = 1] ⪯f
ϵ

z

w

to mean w · Size(f, C, 2n, e) ≤ y · z, where ϵ = |e|−1.

ICALP 2024

12:12 From Proof Complexity to Circuit Complexity via Interactive Protocols

2.2.3 Correspondences and propositional translations
While our formalizations are comfortably carried out in the first-order theories presented
above, we are able to transfer our results back to propositional logic thanks to the existence
of propositional translations. Following Krajíček [51], we say that a theory T corresponds to
a propositional proof system S if (i) T can prove the soundness of S and (ii) every universal
consequence ∀xφ(x) of T , where φ is quantifier-free, admits polynomial-size proofs in S when
grounded into a sequence of propositional formulas. Pudlák alternatively says that S is the
weak system of the theory T [62]. More formally, for such a universal formula φ, we denote
by ||φ||n the propositional translation for models of size n. Sometimes we abuse the notation
and write ||φ|| dropping the subscript n. We refer the reader to standard texts like those of
Krajíček [51] or Cook and Nguyen [20] for formal definitions of the translation.

The key fact for us is that universal theorems of S1
2 admit short propositional proofs in

Extended Frege. More importantly, S1
2 + 1-EXP corresponds to Implicit Extended Frege.

▶ Theorem 7 (Correspondence of S1
2 + 1-EXP and iEF [45, Thm. 2.1]). The proof system iEF

corresponds to S1
2 + 1-EXP. That is,

(i) the theory S1
2 + 1-EXP proves the soundness of iEF;

(ii) whenever a ∀Πb
1-sentence ∀xφ(x) is provable in S1

2 + 1-EXP, there are polynomial-size
iEF-proofs of the sequence of tautologies {||φ||n}n∈N;

(iii) if S1
2 + 1-EXP proves the soundness of some propositional system S, then iEF ≥ S.

The translation also works for formulas beyond ∀Πb
1 as long as we translate into a

quantified propositional system. The definition of the translation is straightforward, and we
note that Σb

1-consequences of S1
2 translated as Σq

1 formulas admit polynomial-size proofs in
G∗

1 .

▶ Theorem 8 (Correspondence of S1
2 and G∗

1 [47]). Whenever a ∀Σb
1-sentence ∀x∃y ≤ t.φ(x, y)

is provable in S1
2, there are polynomial-size proofs of the sequence of Σq

1-formulas obtained by
the translation, {||∃xφ(x, y)||n}n∈N, in G∗

1.

2.3 Interactive proof systems and the sum-sheck protocol
While our focus is on propositional proof systems in the sense of Cook and Reckhow, our work
exploits relations to more lax notions of provability. Following Babai [7], an Merlin-Arthur
proof system or Merlin-Arthur protocol for a language L ⊆ {0, 1}∗ is a polynomial-time
function S together with some constant c such that the two following properties are satisfied
for every x ∈ {0, 1}∗. Namely,
1. if x ∈ L, then there exists some π ∈ {0, 1}∗ such that Prr∈{0,1}(|x|+|π|)c [S(x, π, r) = 1] = 1;
2. if x ̸∈ L, then for every π ∈ {0, 1}∗, Prr∈{0,1}(|x|+|π|)c [S(x, π, r) = 1] < 1/3.

The first condition formalizes completeness, while the second corresponds to soundness.
The complexity class MA contains all languages that admit a polynomially-bounded Merlin-
Arthur protocol, meaning that there exists a constant d such that the completeness guarantee
is strengthened to proofs π ∈ {0, 1}|x|d . One should think of MA proof systems as Cook-
Reckhow systems where the verifier is randomized and may thus accept some incorrect proofs
with small probability.

We recall that, under the standard derandomization assumption that there exists a
Boolean function family in E that is wort-case hard for subexponential-size circuits, every
Merlin-Arthur system derandomizes into a Cook-Reckhow system and, in particular, MA =
NP [56, 34].

N. Arteche, E. Khaniki, J. Pich, and R. Santhanam 12:13

Our proofs rely on a particular interactive protocol, the Sum-Check Protocol of Lund,
Fortnow, Karloff, and Nisan [54] for the language of unsatisfiable 3CNFs. Unlike Merlin-
Arthur protocols, this is an interactive protocol running for multiple rounds between a Prover
and a Verifier, before the Verifier makes a decision. We now recall the details of the protocol.

The Sum-Check Protocol [54]

The protocol considers a 3CNF φ(x1, . . . , xn) over m clauses, known to both the Verifier and
the Prover.
1. The Prover generates a prime number6 p ∈ (22n3+n, 2(2n3+n)cp] together with a Pratt

certificate7 on the primality of p and sends them to the Verifier, who checks for correctness
of the certificate, and aborts if incorrect.

2. The Prover and the Verifier arithmetize φ into a polynomial Pφ(x1, . . . , xn) of degree at
most 3m over Fp in the usual way: a clause like (x∨¬y∨z) is turned into 1−(1−x)y(1−z),
and one then takes the product of all such arithmetized clauses. In this way, for all
x ∈ {0, 1}n, φ(x) = 1 if and only if Pφ(x) = 1.

3. The Verifier sets (a1, . . . , an) := (0, . . . , 0), Q0(a0) := 0 and for i ∈ {1, . . . , n}, the
following interaction is carried out:
a. Leaving xi free, the Prover computes the coefficients of the following univariate poly-

nomial over Fp, Qi(xi) :=
∑

xi+1∈{0,1} · · ·
∑

xn∈{0,1} Pφ(a1, . . . , ai−1, xi, xi+1, . . . , xn)
and sends the O(m) coefficients of Qi to the Verifier.

b. The Verifier checks whether Qi(0) +Qi(1) = Qi−1(ai−1). If the check fails, the Verifier
rejects. Otherwise, it samples a random ai ∈ Fp and sends it to the Prover.

c. In the final round, instead of sending an to the Prover, the Verifier checks whether
Pφ(a1, . . . , an) = Qn(an) and accepts or rejects based on this.

3 Main result

Our proof exploits the known fact that if #P ⊆ FP/poly, then coNP ⊆ MA. Indeed, if
#P has small circuits one can provide polynomial-size circuits that simulate the Prover’s
movements in the Sum-Check protocol for Unsat, since one can consider the MA proof
system in which Arthur receives from Merlin a circuit claiming to be the circuit that the
Prover used to carry out their strategy, and with the aid of randomness, Arthur can execute
this on his own and decide based on the outcome of this simulation.

Let us make this formal.

▶ Definition 9 (The SC proof system). Let V (p, u, φ, C, r) be the polynomial-time function
carrying out the simulation of the Sum-Check protocol. Namely, p is intended to be a prime
in (22n3+n, 2(2n3+n)cp], u a Pratt certificate for p, φ a 3CNF over n variables, r a string of
random bits, and C a multi-output circuit providing the Prover’s responses in the interactions
with the Verifier in the Sum-Check protocol.

The Sum-Check Proof System, denoted by SC, is a Merlin-Arthur proof system for
proving 3DNF tautologies. An SC proof of φ is a tuple ⟨p, u, C⟩ such that p is indeed a
prime in the interval above, correctly certified by the Pratt certificate u, and such that
Prr∈Fn

p

[
V (p, u,¬φ,C, r) = 1

]
= 1.

6 The constant cp in the exponent comes from the formalization of the soundness of the sum-check
protocol inside S1

2 + 1-EXP in a recent work of Khaniki [40]; while we do not need such details in our
proofs, we leave it here to be faithful to the formalization.

7 A Pratt certificate is a succinct witness for primality checkable in polynomial time [60]. The details are
not relevant for our results, but it is important that the Verifier can be convinced of p being a prime.

ICALP 2024

12:14 From Proof Complexity to Circuit Complexity via Interactive Protocols

The following is just a rephrasing of the fact that #P ⊆ FP/poly implies coNP ⊆ MA,
in terms of the Merlin-Arthur system SC. We omit the proof, which can be be found in
standard texts (see e.g. [5, Thm. 8.22]).

▶ Lemma 10. If #P ⊆ FP/poly, then SC is polynomially bounded over 3DNF tautologies.

Our goal is to extend the previous lemma from SC to the concrete and natural Cook-
Reckhow system Implicit Extended Frege. The idea again is that iEF (or rather its first-order
counterpart, S1

2 + 1-EXP) can prove the soundness of this system and thus simulate it. We
shall then derandomize the SC protocol inside iEF. Fortunately for us, the soundness of
the Sum-Check protocol was recently proven by Khaniki in the right theory of bounded
arithmetic.

▶ Theorem 11 (Soundness of the sum-check protocol [39, Thm. 15.3]). There are constants
c, k ∈ N such that S1

2 proves the following sentence: for every n, φ, a, p, u, C, if it holds that (i)
φ is a 3CNF in n variables where n ≥ c, and (ii) φ(a) = 1 and, (iii) 22n3+n < p ≤ 2(2n3+n)cp

and, (iv) nk ∈ Log Log, then

Pr
r∈Fn

p

[
V (p, u, φ, C, r) = 1

]
≤
n

(2n
3

)
p

.

We can now formalize the soundness of the SC proof system from Definition 9. The
arguments that follow are a concrete application of more sophisticated techniques employed
by Khaniki [40, 39], who has studied interactive protocols in the context of defining new
jump operators in proof complexity.

▶ Definition 12 (The Soundc(SC) formula). We denote by Soundc(SC) the following ∀Σb
1

sentence, claiming the soundness of SC: for all φ, a, p, u, C, f , where |φ| > c, there is a circuit
D of size ≤ ⌈|f |1/4⌉ such that if

¬
(

Pr
r∈Fn

p

[V (p, u,¬φ,C, r) = 1] ⪯f
ϵ

3
8

)
holds, then at least one of the following conditions holds:

(i) |f | ≠ |C|ka + k′
a or,

(ii) CorrectFracTT1/4(⌈|f |1/4⌉, ||f ||, D, f) = 1 or,
(iii) p ̸∈ (22n3+n, 2(2n3+n)cp] or,
(iv) φ(a) = 1,

where ka, k
′
a are the constants from Theorem 6 making sure that Size function works

properly, ϵ = 1/16 and n is the number of variables of φ. In the definition of the displayed
probability, we assume that y = pn and that the circuit defining the set of strings accepted by
V rejects all r ≥ pn.

Note that even if V accepts with probability 1 on a given input, the approximating
probability from Definition 12 can be significantly smaller because of the difference between
pn and the input-size of the circuit in the input of the Size function. Another relevant point
is that for each C, 2n, e, the function Size(α,C, 2n, e) calls α only once. In fact, it calls α(x)
on an input x which depends only on |C|, n, |e|. This is needed for the formula Soundc(SC)
to be well-defined.

It now suffices to verify that the encoding of the soundness of SC is indeed provable in
S1

2 + 1-EXP.

N. Arteche, E. Khaniki, J. Pich, and R. Santhanam 12:15

▶ Proposition 13 (Soundness of SC inside S1
2 + 1-EXP). There is a constant c ∈ N such that

S1
2 + 1-EXP ⊢ Soundc(SC).

Proof. Let c ∈ N be a big enough constant that can be computed from the rest of the
argument and

Soundc(SC) := ∀φ, a, p, u, C, f∃DΦ(φ, a, p, u, C, f,D)

the soundness formula in Definition 12 above. Let φ be a 3DNF in n variables such that
|φ| > c, and consider a, p, u, C, f . Then the following cases can happen:

(a) If |f | ≠ |C|ka + k′
a or p ̸∈ (22n3+n, 2(2n3+n)cp], then Φ(φ, a, p, u, C, f, 0) is trivially true.

(b) If there is a circuit D of size ≤ ⌈|f |1/4⌉ such that CorrectFracTT1/4(⌈|f |1/4⌉, ||f ||, D, f) =
1, then Φ(φ, a, p, u, C, f,D) is trivially true.

(c) If the previous cases do not happen and moreover

¬
(

Pr
r∈Fn

p

[V (p, u,¬φ,C, r) = 1] ⪯f
ϵ

3
8

)
holds, then we have that 8 · Size(f, C∗, 2m, e) > 3pn, where m is the smallest integer such
that 2m ≥ pn, ϵ := |e|−1 and C∗(r) := V (p, u,¬φ,C, r). By the assumption HardA

1/4(f)
holds and by the fact that we are over S1

2 and we can use f as a parameter in polynomial
induction for Σb

1 formulas, we can do approximate counting using Theorem 6. Hence
there is a circuit G and some v ≤ poly(mϵ−1|C∗|) such that

G : v × (XC∗ ∪̇ ϵ2m) ↠ v × Size(f, C∗, 2m, e).

As we work in S1
2 + 1-EXP and G is surjective, we can find a subset A ⊆ v× (XC∗ ∪̇ ϵ2m)

such that G restricted to A is a one-to-one function from A to v × Size(f, C∗, 2m, e).
Now we can apply exact counting (as we have 1-EXP) and show that

Size(f, C∗, 2m, e) ≤ |XC∗ | + ϵ2m.

By the fact that 8 · Size(f, C∗, 2m, e) > 3pn > 3 · 2m/2, we have 2m/8 < |XC∗ |. Now if
φ(a) = 0, by Theorem 11 we get

Pr
r∈Fn

p

[
V (p, u,¬φ, π, r) = 1

]
≤
n

(2n
3

)
p

.

Note that |φ| > c which implies that n is big enough and as p > 22n3+n we get that
n

(2n
3

)
/p ≤ 1/8, which implies

Pr
r∈Fn

p

[
V (p, u,¬φ, π, r) = 1

]
≤ 1

8 .

As C∗ rejects all r ≥ pn, this implies that |XC∗ | ≤ 2m/8 which leads to a contradiction,
so φ(a) = 1. ◀

The main technical issue now is that Soundc(SC) is a ∀Σb
1 sentence that does not translate

into a propositional formula that iEF can reason about. Instead, we shall work on a quantified
propositional system. For this to make sense we need to know the quantified propositional
proof system associated with S1

2 + 1-EXP.
We invoke the following known TFNP characterization of the Σb

1 consequences of S1
2 +

1-EXP, which identifies a “complete” Σb
1 sentence Ψ such that any other Σb

1 consequence of
S1

2 + 1-EXP reduces to it in G∗
1 .

ICALP 2024

12:16 From Proof Complexity to Circuit Complexity via Interactive Protocols

▶ Theorem 14 ([42, 41, 46, 9]). There is a ∀Σb
1 sentence Ψ := ∀x∃yψ(x, y) (the bound on y

is implicit in ψ) such that the following statements are true:
(i) S1

2 + 1-EXP ⊢ ∀x∃yψ(x, y);
(ii) for any ∀Σb

1 sentence ∀x∃yα(x, y) such that S1
2 + 1-EXP ⊢ ∀x∃yα(x, y), there are PV

functions f and g such that S1
2 ⊢ ∀x, y(ψ(f(x), y) → α(x, g(x, y))).

In what follows, we shall work with Gentzen’s system G extended with the propositional
translation of the sentence Ψ in the theorem above. We denote this system by GEXP :=
G∗

1 + ||Ψ|| and use the following key properties about it. The full version of the paper contains
explicit proofs of each of these items, but we shall omit these here.

▶ Corollary 15. The following statements about GEXP hold:
(i) S1

2 + 1-EXP ⊢ Σq
1- Ref(GEXP), i.e. the reflection principle for GEXP and Σq

1 formulas is
provable in S1

2 + 1-EXP;
(ii) for every ∀Σb

1-sentence ∀x∃yα(x, y), if S1
2 + 1-EXP ⊢ ∀x∃yα(x, y), then there are

polynomial-size GEXP-proofs of the sequence of Σq
1-tautologies {||∃yα(y)||n}n∈N;

(iii) if S1
2 + 1-EXP proves the soundness of a propositional proof system S, then GEXP ≥ S.

Let us observe that GEXP is in fact equivalent to iEF.

▶ Lemma 16. The proof systems iEF,EF + Ref iEF and GEXP are polynomially equivalent over
propositional tautologies.

Proof. By item (iii) of Corollary 15 and item (iii) Theorem 7, iEF and GEXP polynomially
simulate each other. As mentioned in Section 2.1.1, EF + Ref iEF ≥ iEF. It is also easy to see
that S1

2 + 1-EXP proves the soundness of EF + Ref iEF, which by item (iii) of Theorem 7 gives
us iEF ≥ EF + Ref iEF. ◀

We are now ready to define the extension of iEF for which our main theorem holds. Recall
that the propositional formulas ttavg

1/4(hn, 2n/4) were defined in Section 2.2.2 and state the
average-case hardness of a Boolean function hn represented as a truth table.

▶ Definition 17 (The systems iEFtt). Let h = {hn}n∈N be some family of Boolean functions,
and let n0 ∈ N. We denote by iEFtt(h,n0) := GEXP + {ttavg

1/4(hn, 2n/4)}n≥n0 the system that
extends GEXP by the axioms claiming the hardness of hn, for n ≥ n0.

Note that iEFtt(h,n0) is a family of proof systems, parameterized by a Boolean function
family h and some threshold parameter n0. Observe that depending on the choice of h and
n0, the system iEFtt(h,n0) may not be a Cook-Reckhow system: if h is not a hard function,
or n0 is not large enough, we will be adding axioms which are not tautologies; and even if h
is hard and n0 is large enough, the system may require advice to verify the proofs. As we
shall see, however, these degenerate instantiations of iEFtt(h,n0) are not a problem.

What is more important, the systems iEFtt(h,n0), regardless of their consistency, always
simulate SC.

▶ Lemma 18. Let h be family of Boolean functions and let n0 ∈ N. The system iEFtt(h,n0)

polynomially simulates SC over 3DNF tautologies.

Proof. If the system iEFtt(h,n0) is unsound because the added axioms are not tautologies,
then the system is polynomially bounded and simulates every other proof system. So suppose
the added axioms are indeed tautologies, meaning that the function h is indeed hard on
average.

N. Arteche, E. Khaniki, J. Pich, and R. Santhanam 12:17

Let φ1 be a 3DNF in n1 variables and ⟨p1, u1, C1⟩ be a SC-proof of φ1. This means

22n3
1+n1 < p1 ≤ 2(2n3

1+n1)cp ∧ Pr
r∈Fn1

p1

[
V (p1, u1,¬φ1, C1, r) = 1

]
= 1.

Note that by Theorem 11 and Corollary 15, there are PV functions l, g such that

S1
2 ⊢ ∀φ, a, p, u, C, f (ψ(l(φ, a, p, u, C, f), y) → Φ(φ, a, p, u, C, f, g(φ, a, p, u, C, f, y))) ,

where Soundc(SC) := ∀φ, a, p, u, C, f∃DΦ(φ, a, p, u, C, f,D). Let s := | ⟨p, u, C⟩ |. Then by
Theorem 8 there is a sO(1)-size G∗

1-proof of

||∀φ, a, p, u, C, f (ψ(l(φ, a, p, u, C, f), y) → Φ(φ, a, p, u, C, f, g(φ, a, p, u, C, f, y))) ||s′ ,

where s′ := poly(s). Let us rewrite the previous quantified propositional formula as ||Ψ′|| →
||Φ′|| with the right range of parameters such that p1, u1, φ1, C1 are substituted in the formula
in their corresponding places. Now we take the substitution instance ttavg

1/4(hn′ , 2n′/4) where
|hn′ | := |C1|ka + k′

a and we substitute hn′ to the variables corresponding to f and therefore
the disjunct which corresponds to CorrectFracTT disappears from ||Φ′|| when we apply the
rules of G∗

1 . Moreover, it is not hard to verify that after the substitutions every other disjunct
which corresponds to subformulas of Soundc(SC) from Definition 12 disappears except φ1. So
what we have is G∗

1-proof of ||Ψ′′||(x̄, ȳ) → φ1(x̄) (x̄ and ȳ are disjoint variables) where ||Ψ′′||
is a substitution instance of ||Ψ′||. Since we are working in GEXP, we have the substitution
instance ∃ȳ||Ψ′′||(x̄, ȳ) and therefore using the rules of G∗

1 we get a short GEXP-proof of
φ1(x̄). ◀

Our main theorem now easily follows.

▶ Theorem 19 (Main theorem). Let h be a family of Boolean functions and let n0 ∈ N. If
the system iEFtt(h,n0) is not polynomially bounded, then #P ̸⊆ FP/poly.

Proof. By Lemma 18 above, for every choice of h and n0, the system iEFtt(h,n0) polynomially
simulates SC, so if iEFtt(h,n0) is not polynomially bounded, then SC is not either. Then, by
the contrapositive of Lemma 10, #P ̸⊆ FP/poly. ◀

As discussed, depending on the choice of h and n0, the system iEFtt(h,n0) may not be
sound and thus possibly not Cook-Reckhow. However, for any fixed choice of a uniform
candidate hard function, the system is concrete and exhibits the desired connection that
proof complexity lower bounds for it imply strong circuit lower bounds. In particular, if
there exist functions in NE ∩ coNE average-case hard for subexponential-size circuits, then
we recover the version of the theorem presented in the introduction (Theorem 1).

We note that there is the possibility that iEF, given its strength, already proves such
strong circuit lower bounds for some Boolean function. It is thus worth to mention the
following corollary.

▶ Corollary 20. Suppose there exists a sequence of Boolean functions {hn}n∈N for which iEF
has polynomial-size proofs of the formula family {ttavg

1/4(hn, 2n/4)}n≥n0 for some sufficiently
large n0 ∈ N. If iEF is not polynomially bounded, then #P ̸⊆ FP/poly.

Proof. If there is such a function h and threshold n0, then iEFtt(h,n0) is polynomially
equivalent to iEF itself, so by Theorem 19 the corollary follows. ◀

ICALP 2024

12:18 From Proof Complexity to Circuit Complexity via Interactive Protocols

References

1 Miklós Ajtai. Σ1
1-formulae on finite structures. Annals of Pure and Applied Logic, 24(1):1–48,

1983.
2 Miklós Ajtai. The complexity of the pigeonhole principle. Combinatorica, 14:417–433, 1994.
3 Noga Alon and Ravi B Boppana. The monotone circuit complexity of Boolean functions.

Combinatorica, 7:1–22, 1987.
4 Aleksandr Egorovich Andreev. A method for obtaining lower bounds on the complexity of

individual monotone functions. In Doklady Akademii Nauk, volume 282(5), pages 1033–1037.
Russian Academy of Sciences, 1985.

5 Sanjeev Arora and Boaz Barak. Computational Complexity: A Modern Approach. Cambridge
University Press, 2009.

6 Noel Arteche, Gaia Carenini, and Matthew Gray. Quantum automating TC0-Frege is LWE-
hard, 2024. arXiv:2402.10351.

7 László Babai. Trading group theory for randomness. In Proceedings of the seventeenth annual
ACM symposium on Theory of computing, pages 421–429, 1985.

8 Paul Beame, Russell Impagliazzo, Jan Krajíček, Toniann Pitassi, Pavel Pudlák, and Alan
Woods. Exponential lower bounds for the pigeonhole principle. In Proceedings of the Twenty-
Fourth Annual ACM Symposium on Theory of Computing, pages 200–220, 1992.

9 Arnold Beckmann and Sam Buss. The NP search problems of Frege and Extended Frege
proofs. ACM Transactions on Computational Logic (TOCL), 18(2):1–19, 2017.

10 Stephen Bellantoni, Toniann Pitassi, and Alasdair Urquhart. Approximation and small-depth
Frege proofs. SIAM Journal on Computing, 21(6):1161–1179, 1992.

11 Olaf Beyersdorff, Ilario Bonacina, Leroy Chew, and Jan Pich. Frege systems for quantified
boolean logic. Journal of the ACM (JACM), 67(2):1–36, 2020.

12 Maria Luisa Bonet, Carlos Domingo, Ricard Gavalda, Alexis Maciel, and Toniann Pitassi.
Non-automatizability of bounded-depth Frege proofs. computational complexity, 13:47–68,
2004.

13 Maria Luisa Bonet, Toniann Pitassi, and Ran Raz. On interpolation and automatization for
Frege systems. SIAM Journal on Computing, 29(6):1939–1967, 2000.

14 Peter Bürgisser. Completeness and reduction in algebraic complexity theory. Algorithms and
Computation in Mathematics, 2000.

15 Samuel R Buss. Bounded arithmetic. Princeton University, 1985.
16 Samuel R Buss. Relating the bounded arithmetic and polynomial time hierarchies. Annals of

Pure and Applied Logic, 75(1-2):67–77, 1995.
17 A Cobham. The intrinsic computational difficulty of functions. In Proc. 1964 Congress for

Logic, Methodology, and the Philosophy of Science, pages 24–30. North-Holland, 1964.
18 Stephen Cook. Relating the provable collapse of P to NC1 and the power of logical theories.

In Proof Complexity and Feasible Arithmetics, pages 73–91, 1996.
19 Stephen Cook and Jan Krajíček. Consequences of the provability of NP ⊆ P/ poly. The

Journal of Symbolic Logic, 72(4):1353–1371, 2007.
20 Stephen Cook and Phuong Nguyen. Logical Foundations of Proof Complexity. Cambridge

University Press, 2010.
21 Stephen A. Cook. Feasibly constructive proofs and the propositional calculus. In Proceedings

of the Seventh Annual ACM Symposium on Theory of Computing, pages 83–97, 1975.
22 Stephen A. Cook and Robert A. Reckhow. The relative efficiency of propositional proof

systems. Logic, Automata, and Computational Complexity, 1979.
23 Ben Davis and Robert Robere. Colourful TFNP and Propositional Proofs. In 38th Computa-

tional Complexity Conference (CCC 2023), volume 264 of Leibniz International Proceedings in
Informatics (LIPIcs), pages 36:1–36:21, 2023. doi:10.4230/LIPIcs.CCC.2023.36.

24 Susanna De Rezende, Or Meir, Jakob Nordström, Toniann Pitassi, Robert Robere, and Marc
Vinyals. Lifting with simple gadgets and applications to circuit and proof complexity. In 61st
Annual Symposium on Foundations of Computer Science (FOCS), pages 24–30, 2020.

https://arxiv.org/abs/2402.10351
https://doi.org/10.4230/LIPIcs.CCC.2023.36

N. Arteche, E. Khaniki, J. Pich, and R. Santhanam 12:19

25 Susanna F de Rezende, Mika Göös, and Robert Robere. Proofs, circuits, and communication.
ACM SIGACT News, 53(1):59–82, 2022.

26 Merrick Furst, James B Saxe, and Michael Sipser. Parity, circuits, and the polynomial-time
hierarchy. Mathematical Systems Theory, 17(1):13–27, 1984.

27 Ankit Garg, Mika Göös, Pritish Kamath, and Dmitry Sokolov. Monotone circuit lower bounds
from resolution. In Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of
Computing, pages 902–911, 2018.

28 Azza Gaysin. Proof complexity of CSP. arXiv preprint, 2022. arXiv:2201.00913.
29 Azza Gaysin. Proof complexity of universal algebra in a CSP dichotomy proof. arXiv preprint,

2024. arXiv:2403.06704.
30 Joshua A Grochow. Polynomial identity testing and the Ideal proof system: PIT is in NP if

and only if IPS can be p-simulated by a Cook-Reckhow proof system. arXiv preprint, 2023.
arXiv:2306.02184.

31 Joshua A Grochow and Toniann Pitassi. Circuit complexity, proof complexity, and polynomial
identity testing: The ideal proof system. Journal of the ACM (JACM), 65(6):1–59, 2018.

32 Tuomas Hakoniemi. Feasible interpolation for Polynomial Calculus and Sums-of-Squares. In
47th International Colloquium on Automata, Languages, and Programming (ICALP 2020),
2020.

33 John Håstad. Almost optimal lower bounds for small depth circuits. In Proceedings of the
Eighteenth Annual ACM Symposium on Theory of Computing, pages 6–20, 1986.

34 Russell Impagliazzo and Avi Wigderson. P = BPP if E requires exponential circuits:
Derandomizing the XOR lemma. In Proceedings of the Twenty-Ninth Annual ACM Symposium
on Theory of computing, pages 220–229, 1997.

35 Emil Jeřábek. Dual weak pigeonhole principle, Boolean complexity, and derandomization.
Annals of Pure and Applied Logic, 129(1-3):1–37, 2004.

36 Emil Jeřábek. Weak pigeonhole principle, and randomized computation. PhD thesis, Faculty
of Mathematics and Physics, Charles University, Prague, 2005.

37 Emil Jeřábek. Approximate counting in bounded arithmetic. The Journal of Symbolic Logic,
72(3):959–993, 2007.

38 Valentine Kabanets and Russell Impagliazzo. Derandomizing polynomial identity tests means
proving circuit lower bounds. Computational Complexity, 13(1/2):1–46, 2004.

39 Erfan Khaniki. (Im)possibilty results in Proof Complexity and Arithmetic. PhD thesis, Faculty
of Mathematics and Physics, Charles University, Prague, 2023. URL: https://dspace.cuni.
cz/handle/20.500.11956/187614.

40 Erfan Khaniki. Jump operators, interactive proofs, and proof complexity generators, 2023.
Unpublished preprint.

41 Leszek Aleksander Kołodziejczyk, Phuong Nguyen, and Neil Thapen. The provably total NP
search problems of weak second order bounded arithmetic. Annals of Pure and Applied Logic,
162(6):419–446, 2011.

42 Jan Krajíček. Exponentiation and second-order bounded arithmetic. Annals of Pure and
Applied Logic, 48(3):261–276, 1990.

43 Jan Krajíček. Lower bounds to the size of constant-depth propositional proofs. The Journal
of Symbolic Logic, 59(1):73–86, 1994.

44 Jan Krajíček. Diagonalization in proof complexity. Fundamenta Mathematicae, 182:181–192,
2004.

45 Jan Krajíček. Implicit proofs. The Journal of Symbolic Logic, 69(2):387–397, 2004.
46 Jan Krajíček. Consistency of circuit evaluation, Extended Resolution and total NP search

problems. In Forum of Mathematics, Sigma, volume 4, page e15. Cambridge University Press,
2016.

47 Jan Krajíček and Pavel Pudlák. Quantified propositional calculi and fragments of bounded
arithmetic. Zeitschrift für mathematische Logik und Grundlagen der Mathematik, 36(1):29–46,
1990.

ICALP 2024

https://arxiv.org/abs/2201.00913
https://arxiv.org/abs/2403.06704
https://arxiv.org/abs/2306.02184
https://dspace.cuni.cz/handle/20.500.11956/187614
https://dspace.cuni.cz/handle/20.500.11956/187614

12:20 From Proof Complexity to Circuit Complexity via Interactive Protocols

48 Jan Krajíček, Pavel Pudlák, and Gaisi Takeuti. Bounded arithmetic and the polynomial
hierarchy. Annals of Pure and Applied Logic, 52(1-2), 1991.

49 Jan Krajíček, Pavel Pudlák, and Alan Woods. An exponential lower bound to the size of
bounded depth Frege proofs of the pigeonhole principle. Random Structures & Algorithms,
7(1):15–39, 1995.

50 Jan Krajíček. Interpolation theorems, lower bounds for proof systems, and independence
results for bounded arithmetic. The Journal of Symbolic Logic, 62(2):457–486, 1997.

51 Jan Krajíček. Proof Complexity. Encyclopedia of Mathematics and its Applications. Cambridge
University Press, 2019. doi:10.1017/9781108242066.

52 Jan Krajíček and Pavel Pudlák. Some consequences of cryptographical conjectures for S1
2 and

EF . Information and Computation, 140(1):82–94, 1998.
53 Shachar Lovett, Raghu Meka, Ian Mertz, Toniann Pitassi, and Jiapeng Zhang. Lifting with

sunflowers. In 13th Innovations in Theoretical Computer Science Conference (ITCS 2022),
2022.

54 Carsten Lund, Lance Fortnow, Howard Karloff, and Noam Nisan. Algebraic methods for
interactive proof systems. Journal of the ACM (JACM), 39(4):859–868, 1992.

55 Moritz Müller and Ján Pich. Feasibly constructive proofs of succinct weak circuit lower bounds.
Annals of Pure and Applied Logic, 171(2):102735, 2020.

56 Noam Nisan and Avi Wigderson. Hardness vs randomness. Journal of Computer and System
Sciences, 49(2):149–167, 1994.

57 Ján Pich. Logical strength of complexity theory and a formalization of the PCP theorem in
bounded arithmetic. Logical Methods in Computer Science, 11, 2015.

58 Jan Pich and Rahul Santhanam. Towards P ̸= NP from Extended Frege lower bounds. arXiv
preprint, 2023. arXiv:2312.08163.

59 Toniann Pitassi, Paul Beame, and Russell Impagliazzo. Exponential lower bounds for the
pigeonhole principle. Computational complexity, 3:97–140, 1993.

60 Vaughan R Pratt. Every prime has a succinct certificate. SIAM Journal on Computing,
4(3):214–220, 1975.

61 Pavel Pudlák. Lower bounds for resolution and cutting planes proofs and monotone computa-
tions. The Journal of Symbolic Logic, 62(3):981–998, 1997.

62 Pavel Pudlák. Reflection principles, propositional proof systems, and theories, 2020. arXiv:
2007.14835.

63 Ran Raz and Pierre McKenzie. Separation of the monotone NC hierarchy. In Proceedings
38th Annual Symposium on Foundations of Computer Science (FOCS), pages 234–243. IEEE,
1997.

64 Alexander Razborov. Lower bounds on the monotone complexity of some Boolean function.
In Soviet Math. Dokl., volume 31, pages 354–357, 1985.

65 Alexander Razborov. Unprovability of lower bounds on circuit size in certain fragments of
bounded arithmetic. Izvestiya: mathematics, 59(1):205, 1995.

66 Alexander A. Razborov. Lower bounds on the size of bounded depth circuits over a complete
basis with logical addition. Mathematical Notes of the Academy of Sciences of the USSR,
41(4):333–338, 1987.

67 Alexander A Razborov. Bounded arithmetic and lower bounds in boolean complexity. In
Feasible Mathematics II, pages 344–386. Springer, 1995.

68 Roman Smolensky. Algebraic methods in the theory of lower bounds for boolean circuit
complexity. In Proceedings of the Nineteenth Annual ACM Symposium on the Theory of
Computing, pages 77–82, 1987.

https://doi.org/10.1017/9781108242066
https://arxiv.org/abs/2312.08163
https://arxiv.org/abs/2007.14835
https://arxiv.org/abs/2007.14835

	1 Introduction
	2 Preliminaries
	2.1 Proof complexity
	2.1.1 Frege systems
	2.1.2 Quantified propositional systems
	2.1.3 Implicit proof systems

	2.2 Bounded arithmetic
	2.2.1 The theories S^1_2 and S^1_2 + 1-EXP
	2.2.2 Approximate counting
	2.2.3 Correspondences and propositional translations

	2.3 Interactive proof systems and the sum-sheck protocol

	3 Main result

