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Abstract
We present a new greedy rounding algorithm for the Cycle Packing Problem for uncrossable cycle
families in planar graphs. This improves the best-known upper bound for the integrality gap of the
natural packing LP to a constant slightly less than 3.5. Furthermore, the analysis works for both
edge- and vertex-disjoint packing. The previously best-known constants were 4 for edge-disjoint and
5 for vertex-disjoint cycle packing.

This result also immediately yields an improved Erdős–Pósa ratio: for any uncrossable cycle
family in a planar graph, the minimum number of vertices (edges) needed to hit all cycles in the
family is less than 8.38 times the maximum number of vertex-disjoint (edge-disjoint, respectively)
cycles in the family.

Some uncrossable cycle families of interest to which the result can be applied are the family of
all cycles in a directed or undirected graph, in undirected graphs also the family of all odd cycles
and the family of all cycles containing exactly one edge from a specified set of demand edges. The
last example is an equivalent formulation of the fully planar Disjoint Paths Problem. Here the
Erdős–Pósa ratio translates to a ratio between integral multi-commodity flows and minimum cuts.
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1 Introduction

Given a family C of cycles in a (directed or undirected) graph G, the Cycle Packing Problem
asks for a maximum-cardinality subset C∗ ⊆ C of pairwise vertex- or edge-disjoint cycles. It
admits the natural packing LP

max
{∑

C∈C
xC :

∑
C∈C:v∈C

xC ≤ 1 (v ∈ V ), xC ≥ 0 (C ∈ C)
}

(1)

for vertex-disjoint cycle packing and

max
{∑

C∈C
xC :

∑
C∈C:e∈C

xC ≤ 1 (e ∈ E), xC ≥ 0 (C ∈ C)
}

(2)

for edge-disjoint cycle packing. Despite its exponentially many variables, optimum LP
solutions can be computed in polynomial time if C is given by a weight oracle [24]:
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▶ Definition 1 ([24]). Let C be a family of cycles in a graph G. C has a weight oracle if for
any edge weights w : E(G) → R≥0 we can compute a weight-minimal cycle in C in polynomial
time.

For arbitrary graphs the integrality gap of the LPs (1) and (2) is unbounded even if C is
the set of all odd cycles in G [20, 18]. For planar graphs however, Schlomberg, Thiele and
Vygen [24] have recently shown constant upper bounds for the integrality gaps if the cycle
family C is uncrossable.

▶ Definition 2 (Goemans, Williamson [10]). A family C of cycles in a graph is called
uncrossable if the following property holds.

Let C1, C2 ∈ C and let P2 be a path in C2 such that P2 shares only its endpoints with
C1. Then there is a path P1 in C1 between these endpoints such that P1 + P2 ∈ C and
(C1 − P1) + (C2 − P2) contains a cycle in C (as an edge set).

In their work they give an upper bound of 5 for the vertex-disjoint cycle packing LP (1),
using a greedy rounding algorithm. For the edge-disjoint LP (2) they show an upper bound
of 4, generalizing a similar result for the edge-disjoint paths problem by Garg, Kumar and
Sebő [9]. In this work we modify their greedy rounding algorithm and analyze it using a new
structural lemma. This improves the integrality gaps of both LPs to below 3.5:

▶ Theorem 3. Let G be a planar graph, embedded in the sphere, and C an uncrossable family
of cycles in G. Then there exists an integral solution to the vertex- or edge-disjoint cycle
packing LP (1) or (2) with at least 6

13+3
√

7 > 1
3.5 the LP value. If C is given by a weight

oracle we can compute such a solution in polynomial time.

1.1 The Erdős–Pósa ratio
The duals of the LPs (1) and (2) are relaxations of the Cycle Transversal Problem: This asks
for a minimum subset of vertices or edges, respectively, that hit each cycle in C. Berman
and Yaroslavtsev [2] have shown an upper bound of 2.4 for the integrality gaps of the edge
and vertex cycle transversal LPs, improving on a previous bound of 3 by Goemans and
Williamson [10]. Multiplying the integrality gaps of the primal and dual LPs directly yields
a maximum ratio between integral solutions to the primal and the dual:

▶ Corollary 4. Let G be a planar graph and C an uncrossable family of cycles in G. Let νv

respectively νe be the maximum number of vertex- and edge-disjoint cycles in C and let τv

respectively τe be the minimum size of vertex and edge transversals for C.
Then τv

νv
≤ 2.4 · 13+3

√
7

6 ≤ 8.38 and τe

νe
≤ 2.4 · 13+3

√
7

6 ≤ 8.38

The supremum of τv

νv
respectively τe

νe
is known as the Erdős–Pósa ratio for the Cycle

Packing and Transversal Problem. The previously best-known upper bound for general
uncrossable cycle families was 12 for vertex-disjoint Cycle Packing and 9.6 for edge-disjoint
Cycle Packing [24]; both resulting from multiplying the upper bounds for the primal and
dual integrality gaps.

1.2 New Techniques
Our main algorithm that we use to find integral solutions to the Cycle Packing LP with the
claimed approximation guarantee is similar to the greedy rounding algorithm used in [24]:
Similar to [24], we start by solving the LP and applying an uncrossing procedure to obtain an
optimum LP solution where the cycles in the support form a laminar family L. Afterwards,
we iteratively pick a set F∗ ⊆ L of pairwise disjoint cycles, add them to our solution and
remove all “neighbours”, i.e. cycles that are not disjoint to F∗, from the support.
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Schlomberg, Thiele and Vygen [24] showed that they can always find a single cycle C∗

with LP value at most 5 on its neighbourhood. In this work we prove a new Structure
Lemma, showing that after a slight modification of our LP solution, for a one-sided cycle
C (i.e. a cycle with a side that contains no other cycles in L) the average LP value on the
neighbours of C without C itself is at most 3.

In Section 3 we observe that this already improves the bound of 5 from [24] to 4. However,
by exploiting that we can also add several cycles in a single iteration to our solution, we
can improve the bound further to below 3.5 (see Section 5). To this end, we add further
candidates for our set F∗: For any 1

4 ≤ α < 1
2 we can find a large set of pairwise disjoint

cycles among the one-sided cycles with LP value at least α due to the Four Colour Theorem.
Using either a single cycle or one of those candidates for F∗ in each iteration of the greedy
rounding algorithm allows us to bound the integrality gap of the Cycle Packing LP by
13+3

√
7

6 .
Key of the new results is the Structure Lemma 13, which we prove by constructing a

set M∗ of LP constraints (i.e. vertices or edges) that cover each cycle in L enough often.
Section 4 is dedicated to the construction of M∗. We proceed by an induction on the number
of cycles in L. If all cycles are one-sided, an auxiliary graph, similar to the planar dual,
directly yields a feasible set M∗. Otherwise, we pick a minimal two-sided cycle, find feasible
sets M∗ for both sides of it and carefully put them together to a solution for the whole
family.

1.3 Examples for uncrossable cycle families
There are several examples for cycle families in G that are always uncrossable and many of
them have been studied individually. A list of the most interesting examples together with
proofs of their uncrossability can be found in [24].

The first example of interest is the set of all cycles in an undirected graph G. For this
problem Erdős and Pósa [6] showed that even in general, not necessarily planar, graphs with
bounded cycle packing number the transversal number is bounded, although in general the
ratio is unbounded. This property is known as the Erdős–Pósa property. In planar graphs
the Erdős–Pósa ratio is 4 for edge-disjoint packing (the upper bound comes from a result by
Ma, Yu and Zang [16], tightness was shown by an example by Král’ [16]). For vertex-disjoint
packing [4] and [16] gave an upper bound of 3 on the Erdős–Pósa ratio.

Also the set of all directed cycles in a digraph G is uncrossable. Here again the Erdős–
Pósa property holds on arbitrary graphs [21]. For planar G the famous Lucchesi-Younger
Theorem [15] shows that the edge-disjoint version has Erdős–Pósa ratio 1. For the vertex-
disjoint version (1) in planar graphs, Reed and Shepherd [22] gave the first constant upper
bound on the Erdős–Pósa ratio. After three improvements by Fox and Pach as well as Cames
van Batenburg, Esperet and Müller [3] and then Schlomberg, Thiele and Vygen [24], this
work decreases it below 8.38.

The next example of an uncrossable family is the set of all odd cycles in an undirected
graph G. In this variant (in planar graphs) the edge-disjoint problem has an Erdős–Pósa
ratio of exactly 2 [14]. For the vertex-disjoint problem Fiorini et al. [7] showed that the
Erdős–Pósa ratio is at most 10, which was improved to 6 by Král’, Sereni and Stacho [13].

Finally, one of the most interesting and well-studied variants of the Cycle Packing Problem
is given as follows: Given a graph G and a set D of demand edges, then a D-cycle is a
cycle in G that contains exactly one demand edge. Since removing the demand edge from a
D-cycle results in a path between the endpoints of the demand edge, the D-Cycle Packing
Problem is equivalent to the Disjoint Paths Problem, and D-Cycle Packing in planar graphs
corresponds to the Disjoint Paths Problem in fully planar instances.

ICALP 2024
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For the Fully Planar Edge-Disjoint Paths Problem the first constant-factor approximations
and bounds on the integrality gap were given by Huang et al. [12] and Garg, Kumar and
Sebő [9]; the best upper bound on the integrality gap is 4 [9]. Garg and Kumar [8] showed
that also the Erdős–Pósa ratio for this problem is at most 4. Due to a result by Middendorf
and Pfeiffer [17] the Fully Planar Vertex-Disjoint Paths Problem contains the edge-disjoint
version as a special case. The first constant upper bound on the integrality gap of 5 was
found only recently by Schlomberg, Thiele and Vygen [24]. The best upper bound for the
Erdős–Pósa ratio of 12 comes in this variant from multiplying the upper bounds for the
integrality gaps of the primal and the dual.

This work now decreases both best-known upper bounds on the integrality gaps to the
same value below 3.5. For the Fully Planar Vertex-Disjoint Paths Problem we also improve
the Erdős–Pósa ratio to below 8.38:

▶ Corollary 5. Given an instance (G, D) of the Fully Planar Vertex-Disjoint Paths Problem,
we can compute in polynomial time a set P of vertex-disjoint D-cycles and T ⊆ V (G) such
that every D-cycle contains a vertex of T with |T | ≤ 2.4 · 13+3

√
7

6 |P| ≤ 8.38|P|.

For most of the uncrossable families discussed above a lower bound of 2 on the integrality
gaps of (1) and (2) is known, which is also the best-known lower bound for general uncrossable
families. Most of the corresponding examples can be constructed by modifying a K4.
Regarding the Erdős–Pósa ratio, the best-known lower bound for vertex-disjoint cycle
packing (for uncrossable families) is still 2, but for edge-disjoint cycle packing and transversal
Král’ (see [16]) showed a lower bound of 4 on the Erdős–Pósa ratio for the family of all cycles
in G. See [24] for a more detailed overview on lower bounds for the integrality gaps and
Erdős–Pósa ratios.

There exist other examples of uncrossable cycle families that have been studied. For
example, Rautenbach and Regen [19] considered the Cycle Packing Problem with the family
of shortest cycles in G, which is also uncrossable. Furthermore, the (uncrossable) family of all
cycles that contain at least one vertex from a specified set S ⊆ V (G) has been considered, for
example by Goemans and Williamson [10]. This work yields the best-known upper bounds
for the integrality gaps of the corresponding Cycle Packing LPs.

For cycle families C that are not uncrossable surprisingly few is known. For example,
the set of all even cycles is not uncrossable. Here Göke et al. [11] generalized Goemans and
Williamson’s [10] technique to get a constant upper bound on the vertex transversal LP; for
the Cycle Packing Problem no constant-factor approximation algorithm is known.

2 Preliminaries

For the rest of the paper we fix a planar graph G, together with an embedding in the sphere
S2, and an uncrossable family C of cycles in G. By a result by Schlomberg, Thiele and
Vygen [24] we can compute optimum solutions to (1) and (2) with laminar support, i.e. any
two cycles in the support can only “touch” but not “cross”:

▶ Definition 6. Let G be a planar graph, embedded in the sphere. Deleting the embedding of
a cycle C in G from the sphere results in two connected components of the sphere, which we
call the sides of C. Given a side S of C and another cycle C ′ in G, we say that C ′ is inside
S or that S contains C ′ if S contains a side of C ′.

We call a family L of cycles in G laminar if for any C1, C2 ∈ L there exist sides S1 of
C1 and S2 of C2 that are disjoint.

▶ Definition 7. Let L be a laminar family of cycles in a planar graph G, embedded in the
sphere. By V (L) and E(L), respectively, we denote the set of all vertices, respectively edges,
in cycles of L.
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The cycles corresponding to ⊆-minimal sides in L are called one-sided, while the others
are called two-sided. For a one-sided cycle, the ⊆-minimal side is also called one-sided.

We call two cycles C1, C2 ∈ L homotopic if there exist sides S1 of C1 and S2 of C2 that
contain the same set of one-sided sides.

For any connected component D of E(L) we call the set of all cycles in L that are in D

a connected component of L.
A chain is a laminar family of cycles with only two one-sided sides.

It is easy to see that the sides S1 and S2 in Definition 6 are unique if C1 ̸= C2. Also,
our notion of laminarity is equivalent to the definition in [24]. In particular we can use the
following Lemma from [24]:

▶ Lemma 8. Let G be a planar graph, embedded in the sphere, and C an uncrossable family
of cycles in G. Then there exist optimum solutions to the LPs (1) and (2) with laminar
support. If C has a weight oracle such solutions can be computed in polynomial time.

3 Bounding the integrality gap

In this section we explain our main algorithm, which is a slight generalization of the greedy
rounding algorithm used in [24]. We first only analyze the easiest variant of the algorithm.
This already yields an upper bound of 4 on the integrality gap for the cycle packing LP,
equalizing the best known upper bounds for edge-disjoint and vertex-disjoint Cycle Packing.
In Section 5 we will analyze a more refined version of the algorithm, which yields an upper
bound of below 3.5.

Here we only describe the algorithm for vertex-disjoint cycle packing. The edge-disjoint
version can be deduced similarly or sometimes even easier; also there exists a reduction
for laminar cycle families ([24]) that allows us to immediately transfer our results from
vertex-disjoint to edge-disjoint packing. For more details we refer to Section 5.2.

▶ Definition 9. Let L be a laminar family of cycles in a planar graph G, embedded in the
sphere. Let L1 be the set of one-sided cycles in L. For any C ∈ L let NL(C) be the set of
“neighbours” of C, i.e. cycles in L that contain a vertex of C. In particular, C ∈ NL(C).
Define N 1

L(C) := NL(C) ∩ L1 to be the set of one-sided “neighbours” of C.

Given this definition, we can outline our algorithm:

Algorithm 1 Greedy Rounding for Cycle Packing.
Input: A planar graph G and an uncrossable family C of cycles in G.
Output: A set L∗ ⊆ C of pairwise vertex-disjoint cycles.

1: Compute an embedding of G in the sphere.
2: Compute an optimum solution x to the LP (1) with laminar support.
3: while x ̸= 0 do
4: Modify x to make it structured (see Definition 11).
5: Let Lx := {C ∈ C : xC > 0} be the support of x.
6: Pick a non-empty subset F∗ ⊆ Lx of pairwise vertex-disjoint cycles.
7: Add all cycles in F∗ to the solution L∗.
8: Set xC := 0 for all C ∈

⋃
C′∈F∗ NLx(C ′).

9: end while
10: Output L∗.

ICALP 2024
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Throughout the algorithm we maintain a feasible solution x to the LP (1) with laminar
support Lx and a set L∗ of pairwise vertex-disjoint cycles with V (Lx) ∩ V (L∗) = ∅. Step 1
can be done in polynomial time [5]. For step 2 we apply Lemma 8. Then, in each iteration
we add a set F∗ of cycles in the support of x to L∗ and set x on all neighbours of F∗ to 0.

We will make use of the following observation: If in each iteration we find a set F∗ with
x

(⋃
C∈F∗ NLx

(C)
)

≤ α|F∗| then the algorithm will return a solution of size at least 1
α times

the LP value. Thus, in order to bound the integrality gap of the cycle packing LP we only

need to analyze the minimum values of
x
(⋃

C∈F∗ NLx (C)
)

|F∗| that we can achieve with different
choices of F∗.

Note that after step 2 the algorithm only operates on the (explicitly given) set of cycles
in the support of the LP solution and does not depend on C any more. Both the uncrossing
property and the weight oracle are used only in this step. In particular, our results apply to
any cycle family C where step 2 can be done, for example if C is already laminar.

We first explain in more detail what step 4 does:

▶ Definition 10. Let L be a laminar family of cycles in a planar graph G, embeddded in the
sphere. We call a two-sided cycle C ∈ L redundant if it is homotopic to a one-sided cycle in
L (cf. Figure 1).

▶ Definition 11. Let x ∈ RC be a solution to the LP (1). We call it structured if the support
of x is laminar and each connected component L of the support of x contains no redundant
cycles.

▶ Lemma 12. Let x ∈ RC be a feasible solution to the LP (1) with laminar support L.
Then we can compute a structured solution x′ ∈ RL to (1) with

∑
C∈L xC =

∑
C∈L x′

C in
polynomial time in the size of L.

Proof. We can consider connected components of L separately, so assume w.l.o.g. that E(L)
is connected. Assume that x is not structured. Let C ∈ L be redundant with a side S that
contains no other redundant cycles. In particular, S contains only one cycle C ′ ̸= C in L.
Since E(L) is connected, x(C) + x(C ′) ≤ 1. Thus, we can shift the LP value from C to C ′,
i.e. set x′(C ′) := x(C) + x(C ′) and x′(C) := 0, removing C from the support. This does not
affect feasibility of the LP solution since it increases the LP value only on vertices strictly
inside S, which are contained in no other cycles than C ′ due to minimality of S. See Figure 1.

Applying this reduction at most |L| times results in a solution as desired. ◀

Next, we analyze the ratio
x
(⋃

C∈F∗ NLx (C)
)

|F∗| that we can achieve. In this section we only
consider the case that F∗ consists of a single one-sided cycle. We use the following Structure
Lemma. The proof can be found in Section 4.

▶ Lemma 13. Let L be a laminar family of cycles in a planar graph G, embedded in the
sphere, such that L contains no redundant cycles. Let L1 be the set of one-sided cycles in L.
Then there is a multi-subset M∗ ⊆ V (G) with |M∗| ≤ 3|L1| such that for any C ∈ L we have
|M∗ ∩ V (C)| ≥ |N 1

L(C) \ {C}|.

▶ Lemma 14. Let x be a structured solution to the vertex-disjoint cycle packing LP. Let L
be a connected component of the support of x and L1 the set of one-sided cycles in L. Then∑

C∈L1

x(NL(C) \ {C}) ≤ 3|L1|.
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a
b

c

d

e

f

a

c

d f

Figure 1 The left picture shows a possible laminar support of a feasible LP solution, consisting
of six cycles. Dashed cycles have LP value 1

3 , while the others have LP value 2
3 . The cycles b and e

are redundant because their interiors each contain only one other cycle; also a is redundant because
its exterior only contains the one-sided side of f .
In the proof of Lemma 12 we would pick the interiors of b and e as S in the first and second step,
increasing the LP value of d and f and removing b and e from the support. This yields a support
as in the right image. The cycle a is still redundant, however in the laminar family given by its
connected component it is one-sided and therefore not redundant. Thus, the solution is structured.

Proof. By the Structure Lemma 13, choose M∗ ⊆ V (G) with |M∗| ≤ 3|L1| such that for
any C ∈ L we have |M∗ ∩ V (C)| ≥ |N 1

L(C) \ {C}|. We get∑
C∈L1

x(NL(C) \ {C})

=
∑
C∈L

x(C) · |N 1
L(C) \ {C}|

≤
∑
C∈L

x(C) · |M∗ ∩ V (C)|

≤
∑

v∈M∗

∑
C∈L:v∈C

x(C) ≤ |M∗| ≤ 3|L1|. ◀

Since the LP value of each single cycle itself is bounded by 1 this immediately yields an
upper bound of 4 for the integrality gap of (1):

▶ Theorem 15. Let G be a planar graph, embedded in the sphere, and C an uncrossable
family of cycles in G. Then there exists an integral solution to the vertex-disjoint cycle
packing LP with at least 1

4 the LP value. If C is given by a weight oracle we can compute
such a solution in polynomial time.

Proof. Let x be an optimum solution to the LP (1) with laminar support, as given by Lemma 8.
By applying Lemma 12 we can assume x to be structured. Let Lx := {C ∈ C : xC > 0} be
the (laminar) support of x. We proceed on each connected component of Lx individually, so
we may assume E(Lx) to be connected.

Let L1 ⊆ Lx be the set of one-sided cycles. In each step of our greedy rounding algorithm
we add a one-sided cycle C∗ in Lx to our solution and set x on all cycles containing a vertex
of C∗ to 0, removing them from the support of x.

Lemma 14 implies∑
C∈L1

x(NLx(C)) ≤ 3|L1| +
∑

C∈L1

x(C) ≤ 4|L1|.

So there exists a one-sided cycle C∗ where removing NLx
(C∗) decreases x by at most 4.

After the first iteration we again apply Lemma 12 and split the support of x into connected
components. Iterating this procedure until x = 0 yields a solution as desired.

ICALP 2024
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Note that Lemma 8 works in polynomial time if C has a weight oracle. Thus, also the
size of L is polynomial in the size of G and Lemma 12 also works in polynomial time. In
each step we can find C∗ by picking the one-sided cycle in Lx minimizing x(NLx

(C∗)). ◀

The greedy rounding algorithm described above also allows for adding several cycles at
once to the solution. We will exploit this in Section 5 to decrease the upper bound for the
integrality gap to below 3.5.

4 Proof of the Structure Lemma

The proof of the Structure Lemma 13 is fairly technical. In this version of the paper we only
give a full proof for the case that no two-sided cycles exist and afterwards briefly discuss how
to extend this proof to the general version of the Lemma. A detailed proof of Lemma 13 can
be found in the full version of the paper.

First, let us consider the case that all cycles are one-sided. In this case we start by
constructing another planar graph G′ on vertex set L1 = L as follows:

For any vertex v ∈ V (G) let Lv ⊆ L be the set of cycles containing v. Since all cycles are
one-sided, there is a natural cyclic order Lv = {C1 =: Ck+1, C2, . . . , Ck} on Lv. Then we add
for any i = 1, . . . , k the edge {Ci, Ci+1} with its obvious planar embedding to G′. Finally,
we identify homotopic edges in G′ (i.e. parallel edges bounding an area homeomorphic to the
disk). See Figure 2.

Now from G′ we can construct our multi-set M∗: For each e = {C1, C2} ∈ E(G′) we add
an arbitrary vertex in V (C1) ∩ V (C2) to M∗; furthermore, for each vertex v ∈ V (G) that is
contained in k > 3 cycles we add k − 3 copies of v to M∗. Since in this case v lies inside a
face of G′ with exactly k edges on its boundary we can construct another planar graph G∗

from G′ by triangulating each such face F with k − 3 edges inside F (cf. Figure 2).
This yields a planar graph G∗ on vertex set L1 with |M∗| edges and no homotopic edges.

Euler’s formula implies |M∗| = |E(G∗)| ≤ 3|V (G∗| − 6 = 3|L1| − 6.
Let now C ∈ L and B ⊆ N 1

L(C) \ {C} be the set of all neighbours of C that are not
connected to C in G′. By construction of G′ this means that for any vertex v ∈ V (C) that is
contained in k cycles at most k − 3 of them can be in B. But we added k − 3 copies of v to
M∗. This proves |M∗ ∩ V (C)| ≥ |B| + |δG′(C)| ≥ |N 1

L(C) \ {C}|.
Next, we have to consider also two-sided cycles. However, we do not know how to extend

the relatively easy construction of G′ and G∗ to this more general case. Instead, we will use
the notion of incidences:

▶ Definition 16. Let L be a laminar family of cycles in a planar graph G, embedded in the
sphere. Let L1 ⊆ L be the set of one-sided cycles. A neighbour pair is a pair ({C, N}, v) of
a set of two cycles C, N ∈ L that are not homotopic and a vertex v ∈ V (C) ∩ V (N). We call
two neighbour pairs ({C, N}, v) and ({C, N}, v′) homotopic if there exist v-v′-paths P in C

and P ′ in N such that P + P ′ bounds an area that contains all one-sided sides in L.
It is easy to see that homotopy defines an equivalence relation on neighbour pairs. An

equivalence class of neighbour pairs for C and N is called an incidence between C and N . The
vertex set V (I) of an incidence I between C and N is the set of all v with ({C, N}, v) ∈ I.
We also denote I by I = ({C, N}, V (I)). For a cycle C ∈ L let I1

L(C) be the set of all
incidences between C and one-sided cycles in N 1

L(C).
Let now I be an incidence between C ∈ L and N ∈ NL(C). Let SC be a side of C and SN

a side of N such that SC and SN are disjoint. We call an incidence I ′ = ({C ′, N ′}, V (I ′))
a sub-incidence of I if C ′ is inside SC , N ′ is inside SN and V (I ′) ⊆ V (I). We call I
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v

Figure 2 Example for the case that no two-sided cycles exist: The coloured cycles are the elements
of L1. The vertices of G′ are drawn as nodes inside the one-sided sides. The edges of G′ are drawn
as thick dashed lines. Since five cycles meet in the vertex v we would add v twice to M∗, in addition
to the vertices in M∗ corresponding to edges of G′. This is possible while keeping |M∗| ≤ 3|L1| − 6
because we can triangulate the face of G′ that v lies in with two additional edges; as indicated by
the dotted lines.

minimal if any sub-incidence of I is equal to I. We call I crossing if V (I) = {v} for some
v ∈ V (G) and there exist cycles C1, C2 ∈ L that also contain v with sides S1 and S2 such
that SC , S1, SN , S2 are all disjoint and are ordered in this way around v. Such incidences
are also called v-incidences. If I is not crossing we call it non-crossing.

Extending the idea of including the edges of G′ in M∗, in order to prove Lemma 13 we
will construct a set of incidences instead of a set of vertices.

▶ Definition 17. Let L be a laminar family of cycles in a planar graph G, embedded in the
sphere. Let L1 ⊆ L be the set of one-sided cycles. Let M be a multi-set of incidences in L.
We say that an element I ∈ M hits a cycle C ∈ L if V (I) ⊆ V (C). We call a cycle C ∈ L
M -good if at least |I1

L(C)| elements of M hit C. We call M good if all cycles in L are
M -good and |M | ≤ 3|L1| − 6. Furthermore, we call M structured if the following properties
hold:
1. M contains every non-crossing incidence between one-sided cycles.
2. For each C ∈ L1 and v ∈ V (C) there exist at least as many v-incidences in M as there

are v-incidences between C and N 1
L(C) in L.

This notion of structured incidence sets is inspired from the construction of M∗ in the
case L = L1: The edges in G′ correspond to non-crossing incidences between one-sided cycles,
which are included in M by property 1. Property 2 makes sure that vertices in which many
one-sided cycles meet are included in M . In particular, we get the following as a direct
consequence of the above definition:

▶ Lemma 18. Let L be a laminar family of cycles in a planar graph G, embedded in the
sphere. Let M be a structured set of incidences in L. Then every one-sided cycle is M -good.

Via an induction on the number of cycles in a laminar family L we can show existence of
a good and structured set. The proof is a bit technical and can be found in the full version
of the paper.

▶ Lemma 19. Let L be a laminar family of at least two cycles in a planar graph G, embedded
in the sphere. Let L1 be the set of one-sided cycles in L. Then there exists a good and
structured set M of incidences in L.
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As a direct consequence of this lemma we get the Structure Lemma 13:

▶ Lemma 13. Let L be a laminar family of cycles in a planar graph G, embedded in the
sphere, such that L contains no redundant cycles. Let L1 be the set of one-sided cycles in L.
Then there is a multi-subset M∗ ⊆ V (G) with |M∗| ≤ 3|L1| such that for any C ∈ L we have
|M∗ ∩ V (C)| ≥ |N 1

L(C) \ {C}|.

Proof. W.l.o.g. |L| ≥ 2. By Lemma 19 let M be a good set of incidences in L. Let M∗ arise
from adding one element of V (I) for every I ∈ M . In particular, |M∗| = |M | ≤ 3|L1| − 6.

Let C ∈ L. Since no side of C is redundant, it is not homotopic to any cycle in L1. Thus,

|N 1
L(C) \ {C}| ≤ |I1

L(C)| ≤ |{I ∈ M : V (I) ⊆ V (C)}| ≤ |M∗ ∩ V (C)|. ◀

5 Improving the bounds below 3.5

In this section we improve the bound on the integrality gaps of the LPs (1) and (2) to
13+3

√
7

6 < 3.5. We first only consider the vertex-disjoint cycle packing LP (1); an extension
to the edge-disjoint case is given in Section 5.2.

5.1 The vertex-disjoint version
We still use Algorithm 1 from Section 3 for the improved approximation guarantee, but
add further possibilities for the set F∗ of cycles that are added to our solution during a
single iteration. Note that the single cycle that we use in Theorem 15 already gives a good
approximation guarantee if the average LP value on one-sided cycles is small. On the other
hand, if the average LP value on one-sided cycles is large then we will find a large set of
pairwise vertex-disjoint cycles with relatively small neighbourhood which we can take as F∗.
For analyzing the case of F∗ containing more than one cycle we use the following Lemma:

▶ Lemma 20. Let L be a laminar family of cycles in a planar graph G, embedded in the
sphere. Let L1 be the set of one-sided cycles in L. Let F ⊆ L1. Then there is a set M ⊆ V (F)
with |M | ≤ |F| + |L1| such that each cycle in L is either vertex-disjoint to all cycles in F or
contains a vertex from M .

Proof. W.l.o.g. |L| > 1. We can also assume that there exists a point p∞ on the sphere that
lies neither on the embedding of vertices or edges in G nor in any one-sided side of a cycle in
L1 (if this is not the case we can replace an arbitrary edge in G by two parallel edges, which
does not affect the lemma’s statement). For this proof, we call the side of a cycle C ∈ L that
does not contain p∞ the interior of C and say C contains a cycle C ′ ∈ L, or C ′ ⊆ C, if the
interior of C ′ is contained in the interior of C.

Let Bint ⊆ L be the set of cycles C such that there is a cycle C ′ ∈ F with C ′ ⊆ C and
V (C) ∩ V (C ′) ̸= ∅. In particular, F ⊆ Bint. Let f : Bint → F such that each C ∈ Bint
contains f(C) and shares a vertex with f(C). Then for any C ∈ F all cycles in f−1(C) must
build a chain and therefore meet in some vertex vC ∈ V (C). Thus, Mint := {vC : C ∈ F}
hits all cycles in Bint.

Let now Bext ⊆ L \ Bint be the set of all cycles in L \ Bint that share a vertex with any
cycle in F . We show by induction on |L1| that we can hit all cycles in Bext with some
Mext ⊆ V (F) with |Mext| ≤ |L1|: For |L1| = 1 this is trivial. Otherwise, let C1 ∈ Bext be
minimal w.r.t. ⊆ and C2 ∈ F with some vertex v ∈ V (C1) ∩ V (C2) (cf. Figure 3). Construct
another laminar family L′ by deleting all cycles inside C1 and all cycles in L \ F that contain
v. Since C1 contains some one-sided cycle, L′ contains strictly less one-sided cycles and we
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can use the induction hypothesis on L′. Also the deletion of cycles inside C1 does (except
for C1 itself) not change Bext because C1 /∈ Bint and C1 was minimal. Thus, the induction
hypothesis gives us a set M ′

ext ⊆ V (F) that hits all cycles in Bext ∩ L′ with |M ′
ext| ≤ |L1| − 1,

so Mext := M ′
ext ∪ {v} has the desired properties.

Setting M := Mint ∪ Mext yields a set as desired in the Lemma. ◀

v

C2
C1

Figure 3 The cycles in F are drawn in green, the cycles in Bext in blue. Note that the orange
cycle is not in Bext because it is in Bint. The inside of C1 contains no other cycles in Bext and C1

meets C2 ∈ F in v. We then add v to our set Mext and recurse on the laminar family L′ that is
constructed by removing all cycles inside C1 and all cycles that contain v and are not in F . These
cycles are drawn dashed. This step decreases the number of one-sided cycles.

In the following, we assume C to be an uncrossable family of cycles in a graph G, embedded
in the sphere. We further assume x ∈ RC to be a structured solution to the LP (1) with
support Lx. As in Theorem 15 we can assume E(Lx) to be connected. Let L1 ⊆ Lx be
the set of one-sided cycles in Lx. For each 0 ≤ α < 1 we define L>α

1 ⊆ L1 to be the set of
one-sided cycles with LP value > α and set rα := |L>α

1 |
|L1| .

We will now give two possible choices for F∗ in Algorithm 1. The first possibility is to
choose a set consisting of a single cycle in L1 as F∗, as in Theorem 15. By Lemma 14 we
directly get:

▶ Lemma 21. There exists a cycle C∗ ∈ L1 with x(NLx(C∗)) ≤ 3 + x(L1)
|L1| .

As a second possibility we will define a set F∗
α for each 1

4 ≤ α < 1
2 . Given such an α, we

consider the set L>α
1 . We know that at most three cycles in L>α

1 can share a vertex. Let
G′ be the conflict graph for the cycles in L>α

1 ; i.e. G′ is the graph on vertex set L>α
1 such

that two cycles in L>α
1 are connected by an edge in G′ if and only if they share a vertex in

G. Since each vertex is contained in at most three cycles of L>α
1 , G′ can be constructed

similarly to the graph G′ in the proof of the Structure Lemma for L = L1 (see Section 4).
Thus, G′ is planar. Furthermore, the cycles in L>1−α

1 ⊆ L>α
1 correspond to isolated vertices

in G′. By the Four Colour Theorem [1] we can partition V (G′) − L>1−α
1 into four stable

sets. The largest of those, together with L>1−α
1 , yields a stable set in G′ of size at least

|L>1−α
1 | + 1

4 (|L>α
1 | − |L>1−α

1 |). We let F∗
α be the set of cycles in L>α

1 corresponding to such
a stable set in G′. By the definition of G′ this means that the cycles in F∗

α are pairwise
vertex-disjoint.

▶ Lemma 22. For any 1
4 ≤ α < 1

2 we have

x
(⋃

C′∈F∗
α

NLx(C ′)
)

|F∗
α|

≤ 1 + 4(1 − α)
rα + 3r1−α

.
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Proof. Let 1
4 ≤ α < 1

2 . By Lemma 20 there is a set M ⊆ V (F∗
α) with |M | ≤ |F∗

α| + |L1|
such that each cycle in

⋃
C′∈F∗

α
NLx

(C ′) contains a vertex of M . Now

x

 ⋃
C′∈F∗

α

NLx
(C ′)


≤

∑
v∈M

x({C ∈ Lx \ F∗
α : v ∈ V (C)}) + x(F∗

α)

≤ |F∗
α| + (1 − α)|L1|

holds, where the last inequality follows from the fact that there are |F∗
α| vertices in M

covering F∗
α, and for the other vertices we only have to count the LP value of cycles not in

F∗
α. Inserting the bound |M∗

α| ≥ |L>1−α
1 | + 1

4 (|L>α
1 | − |L>1−α

1 |) yields

x
(⋃

C′∈F∗
α

NLx
(C ′)

)
|F∗

α|
≤ 1 + (1 − α)|L1|

|F∗
α|

≤ 1 + 4(1 − α)
rα + 3r1−α

. ◀

One of these possibilities for F∗ will be sufficient to prove the desired upper bound of
13+3

√
7

6 for the integrality gap:

▶ Lemma 23. There exists a set F∗ ⊆ L1 with
x
(⋃

C′∈F∗ NLx (C′)
)

|F∗| ≤ 13+3
√

7
6 .

Proof. Define β := 13+3
√

7
6 . We will either pick one of the sets F∗

α for 1
4 ≤ α < 1

2 from
Lemma 22 or we will use F∗ := {C∗} with the cycle C∗ from Lemma 21. Assume none of
these sets F∗ fulfills the above inequality. Then Lemma 22 implies

1 + 4(1 − α)
rα + 3r1−α

> β

⇔ rα + 3r1−α <
4(1 − α)

β − 1

for 1
4 ≤ α < 1

2 . Furthermore, we have

x(L1) =
∑

C∈L1

∫ 1

0
1x(C)>αdα =

∫ 1

0

∑
C∈L1

1x(C)>αdα = |L1|
∫ 1

0
rαdα.

Thus, Lemma 21 implies

β < 3 +
∫ 1

0
rαdα

By using the fact that the rα are non-increasing, we get:

β < 3 +
∫ 1

0
rαdα

= 3 +
∫ 1

3

0
rαdα +

∫ 1
2

1
3

rαdα +
∫ 1

1
2

rαdα

≤ 3 +
∫ 1

3

0
rαdα +

∫ 1
2

1
3

rαdα + 3
∫ 2

3

1
2

rαdα

= 3 +
∫ 1

3

0
rαdα +

∫ 1
2

1
3

rα + 3r1−αdα
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≤ 3 +
∫ 1

3

0
1dα +

∫ 1
2

1
3

4(1 − α)
β − 1 dα

= 10
3 + 7

18(β − 1) .

This is a contradiction for β = 13+3
√

7
6 , which finishes the proof. ◀

As an immediate consequence we get our main theorem, similar to Theorem 15:

▶ Theorem 24. Let G be a planar graph, embedded in the sphere, and C an uncrossable
family of cycles in G. Then there exists an integral solution to the vertex-disjoint cycle
packing LP with at least 6

13+3
√

7 times the LP value. If C is given by a weight oracle we can
compute such a solution in polynomial time.

Proof. As in Theorem 15 we apply Algorithm 1. In contrast to the procedure in Theorem 15
however we use a set F∗ as guaranteed by Lemma 23 in step 6 of the algorithm instead of
a set consisting of just one one-sided cycle. Thus, in each step we increase the number of
cycles with LP value 1 by |F∗| while decreasing the LP value on Lx by at most 13+3

√
7

6 |F∗|.
Therefore we arrive at an integral solution to the LP with at least 6

13+3
√

7 times the LP
value.

Note that a set F∗ as in Lemma 23 can be found in time polynomial in |Lx|: For the
cycle guaranteed by Lemma 21 we can try all one-sided cycles. For the sets F∗

α used in
Lemma 22, note that there are only linearly many different sets L>α

1 to consider. From those
the sets F∗

α are constructed by applying the Four Colour Theorem, which can also be done
in polynomial time [23]. ◀

The upper bound on the integrality gap can still be slightly improved by also considering
the sets L>α

1 for α ≥ 1
2 as candidates for F∗. Using these candidates for large values of α in

the inequality in Lemma 23 improves the bound in Lemma 23 and therefore also the bound
in Theorem 24 slightly from 13+3

√
7

6 ≈ 3.4895 to 20+
√

130
9 ≈ 3.4891. We omit details here

since the improvement is only marginal.

5.2 The edge-disjoint version
This section is dedicated to proving an edge-disjoint version of Theorem 24. One possibility
to do this is to give edge-disjoint versions of Algorithm 1, the Structure Lemma 19 as well
as Lemma 20 and then Lemma 23. All of this is possible analogous to the vertex-disjoint
versions; however, we can also use a simple reduction by Schlomberg, Thiele and Vygen [24].
This does not generally reduce edge-disjoint cycle packing to vertex-disjoint cycle packing,
but it does so for cycle packing in laminar cycle families.

▶ Lemma 25 (similar to Schlomberg, Thiele, Vygen [24]). Given a planar graph G, embedded in
the sphere, and a laminar family L of cycles in G, we can compute in polynomial time a planar
graph G′ and a laminar family L′ of cycles in G′, together with a bijection f : L → L′ such that
for any C1, C2 ∈ L we have that E(C1) ∩ E(C2) = ∅ if and only if V (f(C1)) ∩ V (f(C2)) = ∅.

Proof. Define V (G′) := E(G). For any path P = e1e2 of length two in a cycle C ∈ L we
add the edge eP

C := {e1, e2} to E(G′). For any C ∈ L let f(C) be the cycle consisting of all
edges eP

C ∈ E(G′) for any path P of length two inside C.
Since L is laminar, G′ can be embedded planarly such that L′ := {f(C) : C ∈ L} defines a

laminar family of cycles, as shown in Figure 4. By definition, all cycles in L′ are edge-disjoint
and two cycles C1, C2 ∈ L share an edge in G if and only if f(C1) and f(C2) share a vertex
in G′. ◀
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v

Figure 4 Example for the construction of G′ and L′: The left picture shows four cycles in L
containing the vertex v. The six edges incident to v correspond to vertices of G′, as shown in the
right picture. Since L is laminar, the paths of length two in cycles of L can be embedded planarly as
edges of G′. Cycles in L share an edge if and only if the corresponding cycles in L′ share a vertex.

Using this reduction, we can easily extend Theorem 24 to the edge-disjoint case:

▶ Theorem 26. Let G be a planar graph, embedded in the sphere, and C an uncrossable
family of cycles in G. Then there exists an integral solution to the edge-disjoint cycle packing
LP (2) a with at least 6

13+3
√

7 times the LP value. If C is given by a weight oracle we can
compute such a solution in polynomial time.

Proof. We first apply Lemma 8 to get an optimum LP solution x to (2) with laminar support
L. We then apply Lemma 25 to get a laminar set L′ of cycles in a planar graph G′ with a
bijection f : L → L′ such that edge-disjointness in L translates to vertex-disjointness in L′.

Note that y ∈ RL′ with yf(C) = xC for all C ∈ L defines a feasible solution to the LP
(1) on L′. Similar to Theorem 24 we can find an integral solution ȳ ∈ RL′ to (1) on L′ with
ȳ(L′) ≥ 6

13+3
√

7 y(L′). Setting x̄C := ȳf(C) for all C ∈ L then yields an integral solution to
(2) on L with x̄(L) = ȳ(L′) ≥ 6

13+3
√

7 y(L′) = 6
13+3

√
7 x(L). ◀
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