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Abstract
We lift metrics over words to metrics over word-to-word transductions, by defining the distance
between two transductions as the supremum of the distances of their respective outputs over all
inputs. This allows to compare transducers beyond equivalence.

Two transducers are close (resp. k-close) with respect to a metric if their distance is finite (resp. at
most k). Over integer-valued metrics computing the distance between transducers is equivalent to
deciding the closeness and k-closeness problems. For common integer-valued edit distances such as,
Hamming, transposition, conjugacy and Levenshtein family of distances, we show that the closeness
and the k-closeness problems are decidable for functional transducers. Hence, the distance with
respect to these metrics is also computable.

Finally, we relate the notion of distance between functions to the notions of diameter of a relation
and index of a relation in another. We show that computing edit distance between functional
transducers is equivalent to computing diameter of a rational relation and both are a specific instance
of the index problem of rational relations.
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1 Introduction

For meaningfully comparing two words (or sequences, vectors, functions, etc.), it is often
necessary to have a measure that quantifies their (dis)similarity. It usually consists of
associating a nonnegative integer to two words that indicates how different they are from
each other. This usually defines a distance between words, the most popular of which are
edit distances. It is the minimum number of edit operations required to transform one word
into another. These operations typically include inserting or deleting a letter, substituting
a letter with another, swapping adjacent letters (transpositions), and cyclic shifts. Edit
distances are studied in coding [29, 41], parsing [2], speech recognition [33, 1], molecular
biology [18, 24] etc. Interesting combinatorial problems on words such as the computation of
longest common subsequences can be reduced to computing edit distances [6]. For a detailed
overview of the history and applications of edit distances, see [27].
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125:2 Edit Distance of Finite State Transducers

The notion of distance between two words can be lifted naturally to distance between a
word and a set of words, or between two sets of words, and so on. There is a long line of
research of this kind: computing the edit distance between two languages – usually defined
as the smallest distance between any two pairs from the respective sets. It could be between
a word and a regular language [42, 4], two regular languages [31], a regular language and
itself [25], or a regular language and a context-free language [21]. In all these settings there
are efficient algorithms for computing the edit distances.

In this paper we study the distance between two word-to-word functions (transductions)
given by finite state transducers, i.e., automata with output. Finite state transducers are
used in a variety of software and hardware systems such as encoders, decoders, demuxers,
spell checkers, text normalizers, schema translators, template code generators, etc.

q0 q1

a|a, b|b

a|ϵ, b|ϵ

(a) T1.

q0 q1

a|ϵ, b|ϵ

a|a, b|b

(b) T2.

q0

a|a

b|ϵ

(c) T3.

Figure 1 T1 outputs letters at the odd positions, T2 outputs letters at the even positions and T3

outputs only a’s.

Our aim is to develop a framework to meaningfully compare two transductions beyond
equivalence. Consider the functions given by the transducers in Figure 1. The transducers T1
and T2 output the letters at the odd and even positions respectively, while the transducer T3
erases b’s in the input. If we were to find the odd one among these three functions, arguably
T3 will be picked, with the length of the respective output on any input deviating significantly
from that of the others. Our aim is to define a measure that quantifies such distances.

If we have a metric to compare the output words, we can extend it to transductions as
follows. The distance between two transductions is the least upper bound of the distances
between their respective outputs on any input word. We assume that their domains are the
same, and we set the distance to infinity if this is not the case. We say that two transductions
are close if their distance is finite, and they are k-close if their distance is at most k. We may
simply say that two transducers are close (or k-close) instead, to mean that the transductions
defined by these transducers are close (or k-close).

We are interested in the following question: Given two finite state transducers, are
the transductions defined by them close (or simply are the transducers close)? Clearly,
deciding closeness is a boundedness problem. We show closeness as well as k-closeness
are decidable for various edit distance metrics, in particular Hamming (letter-to-letter
substitutions), transposition (swapping adjacent letters), conjugacy (only cyclic shifts) and
Levenshtein family of distances – Longest common subsequence (insertion and deletion),
Levenshtein (insertion, deletion and substitution), and Damerau-Levenshtein (insertion,
deletion, substitution and adjacent transposition). It turns out that computing distance
between transducers is equivalent to deciding closeness and k-closeness over integer-valued
metrics (see Proposition 3.6). Hence for the edit distances mentioned above, the distance
between transducers is computable.
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A related notion is that of diameter of a relation. We define it to be the supremum of
the distance of every pair in the relation. We are interested in computing the diameter of
rational relations over words, that is those given by (not necessarily functional) finite state
transducers. A rational relation is said to have bounded diameter (resp. k-bounded diameter)
if the diameter of the relation is finite (resp. at most k). It turns out that for every pair
of transductions T1 and T2 there is a rational relation R such that for every metric, the
diameter of R is same as the distance between T1 and T2. In fact, the converse is also true
by virtue of Nivat’s theorem (see Theorem 3.23).

Another related notion is that of the index of a rational relation in the composition closure
of another. Let R,S be a rational relation over words. The index of R in the composition
closure of S is defined to be the smallest integer k such that the relation R is contained in the
k-fold composition of S. If such a k exists we say that R has the finite index property in the
composition closure of S. We show that the finite index property is undecidable for arbitrary
rational relations. However, if S is a metrizable relation (see Definition 3.18) w.r.t. the edit
distances mentioned above, the index of R in the composition closure of S is computable.

Our decision procedure for k-closeness involves designing a weighted automaton that
counts the number of edit operations for transforming one output to the other. We need to
check whether there are input instances for which the weight is more than k. We extract a
finite state automaton of size exponential in k that achieves this (see Proposition 3.11). This is
a generic approach independent of the particular edit operations. However for Hamming and
transposition distances, we have a direct polynomial time procedure for deciding k-closeness
(see full version).

Recall that deciding closeness of transductions is same as deciding whether the diameter
of a rational relation R is bounded. For the latter, consider a transducer recognising R.
It turns out that if there are loops in this transducer that produce nonconjugate words
(that are not cyclic shifts of each other) then such loops can be iterated to get unbounded
diameter/distance. Thus a crucial ingredient in our decision procedure is checking for
conjugacy of loops, which is decidable [3]. For boundedness w.r.t. Levenshtein distances,
we show that this is also a sufficient condition (see Claim 4.9). For conjugacy distance, we
show that the diameter of a rational relation R is bounded if and only if every pair in R is
conjugate (see Proposition 4.6). Notice that this is not the case for arbitrary relations. In
the case of Hamming distance, which only includes substitutions, we show that it is sufficient
to check if the pairs of words generated by the loops after some shifted delay are identical
(see Claim 4.11). This also holds true for transposition distance, but additionally, we also
need to check if the words are permutations of each other (see Claim 4.12).

1.1 Related Work
The adjacent functions in [34] is an analogous definition for closeness between transduc-
tions with respect to prefix distance. Two functions f, g : A∗ → B∗ are adjacent if
sup { dp(f(w), g(w)) | w ∈ dom(f) ∩ dom(g) } < ∞. Here, dp(u, v) = |u| + |v| − 2 max{|z| |
u, v ∈ zA∗} denotes the prefix distance between two words u and v. The adjacency of two
rational functions is used in deciding the sequentiality of a function. It is decidable to check
if two given rational functions are adjacent or not (Proposition 1 of [34]).

Another problem that is similar in spirit is the robustness problem. We say a transducer
T is robust w.r.t. a distance d if there is a nontrivial relation R between the distance between
two input words (say d(u, v)) and distance between their corresponding outputs on T (say
d(T (u), T (v))). For instance, R could be Lipschitz continuity – there is some k > 0 such
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that d(T (u), T (v)) ≤ k · d(u, v), or locally Lipschitz continuity – there exists b, k > 0 such
that if d(u, v) < b then d(T (u), T (v)) ≤ k · d(u, v), etc. Sometimes, weaker notions of
distance are considered (for instance by dropping the triangle inequality), and respective
distances are called cost or similarity functions. The work [35] solves the locally Lipschitz
continuity problem for sequential and unambiguous transducers using reversal bounded
counter automata. The problem is shown to be undecidable for Lipschitz continuity even for
deterministic transducers and the decidability is shown for the class that has a bound on the
delay between input and output words [23].

Frougny and Sakarovitch studied rational relations with bounded delay [20], which is
actually our diameter problem for rational relations when the distance over words is measured
by their length difference. A problem related to the diameter of a rational relation is almost
reflexivity of rational relations studied in [11]. A relation R ⊆ A∗ × A∗ is k-reflexive, for
some integer k ≤ ∞, if every element u of the domain is at a distance at most k from some
element of the range v, with (u, v) ∈ R, and vice versa. The relation R is almost reflexive
if k < ∞. It is shown undecidable to check if a deterministic rational relation is almost
reflexive, or k-reflexive, for any given integer k, with respect to the following – Hamming,
prefix, suffix, subword and Levenshtein edit distances. It is shown decidable for synchronized
rational relation w.r.t. Hamming distance.

In 1966, Brzozowski raised the question of finite power property on regular languages – it
takes a regular language L as input and asks whether there exists some positive integer n such
that (L+ ϵ)n = L∗. It was solved in 1979 by Hashiguchi [22] and Simon [37], independently.
We study the finite index property of a rational relation in the iterative composition of
another relation. Notice that the finite index property is different from the finite power
property in two respects. One, it is over relations and not languages, and secondly and more
importantly, the iteration is obtained by relation composition and not concatenation.

1.2 Organisation of the Paper

In § 2, we recall the definitions of finite state transducers, metrics on words and edit distances.
In § 3, we define the notion of distance between transducers, the diameter of a rational
relation, and the index of a rational relation in another. We also establish the relation
between these notions and state our results in this section. In § 4, we give the connections
with conjugacy and the proof arguments remaining from § 3. Finally, we conclude in § 5
with a short discussion on future directions. Proofs omitted are provided in the full version.

2 Preliminaries

Let A∗ denote the set of all finite words over the alphabet A. We use |w| to denote the length
of the word w. Let w[i . . j] denote the factor of w from index i to j where 1 ≤ i ≤ j ≤ |w|.
A transduction is a function from words to words.

2.1 Finite State Transducers

The simplest form of a transducer is a deterministic finite state machine whose each transition
and each final state is labelled by a possibly empty output word. Formally, a sequential
transducer T = ⟨A, λ, o⟩ with input alphabet A and output alphabet B is a deterministic
finite state automaton A with two associated output functions λ : ∆→ B∗ and o : F → B∗

where ∆ and F are the set of transitions and the set of accepting states of A respectively.
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On an input word that is accepted by the automaton, we concatenate the output words
produced by the transitions in the unique run of the machine and finally append the end-
of-input word of the final state to obtain the output of the machine. That is to say, if
ρ = δ1 · · · δn is the successful run of A on a word w ∈ A∗, the output of T on w, denoted by
T (w), is the word λ(ρ) · o(q) where λ(ρ) = λ(δ1) · · ·λ(δn) and q is accepting state reached
by the run. Let L(A) denote the set of words accepted by A, called the language of A or the
domain of T (denoted as dom(T )). We can see that T defines a function from dom(T ) to
B∗. Functions defined by sequential transducers are called sequential. In the literature, they
are known as subsequential functions, introduced by Schützenberger [36]. Transducers given
in Figure 1 are sequential.

If we allow the finite state automaton A to be nondeterministic, then T no longer defines
a function, but a binary relation on A∗×B∗. Such relations are called rational. If the relation
is a function, then the transducer is called functional, and the corresponding functions are
called rational functions. We can restrict the nondeterminism and still compute all rational
functions. A finite state automaton is unambiguous if on each input word the machine has at
most one run. It is a well-known fact in the theory of transducers that all rational functions
are computed by finite state transducers whose underlying automata are unambiguous [10].
Such transducers are called unambiguous transducers. Clearly sequential functions are a
strict subset of rational functions. For instance, the function “output the input word if the
last letter of the input is an a, otherwise the empty word” is rational but not sequential.

There exist generalisations of rational functions where the underlying automaton is
a two-way finite state automaton or equivalently a finite state automaton with registers
(corresponding functions are called regular [17, 5]), or two-way finite state automaton with
pebbles (polyregular functions [8, 9]). An overview of the classical theory of transducers is
given in [19]. In this paper, we restrict our attention to one-way functional transducers.

2.2 Metric on Words, Edit Distances
Simply put, a metric on a set is used to measure distance between any two elements of the set.
A metric on words over the alphabet A is a function d : A∗ ×A∗ → [0,∞] such that for any
words u, v and w in A∗, d(u, v) = 0 ⇐⇒ u = v (separation), d(u, v) = d(v, u) (symmetry),
and d(u, v) ≤ d(u,w) + d(w, v) (triangle inequality).

A metric is integer-valued if it has range N ∪ {∞}. A trivial metric on words is the
discrete metric – distance between words u and v, denoted by d∞(u, v), is 0 if u = v and
∞ otherwise. Another straightforward distance on words is the absolute difference of their
lengths (denoted as dlen). This is a pseudo-metric since the distance between two distinct
words can be zero, i.e., does not satisfy the separation property of a metric.

An important class of metrics in the context of word transducers is edit distances. Loosely
speaking, edits are operations that transform words, such as inserting a letter, deleting a
letter, substitutions (letter-to-letter), adjacent transpositions (swapping adjacent letters), left
and right shifts etc. For a fixed set of edit operations C, the edit distance with respect to C
between words u and v, is the minimum number of edits in C required to transform u to v if it
is possible, and ∞ otherwise. The common edit distances and their corresponding operations
are recalled in Table 1. Since many of these operations are obtained by combinations
of the others, we can relate these metrics. The notation d1 ≤ d2 is an abbreviation for
d1(u, v) ≤ d2(u, v) for all words u, v. We can also relate the metrics up to boundedness (See
[14] for a detailed introduction). Let α : N→ N be a correction function. Usual examples
are increments (e.g. x 7→ x + 2), scaling (e.g. x 7→ 2 · x) etc. We extend α to the domain
N ∪ {∞} by letting α(∞) =∞. We write d1 ≲ d2 to mean that there is some α such that
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Table 1 Edit Distances.

Edit Distance Denotation Allowed Operations
Hamming distance dh letter-to-letter substitutions
Transposition distance dt swapping adjacent letters
Conjugacy distance dc left and right cyclic shifts
Levenshtein edit distance dl insertions, deletions, and substitutions
Longest Common Subsequence dlcs insertions and deletions
Damerau-Levenshtein distance ddl insertions, deletions, substitutions and adjacent

transpositions

d1 ≤ α ◦ d2. Clearly, if d1 ≤ d2 then d1 ≲ d2. If d1 ≲ d2 and d2 ≲ d1, we write d1 ≈ d2 (this
is known as the cost equivalence or the boundedness equivalence). If two functions f and g

are cost-equivalent then f and g are bounded over precisely the same family of subsets (See
Proposition 1 of [14]).

▶ Lemma 2.1. The metrics defined in Table 1 are related as follows:
1. dlen ≤ d ≤ d∞, for each edit distance metric d ∈ {dl, dh, dt, dc, dlcs, ddl}
2. dl ≈ dlcs ≈ ddl
3. dl ≤ dh ≲ dt

4. dl ≲ dc

5. dc and dt as well as dc and dh are incomparable, i.e., dh ̸≲ dc, dc ̸≲ dh and dt ̸≲ dc, dt ̸≲ dc

3 Distance between Transductions

In this section we define the notion of distance between two rational functions, diameter of
a rational relation, and index of a rational relation in another. We establish the relation
between these notions and state our results.

3.1 Comparing Transducers
We lift a metric over words to the class of word-to-word functions as follows.

▶ Definition 3.1 (Metric on transductions). Let d be a metric on words over the alphabet B.
Given two partial functions T ,S : A∗ → B∗, we define

d(T ,S) =
{

sup { d(T (w),S(w)) | w ∈ dom(T )} if dom(T ) = dom(S)
∞ otherwise

▶ Proposition 3.2. d is a metric on transductions.

▶ Remark 3.3. We can define a notion of distance between word-to-word relations in the
above manner, however this distance will not be a metric. In particular d(R,R) will not be 0
for a relation R that is not a (partial) function.

▶ Example 3.4. Consider the sequential transducers T1 and T2 in Figure 1. The transducers
T1 and T2 output the letters at the odd and even positions respectively. For any input word
u, ||T1(u)| − |T2(u)|| ≤ 1. Hence dlen(T1, T2) = 1. For input word (ab)n where n > 1, the
outputs produced by T1 and T2 are an and bn respectively. Since n substitutions are required
to convert an to bn, dl(an, bn) = n. Therefore, dh(T1, T2) =∞ as well as dl(T1, T2) =∞.
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Table 2 Problems about distance between two transducers w.r.t. the metric d.

Problem Input Question
Distance Problem transducers T , S d(T , S)?
Closeness Problem transducers T , S Is d(T , S) < ∞?
k-Closeness Problem integer k, transducers T , S Is d(T , S) ≤ k?

▶ Example 3.5. The sequential transducer T4 in Figure 2 replaces each block of 0’s by a
single 0 and each block of 1’s by a single 1. Similarly, T5 substitutes a block of 0’s by a single
1 and a block of 1’s by a single 0. The output words produced by the transducers on any
input word is an alternate sequence of 0’s and 1’s. If T4 outputs 010, then T5 produces its
complement, i.e., 101. The Hamming distance between T4 and T5 is ∞, but the Levenshtein
distance is 2.

q0

q1

q2

0|0

1|1

1|1

0|ϵ

0|0

1|ϵ

q0

q1

q2

0|1

1|0

1|0

0|ϵ

0|1

1|ϵ

Figure 2 T4 (left) outputs 0 & 1 for each block of 0’s & 1’s resp. whereas T5 (right) outputs 1 &
0 for each block of 0’s & 1’s resp.

Let d be a distance on words. The value d(T ,S) is an upper bound on how dissimilar the
outputs of transducers T and S can be on any input. It is natural to ask the computational
and boundedness problems given in Table 2.

Closeness and k-closeness are respectively a boundedness and an upper bound problem
on distance.

▶ Proposition 3.6. Let d be an integer-valued metric. The distance problem w.r.t. d is
computable if and only if k-closeness and closeness problems w.r.t. d are decidable.

Proof. Clearly, if we can compute the distance w.r.t. d then we can decide k-closeness as well
as closeness. For the other direction, given two transducers, we first check if they are close
and if it is we perform an exponential search – check if they are k-close for k = 20, 21, 22, . . .

till it fails and subsequently perform a binary search on the interval [2n, 2n+1], n ∈ N that
contains the distance. ◀

We say two transducers T and S are close (resp. k-close, for k ≥ 0) w.r.t. d if d(T ,S) <∞
(resp. d(T ,S) ≤ k). Closeness with respect to the discrete metric d∞ is precisely the
equivalence problem. Closeness w.r.t. the length metric dlen can be characterised in terms of
delay as follows.

▶ Proposition 3.7. Given two transducers T1, T2 with identical domain, dlen(T1, T2) is finite
iff there exists a k ∈ N such that on any input word w, the difference in lengths of the partial
outputs of T1, T2 on any prefix of w is bounded by k.

In the case of edit distances, closeness means that the output of T1 can be converted to the
output of T2 by doing a bounded number of edits.

ICALP 2024



125:8 Edit Distance of Finite State Transducers

▶ Remark 3.8. From Definition 3.1, it is easy to verify that Lemma 2.1 holds for transducers
as well. If d1 ≲ d2, then it is easy to see that if transducers T1 and T2 are not close w.r.t. d1,
then they are not close w.r.t. d2 either.

The problems in Table 2 for unambiguous transducers with identical domains can be reduced
to that for sequential transducers by considering the cartesian product of the unambiguous
transducers. Given two unambiguous transducers T1 and T2, we obtain the sequential
transducers T ′

1 and T ′
2 as follows. The input automata for T ′

1 and T ′
2 are the same, call

it A, which is the cartesian product of the input automata of T1 and T2. By treating the
transitions of the cartesian product as the input alphabet, we get input determinism. The
output functions of T ′

1 and T ′
2 are lifted from T1 and T2 respectively.

▶ Proposition 3.9. Let d be a distance on words. For each pair of unambiguous transducers
T1 and T2 with identical domain, there exist a DFA A and output functions λ′

1, o′
1 and λ′

2, o′
2

such that d(T1, T2) = d(T ′
1 , T ′

2 ) where the sequential transducer T ′
i = ⟨A, λ′

i, o′
i⟩, i ∈ {1, 2}.

Furthermore, the size of the automaton A is polynomial in the size of T1 and T2.

Given two transductions T and S, we define a distance function that maps each word w

to the distance between their outputs on w.

▶ Definition 3.10 (Distance function). The distance function fd
T ,S : A∗ → N ∪ {∞} of T

and S is fd
T ,S(w) = d(T (w),S(w)) if w ∈ dom(T ) ∩ dom(S); otherwise fd

T ,S(w) =∞.

Transducers T and S are close w.r.t. a metric d if their domains are the same and their
distance function fd

T ,S is limited (i.e.,<∞ on its domain). Similarly k-closeness w.r.t. d of T
and S reduces to k-limitedness of fd

T ,S . Limitedness problems are well-studied in the context
of weighted automata [28, 12]. Therefore, when the distance function fd

T ,S is computable by
a (min,+)-automaton, the distance between T and S is computable due to Proposition 3.6.

However, there are distance functions that are not computable by weighted automata.
Let A = {a, b}. Consider the sequential transducers T1, T2 : A∗ → A∗ with the domain a∗b∗

defining the functions apbq 7→ ap, apbq 7→ aq respectively (T1 outputs the a’s and erases the
b’s, T2 erases a’s and renames the b’s as a’s). It is easily checked that their distance function
w.r.t. the Levenshtein family (d ∈ {dl, dlcs, ddl}) is fd

T1,T2
: apbq 7→ |p− q|.

If f : A∗ → N∪{∞} is a function computed by weighted automata ((min,+) or (max,+)
or B-automata [13]), then Lf≤k = {w ∈ A∗ | f(w) ≤ k} is regular for each k ≤ N. Hence
the function fd

T1,T2
is not realised by any of them (consider the language Lfd

T1,T2
≤k). In fact,

it can be shown that the function fd
T1,T2

is not computed even upto boundedness [15].
To compute k-closeness w.r.t. any of the edit distances, it is not necessary to compute

the distance function precisely. The k-approximation of the distance function fd
T ,S is the

function ⌈fd
T ,S⌉≤k : w 7→ fd

T ,S(w) if fd
T ,S(w) ≤ k and ∞ otherwise.

▶ Proposition 3.11. If T and S are close w.r.t. the length metric, then the approximation
⌈fd

T ,S⌉≤k for a metric d ∈ {dl, dlcs, ddl , dh, dt, dc} is computed by a distance automaton for
each k ∈ N.

To check if T and S are k-close, we check if they have the same domain and they are
close w.r.t. the length metric (otherwise they are neither close nor k-close). If so, we check if
the domain of T is same as the domain of ⌈fd

T ,S⌉≤k. Thus we get:

▶ Corollary 3.12. Let d be any metric from Table 1, and T and S be any functional
transducers. It is decidable if T and S are k-close w.r.t. d.
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Table 3 Problems about diameter of a rational relation w.r.t. the metric d.

Problem Input Question
Diameter Problem rational relation R diad(R)?
Bounded Diameter Problem rational relation R Is diad(R) < ∞?
k-Bounded Diameter Problem integer k, rational relation R Is diad(R) ≤ k?

3.2 Diameter of a Rational Relation
▶ Definition 3.13 (Diameter of a Rational Relation w.r.t. a distance d). The diameter of a
rational relation R with respect to a distance d, denoted by diad(R), is the supremum of the
distance of the related words in R.

diad(R) = sup { d(u, v) | (u, v) ∈ R }

Similar to the questions asked in Table 2, we can ask the questions given in Table 3 about
diameter of a rational w.r.t. a metric d. We say a rational relation has bounded (resp. k-
bounded) diameter w.r.t. a distance d if the diameter of the relation w.r.t. d is finite (resp. ≤ k).
A rational relation with bounded delay is precisely those relations with bounded diameter
w.r.t. a length metric. Relations with 0-delay are called length-preserving relations [16] where
any two related words are of equal length. It is decidable to check if a rational relation has
bounded delay or 0-delay [20].

Relations bounded w.r.t. the discrete metric are simply those with only identical pairs.
It is decidable to determine if a rational relation R is identity. First, check if R is length-
preserving. If so, we can construct a letter-to-letter transducer for R based on Eilenberg
and Schützenberger’s theorem [16] stating that a length-preserving rational relation over
A∗×B∗ is a rational subset of (A×B)∗, or equivalently, it can be realised by a letter-to-letter
transducer whose transitions are labelled with elements of A × B. Finally, validate this
transducer for identity by examining the labels of each transition.

3.3 Index of a Rational Relation in a Composition Closure
Consider two rational relations R over A∗ ×B∗ and S over B∗ ×C∗. The composition S ◦R
over A∗ × C∗ is defined by (S ◦R)(u) = S(R(u)) =

⋃
v∈R(u) S(v).

▶ Definition 3.14 (Composition closure of a Rational Relation). Let S be a rational relation
over A∗ × A∗. Let S(n) denote the composition of S with itself n ≥ 0 times (S(0) is taken
to be the identity relation), and let S≤(n) denotes the composition of S with itself at most n
times, i.e., S≤(n) = S(0) ∪ S(1) ∪ · · ·S(n).

The composition closure of S, denoted as S(∗), is defined as S(∗) =
⋃

i≥0 S
(i).

Notice that we use parenthesis around the superscript to indicate that the base operation is
composition, and not concatenation.

▶ Definition 3.15 (Index of a Rational Relation in a Composition Closure). Let S be a rational
relation over A∗ × A∗. An index of a rational relation R in the composition closure of S,
denoted as Index(R,S), is the smallest integer k such that R is contained in S≤(k).

▶ Example 3.16. Consider a relation S over {a, b}∗ × {a, b}∗ that deletes the first a if exists
on any input. Fix an integer k > 0 and let R be the relation that deletes the first k a’s
from the input if exists. The index of R in S(∗) is k since for any input word u ∈ A∗,
R(u) ∈ S≤(k)(u).
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Table 4 Problems about the index of a rational relation in the composition closure of another.

Problem Input Question
Index Problem rational relation R, S Index(R, S)?
Bounded (or Finite) Index Problem rational relation R, S Is Index(R, S) < ∞?
k-Bounded Index Problem integer k, rational relation R, S Is Index(R, S) ≤ k?

Consider another relation R′ that deletes all a’s from the input. Since R′(ak+1) ̸∈
S≤(k)(ak+1) for any k > 0, the index of R′ in S(∗) is ∞.

As seen in the case of the distance and diameter problem, we can ask questions in Table 4
about the index of a rational relation in the composition closure of a relation. We say a
rational relation R has bounded (resp. k-bounded) index in the composition closure of a
rational relation S if the index of R in S(∗) is finite (resp. ≤ k).

Deciding the boundedness of the index problem for an arbitrary rational relation is
difficult.

▶ Lemma 3.17. It is undecidable to check if a rational relation has a bounded index in the
composition closure of an arbitrary rational relation.

However, we show that the index problem is decidable w.r.t. a large class of rational
relations defined below.

▶ Definition 3.18 (Metrizable Relation). Let S be a rational relation over A∗ × A∗. Let
dS : A∗ ×A∗ → N ∪ {∞} be the distance between two vertices in the graph of S, i.e., for any
two words u and v, dS(u, v) is the smallest i such that v ∈ S(i)(u), and ∞ otherwise.

We say S is a d-metrizable relation for a metric d if dS ≈ d.

▶ Proposition 3.19. Let R be a rational relation and S be a d-metrizable relation for an
integer-valued metric d for which dlen ≲ d. If boundedness of diameter w.r.t. d is decidable
for a rational relation, then Index(R,S) is computable.

Proof. Similar to distance problem, the index problem is computable iff bounded index and
k-bounded index problems are decidable. For a rational relation R and d-metrizable relation
S, we show that Index(R,S) <∞ iff diad(R) <∞ as follows.

diad(R) <∞ ⇐⇒ ∃k ∈ N s.t. ∀(u, v) ∈ R, d(u, v) ≤ k
⇐⇒ ∃k′ ∈ N s.t. ∀(u, v) ∈ R, dS(u, v) ≤ k′ (Since dS ≈ d)

⇐⇒ ∀(u, v) ∈ R, v ∈ S≤(k′)(u) (Definition of dS)
⇐⇒ Index(R,S) <∞

Therefore, if the boundedness of diameter w.r.t. d is decidable for a rational relation,
then we can decide if Index(R,S) < ∞. If so, then it suffices to decide if Index(R,S) ≤ k

for k = 0, 1, . . . and output the smallest k as the index of R in the composition closure of S.
Since diad(R) <∞ and dlen ≲ d, the rational relation R has a bounded delay. Similarly,

S also has a bounded delay since for all (u, v) ∈ S, dS(u, v) = 1⇒ ∃k ∈ N s.t. d(u, v) ≤ k

(since dS ≈ d) ⇒ ∃k′ ∈ N s.t. dlen(u, v) ≤ k′ (since dlen ≲ d). Since S has bounded delay,
for any k ∈ N, S(k) also has bounded delay. It is known that emptinesss and set difference of
two rational relations with bounded delay is decidable (Corollary 2 of [20]). For any k ∈ N,
deciding Index(R,S) ≤ k reduces to checking if R ⊆ S≤(k) (or equivalently, R \ S≤(k) = ∅),
and hence decidable. ◀

A close and (almost) dual notion is that of a metric that defines a rational relation.
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▶ Definition 3.20 (Rationalizable Distance). A distance d on words is rationalizable if the
relation Sd = {(u, v) | d(u, v) = 1}, called the distance relation of d, is rational.

▶ Example 3.21. Consider the hamming distance dh. We can construct a rational relation
Sh = {(u, v) | u and v differ only in exactly one position}. For example, let A = {a, b} and
Sh(aba) = {bba, aaa, abb}. For this, construct a transducer that nondeterministically chooses
a position and replaces the input letter with other letters in the alphabet. Similarly, the
distance relation of the length metric Slen = {(u, v) | ||u| − |v|| = 1} is also rational.

In fact, we have the following result about the rationalizability of edit distances referred in
Table 1.

▶ Proposition 3.22. Every edit distance d ∈ {dl, dh, dt, dc, dlcs, ddl} is rationalizable.

3.4 Reductions between Distance, Diameter and Index Problems
We show that the distance problem of two rational functions is mutually reducible to the
diameter problem of a rational relation, which in turn is mutually reducible to the index
problem of a rational relation in the composition closure of a metrizable relation. Thus, their
closeness and boundedness problems are also interreducible.

The correspondence between distance and diameter follows from Nivat’s theorem:

▶ Theorem 3.23 ([32]). Let A and B be alphabets. The following conditions are equivalent.
1. R is a rational relation over A∗ ×B∗.
2. There exist an alphabet C, two alphabetic morphisms ϕ : C∗ → A∗ and ψ : C∗ → B∗ and

a regular language L ⊂ C∗ such that R = {(ϕ(w), ψ(w)) | w ∈ L}
From Proposition 3.9 and (2) ⇒ (1) in the above theorem, it follows that distance of two
rational functions reduces to the diameter of a rational relation. Now, given a rational relation
R, we can create two functional transducers T1 and T2 in the following way. The domain
for these transducers corresponds to the set L in Theorem 3.23. For each transition in T1
and T2 that involves an input alphabet symbol σ, we set the outputs to be ϕ(σ) and ψ(σ) in
Theorem 3.23, respectively. Consequently, T1 and T2 consist of the sets {ϕ(w) | w ∈ L} and
{ψ(w) | w ∈ L} respectively. Since the domain of these transducers is identical, the distance
between T1 and T2 with respect to any distance d, d(T1, T2) = sup { d(ϕ(w), ψ(w)) | w ∈ L },
that is equivalent to the diameter of R w.r.t. the distance d.

The correspondence between diameter and index for rationalizable distances is stated in
the following proposition.

▶ Proposition 3.24. The diameter of a rational relation R w.r.t. a rationalizable distance
d is equal to the index of the rational relation R in the composition closure of the distance
relation of d.

Proof. Assume that the diameter of a relation R w.r.t. a distance d is ∞. We claim that
the index of R in S(∗)

d is also ∞ where Sd is the distance relation of d. Suppose not, i.e., let
k <∞ be the index of R in S

(∗)
d . Thus, ∀(u, v) ∈ R, v ∈ S≤(k)

d (u). Since Sd is the distance
relation of d, ∀(u, v) ∈ R, d(u, v) ≤ k. However, this contradicts the fact that diad(R) =∞.
Hence, the index of R in S

(∗)
d is infinite. Similarly, we can prove the other direction. Now,

suppose the diameter of R w.r.t. d is finite, i.e.,

diameter of R w.r.t. d is k <∞ ⇐⇒ ∀(u, v) ∈ R, d(u, v) ≤ k

⇐⇒ ∀(u, v) ∈ R, v ∈ S≤(k)
d (u)

⇐⇒ index of R in S
(∗)
d is k. ◀
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3.5 Decidability Results
We study the problems stated in Tables 2, 3 and 4 and show that they are decidable for the
metrics in Table 1. The index problems stated in Table 4 are undecidable in general (see
Lemma 3.17), but is decidable for d-metrizable relations for metrics d given in Table 1.

Recall that, w.r.t. a metric d, distance problem is computable if and only if both closeness
and k-closeness are decidable (see Proposition 3.6). We have shown that the k-closeness is
decidable for all the metrics in Table 2 (Corollary 3.12). Hence to show the decidability
of all the problems in Table 2, it suffices to show the decidability of the closeness problem.
Furthermore, thanks to the inter-reductions described above (see § 3.4), the decidability of
Table 3 follows as well as the decidability for the problems in Table 4 for the rationalizable
distance. Moreover, the index of a rational relation in the composition closure of a d-metrizable
relation for a metric d given in Table 2 is computable by Proposition 3.19.

It only remains to prove that closeness is decidable for edit distances in Table 1. This is
stated below, and proved in the following section.

▶ Theorem 3.25. Let d be any metric from Table 1, and T and S be any functional
transducers. It is decidable if T and S are close w.r.t. d.

4 Closeness for Edit Distances

In this section, we show that closeness is decidable for all the edit distances in Table 1. The
first step is to check if the domain of the transducers are the same. This reduces to checking
the equivalence of the underlying automata. For sequential transducers, the underlying
automaton is a DFA, while for unambiguous transducers, the underlying automaton is an
unambiguous NFA. Checking the equivalence of two unambiguous automata can be done in
polynomial time [39], while it is PSPACE in the case of ambiguous automata [40]. Therefore,
from now on, we assume that the domains of the transducers given as input to the closeness
problem are identical.

Proposition 3.9 allows us to state the distance and closeness problems more abstractly
in terms of an automaton over pairs of words. The proposition asserts that distance and
closeness problems of two given sequential or unambiguous transducers T1 and T2 can be
reduced to the corresponding problem for a DFA A with two sets of output functions
λ1, o1 and λ2, o2. We can combine the output functions to output a pair of words. That
is to say, let λ : ∆ → B∗ × B∗ be defined as λ(δ) = (λ1(δ), λ2(δ)), where δ ∈ ∆ and ∆
is the set of transitions of A. Similarly let o(p) = (o1(p), o2(p)), where p ∈ F and F is
the set of accepting states of A. Henceforth, we can assume that we are given a DFA
A with the output functions λ and o, denoted as the sequential transducer T . Since the
input words are inconsequential for computing the distance, we can convert the transducer
T to an automaton A that accepts a set of pairs of output words over B∗ × B∗, i.e.,
L(A) = {(u, v) ∈ B∗ ×B∗ | (u, v) = T (w), w ∈ dom(T )}. Clearly, transducers T1 and T2 are
close w.r.t. d if and only if there exist an integer k ≥ 0 such that ∀(u, v) ∈ L(A), d(u, v) ≤ k.

Conjugacy of words plays an important role in closeness problems. A pair of words (u, v)
is conjugate if there exist words x and y (possibly empty) such that u = xy and v = yx or
equivalently, u and v are cyclic shifts of one another. For example, (aaab, aaba) is a conjugate
pair where x = a and y = aab. Conjugacy relation is an equivalence relation on the set of
words. A set of pairs is conjugate if each pair in the set is conjugate.

▶ Lemma 4.1. Let T1 and T2 be two sequential transducers that define a function from A∗

to B∗. If T1 and T2 are close w.r.t. a metric d ∈ {dl, dh, dt, dc, dlcs, ddl}, then every loop in
the trim automaton over B∗ ×B∗, that accepts set of all pairs of output words of T1 and T2
on any input, generates only conjugate pair of words.
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Proof. This proof is adaptation of a related result in [3]. Let A be a trim automaton that
realises the pair of output words of transducers T1 and T2 on any input. Since T1 and T2 are
close w.r.t. d, there exist an integer k ≥ 0 such that ∀(u, v) ∈ L(A), d(u, v) ≤ k. Let (u, v)
be a pair labelled in a loop rooted at some state q. Hence (uℓ, vℓ) for each ℓ ≥ 0 is also a
pair in a loop rooted at q. We can safely assume that |u| = |v|, otherwise the edit distance
will be unbounded as each iteration will increase the edit distance by a difference in length
of u and v (Item 1 of Lemma 2.1).

Since A is trimmed, there exists a path from an initial state q0 to q and from q to
a final state qf . Let (α0, β0) be a pair labelled in a path from q0 to q, and let (α1, β1)
be a pair labelled in a path from q to qf . Thus, pair (α0, β0)(uℓ, vℓ)(α1, β1) belongs to
L(A) where ℓ = 2k (some value much larger than k). Since ℓ is much larger than k and
d(α0u

ℓα1, β0v
ℓβ1) ≤ k, there exist large portions of u’s and v’s that match. Therefore, we

can infer that u is a factor of vv, and v is a factor of uu.
Since v is an infix of uu, the following holds. There exist words x, y, p and q such that

v = xy and u = px = yq. Since |u| = |v|, length of p and length of y are the same, that
implies p = y (since u = px = yq). Therefore, u = yx. Hence u and v are conjugate words.
Since the pair (u, v) was arbitrary, any pair generated by a loop in A is conjugate. ◀

4.1 Closeness w.r.t. Levenshtein distances and Conjugacy
In this subsection, we decide closeness w.r.t. Levenshtein family of distances – Levenshtein,
Damerau-Levenshtein, and LCS distances – and conjugacy distance. Levenshtein family of
distances are all equivalent with respect to closeness problems by Lemma 2.1 and Remark 3.8.

We have already seen that given two unambiguous transducers T1 and T2 with identical
domains, there exists an automaton A over B∗ ×B∗ that accepts a set of all pairs of output
words of T1 and T2 on any input. Thus, we can state the distance and closeness problems in
terms of rational expressions over B∗ ×B∗.

We define pairs over the alphabet B to be the set B∗×B∗ with the pointwise concatenation
(u, v) · (u′, v′) = (u · u′, v · v′). A rational expression of pairs over the alphabet B is a rational
expression over the alphabet {(b, b′) | b, b′ ∈ (B ∪ {ϵ})} that generates a subset of pairs over
B. From the automaton A over B∗ × B∗, using state elimination method ([26], Lecture
9), we can construct the rational expression of pairs E for the output pairs generated by
the transducer T1 and T2 on any input. We can lift the metric d to expressions by letting
d(E) = sup {d(u, v) | (u, v) ∈ L(E)}. Clearly d(E) = d(T1, T2). Thus, the distance and
closeness problems of sequential and unambiguous transducers reduce to the corresponding
problems for a rational expression of pairs. Henceforth we assume that we are given a rational
expression of pairs.

In the context of conjugacy distance, the closeness of a rational expression necessarily
implies that every pair in the expression is conjugate. Otherwise, if there exists a pair
(u, v) ∈ L(E) such that u is not conjugate to v, then dc(u, v) =∞, thus dc(E) =∞. In fact,
this is also a sufficient condition. The proof relies on the results from [3] that studies the
conjugacy of rational expression over pairs of words. It crucially uses the notion of a common
witness of a set of pairs.

▶ Definition 4.2 (Common Witness of a Set of Pairs). A witness of pair of conjugate words
(u, v) is a word z such that either uz = zv (called an inner witness) or zu = vz (called an
outer witness). A common witness of a set of pairs is a word z such that either z is an inner
witness of every pair in the set, or z is an outer witness of every pair in the set.

Lyndon and Schützenberger gave a characterisation of conjugacy of a pair of words, stated as
a pair of words is conjugate if and only if it has both inner and outer witness (Proposition 1.3.4
of [30]). In [3], it is generalised to a set of pairs as follows.
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▶ Theorem 4.3 ([3]). Let M = (α0, β0)G∗
1(α1, β1) · · ·G∗

k(αk, βk) be a set of pairs where
G1, . . . , Gk, k > 0 are arbitrary sets of pairs of words, and (α0, β0), . . . , (αk, βk) are arbitrary
pairs of words. The set M is conjugate iff M has a common witness.

Existence of a common witness bounds the conjugacy distance of an expression as follows.

▷ Claim 4.4. If a rational expression over pairs E has a common witness z, then dc(E) ≤ |z|.

Proof. Since E has a common witness, either ∀(u, v) ∈ L(E), uz = zv, or ∀(u, v) ∈ L(E),
zu = vz. WLOG, assume that ∀(u, v) ∈ L(E), uz = zv. Now, for any pair (u, v) ∈ L(E):
1. If |u| > |z|, then z is a prefix of u and suffix of v and hence (u, v) = (zp, pz) for some

word p ∈ A∗. Therefore dc(u, v) ≤ |z| since v can be obtained by |z| left cyclic shifts of u.
2. Otherwise, when |u| ≤ |z|, the number of cyclic shifts required to transform u to v (note

that u and v are conjugate since they have a witness) is less than |u| ≤ |z|. ◁
A rational expression is sumfree if it does not use sum (i.e., +). In [3], it is shown that if a
common witness exists, it is computable for a sumfree rational expression over pairs of words.
It is folklore that every rational expression is equivalent to a sum of sumfree expressions [3].
The proposition below implies that to show closeness for a sum of sumfree expressions, it
suffices to show closeness for each of its constituent sumfree expressions.

▶ Proposition 4.5. Let E = E1 + · · ·+ Ek, k ≥ 1 be a rational expression of pairs. Then
d(E) = max(d(E1), . . . , d(Ek)) for all word metrics d.

An expression is conjugate if every pair generated by the expression is conjugate. The
following proposition characterises closeness w.r.t. conjugacy distance.

▶ Proposition 4.6. A rational expression over pairs of words is close w.r.t. conjugacy distance
if and only if the expression is conjugate. Furthermore, the closeness w.r.t. conjugacy distance
is decidable.

Proof. One direction is trivial. Assume E to be an arbitrary rational expression of pairs and
is conjugate. Let E = E1 +E2 + · · ·+Ek where E1, E2, . . . , Ek are sumfree expressions. Since
E is conjugate, each of its sumfree constituents Ei for 1 ≤ i ≤ k is also conjugate. Using
Theorem 4.3, each Ei has a common witness, say zi. From Claim 4.4, dc(Ei) ≤ zi. Therefore,
dc(E) is close w.r.t. conjugacy distance by Proposition 4.5. Hence, to decide closeness of E
w.r.t. conjugacy distance, it suffices to check if E is conjugate. This reduces to checking if a
common witness exists for each sumfree constituent. It is shown to be decidable in [3]. ◀

Now consider the case of Levenshtein distances. From Lemma 4.1, if an expression is
close w.r.t. Levenshtein distances, it is necessary that every pair generated by a Kleene star
in the expression needs to be conjugate. Using common witness, we show that it is also a
sufficient condition.

▷ Claim 4.7. If a rational expression of pairs E has a common witness z, then dl(E) ≤ 2|z|.

Proof. The proof is similar to Claim 4.4. Since E has a common witness, either ∀(u, v) ∈ L(E),
uz = zv, or ∀(u, v) ∈ L(E), zu = vz. WLOG, assume that ∀(u, v) ∈ L(E), uz = zv. For any
pair (u, v) ∈ L(E), |u| = |v| since uz = zv. There are two cases, either |u| > |z| or |u| ≤ |z|.
If |u| > |z|, then z is a prefix of u and suffix of v and hence (u, v) = (zp, pz) for some word p.
Therefore, dl(E) ≤ 2|z| by deleting z in the beginning and insert z at the end of u. Suppose
|u| ≤ |z|, the number of edits required to transform u to v is less than |u|+ |v| ≤ 2|u| ≤ 2|z|.

◁
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▶ Proposition 4.8. Closeness of a rational expression w.r.t. Levenshtein distance is decidable.

Proof. Given an arbitrary rational expression, there is an equivalent sum of sumfree expres-
sion. From Proposition 4.5, to show closeness for a sum of sumfree expressions, it suffices to
show closeness for each of its constituent sumfree expressions. The general form of a sumfree
expression E = (α0, β0)E∗

1(α1, β1) · · ·E∗
k(αk, βk) where k ∈ N, for 0 ≤ j ≤ k, (αj , βj) is a

(possibly empty) pair of words, and for each 1 ≤ i ≤ k, Ei is a sumfree expression.

▷ Claim 4.9. A sumfree expression E = (α0, β0)E∗
1 (α1, β1) · · ·E∗

k(αk, βk) is close w.r.t. Leven-
shtein distance if and only if each E∗

i for 1 ≤ i ≤ k is conjugate.

Proof. From Lemma 4.1, if E is close w.r.t. Levenshtein edit distance then each E∗
i is

conjugate. For the other direction, if each E∗
i is conjugate, then each E∗

i has a common
witness, say zi, by Theorem 4.3. From Claim 4.7, dl(E∗

i ) ≤ 2|zi|. Further, dl(E) ≤∑
j∈{0...k} dl(αj , βj) +

∑
i∈{1...k} dl(E∗

i ) =
∑

j∈{0...k} dl(αj , βj) + 2
∑

i∈{1...k} zi, hence finite.
This implies that if each E∗

i in E is conjugate, then dl(E) is finite. ◁

Therefore, checking the closeness of a rational expression w.r.t. Levenshtein distances reduces
to checking the existence of a common witness of each Kleene star in its sumfree constituents,
and thus decidable. ◀

For a sumfree rational expression, a witness, if exists, can be computed in polynomial time [3],
and thus closeness w.r.t. Levenshtein and conjugacy distances are decidable in polynomial
time. However, converting a rational expression to a sum of sumfree rational expressions
can cause an exponential blow-up both in the number of summands and the size of each
summand [3].

4.2 Closeness w.r.t. Hamming and Transposition distances
▶ Theorem 4.10. Closeness w.r.t. Hamming and Transposition distance are decidable for
functional transducers.

Given two functional transducers, check if their domains are the same. If not, the distance
is ∞ hence they are not close. Assume they have an identical domain. By Proposition 3.9,
it suffices to consider two sequential transducers with a common underlying DFA. Let
T1 = ⟨A, λ1, o1⟩ and T2 = ⟨A, λ2, o2⟩ be two sequential transducers. WLOG, we make the
following assumptions.
1. (Property ⋆) Automaton A is trimmed, i.e., all states are accessible (reachable from the

initial state) and coaccessible (from each state there is a path to some final state).
2. (Property ‡) T1 and T2 produce output words of identical length; otherwise the Hamming

as well as transposition distance will be ∞. We can check this property: rename all the
output letters in T1 and T2 to a and check their equivalence.

3. The delay between partial outputs of T1 and T2 is at most k ∈ N (By Proposition 3.7).

Let Q and F ⊆ Q be the set of states and final states of A respectively, and let q0 ∈ Q
be the initial state. For states p, q ∈ Q, Let Mp,q be the set of pairs (u, v) such that there
is a run ρ from p to q and u = λ1(ρ) and v = λ2(ρ). Extending this notation, for a state
qf ∈ F , let M ′

q,qf
be the set of pairs (u, v) such that u = u′ · o1(qf ), v = v′ · o2(qf ) and

(u′, v′) ∈Mq,qf
.

Let q be a state of the automaton. If (α, β) and (α′, β′) are two pairs in Mq0,q, then
|α| − |β| = |α′| − |β′|, or else one of the pairs in {(αα′′, ββ′′), (α′α′′, β′β′′)} will have different
lengths, where (α′′, β′′) is some pair in Mq,qf

, for some qf ∈ F , guaranteed by Property (⋆).
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Therefore with each state q, we can associate the delay of a run reaching it, called the delay
at q, denoted by ∂q, as |α| − |β|. Clearly ∂q ≤ k. By a symmetric argument, if (α, β) and
(α′, β′) are two pairs in Mq,qf

, where qf is some final state, then |α| − |β| = |α′| − |β′| = −∂q.
This also implies that for all (u, v) ∈Mq,q, |u| = |v|.

For each state q, either Mq,q = {(ϵ, ϵ)}, or Mq,q is infinite. Let q be a state for which
Mq,q is nonempty. For a delay ∂ ∈ Z, a pair (u, v) ∈Mq,q where n = |u| > ∂, we define the
interior of the pair (u, v) as

interior∂(u, v) =
{

(u[1 . . . n− ∂], v[∂ + 1 . . . n]) if ∂ ≥ 0
(u[∂ + 1 . . . n], v[1 . . . n− ∂]) if ∂ < 0

For example, interior1(abc, def) = (ab, ef) and interior−1(abc, def) = (bc, de). We also
define the Left-Border and Right-Border of the pair (u, v) as

lborder∂(u, v) =
{
v[1 . . . ∂] if ∂ ≥ 0
u[1 . . . ∂] if ∂ < 0

rborder∂(u, v) =
{
u[n− ∂ + 1 . . . n] if ∂ ≥ 0
v[n− ∂ + 1 . . . n] if ∂ < 0

▷ Claim 4.11. Hamming distance between T1 and T2 is unbounded if and only if there
exists a state q ∈ Q and (u, v) ∈ Mq,q such that |u| = |v| > ∂q, and u′ ̸= v′ where
(u′, v′) = interior∂q

(u, v).

Proof. The Figure 3 depicts the situation described by (2).
(←): Assume there exists a state q ∈ Q and (u, v) ∈Mq,q such that |u| = |v| > ∂q, and

u′ ̸= v′ where (u′, v′) = interior∂q
(u, v). Let (α0, β0) ∈Mq0,q and (α1, β1) ∈Mq,qf

. Consider
the pair (ui = α0u

iα1, vi = β0v
iβ1), i ≥ 1 (shown in Figure 4). Since u′ ̸= v′, we can deduce

that dh(ui, vi) ≥ i. Hence dh(T1, T2) =∞.

α0 u α1

β0 v β1∂

∂

Figure 3 An edit in the interior of u and v.

α0 u u u α1

β0 v v v β1∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

Figure 4 Words that require an arbitrarily large number of edits.

(→): Assume dh(T1, T2) = ∞. Assume A has n states and the maximum length of an
output produced on any transition or at the end-of-input is ℓ. Choose a run ρ of A such that
the distance between the outputs produced on ρ = δ1 · · · δm, m > 0 is at least ((k+ 2)n+ 1)ℓ.
We can associate each edit in λ1(ρ) with the transition δi such that the edit happens in
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λ1(δi). Since there are ((k + 2)n+ 1)ℓ edits, there are at least (k + 2)n+ 1 transitions in ρ

whose output words are edited. Associate each transition with its source state. By pigeonhole
principle, there is a state q such that ρ = ρ1 · ρ2 · ρ3 where
1. ρ1 is a run from the initial state q0 to q,
2. ρ2 is a run from q to itself,
3. ρ3 is a run from q to a final state qf , and
4. there are at least (k + 1) edits in the factor λ1(ρ2).

Let u = λ1(ρ2) and v = λ2(ρ2). Clearly |u| = |v| and |u| ≥ (k + 1). Since the edits in u

are at least k + 1, there is a position on which the pair interior∂q (u, v) differ. ◁

Next we show closeness w.r.t. transposition distance. We write u ≡ v to denote that words u
and v are permutations of each other. The alphabetic vector of a word over the alphabet A,
denoted by u⃗, is the sequence (|w|ai

)ai∈A for some fixed ordering of A. It is easy to observe
that two words are permutations of each other if their alphabetic vectors are the same.

▷ Claim 4.12. Transposition distance between T1 and T2 is unbounded if and only if one of
the following holds
1. There is a pair (u, v) ∈M ′

q0,qf
, qf ∈ F such that u ̸≡ v.

2. There exists a state q ∈ Q and (u, v) ∈Mq,q such that |u| = |v| > ∂q, and u′ ̸= v′ where
(u′, v′) = interior∂q

(u, v).
3. There exists a state q ∈ Q such that Mq,q is infinite, and for each pair (u, v) ∈ Mq,q

of length at least |∂q|, interior∂(u, v) is identical. Further, there are pairs (u, v) ∈
Mq,q and (α, β) ∈ Mq0,q (resp. Mq,qf

) such that: If ∂q ≥ 0, then α ̸≡ β · lborder(u, v)
(resp. rborder(u, v) · α ̸≡ β), and if ∂q < 0, then α · lborder(u, v) ̸≡ β (resp. α ̸≡
rborder(u, v) · β).

Proof. (←): It is obvious that if Item 1 is true, then the transposition distance between T1
and T2 is unbounded. Therefore we assume that the output pairs of the transducers are
permutations of each other. For Item 2, the proof is the same as in Claim 4.11. Next we
consider Item 3. The cases are symmetric. Assume that there exist a pair (u, v) ∈ Mq,q,
(α, β) ∈Mq0,q, and WLOG ∂q ≥ 0 such that α ̸≡ β · lborder(u, v). Let (α′, β′) be some pair
in Mq,qf

. Consider the pair (ui = αuiα′, vi = βviβ′), i ≥ 1.
Let (x, x) = interior∂q (u, v), z1 = lborder(u, v), z2 = rborder(u, v). By assumption

α ̸≡ βz1, and hence z2α
′ ̸≡ β′. Since interior of (u, v) is (x, x), we can deduce that

αz2α
′ ≡ βz1β

′. Therefore α⃗− β⃗z1 = ⃗z2α′ − β⃗′. This means that the transpositions have to
cancel out the differences in the vectors at each end of the word. We can prove by induction
that it requires at least |x| transpositions to mitigate a difference of 1, while keeping the
alphabetic vector of the middle portion the same. Hence we deduce that dt(ui, vi) ≥ i.

(→): If dt(T1, T2) ∈ ∞, either there is a pair of outputs (u, v) such that dt(u, v) = ∞
(This is Item 1), or all the output pairs are permutations of each other and there is an infinite
set of pairs S = {(ui, vi) | i > 0} such that dt(ui, vi) ≥ i.

In the latter case, we show that either Item 2 or Item 3 holds. We say the set S is
error-bounded if there is an r > 0 such that ui and vi differ in at most r positions. Clearly,
there are sets with bounded errors on which dt is infinite. We do case analysis.

If there is an infinite set of pairs S = {(ui, vi) | i > 0} such that dt(ui, vi) ≥ i that is not
error-bounded, we proceed as in the proof of Claim 4.11 and obtain Item 2 by pigeonhole
principle.

If the set of all output pairs is error-bounded, then clearly for states q such that Mq,q is
infinite, the interior of all the sufficiently large pairs in Mq,q are identical. Moreover since
the output pairs are permutations of each other there is a state q such that |Mq,q| =∞ and
there is a partial run from q0 to q (or a partial run from q to qf ) whose output words are
not permutations of each other. ◁
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Claim 4.11 and Claim 4.12 can be verified for T1 and T2 in polynomial time. Thus,
closeness of sequential and unambiguous transducers w.r.t. hamming and transposition
distance is decidable in polynomial time.

5 Discussion and Conclusion

It is shown that distance between two rational functions w.r.t. common edit distances is
computable. The related notions of diameter of a rational relation, and the index of a
rational relation in the composition closure of another are also computable. We leave open
the question of finding the precise computational complexity of the problems in Tables 2, 3
and 4.

The current decision procedure for closeness w.r.t. conjugacy and Levenshtein family of
distances proceeds through the analysis of rational expressions. One could directly work on
automata, but it is not enough to check for the conjugacy of simple cycles, as there can be
complex strongly connected components. In such cases, a decidability proof for conjugacy can
be achieved by utilizing Simon’s factorization forests [38] and checking the conjugacy of the
factorization trees inductively. Sumfree expressions are doing this in essence, circumventing
the need to construct the transition monoids.

Lifting these notions to infinite words, and two-way transducers is an immediate next
step. Distance between one-way transducers could be seen as the diameter of a rational
relation obtained by the cartesian product. However, when the transducers T ,S are two-way
or polyregular, the relation {(T (w),S(w)) | w ∈ dom(T )} need not be rational. It remains
to develop techniques for checking the conjugacy of non-rational relations.

An interesting question is: given two functional transducers T1 and T2 with bounded
distance, does there exist a transducer T such that T2 is equivalent to a cascading composition
of T1 and T ? This is often called the repair problem and is well-studied between two regular
languages [7].
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