
Automata-Theoretic Characterisations of
Branching-Time Temporal Logics
Massimo Benerecetti #

Università di Napoli Federico II, Italy

Laura Bozzelli #

Università di Napoli Federico II, Italy

Fabio Mogavero #

Università di Napoli Federico II, Italy

Adriano Peron #

Università di Trieste, Italy

Abstract
Characterisations theorems serve as important tools in model theory and can be used to assess and
compare the expressive power of temporal languages used for the specification and verification of
properties in formal methods. While complete connections have been established for the linear-
time case between temporal logics, predicate logics, algebraic models, and automata, the situation
in the branching-time case remains considerably more fragmented. In this work, we provide an
automata-theoretic characterisation of some important branching-time temporal logics, namely CTL*
and ECTL* interpreted on arbitrary-branching trees, by identifying two variants of Hesitant Tree
Automata that are proved equivalent to those logics. The characterisations also apply to Monadic
Path Logic and the bisimulation-invariant fragment of Monadic Chain Logic, again interpreted over
trees. These results widen the characterisation landscape of the branching-time case and solve a
forty-year-old open question.

2012 ACM Subject Classification Theory of computation → Automata over infinite objects; Theory
of computation → Modal and temporal logics; Theory of computation → Tree languages

Keywords and phrases Branching-Time Temporal Logics, Monadic Second-Order Logics, Tree
Automata

Digital Object Identifier 10.4230/LIPIcs.ICALP.2024.128

Category Track B: Automata, Logic, Semantics, and Theory of Programming

Related Version Full Version: https://arxiv.org/abs/2404.17421

Funding M. Benerecetti, F. Mogavero, and A. Peron are members of the Gruppo Nazionale Calcolo
Scientifico-Istituto Nazionale di Alta Matematica (GNCS-INdAM). This work has been partially
supported by the GNCS 2024 project “Certificazione, monitoraggio, ed interpretabilità in sistemi di
intelligenza artificiale”.

1 Introduction

Temporal logics [49] play a pivotal role in the formal verification of complex systems [50].
Serving as specification languages, they provide a framework to express and reason about
time-dependent properties, capturing the intricate behaviours and interactions of system com-
ponents over time. Commonly, these languages are classified into two categories: linear-time
logics, which emphasise properties spanning the entirety of a computation, and branching-
time logics, specifically tailored to address the non-deterministic and concurrent nature of
behaviours. Well-established representatives of the former include Linear-Time Temporal
Logic (LTL) [61, 62], its full ω-regular extension ELTL [84], and the finite-horizon variant

EA
T

C
S

© Massimo Benerecetti, Laura Bozzelli, Fabio Mogavero, and Adriano Peron;
licensed under Creative Commons License CC-BY 4.0

51st International Colloquium on Automata, Languages, and Programming (ICALP 2024).
Editors: Karl Bringmann, Martin Grohe, Gabriele Puppis, and Ola Svensson;
Article No. 128; pp. 128:1–128:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:massimo.benerecetti@unina.it
https://orcid.org/0000-0003-4664-6061
mailto:laura.bozzelli@unina.it
https://orcid.org/0009-0004-8555-8229
mailto:fabio.mogavero@unina.it
https://orcid.org/0000-0002-5140-5783
mailto:adriano.peron@units.it
https://orcid.org/0000-0002-7111-3171
https://doi.org/10.4230/LIPIcs.ICALP.2024.128
https://arxiv.org/abs/2404.17421
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

128:2 Automata-Theoretic Characterisations of Branching-Time Temporal Logics

LTLf [32]. Important members of the second category, instead, belong to the families of
Dynamic Logics [30, 35] and Computation Tree Logics, including CTL [21, 16, 24, 17, 22],
CTL* [23, 25], ECTL* [80], CTL*f [79], and ECTL*f [74]. Additionally, more expressive
but lower-level languages, like µ-Calculus [42], have been considered, which suitably extend
classic modal logic with monadic fix-point operators, contributing to the rich tapestry of
specification languages in the field of formal verification and synthesis.

The semantics of these temporal logics are typically formalised, at the meta-level, through
various flavour of predicate logic, frequently First-Order Logic (FO) or Second-Order Logic
(SO), interpreted over either linearly-ordered structures, such as finite and infinite words [60],
or branching structures, like Kripke structures [43], labelled transition systems [40], and their
tree unwindings. In tandem with this, the rich body of literature on automata-theoretic
techniques [75] for words and trees, originated from [41, 56, 57, 66], has proven invaluable to
provide effective technical tools for the solution of related model-checking [18, 2, 81, 47, 27],
satisfiability [81, 26, 78, 6, 47], and synthesis [15, 63, 69] decision problems. Predicate logics
and automata theory offer, in addition, a rich and coherent arsenal of tools to evaluate
and compare the expressive power, as well as the computational properties, of temporal
languages, as witnessed by numerous characterisation theorems. These results provide a dual
perspective on the topic, which enhance our ability to navigate the intricate landscape of
language fragments and allow us to assess their pros (e.g., elementary complexity of decision
problems) and cons (e.g., limitations on the expressive power).

The initial seminal result in this context is Kamp’s theorem [39, 31, 67, 68], which estab-
lishes the equivalence of LTL and FO over infinite words. The result also extends to LTLf
and FO on finite words [19]. A direct link has been drawn between FO-definability and recog-
nition by counter-free finite-state automata, in both the finite [52] and infinite [48, 71, 72, 59]
cases, by means of the notions of star-free language, aperiodic language, and aperiodic syn-
tactic monoid (see [70], for finite words, and [58], for the infinite ones). Together these
results provide a complete characterisation of the expressive power of LTL and LTLf in
terms of predicate logics and automata. A parallel correspondence exists between ELTL
and ELTLf, the Monadic Second-Order Logic (MSO) and its weak (finite-quantification)
fragment (WMSO), and regular automata on infinite and finite words. Notably, the equival-
ence between WMSO and regular automata [8, 20, 76], followed by the equivalence between
MSO and ω-regular automata [9, 10, 51, 14], stands among the first results connecting the
two fields of model theory and automata theory.

The landscape for branching-time temporal logics is considerably more intricate, due to the
complex topology of the models and additional factors, such as bisimulation invariance [77]
and counting quantifiers [29], and it is not as clear and complete as the linear-time counterpart.
A significant milestone in this setting is the full correspondence between µ-Calculus, the
bisimulation-invariant fragment of MSO interpreted over trees, and (Symmetric) Alternating
Parity Tree Automata [38]. This result generalises the already known connection between the
latter two formalisms [64]. Another noteworthy connection has been shown to exist between
the alternation-free fragment of µ-Calculus (AFµ-Calculus), the bisimulation-invariant
fragments of WMSO over bounded-branching trees, and (Symmetric) Alternating Weak Tree
Automata [1, 37] (see [28, 11, 12, 13], for the unbounded-branching case), which extends
previous partial results [45, 65]. The above equivalences lift also to the general case, by
incorporating counting quantifiers into the temporal logics [37, 36]. The scenario in other
cases appears significantly more fragmented. In recent developments, the equivalence between
CTL and (Symmetric) Hesitant Linear Tree Automata [7] was proved. Nonetheless, as of
today, no corresponding fragment of MSO has been identified. By contrast, several variants

M. Benerecetti, L. Bozzelli, F. Mogavero, and A. Peron 128:3

of CTL* have been linked to the path and chain fragments of MSO since the eighties,
although no automata characterisation has been provided thus far. For instance, it was
shown in [34] that, on binary trees, CTL* is equivalent to Monadic Path Logic (MPL) [33].
Similar correspondences have been established in [74] for CTL*f, ECTL*, and ECTL*f,
which equate, respectively, to FO, Monadic Chain Logic (MCL), and its weak fragment
(WMCL). The result concerning CTL* was later extended to arbitrary-branching trees,
addressing both bisimulation-invariance [54] and counting quantifiers [55]. As far as we know,
no similar results are available for the other three logics. Finally, the recently introduced
Monadic Tree Logic (MTL) [3] together with its variants have yet to find a correspondence
either with temporal logics or with automata.

The objective of this work is to provide an automata-theoretic characterisation of CTL*
and ECTL*, by identifying two specific classes of alternating tree automata that are express-
ively equivalent to those logics (the used technique extends seamlessly to the finite-horizon
variants). A first result is the proof of the equivalence of the symmetric variant of classic
ranked Hesitant Tree Automata (HTA) [47] with both ECTL* and the bisimulation-invariant
fragment of MCL. To this end, for technical convenience, we employ two intermediate form-
alisms. On the one hand, to prove the equivalence between HTA and ECTL*, we use
a syntactic variant of ECTL*, called Computation Dynamic Logic (CDL), alongside its
counting version (CCDL). In ECTL* temporal operators are specified by means of right-
linear grammars, while CDL uses finite automata on finite words for the same purpose
incorporated into the dynamic modalities. Moreover, while the path subformulae in ECTL*
are part of the alphabet of the grammar, in CDL they are specified by means of a testing
function over the set of states of the automaton. It is straightforward to move from one
formalism to the other by means of a linear-time translation. This logic essentially lifts
to the branching-time realm the Linear Dynamic Logic (LDL) proposed in [32, 83]. On
the other hand, we consider a first-order extension [82] of HTAs (HFTA) and show them
equivalent to MCL by proving a closure property under chain projections. The final result,
then, follows from the equivalence between HTAs and the bisimulation-invariant fragment
of HFTA. As a second result, we first identify the graded extension of HTAs (HGTA),
together with its counter-free restriction (HGTAcf), and then prove their equivalence with
CCDL and CCTL*, respectively. While for the definition of HGTA the standard notion of
counting modalities smoothly applies, introducing HGTAcf proves quite more intricate. We
show, indeed, that a naive application of counter-freeness in the context of tree-automata
leads to a class of languages that are not CTL* definable. To overcome this problem, we
identify the crucial mutual-exclusion property of a HGTA that constrains the automaton
branching-behaviours. This property, together with counter-freeness of the automaton linear
behaviours, provides an apt definition of HGTAcf, something that was previously only hypo-
thesised in [54, 55]. The above characterisations holds also under bisimulation-invariance
assumptions. Specifically, HTAcf is equivalent to both CTL* and the bisimulation-invariant
fragment of MPL. All these results, coupled with the algebraic characterisation of tree
languages provided in [74], brings the expressiveness landscape for branching-time temporal
logics to the same level as their linear-time counterpart, thus closing a forty-year-old open
question posed in [73, 74].

2 Preliminaries

Let N be the set of natural numbers. For i, j ∈ N with i ≤ j, [i, j] denotes the set of natural
numbers k such that i ≤ k ≤ j. For a finite or infinite word ρ over some alphabet, |ρ| is the
length of ρ (|ρ| = ω if ρ is infinite) and for all 0 ≤ i < |ρ|, ρ(i) is the (i+ 1)-th letter of ρ.

ICALP 2024

128:4 Automata-Theoretic Characterisations of Branching-Time Temporal Logics

Kripke Trees and Tree Languages. Given a non-empty set of directions D, a tree T (with
set of directions in D) is a non-empty subset of D∗ which is prefix closed (i.e., for each
w · d ∈ T with d ∈ D, w ∈ T). Elements of T are called nodes and the empty word ε is the
root of T. For w ∈ T, a child of w in T is a node in T of the form w · d for some d ∈ D. For
w ∈ T, the subtree of T rooted at node w is the tree consisting of the nodes of the form w′

such that w · w′ ∈ T. A subtree of T is a tree T′ such that for some w ∈ T, T′ is a subset of
the subtree of T rooted at w. A path of T is a subtree π of T which is totally ordered by the
child-relation (i.e., each node of π has at most one child in π). In the following, a path π of
T is also seen as a word over T in accordance to the total ordering in π induced by the child
relation. A chain of T is a subset of a path of T. A tree is non-blocking if each node has
some child. A non-blocking tree T is infinite, and maximal paths in T are infinite as well.

For an alphabet Σ, a Σ-labelled tree is a pair (T,Lab) consisting of a tree and a labelling
Lab : T 7→ Σ assigning to each node in T a symbol in Σ. A tree-language over Σ is a
set of Σ-labeled trees. In this paper, we consider formalisms whose specifications denote
tree-languages over a given alphabet Σ. For the easy of presentation, we assume that the
labeled trees of a tree-language are non-blocking. All the results of this paper can be easily
adapted to the general case, where the non-blocking assumption is relaxed. For a finite set
AP of atomic propositions, a Kripke tree over AP is a non-blocking 2AP-labelled tree.

Automata over Infinite and Finite Words. We first recall the class of parity nondeterministic
automata on infinite words (parity NWA for short) which are tuples A = ⟨Σ,Q, δ, qI ,Ω⟩,
where Σ is a finite input alphabet, Q is a finite set of states, δ : Q × Σ 7→ 2Q is the transition
function, qI ∈ Q is an initial state, and Ω : Q 7→ N is a parity acceptance condition over Q
assigning to each state a natural number (color). Given a word ρ over Σ, a path of A over ρ is
a word π over Q of length |ρ| + 1 (|ρ| + 1 is ω if ρ is infinite) such that π(i+ 1) ∈ δ(π(i), ρ(i))
for all 0 ≤ i < |ρ|. A run over ρ is a path over ρ starting at the initial state. The NWA A is
counter-free if for all n > 0, states q ∈ Q and finite words ρ over Σ, the following holds: if
there is a path from q to q over ρn, then there is also a path from q to q over ρ.

A run π of A over an infinite word ρ is accepting if the highest color of the states appearing
infinitely often along π is even. The ω-language L(A) accepted by A is the set of infinite
words ρ over Σ such that there is an accepting run π of A over ρ.

A parity acceptance condition Ω : Q 7→ N is a Büchi (resp., coBüchi) condition if there
is an even (resp., odd) color n ∈ N such that Ω(Q) ⊆ {n− 1, n}. A Büchi (resp., coBüchi)
NWA is a parity NWA whose acceptance condition is Büchi (resp., coBüchi).

We also consider NWA over finite words (NWAf for short) which are defined as parity
NWA but the parity condition Ω is replaced with a set F ⊆ Q of accepting states. A run π

over a finite word is accepting if its last state is accepting.

3 Branching-Time Temporal Logics

In this section, we recall syntax and semantics of Counting-CTL* (CCTL* for short) [55],
which extends the classic branching-time temporal logic CTL* [25] with counting operators.
Moreover, we introduce a novel branching-time temporal logic more expressive than CCTL*,
called Counting Computation Dynamic Logic (CCDL for short). CCDL can be viewed as a
branching-time extension of Linear Dynamic Logic (LDL) [32]. However, unlike LDL, we
consider NWAf over finite words, instead of regular expressions, as the building blocks of
formulae. This approach is similar to the one adopted in [83] for Visibly Linear Dynamic
Logic, a context-free extension of LTL.

M. Benerecetti, L. Bozzelli, F. Mogavero, and A. Peron 128:5

The Logic CCTL*. The syntax of CCTL* is given by specifying inductively the set of state
formulae φ and the set of path formulae ψ over a given finite set AP of atomic propositions:

φ ::= ⊤ | p | ¬φ | φ ∧ φ | Eψ | Dnφ
ψ ::= φ | ¬ψ | ψ ∧ ψ | Xψ | ψ Uψ

where p ∈ AP, X and U are the standard “next” and “until” temporal modalities, E is the
existential path quantifier, and Dn is the counting operator with n ∈ N \ {0}. The language
of CCTL* consists of the state formulae of CCTL*. Standard CTL* is the fragment of
CCTL* where the counting operators Dn with n > 1 are disallowed, and standard LTL [61]
corresponds to the set of path formulae of CTL* where the path quantifiers are disallowed.

Given a Kripke tree T = (T,Lab) (over AP), a node w of T, an infinite path π of T, and
0 ≤ i < |π|, the satisfaction relations (T , w) |= φ, for a state formula φ, (meaning that φ
holds at node w of T), and (T , π, i) |= ψ, for a path formula ψ, (meaning that ψ holds at
position i of the path π in T) are defined as usual:

(T , w) |= p ⇔ p ∈ Lab(w);
(T , w) |= Eψ ⇔ (T , π, 0) |= ψ for some infinite path π of T starting at node w;
(T , w) |= Dnφ ⇔ there are at least n distinct children w′ of w in T s.t. (T , w′) |= φ;
(T , π, i) |= φ ⇔ (T , π(i)) |= φ;
(T , π, i) |= Xψ ⇔ (T , π, i+ 1) |= ψ;
(T , π, i) |= ψ1 Uψ2 ⇔ for some j ≥ i: (T , π, j) |= ψ2 and (T , π, k) |= ψ1 for all i ≤ k < j.

Note that D1φ corresponds to EXφ. A Kripke tree T satisfies (or is a model of) a state
formula φ, written T |= φ, if T , ε |= φ. The tree-language L(φ) of φ is the set of models of
φ. For an LTL formula ψ and an infinite word ρ over 2AP, ρ satisfies ψ, written ρ |= ψ, if
Tρ |= Eψ, where Tρ is a trivial tree-encoding of ρ. For an LTL formula ψ, L(ψ) denotes the
set of infinite words over 2AP satisfying ψ.

The New Logic CCDL. Like CCTL*, the syntax of CCDL is composed of state formulae
φ and path formulae ψ over a given finite set AP of atomic propositions, defined as follows:

φ ::= ⊤ | p | ¬φ | φ ∧ φ | Eψ | Dnφ
ψ ::= φ | ¬ψ | ψ ∧ ψ | ⟨A⟩ψ

where p ∈ AP and ⟨A⟩ is the existential sequencing modality applied to a testing NWAf A. We
define a testing NWAf A =

〈
2AP,Q, δ, qI ,F, τ

〉
as consisting of an NWAf

〈
2AP,Q, δ, qI ,F

〉
over finite words over 2AP and a test function τ mapping states in Q to CCDL path formulae.
Intuitively, along an infinite path π of a Kripke tree, the testing automaton accepts the
labeling of a (possibly empty) infix π(i) . . . π(j − 1) of π if the embedded NWAf has an
accepting run qi . . . qj over the labeling of such an infix so that, for each position k ∈ [i, j],
the formula τ(qk) holds at position k along π. A test function τ is trivial if it maps each
state to ⊤. We also use the shorthand [A]ψ ≜ ¬⟨A⟩¬ψ (universal sequencing modality).
The language of CCDL consists of the state formulae of CCDL. We also consider the
bisimulation-invariant fragment CDL of CCDL where the counting operators Dn with n > 1
are disallowed. Given a Kripke tree T = (T,Lab), an infinite path π of T, and 0 ≤ i < |π|,
the semantics of modality ⟨A⟩ is defined as follows, where A =

〈
2AP,Q, δ, qI ,F, τ

〉
:

(T , π, i) |= ⟨A⟩ψ ⇔ for some j ≥ i, (i, j) ∈ RA(T , π) and (T , π, j) |= ψ

where RA(T , π) is the set of pairs (i, j) with j ≥ i such that there is an accepting run qi . . . qj
of the NWAf embedded in A over Lab(π(i)) . . .Lab(π(j − 1)) and, for all k ∈ [i, j], it holds
that (T , π, k) |= τ(qk). The notions of a model and tree-language of a CCDL formula are
defined as for CCTL*.

ICALP 2024

128:6 Automata-Theoretic Characterisations of Branching-Time Temporal Logics

Embedding of CCTL* into CCDL. The logic CCTL* can be easily embedded into CCDL
as follows. Let A be the testing NWAf having trivial tests and accepting all and only the words
of length 1, and for CCDL path formulae ψ1, ψ2, let Aψ1,ψ2 =

〈
2AP, {q1, q2}, δ, q1, {q2}, τ

〉
be the testing NWAf where, for all a ∈ 2AP, δ(q1, a) = {q1, q2}, δ(q2, a) = ∅, τ(q1) = ψ1, and
τ(q2) = ψ2. Then, the next and until formulae Xψ1 and ψ1 Uψ2 can be expressed as follows:
Xψ1 ≡ ⟨A⟩ψ1 and ψ1 Uψ2 ≡ ψ2 ∨ ⟨Aψ1,ψ2⟩⊤.

4 Alternating Tree Automata

In this section, we recall the class of parity alternating tree automata with first-order con-
straints (FTA for short), introduced in [82] to provide an automata-theoretic characterization
of MSO interpreted on arbitrary labeled trees. Moreover, we also recall the class of graded
alternating tree automata (GTA for short), a subclass of FTA, which was introduced in [44]
and allows for expressing counting modal requirements on the child relation of an input tree.
The transition relation of both FTA and GTA is based on constraints on the set of states Q
written as formulae in a suitable language, called one-step logic. The one-step interpretations
of such formulae over Q are pairs (S, I), where S is an arbitrary (possibly infinite) non-empty
set and I is a mapping I : S 7→ 2Q, assigning to each element of S a subset of Q. Intuitively,
the pair (S, I) describes the local behaviour of the automaton on reading a node w of the
input tree. The set S corresponds to the set of children of the current input node w and, for
each w′ ∈ S, I(w′) is the set of states associated with the copies of the automaton which are
sent to the child w′ of w.

One-Step Logic for GTA. The one-step relation of GTA is specified by means of formulae
θ of one-step positive graded modal logic over Q, we call graded Q-constraints, defined as:

θ ::= ⊤ | ⊥ | θ ∨ θ | θ ∧ θ | ♢kα | □kα
where k ∈ N \ {0} and α is a positive Boolean formula over Q. The atomic formulae ♢kα
and □kα are called Q-atoms. The atom ♢1α (resp., □1α) is also denoted by ♢α (resp., □α).
A formula θ is symmetric if the atoms occurring in θ are of the form ♢α or □α.

The satisfaction relation (S, I) |= θ for a one-step interpretation (S, I) over Q is inductively
defined as follows (we omit the clauses for positive Boolean connectives which are standard):

(S, I) |= ♢kα if |{s ∈ S | I(s) |= α}| ≥ k;
(S, I) |= □kα if |{s ∈ S | I(s) ̸|= α}| < k.

If (S, I) |= θ, we say that (S, I) is a model of θ. Intuitively, for an alternating automaton A
with set of states Q, the atom ♢kα requires that at the current input node w, there are at
least k children of w and, for each of such nodes w′, (**) there is a subset Q′ ⊆ Q satisfying
α such that a copy of A is sent to node w′ in state q, for each q ∈ Q′. For an atom □kα, the
previous condition (**) is required to hold for all but at most k − 1 children w′ of w.

One-Step Logic for FTA. The one-step language FOE+
1 (Q) of positive first-order formulae

with equality and monadic predicates over Q and first-order variables in Vr1 is given by the
sentences (formulae without free variables) generated by the following grammar:

θ ::= ⊤ | ⊥ | q(x) | x = y | x ̸= y | θ ∨ θ | θ ∧ θ | ∃x. θ | ∀x. θ
where q ∈ Q and x, y ∈ Vr1. An FOE+

1 (Q)-sentence θ is called first-order Q-constraint; θ is
symmetric if it does not contain equality and inequality atomic formulae. In FTA, these
constraints allow formulae that refer to the children of a node of a tree by means of explicit
first-order variables.

M. Benerecetti, L. Bozzelli, F. Mogavero, and A. Peron 128:7

Given a one-step interpretation (S, I) over Q and an assignment V : Vr1 → S of the
first-order variables, the satisfaction relation (S, I),V |= θ is defined in a standard way. For
sentences θ, this relation is independent of V, and we simply write (S, I) |= θ. Note that
graded Q-constraints can be trivially expressed in FOE+

1 (Q), and first-order Q-constraints θ
are monotonic, i.e., for all one-step interpretations (S, I) and (S, I′) such that I(s) ⊆ I′(s) for
each s ∈ S, it holds that (S, I) |= θ entails (S, I′) |= θ. A minimal model of θ is a model (S, I)
of θ such that there is no model (S, I′) of θ with I′ ̸= I and I′(s) ⊆ I(s) for each s ∈ S .

Parity GTA and Parity FTA. A parity GTA A is a tuple A = ⟨Σ,Q, δ, qI ,Ω⟩, where Σ, Q,
qI , and Ω are defined as for parity NWA, while the transition function δ is a mapping from
Q × Σ to the set of graded Q-constraints. The set Atoms(A) is the set of Q-atoms occurring
in the transition function of A. Parity FTA A = ⟨Σ,Q, δ, qI ,Ω⟩ are defined similarly but
the transition function δ is of the form δ : Q × Σ 7→ FOE+

1 (Q). A GTA (resp., FTA)
A = ⟨Σ,Q, δ, qI ,Ω⟩ is symmetric if for all (q, a) ∈ Q × Σ, the constraint δ(q, a) is symmetric.
GTA (resp., FTA) A operate over non-blocking Σ-labeled trees (T,Lab). A run of A over
(T,Lab) is a (Q × T)-labeled tree r = (Tr,Labr), where each node of Tr labelled by (q, w)
describes a copy of A that is in state q reading the node w of T. Moreover, we require that:

Labr(ε) = (qI , ε) (initially, the automaton is in state qI reading the root of the input T);
for each node y ∈ Tr with Labr(y) = (q, w) and denoted by Sw the set of children of node
w in the input T, there is a one-step interpretation (Sw, I) over Q satisfying δ(q,Lab(w))
such that the set of labels associated with the children of y in Tr consists of the pairs
(q′, w′) with w′ ∈ Sw and q′ ∈ I(w′).

The run r is accepting if, for all infinite paths π starting from the root, the infinite sequence of
states in Labr(π(0))Labr(π(1)) . . . satisfies the parity acceptance condition Ω. The language
L(A) accepted by A is the tree-language over Σ consisting of the non-blocking Σ-labeled
trees (T,Lab) such that there is an accepting run of A over (T,Lab).

Dualization. For a graded Q-constraint θ, the dual θ̃ of θ is obtained from θ by exchanging
∨ with ∧, ⊤ with ⊥, and Q-atoms ♢kα with □kα̃, and vice versa, where α̃ is obtained from α

by exchanging ∨ with ∧. For example, the dual of ♢k1(q0 ∨q1)∧□k2q2 is □k1(q0 ∧q1)∨♢k2q2.
Similarly, the dual θ̃ of a first-order Q-constraint θ is obtained from θ by exchanging ∨ with ∧,
⊤ with ⊥, x = y with x ̸= y, and existential quantification ∃x with universal quantification
∀x. For a parity GTA (resp., parity FTA) A = ⟨Σ,Q, δ, qI ,Ω⟩, the dual automaton of A
is the parity GTA (resp., parity FTA) Ã =

〈
Σ,Q, δ̃, qI , Ω̃

〉
, where for all (q, a) ∈ Q × Σ,

Ω̃(q) = Ω(q) + 1 and δ̃(q, a) is the dual of δ(q, a). By [82, 12], the following holds.

▶ Proposition 4.1 ([82, 12]). Let A be a parity GTA (resp., parity FTA). Then, the dual
automaton of A is a parity GTA (resp., parity FTA) accepting the complement of L(A).

5 Automata Characterisations of CDL and CCTL*

In this section, we provide effective automata-theoretic characterisations of the logics CCDL
and CCTL*. We first consider the graded version of the class of hesitant alternating tree
automata (HTA, for short), the latter being a well-known formalism introduced in [47] as an
optimal automata-theoretic framework for model checking and synthesis of CTL*. We show
that the graded version of HTA (HGTA for short) characterises the logic CCDL. In order to
capture the logic CCTL*, we consider a subclass of HGTA obtained by enforcing a counter-
freeness requirement on the linear-time behaviour of the automaton along an existential
component together with an additional condition (we call mutual-exclusion property) on the
alphabet of the linearization word automaton.

ICALP 2024

128:8 Automata-Theoretic Characterisations of Branching-Time Temporal Logics

In the following, for a GTA A and a set A ⊆ Atoms(A), we denote by Con(A) (resp.,
Dis(A)) the conjunction (resp., disjunction) of the atoms occurring in A. As usual, the empty
conjunction is ⊤ and the empty disjunction is ⊥.

Hesitant GTA. An hesitant GTA (HGTA for short) is a tuple A = ⟨Σ,Q, δ, qI ,H,H∃,Ω⟩,
where ⟨Σ,Q, δ, qI ,Ω⟩ is a parity GTA, H = ⟨Q1, . . . ,Qn⟩ is an ordered tuple of non-empty
pairwise disjunct subsets Qi of Q (called components of A) which form a partition of Q, and
H∃ is a subset of the components in H (the so called existential components). Thus, like
HTA [47], there is an ordered partition of Q into disjoint sets Q1, . . . ,Qn. Moreover, each
component Qi is classified as transient, existential, or universal, and the following holds:

transient requirement: for each transient component Qi and (q, a) ∈ Qi × Σ, δ(q, a) only
refers to states in components Qj such that j < i;
existential requirement: for each existential component Qi and (q, a) ∈ Qi × Σ, δ(q, a) can
be rewritten as a disjunction of conjunctions of the form ♢q′ ∧ Con(A), where q′ ∈ Qi

and the atoms in A only refer to states in components Qj such that j < i;
universal requirement: for each universal component Qi and (q, a) ∈ Qi × Σ, δ(q, a) can
be rewritten as a conjunction of disjunctions of the form □q′ ∨ Dis(A), where q′ ∈ Qi and
the atoms in A only refer to states in components Qj such that j < i;
hesitant acceptance requirement: for each existential (resp., universal) component Qi, the
restriction ΩQi

of Ω to the set Qi is a Büchi condition (resp., coBüchi condition).
The first three requirements ensure that every infinite path of a run of A gets trapped within
some existential or universal component Qi. The existential requirement establishes that
from each existential state q ∈ Qi, exactly one copy is sent to a child of the current input
node in component Qi (all the other copies move to states with order lower than i). The
universal requirement corresponds to the dual of the existential requirement. Finally, the
hesitant acceptance requirement ensures that for each infinite path π of a run that gets
trapped into an existential (resp., universal) component, π is accepting iff π visits infinitely
many times states with even color (resp., π visits finitely many times states with odd color).

▶ Example 5.1. Let AP = {p} and φp be the CTL* formula EX p asserting that the root of
the given Kripke tree has a child where p holds. We consider the tree-language L2 consisting
of the Kripke trees T such that there is an infinite path π from the root so that p never
holds along π and at the even positions 2i, φp holds at node π(2i). L2 requires counting
modulo 2 and cannot be expressed in CCTL*. The language L2 is recognised by the HGTA
A = ⟨Σ,Q, δ, qI , ⟨Q1,Q2⟩, {Q2},Ω⟩ consisting of three states having colour 0: the existential
states qI and q having the same and highest order (Q2 = {qI , q}) and the transient state
qp (Q1 = {qp}). Moreover, (i) δ(qp, {p}) = ⊤ and δ(qp, ∅) = ⊥, (ii) δ(qI , ∅) = ♢q ∧ ♢qp and
δ(qI , {p}) = ⊥, and (iii) δ(q, ∅) = ♢qI and δ(q, {p}) = ⊥.

Linearization. Fix an HGTA A = ⟨Σ,Q, δ, qI ,H,H∃,Ω⟩. Given a component Qi of A and
A ⊆ Atoms(A), the set A is lower than Qi if the atoms in A only refer to states with order
j < i. For each existential (resp., universal) component Qi and q ∈ Qi, we introduce a Büchi
(resp., coBüchi) NWA AQi,q over the alphabet Σ × Atoms(A). Intuitively, AQi,q encodes the
modular behaviour of A starting at state q, which is composed of the behaviour along Qi

(which is linear-time when Qi is existential), plus additional moves that lead to states with
order lower than i: the input alphabet Σ × Atoms(A) keeps track of these additional moves.
When Qi is universal, then AQi,q can be viewed as a universal tree automaton.

M. Benerecetti, L. Bozzelli, F. Mogavero, and A. Peron 128:9

▶ Definition 5.2 (Linearization word automata). For each non-transient component Qi of
A and q ∈ Qi, we denote by AQi,q the parity NWA AQi,q =

〈
Σ × 2Atoms(A),Qi, δQi

, q,ΩQi

〉
where for all q′ ∈ Qi, a ∈ Σ, and A ⊆ Atoms(A), δQi

(q′, (a,A)) is defined as follow:
Case Qi is existential: q′′ ∈ δQi

(q′, (a,A)) if there is conjunction ξ in the disjunctive
normal form of δ(q′, a) such that ξ = ♢q′′ ∧ Con(A) (note that A is lower than Qi).
Case Qi is universal: q′′ ∈ δQi

(q′, (a,A)) if there is disjunction ξ in the conjunctive
normal form of δ(q′, a) such that ξ = □q′′ ∨ Dis(A) (note that A is lower than Qi).

Let ΥQi
be the set of elements A ⊆ Atoms(A) s.t. δQi

(q′, (a,A)) ̸= ∅ for some (q′, a) ∈ Qi×Σ.

▶ Remark 5.3. Note that the transition function of AQi,q is independent of q, and AQi,q is a
Büchi (resp., coBüchi) NWA if Qi is existential (resp., universal). We can equate the parity
NWA AQi,q to the parity NWA over the alphabet Σ × ΥQi

which is obtained from AQi,q

by restricting the transition function to the alphabet Σ × ΥQi . In the following, we write
AQi,q to denote this automaton. Observe that each set of atoms A ∈ ΥQi

is lower than Qi.

If we consider the HGTA A of Example 5.1, the Büchi NWA AQ2,qI
associated with the

existential component Q2 is illustrated below. Note that ΥQ2 = {∅, {♢qp}}.

qI q

(∅, {♢qp})

(∅, ∅)

Let us fix an HGTA A = ⟨Σ,Q, δ, qI ,H,H∃,Ω⟩ with H = ⟨Q1, . . . ,Qn⟩. For each graded
Q-constraint θ, we denote by Aθ the HGTA ⟨Σ,Q ∪ {θ}, δθ, θ,Hθ,H∃,Ω ∪ (θ → 0)⟩ where
for the states in Q, δθ agrees with δ, for the initial state θ, δθ(θ, a) = θ for all a ∈ Σ, and
Hθ = ⟨Q1, . . . ,Qn, {θ}⟩. Note that {θ} is a transient component with highest order. Thus,
from the root of the input tree, Aθ send copies of A to the children of the root according to
the constraint θ. By construction, for each existential state q of an HGTA A, we obtain the
following characterisation of the language L(Aq), where Aq is the HGTA obtained from A
by setting q as initial state instead of qI , in terms of the linearization of A.

▶ Proposition 5.4. Let A be an HGTA, Qi be an existential component of A, and q ∈ Qi.
Then, for each input T = (T,Lab), T ∈ L(Aq) if and only if there is an infinite path π

of T starting at the root and an infinite word ρ ∈ L(AQi,q) such that ρ is of the form
ρ = (Lab(π(0)),A0)(Lab(π(1)),A1) . . . and for each i ≥ 0, Tπ(i) ∈ L(ACon(A(i))), where Tπ(i)
is the labelled subtree of T rooted at node π(i).

Counter-free HGTA. In order to capture CCTL*, we introduce a subclass of HGTA
obtained by enforcing additional conditions. By Proposition 5.4 and the equivalence of LTL
and Büchi counter-free NWA [19], a natural condition consists in requiring that for each
non-transient component Qi of the HGTA and state q ∈ Qi, the NWA AQi,q is counter-free
(counter-freeness requirement).1 However, this condition is not sufficient for characterising
the logic CCTL*. A counterexample is the HGTA A of Example 5.1 which clearly satisfies
the counter-freeness requirement but recognises a tree-language which is not expressible in
CCTL*. We introduce an additional condition (mutual-exclusion property) on the alphabets
of the linearization automata (see Definition 5.5 below). A Counter-free HGTA (HGTAcf
for short) is an HGTA satisfying both the counter-free requirement and the mutual-exclusion
condition.

1 Note that the property of an NWA to be counter-free is independent of the initial state.

ICALP 2024

128:10 Automata-Theoretic Characterisations of Branching-Time Temporal Logics

▶ Definition 5.5. An HGTA A satisfies the mutual-exclusion property if for each non-
transient component Qi and for all A,A′ ∈ ΥQi

such that A ̸= A′, it holds that there exists an
atom atom ∈ A and an atom atom′ ∈ A′ such that L(Aatom) is the complement of L(Aatom′).
Note that if ΥQi is a singleton, then the previous property is fulfilled.

Evidently, if A satisfies the mutual-exclusion condition, then for each non-transient
component Qi and for all A,A′ ∈ ΥQi

such that A ̸= A′, it holds that L(ACon(A)) ∩
L(ACon(A′)) = ∅. Intuitively, the mutual-exclusion condition requires that along a non-
transient component Qi, the distinct moves A ∈ ΥQi (these moves lead to components
with order lower than i) are mutually exclusive. Let us consider again the HGTA A of
Example 5.1. Since ΥQ2 = {∅, {♢qp}}, by Definition 5.5, A does not satisfy the mutual-
exclusion condition. Note that Con(∅) = ⊤ and Con({♢qp}) = ♢qp. Hence, L(A⊤) ∩
L(ACon({♢qp})) = L(ACon({♢qp})) = L(EX p) ̸= ∅.

The dual Ã of an HGTA A = ⟨Σ,Q, δ, qI ,H,H∃,Ω⟩ is the tuple
〈

Σ,Q, δ̃, qI ,H, H̃∃, Ω̃
〉

,

where δ̃ and Ω̃ are defined as for the dual of an arbitrary parity GTA and H̃∃ consists of the
universal components of A. By construction and Proposition 4.1, the considered subclasses
of GTA are closed under Boolean language operations.

▶ Proposition 5.6. HGTA (resp., HGTAcf) and HGTA satisfying the mutual-exclusion
property are effectively closed under Boolean language operations.

Enforcing the Mutual-exclusion Property. By exploiting dualization, an HGTA A can be
converted into an equivalent HGTA As satisfying the mutual-exclusion condition. Intuitively,
As is obtained by merging in a syntactical and modular way A with a renaming of the dual
HGTA Ã.

▶ Proposition 5.7. Given an HGTA A, one can construct an HGTA As such that As

satisfies the mutual-exclusion condition and L(As) = L(A).

Note that the translation in Proposition 5.7 changes the second component ΥQi
of the

alphabets of the linearization automata. Since counter-free NWA are not closed under
inverse projection, the construction does not preserve the counter-freeness property. For
example, for the HGTA of Example 5.1, the translation replaces the edge from q to qI with
label (∅, ∅) of the NWA AQ2,qI

with two edges from q to qI : one with label (∅, {♢qp}) and
the other one with label (∅, {□q′

p}) where L(ACon({□q′
p})) = L(¬EX p). The resulting NWA is

not counter-free.

5.1 From Automata to Logics and Back
In this section, we show that the class of HGTA and the logic CCDL are effectively equivalent,
and the class of HGTAcf effectively characterizes CCTL*. We start with the translations
from automata to logics.

▶ Theorem 5.8. Let A be an HGTA (resp., an HGTAcf) over 2AP. Then, one can construct
a CCDL (resp., CCTL*) formula φA such that L(φA) = L(A). Moreover, φA is a CDL
(resp. a CTL*) formula if A is symmetric.

Proof. We focus on the translation from HGTAcf A = ⟨Σ,Q, δ, qI ,H,H∃,Ω⟩ to CCTL*. For
each q ∈ Q, we construct a CCTL* formula φq such that L(φq) = L(Aq) and φq is a CTL*
formula if A is symmetric. Thus, by setting φA ≜ φqI

, Theorem 5.8 directly follows. The
proof is by induction on the order ℓ of the component Qℓ such that q ∈ Qℓ. We distinguish

M. Benerecetti, L. Bozzelli, F. Mogavero, and A. Peron 128:11

the cases where q is transient, existential, or universal. The transient case is easy and the
universal case follows from the existential case by a dualization argument. Now, assume
that q is existential. Let us consider the Büchi NWA AQℓ,q over 2AP × ΥQℓ

as defined in
Definition 5.2. Recall that AQℓ,q is counter-free. Moreover, ΥQℓ

⊆ 2Atoms(A) contains only
elements A such that states occurring in the atoms of A have order j lower than ℓ. Thus, by
the induction hypothesis, for each A ∈ ΥQℓ

, one can build a CCTL* formula φA such that
L(ACon(A)) = L(φA). Hence, since A satisfies the mutual-exclusion condition, the following
holds:

Claim 1. For all A,A′ ∈ ΥQℓ
such that A ̸= A′, L(φA) ∩ L(φA′) = ∅.

For each A ∈ ΥQℓ
, let pA be a fresh atomic proposition. We denote by APex the extension

of AP with these fresh propositions. Moreover, let Aex,Qℓ,q be the Büchi NWA over 2APex

having the same set of states, initial state, acceptance condition as AQℓ,q and whose transition
function δex,Qℓ

is obtained from the transition function δQℓ
of AQℓ,q as follows: for all q′ ∈ Qℓ

and aex ∈ 2APex , if aex is of the form a ∪ {pA}, for some a ∈ 2AP and A ∈ ΥQℓ
, (i.e., aex

contains a unique proposition in APex \ AP), then δex,Qℓ
(q′, aex) = δQℓ

(q′, (a,A)); otherwise,
δex,Qℓ

(q′, aex) = ∅. Being AQℓ,q counter-free, Aex,Qℓ,q is clearly counter-free as well. Thus,
by [19], one can construct an LTL formula ψ over APex such that L(ψ) = L(Aex,Qℓ,q). Since
L(ACon(A)) = L(φA) for all A ∈ ΥQℓ

, by construction and Proposition 5.4, we obtain the
following characterization of the tree-language L(Aq).

Claim 2. For each Kripke tree T = (T,Lab), T ∈ L(Aq) iff there is an infinite path π of
T from the root and an infinite word ρ over 2APex such that ρ |= ψ and, for all j ≥ 0, (i)
ρ(j) ∩ AP = Lab(π(j)), (ii) for all pA ∈ ρ(j), (T , π(j)) |= φA, and (iii) there is a unique
A ∈ ΥQℓ

such that pA ∈ ρ(j).
Note that since L(ψ) = L(Aex,Qℓ,q), by construction, point (iii) in Claim 2 follows from

the fact that ρ |= ψ. By exploiting the always modality G (G ξ is a shorthand of ¬(⊤ U ¬ξ))
and both conjunction and disjunction, w.l.o.g. we can assume that the LTL formula ψ is in
negation normal form, i.e., negation is applied only to atomic propositions. Now, let f(ψ) be
the CCTL* path formula over AP obtained from ψ by replacing each literal of the form pA
(resp., ¬pA), where A ∈ ΥQℓ

, with the CCTL* state formula φA (resp.,
∨

A′∈ΥQℓ
\{A} φA′).

Finally, let us consider the CCTL* state formula φq defined as follows:
φq ≜ E(f(ψ) ∧ G

∨
A∈ΥQℓ

φA).
Note that the second conjunct in the state formula φq ensures that, for the infinite

path π selected by the path quantifier E and for each j ≥ 0, the state formula φA holds at
node π(j) for some A ∈ ΥQℓ

. We show that a Kripke tree T = (T,Lab) satisfies φq iff the
characterization of L(Aq) in Claim 2 holds. Hence, the result follows.

We shall now focus on the left-right implication of the equivalence (the right-left implication
is similar). Thus, assume that T |= φq. Hence, there exists an infinite path π of T from
the root and an infinite sequence ν = A0,A1, . . . over ΥQℓ

such that (T , π, 0) |= f(ψ) and
for each j ≥ 0, (T , π(j)) |= φAj

. Let Lab(π) ⊗ ν be the infinite word over 2APex defined as
follows for all j ≥ 0: (Lab(π) ⊗ ν)(j) = Lab(π(j)) ∪ {pAj }. By Claim 2, it suffices to show
that Lab(π) ⊗ ν |= ψ. To this purpose, we show by structural induction that for each j ≥ 0
and subformula θ of ψ if (T , π, j) |= f(θ), then (Lab(π) ⊗ ν, j) |= θ. Since the formula ψ is
in negation normal form, by the induction hypothesis, the unique non-trivial case is when θ

is either of the form pA or of the form ¬pA for some A ∈ ΥQℓ
.

θ = pA: hence, f(θ) = φA. Since (T , π, j) |= f(θ) and (T , π(j)) |= φAj , by Claim 1, it
follows that A = Aj , i.e. θ = pAj

. Hence, (Lab(π) ⊗ ν, j) |= θ, and the result follows.
θ = ¬pA: hence f(θ) =

∨
A′∈ΥQℓ

\{A} φA′ . Since (T , π, j) |= f(θ) and (T , π(j)) |= φAj , by
Claim 1, A ̸= Aj . Hence, (Lab(π) ⊗ ν, j) |= θ, and we are done. ◀

ICALP 2024

128:12 Automata-Theoretic Characterisations of Branching-Time Temporal Logics

From Logics to Automata. As to the translation from CCTL* to HGTAcf, in order to
ensure the mutual-exclusion property of the resulting HGTAcf, we need a restricted syntactic
form of CCTL* formulae, which is still expressively complete. A CCTL* formula is in
simple form if each occurrence of the path quantifier E is immediately preceded by the counter
modality D1 (note that D1 corresponds to the standard EX modality of CTL*). Formally,
the set of state formulae φ of CCTL* in simple form is defined according to the following
syntax: φ ::= ⊤ | p | ¬φ | φ ∧ φ | D1Eψ | Dnφ. One can easily show that the simple form is
indeed expressively complete.

▶ Theorem 5.9. Given a CCDL (resp., CCTL*) formula φ, one can construct an equivalent
HGTA (resp., HGTAcf) Aφ such that L(Aφ) = L(φ). Moreover, Aφ is symmetric if φ is a
CDL (resp., a CTL*) formula.

Proof. We focus on the translation from CCTL* to HGTAcf. Fix a CCTL* formula Φ.
W.l.o.g., we can assume that Φ is in simple form. As in the case of the alternating hesitant
automata for CTL* [47], we construct the automaton by induction on the structure of Φ.
With each state subformula φ of Φ we associate an HGTAcf Aφ over Σ = 2AP such that
L(Aφ) = L(φ). The cases where φ is an atomic proposition, or the root operator of φ is
the counting modality Dn are straightforward. The cases where the root operator of φ is
a Boolean connective directly follow from Proposition 5.6. Now, assume that φ = Eψ for
some path formula ψ. Let max(ψ) be the set of state subformulae of ψ of the form Eξ or Dnξ
which are not preceded by the modality E or the counting modality in the syntax tree of ψ.
Since ψ is in simple form, max(ψ) is of the form {Dn1φ1, . . . , Dnkφk} for some k ≥ 0, where
φ1, . . . , φk are CCTL* formulae in simple form. Note that if ψ is a CTL* formula, then
n1 = . . . = nk = 1. By the induction hypothesis, for each i ∈ [1, k], one can construct an
HGTAcf Ai =

〈
2AP,Qi, δi, qI i,Hi,H∃,i,Ωi

〉
such that L(Ai) = L(φi). For each i ∈ [1, k], let

Ãi =
〈

2AP, Q̃i, δ̃i, q̃I i, H̃i, H̃∃,i, Ω̃i
〉

be a renaming of the dual automaton of Ai.
Let APex be an extension of AP obtained by adding for each state formula Dniφi a

fresh proposition pi. Then, the path formula ψ can be viewed as an LTL formula ψex

over APex. By [19], one can build a Büchi counter-free NWA Nψ = ⟨2APex ,Q, δ, qI ,Ω⟩
s.t. L(Nψ) = L(ψex). By construction, we easily deduce the following characterization of
L(φ) = L(Eψ):

Claim 1: for each Kripke tree T = (T,Lab), T ∈ L(φ) iff there exists an infinite path π of
T from the root and an infinite word ρ over 2APex such that ρ ∈ L(Nψ) and the following
holds for each i ≥ 0: (i) ρ(i) ∩ AP = Lab(π(i)), (ii) for each ℓ ∈ [1, k] such that pℓ ∈ ρ(i),
(T , π(i)) |= Dnℓφℓ, and (iii) for each ℓ ∈ [1, k] such that pℓ /∈ ρ(i), (T , π(i)) |= ¬Dnℓφℓ.

We define Aφ as follows: Aφ simulates the Büchi NWA Nψ along a guessed infin-
ite path of the input tree from the root and starts additional copies of the HGTAcf
A1, . . . ,Ak, Ã1, . . . , Ãk. According to Claim 1, these copies guarantee that whenever the
NWA Nψ assumes that proposition pℓ labels (resp., pℓ does not label) the current node
along the guessed path, then Dnℓφℓ holds (resp., Dnℓφℓ does not hold) at this node. The
components of A consist of the existential component Q (the set of states of the Büchi
counter-free NWA Nψ) and the components of the HGTAcf automata Ai and Ãi for each
i ∈ [1, k]. Moreover, the existential component Q has highest order and the ordering of the
components of Ai (resp., Ãi) is preserved for each i ∈ [1, k]. For the transition function δφ
of Aφ, we have that for states in Qi (resp., Q̃i), δφ agrees with the corresponding δi (resp.,
δ̃i). For states q ∈ Q and a ∈ 2AP, δφ(q, a) is defined as follows, where for each I ⊆ [1, k],
I(a) denotes the subset of APex given by a ∪

⋃
ℓ∈I{pℓ}:

M. Benerecetti, L. Bozzelli, F. Mogavero, and A. Peron 128:13

δφ(q, a) ≜
∨

I⊆[1,k]

∨
q′∈δ(q,I(a))

(♢q′ ∧
∧
ℓ∈I

♢ℓqI i ∧
∧

ℓ∈[1,k]\I

□ℓq̃I i)

By construction, the induction hypothesis, and Claim 1, Aφ is an HGTA satisfying the
mutual-exclusion property such that L(Aφ) = L(φ). It remains to show that for each
q ∈ Q, the Büchi NWA AQ,q over the alphabet 2AP × ΥQ (see Definition 5.2) driven by the
existential component Q of Aφ is counter-free. Let us consider the mapping g assigning to
each aex ∈ 2APex the pair (a,

⋃
ℓ∈I{♢ℓqI i} ∪

⋃
ℓ∈[1,k]\I{□ℓq̃I i}), where a = AP ∩ aex and I is

the set of indexes in j ∈ [1, k] such that pj ∈ aex. Clearly, g is a bijection between 2APex and
2AP × ΥQ. Moreover, for the transition functions δQ and δ of AQ,q and Nψ, respectively, it
holds that, for each (a,A) ∈ 2AP × ΥQ and q′ ∈ Q, δQ(q′, (a,A)) = δ(q′, g−1(a,A)), where
g−1 is the inverse of g. Thus, since Nψ is counter free, AQ,q is counter free as well, and the
result follows. ◀

6 Automata Characterisation of Monadic Chain Logic (MCL)

Monadic Chain Logic (MCL) is the fragment of MSO over Kripke trees where monadic
second-order quantification is restricted to sets of nodes which forms chains, i.e. a subset
of a path. In this section, we provide an automata-theoretic characterisation of MCL in
terms of a subclass of parity FTA, called Hesitant FTA (HFTA for short), which represents
the FTA counterpart of hesitant GTA. Moreover, we show that the bisimulation-invariant
fragment of MCL and CDL are expressively equivalent.

The class of HFTA. An HFTA is a tuple A = ⟨Σ,Q, δ, qI ,H,H∃,Ω⟩, where ⟨Σ,Q, δ, qI ,Ω⟩
is an FTA and H and H∃ are defined as for HGTA. Moreover, we require that A satisfies the
transient requirement and the hesitant acceptance requirement of HGTA and the following
variants of the existential and universal requirements of HGTA:

for each existential component Qi and (q, a) ∈ Qi × Σ, δ(q, a) is a disjunction of formulae
of the form ∃x. (q′(x) ∧ θ(x)) where q′ ∈ Qi and θ(x) only refers to states in lower
components Qj with j < i (first-order existential requirement);
for each universal component Qi and (q, a) ∈ Qi × Σ, δ(q, a) is a conjunction of formulae
of the form ∀x. (q′(x) ∨ θ(x)) where q′ ∈ Qi and θ(x) only refers to states in lower
components Qj with j < i (first-order universal requirement).

HFTA can be easily translated into equivalent MCL sentences.

▶ Theorem 6.1. Given an HFTA A over 2AP, one can construct in polynomial time an
MCL sentence φA over AP such that L(φA) = L(A).

Chain Projection. Like HGTA, the tree-languages accepted by HFTA are closed under
Boolean operations. Thus, in the translation of MCL formulae into equivalent parity HFTA,
the only non-trivial part concerns the treatment of MCL existential quantification. For
this purpose, we define an operation on tree languages that captures the semantics of MCL
existential quantification. Let L be a tree language over 2AP and p ∈ AP. The chain
projection of L over p, denoted by ∃Cp.L, is the language consisting of the Kripke trees
(T,Lab) over AP \ {p} such that there is an infinite path π of T from the root and a Kripke
tree (T,Lab′) ∈ L so that: Lab′(w) = Lab(w), for each w ∈ T\π, and Lab′(w)\{p} = Lab(w),
otherwise.

ICALP 2024

128:14 Automata-Theoretic Characterisations of Branching-Time Temporal Logics

We show that HFTA are effectively closed under chain projection, i.e., for each HFTA
A over 2AP and p ∈ AP, one can construct an HFTA accepting ∃Cp.L(A). The proof is
divided in two steps. In the first step, we define a subclass of HFTA, called HFTA that
are nondeterministic in one path (see Definition 6.3), whose closure under chain projection
can be easily established (see Proposition 6.4). Then, in the second step, we show that an
HFTA can be converted into an equivalent HFTA that is nondeterministic in one path.

We now introduce this subclass of automata. By exploiting the known notion of basic
formula [82, 12], we first define a fragment of the one-step language FOE+

1 (Q) for a given
non-empty set Q. A Q-type is a (possibly empty) set A ⊆ Q. It defines the first-order
constraint t(A)(x)≜

∧
q∈A q(x). Note that t(A)(x) is ⊤ if A is empty. Let T∃ and T∀ be two

sets of Q-type. The basic formula for the pair (T∃, T∀), denoted θ=(T∃, T∀), is the FOE+
1 (Q)

sentence defined as follows, where T∃ = {A1, . . . ,An} for some n ≥ 0 and for variables
z1, . . . , zk, diff(z1, . . . , zk) ≜

∧
i̸=j zi ̸= zj :

∃x1 . . . ∃xn.
(

diff(x1, . . . , xn) ∧
n∧
i=1

t(Ai)(xi) ∧ ∀y. (diff(x1, . . . , xn, y) →
∨

A∈T∀

t(A)(y))
)
.

Intuitively, θ=(T∃, T∀) asserts that there are n-distinct elements s1, . . . , sn of the given domain
S such that each si satisfies the Q-type Ai of the existential part T∃, and every other element
of the domain satisfies some Q-type in the universal part T∀.

▶ Definition 6.2. Let Q′ ⊆ Q with Q′ ̸= ∅. A basic formula θ=(T∃, T∀) is Q′-functional
in one direction if there exists A ∈ T∃ such that A is a singleton consisting of an element
in Q′, and for each B ∈ (T∃ \ {A}) ∪ T∀, B does not contain elements in Q′. A first-order
Q-constraint is Q′-functional in one direction if it is the disjunction of basic formulae which
are Q′-functional in one direction.

Intuitively, when the local behaviour of an HFTA A at the current input node w is
driven by a constraint θ that is Q′-functional in one direction, then there is a child w′ of w
such that exactly one copy of A is sent to w′. Moreover, the state of this copy is in Q′ and
the states of the copies sent to the children of w distinct from w′ are in Q \ Q′.

▶ Definition 6.3. An HFTA A = ⟨Σ,Q, δ, qI ,H,H∃,Ω⟩ is nondeterministic in one path if
the initial state qI belongs to some existential component Qℓ of A and the following hold:
1. for each q ∈ Qℓ and a ∈ Σ, δ(q, a) is Qℓ-functional in one direction;
2. for each T ∈ L(A) and for each infinite path π of T from the root, there is an accepting

run r = (Tr,Labr) of A over T s.t. for each input node w ∈ π, there is exactly one node
y of r reading w, i.e., such that Labr(y) = (q, w) for some state q; moreover, q ∈ Qℓ.

Let Σ = 2AP, p ∈ AP, A = ⟨Σ,Q, δ, qI ,H,H∃,Ω⟩ be an HFTA that is nondeterministic
in one path, and Qℓ be the existential component such that qI ∈ Qℓ. We consider the HFTA
∃Cp.A =

〈
2AP\{p},Q, δ′, qI ,H,H∃,Ω

〉
, where the transition function δ′ is defined as follows

for all q ∈ Q and a ∈ 2AP\{p}: δ′(q, a) = δ(q, a) if q /∈ Qℓ, and δ′(q, a) = δ(q, a) ∨ δ(q, a∪ {p})
otherwise. Hence, on all the states which are not in the existential component Qℓ, ∃Cp.A
behaves as A. On the states in Qℓ, the projection automaton guesses whether in the simulated
run of A, proposition p marks the current input node or not, and proceeds according to the
guess and the transition function of A. By Definition 6.3, we easily obtain the following
result.

▶ Proposition 6.4. Let A be an HFTA over 2AP that is nondeterministic in one path and
p ∈ AP. Then, L(∃Cp.A) = ∃Cp.L(A).

M. Benerecetti, L. Bozzelli, F. Mogavero, and A. Peron 128:15

From HFTA to HFTA that are nondeterministic in one path. We now show that HFTA
can be effectively translated into equivalent HFTA that are nondeterministic in one path.
We first establish a preliminary result on the one-step logic FOE+

1 (Q) for a given non-empty
set Q.

▶ Definition 6.5. Let θ be a first-order Q-constraint and θs be a first-order (Q∪2Q)-constraint
which is 2Q-functional in one direction. We say that θs simulates θ if the following hold:

for each minimal model (S, I) of θ and for each s ∈ S, (S, I[s → {I(s)}]) is a model of θs;
for each minimal model (S, I) of θs, let s ∈ S be the unique element in S such that I(s) is
of the form {Q′} for some Q′ ∈ 2Q. Then, the pair (S, I[s → Q′]) is a model of θ;

where the mappings I[s → {I(s)}] and I[s → Q′] are defined in the obvious way.

Since each first-order Q-constraint is effectively equivalent to a disjunction of basic
formulae [12], we easily obtain the following result.

▶ Proposition 6.6. Let θ be a first-order Q-constraint. Then, one can construct a first-order
(Q ∪ 2Q)-constraint θs which is 2Q-functional in one direction and simulates θ.

Fix an HFTA A = ⟨Σ,Q, δ, qI ,H,H∃,Ω⟩ with H = ⟨Q1, . . . ,Qn⟩. We construct in two
stages an equivalent HFTA Sim(A) that is nondeterministic in one path. First, by a kind
of powerset construction, we construct an automaton APATH that is nondeterministic in one
path but the acceptance condition of the existential component PowA containing the initial
state is not a Büchi condition but an ω-regular set over the infinite sequences on PowA. In
the second stage of the construction, we show how the ω-regular condition can be converted
into a standard Büchi condition by equipping the “macro” states in PowA with additional
information. Intuitively, given an input tree (T,Lab) accepted by A, the automaton APATH

simulates the behaviour of A along an accepting run r over (T,Lab) by guessing an infinite
path π of the input tree from the root and proceeding as follows:

in the input nodes w /∈ π, APATH simply simulates the behaviour of A along r;
in the input nodes w ∈ π, APATH keeps track in its “macro” state (a state in the existential
component PowA) of the states of A associated with the copies of A that read w along r.
Thus, in the run of APATH, there is a unique infinite path ν from the root associated with
the guessed input path π, and ν “collects” the set of parallel paths νr of the simulated
run of A associated with the input path π. In order to check the acceptance condition
on the individual parallel paths νr, an infinite sequence of “macro” states ρ must allow
to distinguish the individual infinite paths over Q grouped by ρ. Thus, like in [82], a
“macro” state associated with an input node w is a set of pairs (qp, q): the pair (qp, q)
represents a copy of A in state q at node w along the simulated run r which has been
generated by a copy of A in state qp reading the parent node of w in the input tree.

Formally, we denote by PowA the subset of 2Q×Q consisting of the sets of pairs (q, q′)
of A-states such that the order of q′ is equal or lower than the order of q (order re-
quirement). A PowA-path ν is an infinite word ν = P0P1 . . . over PowA such that the
following conditions are fulfilled: (i) P0 = {(qI , qI)} (initialisation), and (ii) for all i ≥ 0
and (qi, qi+1) ∈ Pi+1, there is an element of Pi of the form (qi−1, qi) (consecution). An
A-path of ν is a maximal (possibly finite) non-empty sequence q0q1 . . . of A-states such that
(qi−1, qi) ∈ Pi for all 1 ≤ i < |ν|. The PowA-path ν is A-accepting if all infinite A-paths
of ν satisfy the parity condition Ω of A. The automaton APATH is then given by APATH =
⟨Σ,Q ∪ PowA, δPATH, {(qI , qI)},HPATH,H∃ ∪ {PowA},Ω⟩ where HPATH = ⟨Q1, . . . ,Qn, PowA⟩
(the existential component PowA has highest order) and δPATH is defined as follows:

for all q ∈ Q and a ∈ Σ, δPATH(q, a) = δ(q, a);

ICALP 2024

128:16 Automata-Theoretic Characterisations of Branching-Time Temporal Logics

for all P ∈ PowA and a ∈ Σ, if P is empty, then δPATH(P, a) = ∃x.P(x); otherwise, let us
consider the first-order (Q × Q)-constraint θ given by

∧
(qp,q)∈P δq(q, a), where δq(q, a) is

obtained from δ(q, a) by replacing each predicate q′(y) occurring in δ(q, a) with (q, q′)(y).
By Proposition 6.6, one can construct a first-order ((Q × Q) ∪PowA)-constraint θs which
is PowA-functional in one direction and simulates θ. Then, δPATH(P, a) is obtained from
θs by replacing each predicate (q, q′)(y) occurring in θs associated with an element of
Q × Q with q′. Note that δPATH(P, a) satisfies the first-order existential requirement and
is PowA-functional in one direction.

Note that in the definition of APATH, no acceptance condition is defined for the macro states
in PowA (the parity condition Ω inherited by A is defined only on the states in Q). By
construction and Proposition 6.6, for each run r of APATH over an input (T,Lab) and every
infinite path π of r starting at the root, either π is associated with a PowA-path ν (in this
case, we say that π is accepting if ν is accepting) or π gets trapped into some non-transient
component of A (in this case, acceptance of π is determined by the parity condition Ω).
We denote by L(APATH) the set of input trees (T,Lab) such that there is a run of APATH over
(T,Lab) whose infinite paths starting at the root are all accepting. By construction and
Proposition 6.6, we easily deduce the following crucial result.

▶ Lemma 6.7. APATH is nondeterministic in one path and L(APATH) = L(A).

Construction of the Automaton Sim(A). Let FB (resp., FcoB) be the set of states in
the existential (resp., universal) components of A having even (resp., odd) color. Fix a
PowA-path ν. By the order requirement, each infinite A-path of ν gets trapped into an
existential or universal component of A. Thus, by the hesitant acceptance requirement of
HFTA, the PowA-path ν is A-accepting if and only if for each infinite A-path π of ν, the
following holds: if π gets trapped into an existential component, then π visits infinitely many
times some state in FB (Büchi condition); otherwise (i.e., π gets trapped into an universal
component), π visits finitely many times all the states in FcoB (coBüchi condition).

It is known that coBüchi alternating word automata (AWA) over infinite words can
be converted in quadratic time into equivalent Büchi AWA by means of the so called
ranking construction [46]. We adapt the ranking construction and the Miyano-Hayashi
construction [53] (for converting a Büchi AWA into an equivalent Büchi NWA) for providing
a characterisation of acceptance of PowA-paths ν by a classical Büchi condition on an
extension of ν obtained by adding to each macro-state visited by ν additional finite-state
information. Hence, we obtain the following result.

▶ Theorem 6.8. For the given HFTA A, one can construct an HFTA Sim(A) that is
nondeterministic in one path and such that L(Sim(A)) = L(A).

By Theorem 6.8 and Proposition 6.4, we obtain the following result.

▶ Corollary 6.9. The class of HFTA is effectively closed under chain projection.

An HFTA with transition function δ is in normal form if over existential (resp., universal)
components Qℓ, δ(q, a) (resp., the dual of δ(q, a)) is Qℓ-functional in one direction for all
q ∈ Qℓ and a ∈ Σ. Since the constructions for the Boolean language operations and the
construction for the closure under chain projection (Theorem 6.8 and Proposition 6.4) preserve
the normal form, we deduce the following result.

▶ Theorem 6.10. Given an MCL sentence φ, one can construct an HFTA Aφ in normal
form such that L(Aφ) = L(φ).

M. Benerecetti, L. Bozzelli, F. Mogavero, and A. Peron 128:17

We exploit the normal form for showing that CDL (or, equivalently, the class of symmetric
HGTA) provides a characterisation of the bisimulation-fragment of MCL. It is known [82, 12]
that for each FTA A, one can construct a symmetric FTA AS such that if L(A) is bisimulation-
closed, then A and AS accept the same tree-language. By adapting the construction given
in [82, 12], we can show that a similar result holds for HFTA in normal form versus symmetric
HGTA. Hence, by Theorems 5.8 and 5.9 and Theorem 6.10, we deduce the following result.

▶ Theorem 6.11. The bisimulation-invariant fragment of MCL, CDL, and the class of
symmetric HGTA are expressively equivalent in a constructive way.

7 Conclusion

This work provides automata-theoretic characterisations of branching-time temporal logics,
mainly focusing on CTL* and CDL, the latter being a syntactic variant of the already
known ECTL*. Specifically, we prove the equivalence between the symmetric variant of
classic ranked Hesitant Tree Automata (HTA) and both CDL and the bisimulation-invariant
fragment of Monadic Chain Logic (MCL). The full MCL, instead, is proved equivalent to a
first-order variant of HTAs. In addition, we close a longstanding gap in the expressiveness
landscape of branching-time logics, by providing an automata-theoretic characterisation of
CTL*. This is obtained via a generalisation to tree-languages of the notion of counter-
freeness, originally introduced in the context of word languages. The generalisation essentially
decomposes an HTA into a number of counter-free word automata, one for each level of
the state decomposition of the HTA. This decomposition, however, works correctly only
when the HTA satisfies the additional property of mutual-exclusion. The property requires
that different sets of automaton states, active at the same time on a given node of the input
tree, must accept different subtrees. Both mutual-exclusion and counter-freeness seem to
be essential to capture a meaningful notion of counter-freeness for tree automata. Together
these results bring the expressiveness landscape for branching-time temporal logics to almost
the same level as their linear-time counterparts.

There are few open questions remaining. In particular, while Theorem 6.11 establishes
the equivalence between the bisimulation invariant fragment of MCL and CDL, the precise
relationship between CCDL (hence, ECTL*) and full MCL still remains unsettled. In
addition, techniques similar to those used in this work may also be applicable to obtain
a characterisation of Monadic Tree Logic (MTL), a fragment of MSO where quantified
variables range over subtrees [3], and of Substructure Temporal Logic (STL), a temporal
logic where one can implicitly predicate over substructure/subtrees [4, 5]. The restriction
that variables range over trees, indeed, seem to be tightly connected with the notion of
counter-freeness. The difficulty in this case is that counter-free HTAs would not suffice, since
both MTL and STL are strictly more expressive than CTL*, and a meaningful definition
of decomposition into word automata of a non-hesitant tree automaton is not immediately
obvious.

References
1 A. Arnold and D. Niwiński. Fixed Point Characterization of Weak Monadic Logic Definable

Sets of Trees. In Tree Automata and Languages, pages 159–188. North-Holland, 1992.
2 C. Baier and J.-P. Katoen. Principles of Model Checking. MIT Press, 2008.
3 M. Benerecetti, L. Bozzelli, F. Mogavero, and A. Peron. Quantifying over Trees in Monadic

Second-Order Logic. In LICS’23, pages 1–13. IEEECS, 2023.

ICALP 2024

128:18 Automata-Theoretic Characterisations of Branching-Time Temporal Logics

4 M. Benerecetti, F. Mogavero, and A. Murano. Substructure Temporal Logic. In LICS’13,
pages 368–377. IEEECS, 2013.

5 M. Benerecetti, F. Mogavero, and A. Murano. Reasoning About Substructures and Games.
TOCL, 16(3):25:1–46, 2015.

6 M. Bojańczyk. The Finite Graph Problem for Two-Way Alternating Automata. TCS,
3(298):511–528, 2003.

7 U. Boker and Y. Shaulian. Automaton-Based Criteria for Membership in CTL. In LICS’18,
pages 155–164. ACM, 2018.

8 J.R. Büchi. Weak Second-Order Arithmetic and Finite Automata. MLQ, 6(1-6):66–92, 1960.
9 J.R. Büchi. On a Decision Method in Restricted Second-Order Arithmetic. In ICLMPS’62,

pages 1–11. Stanford University Press, 1962.
10 J.R. Büchi. On a Decision Method in Restricted Second Order Arithmetic. In Studies in Logic

and the Foundations of Mathematics, volume 44, pages 1–11. Elsevier, 1966.
11 F. Carreiro, A. Facchini, Y. Venema, and F. Zanasi. Weak MSO: Automata and Expressiveness

Modulo Bisimilarity. In CSL’14 & LICS’14, pages 27:1–27. ACM, 2014.
12 F. Carreiro, A. Facchini, Y. Venema, and F. Zanasi. The Power of the Weak. TOCL,

21(2):15:1–47, 2020.
13 F. Carreiro, A. Facchini, Y. Venema, and F. Zanasi. Model Theory of Monadic Predicate

Logic with the Infinity Quantifier. AML, 61(3-4):465–502, 2022.
14 Y. Choueka. Theories of Automata on ω-Tapes: A Simplified Approach. JCSS, 8(2):117–141,

1974.
15 A. Church. Logic, Arithmetics, and Automata. In ICM’62, pages 23–35, 1963.
16 E.M. Clarke, E.A. Emerson, and A.P. Sistla. Automatic Verification of Finite-State Concurrent

Systems Using Temporal Logic Specifications: A Practical Approach. In POPL’83, pages
117–126. ACM, 1983.

17 E.M. Clarke, E.A. Emerson, and A.P. Sistla. Automatic Verification of Finite-State Concurrent
Systems Using Temporal Logic Specifications. TOPLAS, 8(2):244–263, 1986.

18 E.M. Clarke, O. Grumberg, and D.A. Peled. Model Checking. MIT Press, 2002.
19 V. Diekert and P. Gastin. First-Order Definable Languages. In Logic and Automata: History

and Perspectives [in Honor of Wolfgang Thomas], volume 2 of Texts in Logic and Games,
pages 261–306. Amsterdam University Press, 2008.

20 C.C. Elgot. Decision Problems of Finite Automata Design and Related Arithmetics. TAMS,
98:21–51, 1961.

21 E.A. Emerson and E.M. Clarke. Design and Synthesis of Synchronization Skeletons Using
Branching-Time Temporal Logic. In LP’81, LNCS 131, pages 52–71. Springer, 1982.

22 E.A. Emerson and E.M. Clarke. Using Branching Time Temporal Logic to Synthesize
Synchronization Skeletons. SCP, 2(3):241–266, 1982.

23 E.A. Emerson and J.Y. Halpern. “Sometimes” and “Not Never” Revisited: On Branching
Versus Linear Time. In POPL’83, pages 127–140. ACM, 1983.

24 E.A. Emerson and J.Y. Halpern. Decision Procedures and Expressiveness in the Temporal
Logic of Branching Time. JCSS, 30(1):1–24, 1985.

25 E.A. Emerson and J.Y. Halpern. “Sometimes” and “Not Never” Revisited: On Branching
Versus Linear Time. JACM, 33(1):151–178, 1986.

26 E.A. Emerson and C.S. Jutla. Tree Automata, muCalculus, and Determinacy. In FOCS’91,
pages 368–377. IEEECS, 1991.

27 E.A. Emerson, C.S. Jutla, and A.P. Sistla. On Model Checking for the muCalculus and its
Fragments. TCS, 258(1-2):491–522, 2001.

28 A. Facchini, Y. Venema, and F. Zanasi. A Characterization Theorem for the Alternation-Free
Fragment of the Modal µ-Calculus. In LICS’13, pages 478–487. IEEECS, 2013.

29 K. Fine. In So Many Possible Worlds. NDJFL, 13:516–520, 1972.
30 M.J. Fischer and R.E. Ladner. Propositional Dynamic Logic of Regular Programs. JCSS,

18(2):194–211, 1979.

M. Benerecetti, L. Bozzelli, F. Mogavero, and A. Peron 128:19

31 D.M. Gabbay, A. Pnueli, S. Shelah, and J. Stavi. On the Temporal Basis of Fairness. In
POPL’80, pages 163–173. ACM, 1980.

32 G. De Giacomo and M.Y. Vardi. Linear Temporal Logic and Linear Dynamic Logic on Finite
Traces. In IJCAI’13, pages 854–860. IJCAI’ & AAAI Press, 2013.

33 Y. Gurevich and S. Shelah. The Decision Problem for Branching Time Logic. JSL, 50(3):668–
681, 1985.

34 T. Hafer and W. Thomas. Computation Tree Logic CTL* and Path Quantifiers in the Monadic
Theory of the Binary Tree. In ICALP’87, LNCS 267, pages 269–279. Springer, 1987.

35 D. Harel, D. Kozen, and J. Tiuryn. Dynamic Logic. MIT Press, 2000.
36 D. Janin. A Contribution to Formal Methods: Games, Logic and Automata. Habilitation

thesis, Université Bordeaux I, Bordeaux, France, 2005.
37 D. Janin and G. Lenzi. On the Relationship Between Monadic and Weak Monadic Second

Order Logic on Arbitrary Trees, with Applications to the mu-Calculus. FI, 61(3-4):247–265,
2004.

38 D. Janin and I. Walukiewicz. On the Expressive Completeness of the Propositional mu-Calculus
with Respect to Monadic Second Order Logic. In CONCUR’96, LNCS 1119, pages 263–277.
Springer, 1996.

39 H.W. Kamp. Tense Logic and the Theory of Linear Order. PhD thesis, University of California,
Los Angeles, CA, USA, 1968.

40 R.M. Keller. Formal Verification of Parallel Programs. CACM, 19(7):371–384, 1976.
41 S.C. Kleene. Representation of Events in Nerve Nets and Finite Automata. In Automata

Studies, pages 3–42. Princeton University Press, 1956.
42 D. Kozen. Results on the Propositional muCalculus. TCS, 27(3):333–354, 1983.
43 S.A. Kripke. Semantical Considerations on Modal Logic. APF, 16:83–94, 1963.
44 O. Kupferman, U. Sattler, and M.Y. Vardi. The Complexity of the Graded muCalculus. In

CADE’02, LNCS 2392, pages 423–437. Springer, 2002.
45 O. Kupferman and M.Y. Vardi. Freedom, Weakness, and Determinism: From Linear-Time to

Branching-Time. In LICS’98, pages 81–92. IEEECS, 1998.
46 O. Kupferman and M.Y. Vardi. Weak Alternating Automata are not That Weak. TOCL,

2(3):408–429, 2001.
47 O. Kupferman, M.Y. Vardi, and P. Wolper. An Automata Theoretic Approach to Branching-

Time Model Checking. JACM, 47(2):312–360, 2000.
48 R.E. Ladner. Application of Model Theoretic Games to Discrete Linear Orders and Finite

Automata. IC, 33(4):281–303, 1977.
49 Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems - Specifica-

tion. Springer, 1992.
50 Z. Manna and A. Pnueli. Temporal Verification of Reactive Systems - Safety. Springer, 1995.
51 R. McNaughton. Testing and Generating Infinite Sequences by a Finite Automaton. IC,

9(5):521–530, 1966.
52 R. McNaughton and S. Papert. Counter-Free Automata. MIT Press, 1971.
53 S. Miyano and T. Hayashi. Alternating Finite Automata on ω-Words. TCS, 32(3):321–330,

1984.
54 F. Moller and A.M. Rabinovich. On the Expressive Power of CTL*. In LICS’99, pages 360–368.

IEEECS, 1999.
55 F. Moller and A.M. Rabinovich. Counting on CTL*: On the Expressive Power of Monadic

Path Logic. IC, 184(1):147–159, 2003.
56 E.F. Moore. Gedanken-Experiments on Sequential Machines. In Automata Studies, pages

129–154. Princeton University Press, 1956.
57 A. Nerode. Linear Automaton Transformations. PAMS, 9(4):541–544, 195.
58 D. Perrin. Recent Results on Automata and Infinite Words. In MFCS’84, LNCS 176, pages

134–148. Springer, 1984.
59 D. Perrin and J. Pin. First-Order Logic and Star-Free Sets. JCSS, 32(3):393–406, 1986.

ICALP 2024

128:20 Automata-Theoretic Characterisations of Branching-Time Temporal Logics

60 D. Perrin and J. Pin. Infinite Words. Pure and Applied Mathematics. Elsevier, 2004.
61 A. Pnueli. The Temporal Logic of Programs. In FOCS’77, pages 46–57. IEEECS, 1977.
62 A. Pnueli. The Temporal Semantics of Concurrent Programs. TCS, 13:45–60, 1981.
63 A. Pnueli and R. Rosner. On the Synthesis of a Reactive Module. In POPL’89, pages 179–190.

ACM, 1989.
64 M.O. Rabin. Decidability of Second-Order Theories and Automata on Infinite Trees. TAMS,

141:1–35, 1969.
65 M.O. Rabin. Weakly Definable Relations and Special Automata. In Studies in Logic and the

Foundations of Mathematics, volume 59, pages 1–23. Elsevier, 1970.
66 M.O. Rabin and D.S. Scott. Finite Automata and their Decision Problems. IBMJRD, 3:115–125,

1959.
67 A. Rabinovich. A Proof of Kamp’s Theorem. In CSL’12, LIPIcs 16, pages 516–527. Leibniz-

Zentrum fuer Informatik, 2012.
68 A. Rabinovich. A Proof of Kamp’s Theorem. LMCS, 10(1):1–16, 2014.
69 R. Rosner. Modular Synthesis of Reactive Systems. PhD thesis, Weizmann Institute of Science,

Rehovot, Israel, 1992.
70 M.P. Schützenberger. On Finite Monoids Having Only Trivial Subgroups. IC, 8(2):190–194,

1965.
71 W. Thomas. Star-Free Regular Sets of ω-Sequences. IC, 42(2):148–156, 1979.
72 W. Thomas. A Combinatorial Approach to the Theory of ω-Automata. IC, 48(3):261–283,

1981.
73 W. Thomas. Logical Aspects in the Study of Tree Languages. In CAAP’84, pages 31–50. CUP,

1984.
74 W. Thomas. On Chain Logic, Path Logic, and First-Order Logic over Infinite Trees. In

LICS’87, pages 245–256. IEEECS, 1987.
75 W. Thomas. Automata on Infinite Objects. In Handbook of Theoretical Computer Science

(vol. B), pages 133–191. MIT Press, 1990.
76 B.A. Trakhtenbrot. Finite Automata and the Logic of One-Place Predicates. AMST, 59:23–55,

1966.
77 J. van Benthem. Modal Correspondence Theory. PhD thesis, University of Amsterdam,

Amsterdam, Netherlands, 1977.
78 M.Y. Vardi. Reasoning about The Past with Two-Way Automata. In ICALP’98, LNCS 1443,

pages 628–641. Springer, 1998.
79 M.Y. Vardi and L.J. Stockmeyer. Improved Upper and Lower Bounds for Modal Logics of

Programs: Preliminary Report. In STOC’85, pages 240–251. ACM, 1985.
80 M.Y. Vardi and P. Wolper. Yet Another Process Logic. In LP’83, LNCS 164, pages 501–512.

Springer, 1984.
81 M.Y. Vardi and P. Wolper. Automata-Theoretic Techniques for Modal Logics of Programs.

JCSS, 32(2):183–221, 1986.
82 I. Walukiewicz. Monadic Second Order Logic on Tree-Like Structures. TCS, 275(1-2):311–346,

2002.
83 A. Weinert and M. Zimmermann. Visibly Linear Dynamic Logic. TCS, 747:100–117, 2018.
84 P. Wolper. Temporal Logic Can Be More Expressive. IC, 56(1-2):72–99, 1983.

	1 Introduction
	2 Preliminaries
	3 Branching-Time Temporal Logics
	4 Alternating Tree Automata
	5 Automata Characterisations of CDL and CCTL*
	5.1 From Automata to Logics and Back

	6 Automata Characterisation of Monadic Chain Logic (MCL)
	7 Conclusion

