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Abstract
We consider the problem of learning low-degree quantum objects up to ε-error in ℓ2-distance. We
show the following results: (i) unknown n-qubit degree-d (in the Pauli basis) quantum channels
and unitaries can be learned using O(1/εd) queries (which is independent of n), (ii) polynomials
p : {−1, 1}n → [−1, 1] arising from d-query quantum algorithms can be learned from O((1/ε)d · log n)
many random examples (x, p(x)) (which implies learnability even for d = O(log n)), and (iii) degree-d
polynomials p : {−1, 1}n → [−1, 1] can be learned through O(1/εd) queries to a quantum unitary
Up that block-encodes p. Our main technical contributions are new Bohnenblust-Hille inequalities
for quantum channels and completely bounded polynomials.
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1 Introduction

Computational learning theory refers to the mathematical framework for understanding
machine learning models and quantifying their complexity. The seminal result of Leslie
Valiant [54] (who introduced the Probably Approximately Correct (PAC) model) gives a
complexity-theoretic definition of what it means for a class of functions f : {0, 1}n → {0, 1}
to be learnable information-theoretically and computationally.
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13:2 Learning Low-Degree Quantum Objects

One of the foundational results in computational learning theory is the one of Linial,
Mansour and Nisan [39] who showed that AC0, or constant-depth n-bit classical circuits
consisting of AND, OR and NOT gates, can be learned in quasi-polynomial time. A
crucial aspect of their proof is the following structural theorem: if a Boolean function f

is computable by AC0 then f can be approximated by a low-degree polynomial. Using
this structural property, the learning algorithm approximates the coefficients of all the
low-degree monomials of f in the PAC model and hence approximately learns the unknown
AC0 function. Since their work, the notion of Boolean functions being low-degree or being
well-approximated by low-degree polynomials has been a central technique [16] in obtaining
new learning algorithms. Furthermore, low-degree approximations have played a significant
role in theoretical computer science topics such as quantum computing, circuit complexity,
learning theory and cryptography.

In the last few years, there have been several works in quantum learning theory where
the goal has been to learn an unknown object on a quantum computer under various access
models. Motivated by classical learning theory, in this work our primary focus will be on
learning objects that have the additional structure of being low-degree. Since we consider
different objects, when presenting our results we will make the definition of being low-degree
clear, but the main motivation of this work can be summarized by the following question:

Can we learn low-degree n-qubit quantum objects information-theoretically with
complexity that scales only polynomial (or better polylogarithmic) in n?

We give a positive answer to this question for low-degree channels, unitaries, quantum query
algorithms, polynomials, and states. The organization of the paper is as follows. In Section 2
we present our main technical contribution, then in Section 3 we describe our applications to
learning, in Section 4 we prove the result for channels, and in Section 5 we prove the result
for quantum query algorithms. Due to page restrictions, we defer the preliminaries of our
paper as well as the remaining proofs to the extended version [6].

2 Technical contribution: New Bohnenblust-Hille inequalities

In 1931, Bohnenblust and Hille [13] (generalizing the classic theorem of Littlewood [40])
gave a solution to the famous Bohr strip problem of Dirichlet series [14]. To do that, they
showed the following: let T : ([−1, 1]n)d → [−1, 1] be a d-tensor specifed by the coefficients
T = (T̂i1,...,id

)i1,...,id∈[n], then

( n∑
i1,...,id=1

|T̂i1,...,id
|2d/(d+1)

)(d+1)/2d

≤ C(d), (1)

where C(d) is a universal constant independent of n.1 Their work marked the birth of
the Bohnenblust-Hille (BH) inequality, which has became a fundamental tool in functional
analysis. Despite being studied over a century, the best known upper bound on C(d) scales
polynomially with d, while the best lower bound is a constant. Closing this gap has been
an active area of research in mathematics. In 2011 Defant et. al [22] refined the BH
inequality and found a striking application of the BH inequality: they determined the precise
asymptotic behavior of the n-dimensional Bohr radius using the BH inequality. Since then,

1 We remark that the inequality above is a simplified version of the original Bohnenblust-Hille inequality
and we discuss this in more detail in the preliminaries.
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there has been renewed interest in the BH inequality and has found several applications
in theoretical computer science such as Fourier-Entropy influence conjecture [4], classical
learning theory [26], non-local games [42], and quantum computing [33, 57].

Of particular relevance to our work, the BH inequality recently captured the attention
of the computer science community when Eskenazis and Ivanisvili [26] used a version of
it to prove a major improvement in the problem of classical learning bounded low-degree
multilinear polynomials (which we discuss in detail below). The key insight of Eskenazis and
Ivanisvili is that BH inequalities imply that for bounded operators the small coefficients have
a low total contribution, so one does not have to learn them. Multiple extensions of the BH
have been proved since then and applied to learning quantum objects [33, 50, 51, 57, 36]. In
this work, we extend the BH inequality in two ways:
1. We consider a variant of the BH inequality, that can be regarded as a hybrid between the

BH inequality and the celebrated Grothendieck inequality [30]. We show that degree-d
completely bounded tensors T̂ (which are known to be the the output of d-query quantum
algorithms [3]) satisfy( n∑

i1,...,id=1
|T̂i1,...,id

|2d/d+1
)(d+1)/2d

≤ 1.

In other words, we improve the BH constant for completely bounded tensors from poly(d)
to 1. See Theorem 15 for a precise statement.

2. More recently, the works of [33, 57] considered non-commutative variants of the BH
inequality. They showed that the Pauli coefficients of n-qubit degree-d (i.e., d-local)
observables that are bounded in operator norm, can be bounded in a similar fashion to
Eq. (1), but with exp(d) instead of poly(d). Here, we prove another non-commutative ver-
sion of the BH inequality for quantum channels (we in fact prove a stronger BH inequality
for maps that are bounded in S1 → S1 norm, and refer the reader to Theorem 11). In
particular, if Φ is a quantum channel defined as Φ(ρ) :=

∑
x,y∈{0,1,2,3}n Φ̂(x, y)σxρσy

(where σx = ⊗iσxi
and σ0 = I, σ1 = X,σ2 = Y, σ3 = Z are the usual single-qubit Pauli

operators) where Φ̂(x, y) = 0 if |x|, |y|> d, then the Pauli coefficients Φ̂(x, y) satisfy( ∑
x,y

|Φ̂(x, y)|2d/(d+1/2)
)(d+1/2)/2d

≤ exp(d). (2)

While exp(d) in Equation (2) might seem much higher than the factor poly(d) of Equa-
tion (1), this is not a fair comparison. Equation (1) corresponds to tensors, which are a
very structured class of polynomials, while Equation (2) is a non-commutative analogue
of the BH inequality for general polynomials, for which the best known upper bounds [23]
are superpolynomial in d.

These BH inequalities might be of independent interest both for mathematicians and quantum
computing; in this work we crucially use them for our learning algorithms.

3 Applications and main results

3.1 Result 1: Learning channels
Learning a quantum process is a fundamental task in quantum computing and this can be
modelled as learning an unknown quantum channel, also referred to as quantum process
tomography. On an experimental level, the dynamics of closed quantum systems can be
modeled as a unitary transformation from the initial state to the final state. However, in

ICALP 2024



13:4 Learning Low-Degree Quantum Objects

practice, quantum systems interact with the environment and must be treated as an open
quantum system. To learn the behavior of these open quantum systems, it is convenient to
model this map as a quantum channel [45]. Learning an n-qubit quantum channel is however
challenging and is known to require Θ(4n) queries to the channel [31]. This exponential
sample complexity can be drastically improved when prior information on the structure
of the channel is available. For example, a recent work of Bao and Yao [10] considered
k-junta quantum channels, i.e., n-qubit channels that act non-trivially only on at most k of
the n (unknown) qubits leaving rest of qubits unchanged. These channels were shown to
be learnable using Θ̃(4k) queries to the channel [10]. In [21], it was shown that quantum
channels that can be efficiently generated, can be learned efficiently, albeit in the PAC
learning model. In this work, we consider learning n-qubit quantum channels which have a
Pauli decomposition only involving low-degree Pauli operators.

General quantum channels. To describe our result, we first describe Pauli analysis for
quantum channels. An n-qubit to n qubit quantum channel Φ can be expressed as

Φ(ρ) =
∑

x,y∈{0,1,2,3}n

Φ̂(x, y) · σxρσy, (3)

where σx = ⊗i∈[n] σxi
and σi for i ∈ {0, 1, 2, 3} are the Pauli matrices

σ0 =
(

1 0
0 1

)
, σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
;

and Φ̂(x, y) are the Pauli coefficients of the channel. Given x ∈ {0, 1, 2, 3}n, |x| is the
number of non-zero entries of x. The degree of a channel Φ is the minimum integer d such
that Φ̂(x, y) = 0 if |x|> d or |y|> d. Our first result is an efficient learning algorithm for
low-degree channels. The learning model we consider is the same as the recent work of Bao
and Yao [10]. Given a channel Φ, a learning algorithm is allowed to make queries to Φ as
follows: it can apply Φ to an arbitrary ρ (or subsystem of ρ) of its choice and measure the
resulting state in in any basis. From the measurement outcomes, the learner should output a
classical description of a superoperator Φ̃ that is close to Φ in the ℓ2-distance defined by the
usual inner product for superoperators, i.e., ⟨Φ, Φ̃⟩ = Tr[J(Φ), J(Φ̃)]/4n, where J(Φ) is the
Choi-Jaminkowski (CJ) representation of Φ.2

▶ Theorem 1. Let Φ be a n-qubit degree-d quantum channel. There is an algorithm that
(ε, δ)-learns Φ (in ℓ2-distance) using exp (Õ(d2 + d log(1/ε))) · log(1/δ) queries to Φ.

We remark that the sample complexity of learning general quantum channels requires
Ω(4n) queries, but if we are promised the channel is low-degree, then our algorithm is much
faster than the general algorithm. Additionally, observe that the sample complexity of
our learning algorithm is independent of n, in contrast to the results [33, 57, 50, 51, 36]
on quantum learning observables (which also are based on the BH inequality) that have a
logarithmic dependence on n.

To prove the theorem, we first note the fact that the matrix Φ̂ (whose entries are given
by Φ̂x,y = Φ̂(x, y)) is the density matrix of a state that is unitarily equivalent to the CJ
state of the channel Φ [10, Lemma 8]. Hence, Φ̂ can be prepared by applying Φ to the first
n-qubits of n EPR pairs defined over 2n qubits, and {Φ̂(x, x)}x is a probability distribution.
The high-level idea behind the learning algorithm is the following.

2 In this paper we say an algorithm (ε, δ)-learns a quantum object if it succeeds with probability ≥ 1 − δ
and outputs an ε-approximation to the unknown quantum object in a metric that will be made clear.
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1. Prepare T few copies of Φ̂ and measure them in the computational basis, allowing the
learner to sample from the distribution {Φ̂(x, x)}x.

2. Using a well-known result in distribution learning theory, we observe that O(1/α2) many
samples from {Φ̂(x, x)}x suffices to obtain the xs such that Φ(x, x) is α-large.

3. Approximate all the large Pauli coefficients in the step above using a SWAP test for
mixed states.

4. Output Φ̃ with coefficients that were estimated above and the remaining coefficients
set to 0.

At this point, we use the BH inequality for quantum channels and show that, as long as
T ∼ exp(d2/εd), then the output Φ̃ is ε-close to the target Φ in ℓ2-distance.

Remark on learning Pauli channels. One can also consider a special case of quantum
channels called Pauli channels Φ, motivated by the fact that Pauli channels are often
the dominant noise on quantum devices and a practical noise model for analyzing fault-
tolerance [52]. For these channels, the only non-zero terms in the Fourier expansion (3) are
Φ̂(x, x) (i.e., Φ̂(x, y) = 0 when x ̸= y) and these coefficients are often called error rates.
Since learning Pauli channels is an important task on near-term quantum devices for error
mitigation [55] and analyzing error correction, it is desirable to avoid using entangled copies of
a state and access to ancillary qubits as part of the learning algorithm. With this requirement,
it was shown that, in order to ε-learn (in diamond norm) an unknown n-qubit Pauli channels
using unentangled measurements, one needs to use the channel Ω(4n/ε2) many times [28].
In this work, we show that the subclass of low-degree Pauli channels are efficiently learnable.

Noise on current large-scale quantum devices is modeled as Pauli channels containing a
sparse set of local Paulis [55], which is a subclass of low-degree Pauli channels. Such models
are available from device physics and experiments used to characterize noise on quantum
hardware. When non-local interactions but only over few qubits are included in the Pauli
channel [53], the corresponding Paulis are still low-degree which fits into the class of Pauli
channels considered. Our learning result is as follows.

▶ Fact 2. Let Φ be an n-qubit degree-d Pauli channel. There is an algorithm that (ε, δ)-
learns Φ (under the diamond norm) using O

(
n2d/ε2 · log(n/δ)

)
queries to Φ. The learning

algorithm only requires preparation of product states and measurements in the Pauli basis.

We remark that the dependence on n in our sample complexity matches the algorithm
in [29] for learning low-degree Pauli channels under the diamond norm but our analysis
differs from theirs; our result is obtained using a Fourier-analytic approach in contrast to the
the result of [29] which uses ideas from population recovery.

3.2 Result 2: Learning unitaries
Apart from learning channels, in this paper we also consider the task of learning unknown n-
qubit unitaries. Similar to the case for channels, it is well-known that learning an unstructured
n-qubit unitary requires Θ̃(4n) applications of U [31]. This complexity can be significantly
improved if structural information is available. For example, it has been show efficient learning
is possible if the unitary corresponds to Clifford circuits [41], corresponds to Clifford circuits
with few non-Clifford gates [38], or are the diagonal unitaries of the Clifford hierarchy [2].

In a recent work, Chen et al. [20] considered the task of learning unitaries U that are
k-juntas and showed that this class can be learned querying the unitary Θ̃(4k) many times. In
this work, we consider the scenario where the unitary is degree-d and show such an exponential
saving (in comparison to naive tomography) is possible. This structured class of low-degree
unitaries occur in many instances. For example, in nature, the dynamics of many physical

ICALP 2024



13:6 Learning Low-Degree Quantum Objects

systems are governed by local Hamiltonians, whose unitary time evolution operators for short
time evolution are close to being low-degree unitaries. Moreover, through the application of
Lieb-Robinson bounds to structured many-body Hamiltonians, the corresponding unitary
evolution operator can be seen to only have support only on low-degree Paulis [19]. In
addition, the quantum unitaries corresponding to quantum circuits producing degree-d phase
states containing all commuting diagonal quantum gates [2], are low-degree. The learning
algorithm that we will present is thus applicable for learning and verifying such circuits.

Consider the Pauli decomposition of an n-qubit unitary as follows:

U =
∑

x∈{0,1,2,3}n

Û(x)σx,

where Û(x) are its Pauli coefficients. The degree of U is the minimum integer d such that
|x|> d implies Û(x) = 0. Our learning model is the one by Chen et al. [20]. Given an unitary
U , a learning algorithm is allowed to make queries to U (and to control-U) as follows: it
can choose a state ρ, apply U to the state to obtain UρU∗, and measure UρU∗ in a chosen
basis. From the measurement outcomes, the learner should output a classical description of
an operator Ũ that is close to U in the ℓ2-distance determined by the usual inner product
for operators defined as ⟨U, V ⟩ = Tr[U∗V ]/2n.

▶ Theorem 3. Let U be a n-qubit degree-d unitary. There is an algorithm that (ε, δ)-learns U
(in ℓ2-distance) using the unitary U exp (Õ(d2 + d log(1/ε))) · log(1/δ) many times.

The proof of Theorem 3 follows the same structure as that of Theorem 1, but now we
learn the Pauli coefficients via an extension of the algorithm of Montanaro and Osborne [43],
and the control on the contribution of the small coefficients relies on the non-commutative
BH inequality of Volberg and Zhang [57].

The BH inequality of Volberg and Zhang [57] works for matrices with bounded operator
norm, of which unitaries are a very special case. As argued by Montanaro and Osborne [43],
matrices bounded on the operator norm are the quantum analogue of bounded functions
f : {−1, 1}n → [−1, 1], while unitaries are the analogue of Boolean functions3 f : {−1, 1}n →
{−1, 1}. These two families of classical functions differ a lot with respect to the BH inequalities:
the best upper bound [23] for the BH constant for bounded functions is exp(d1/2), while for
Boolean functions of degree d one can even prove that the usually much bigger quantity∑

s|f̂(s)| is at most 2d−1 [46, Exercise 1.11]. An open question is if this fact can be generalized
to the quantum setting.

▶ Question 4. Is there a constant C(d) such that
∑

x∈{0,1,2,3}n |Û(x)|≤ C(d) for every
n-qubit degree-d unitary U?

If Question 4 was answered positively, then one could improve the ε dependence of Theorem 3
to (1/ε)2. Some evidence in favor of an affirmative answer to Question 4 is that if a conjecture
of Montanaro and Osborne was true [43, Conjecture 4], then every degree-d hermitian unitary
would be a 2d-junta, which would imply an affirmative answer to Question 4 for the hermitian
case.

Remark on learning low-degree quantum states. Learning quantum states has been an
active line of research given its fundamental importance and applications to quantum system
characterization, assessing quality of quantum gates, verification of quantum circuits and

3 To be precise, they argue that unitary Hermitian matrices are the analogue of Boolean functions.
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validating performance of quantum algorithms. Breakthrough results of Haah et al. [32]
and O’Donnell and Wright [47] showed that the sample complexity of learning an unknown
n-qubit state, up to trace distance ε is Θ(4n/ε2). A natural consideration is the task of
learning low-degree quantum states. To describe this, we first write down the Pauli expansion
of an n-qubit state ρ as

ρ =
∑

x∈{0,1,2,3}n

ρ̂(x)σx.

Then, we say that ρ has degree at most d if ρ̂(x) = 0 for all |x|> d. It is not too hard to
see that one can use the formalism of classical shadows [34] to obtain a learning (in trace
norm) algorithm that has a sample complexity of Õ(nd/ε2 · log(n/δ)). A similar result (with
a different norm and with a bit more structure than just being low-degree) was noted in a
recent work of Nadimpalli et al. [44], where they used the result to give efficient algorithms
to learn QAC0 circuits.

3.3 Result 3: Learning quantum query algorithms
Eskenazis and Ivanisvili [26] established a surprising connection between the BH inequality
and learning theory. They considered the following question: suppose f : {−1, 1}n → [−1, 1]
is a bounded degree-d function, and a learner is given uniformly random x and f(x), then
how many (x, f(x)) suffices to learn f up to error ε in ℓ2

2 error? The seminal low-degree
algorithm of Linial, Mansour and Nisan uses4 Od,ε(nd) many such samples [39]. This was
not improved until recently, when Iyer et al. [35] reduced this complexity to Od,ε(nd−1). In
a surprising work, [26] showed that one can learn f in sample complexity Od,ε(logn). For
the particular case of bounded d-linear tensors T : ({−1, 1}n)d → [−1, 1] they showed that it
suffices to use

(1/ε)d ·
( n∑

i1,...,id=1
|T̂i1,...,id

|2d/d+1
)(d+1)/2d

· logn (4)

samples (x, T (x)), where x is uniform from ({−1, 1}n)d and T̂ is the tensor of coefficients of
T , i.e., T (x) =

∑
i1,...,id

T̂i1,...,id
x1(i1) . . . xd(id). Combining that with the upper bound of

the BH constant for multilinear tensors [11], it yields

(d/ε)O(d) ·O(logn) (5)

uniformly random samples are enough to learn T . Although this result is surprising since
the complexity only scales polylogarithmic with n, observe that if d = ω(logn), then the
sample complexity is superpolynomial in n, motivating the natural question, are there classes
of polynomials that can be learned using poly(n) samples for any d = ω(logn)? Below we
show that the class of polynomials that arise from quantum query algorithms answers this
question in the positive.

Quantum polynomials. The result of Equation (5) can be applied to learn the amplitudes
of quantum algorithms that query different blocks of variables every time (see Figure 1), as
they are multilinear tensors bounded on the supremum norm [12]. To be precise, we consider
quantum query algorithms such that they prepare a state

|ψx⟩ = Ud(Oxd
⊗ Idm)Ud−1 . . . U1(Ox1 ⊗ Idm)U0|u⟩,

4 Here and below, we use Od,ε to hide the factors that depend on d, 1/ε and independent of n.

ICALP 2024



13:8 Learning Low-Degree Quantum Objects

where m is an integer, x stands for (x1, . . . , xd), Oy is the n-dimensional unitary that maps
|i⟩ to yi|i⟩, U0, . . . , Ud are (n+m)-dimensional unitaries and |u⟩ is a n+m-dimensional unit
vector. The algorithm succeeds according to a projective measurement that measures the
projection of the final state onto some fixed n+m dimensional unit vector |v⟩. Hence, the
amplitude of |v⟩ is T (x) = ⟨v|Ψx⟩, so |T (x)|2 is the acceptance probability of the algorithm.
These quantum algorithms have been considered in the quantum computing literature. For

Figure 1 Quantum query algorithms considered in Theorem 5.

example, k-forrelation, that witnesses the biggest possible quantum-classical separation, has
this structure [1, 8]. Also, for these algorithms the Aaronson and Ambainis conjecture is
known to be true, so they can be classically and efficiently simulated almost everywhere [9, 25].
In addition, Arunachalam et al. showed that those amplitudes are not only bounded, but
also completely bounded [3]. Our main contribution regarding these algorithms is showing
that for d-linear tensors T that are completely bounded, we can improve the BH inequality to( n∑

i1,...,id=1
|T̂i1,...,id

|2d/d+1
)(d+1)/2d

≤ 1.

Using this upper bound, we show the following.

▶ Theorem 5. For a quantum algorithm that makes d-queries as in Figure 1, its amplitudes
can be learned up to error ε in ℓ2

2 accuracy using O
(
(1/ε)d · logn

)
uniformly random samples.

This exponentially improves the complexity of [26], as stated in Eq. (5) for the natural
class of polynomials arising from quantum query algorithms. In particular, for d = ω(logn)
and contant ε, one can learn this class of polynomials with sample complexity that is
polynomial in n.

3.4 Result 4: Quantum learning of classical polynomials
3.4.1 Boolean functions
Quantum learning not only concerns quantum objects, but also classical ones. For instance,
Boolean functions f : {−1, 1}n → {−1, 1} can be accessed using a quantum example, given by

|ψf ⟩ = 1√
2n

∑
x∈{−1,1}n

|x, f(x)⟩.

This data access model has been vastly studied in the literature, where several notable
quantum speedups have been proven [15, 7, 5]. Many of these speedups are analyzed trough
the Fourier transform, that allows to identify every function via f : {−1, 1}n → R with a
multilinear polynomial f =

∑
s∈{0,1}n f̂(s)χs, where f̂(s) ∈ R are the Fourier coefficients

and χs are the character functions χs(x) =
∏

i∈[n] x
si
i . The degree for these functions is the

minimum integer d such that if |s|> d then f̂(s) = 0. It is a well-known fact that Boolean
functions f : {−1, 1}n → {−1, 1} of degree d are 21−d-granular, meaning that their Fourier
coefficients lie in 21−dZ. This has immediate consequences for both learning theory and BH
inequalities.
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▶ Fact 6. Let f : {−1, 1}n → {−1, 1} be a degree-d function. There is a quantum algorithm
that (0, δ) learns f using O

(
4dd log (1/δ)

)
quantum examples. However, a classical algorithm

can learn it using O
(
4dd log (n/δ)

)
uniform examples and requires Ω(2d + logn) examples.

Despite the simplicity of the proof of Fact 6, we state it for completeness and because it
seems not to be well-known (see for instance [44, Corollary 34], which proposes a quantum
algorithm for the same problem that requires O(nd) samples, or [27, Corollary 4] that
proposes a classical algorthm that requires O(2d2 logn) samples). Furthermore, we observe a
BH-type inequality for Boolean functions.

▶ Fact 7. Let f : {−1, 1}n → {−1, 1} of degree at most d. Then,( ∑
s∈{0,1}n

|f̂(s)| 2d
d+1

) d+1
2d ≤ 2

d−1
d .

The equality it is witnessed by the address function.

Fact 7 might be of interest in functional analysis for two reasons: (i) it is conjectured
that the value of the BH constant for d-linear tensors is 2 d−1

d [48], so this fact proves the
conjecture for particular case of d-linear Boolean tensors, (ii) the address function5, that
saturates the inequality, is a d-linear form that gives a lower bound for the BH constant for
multilinear tensors of 2 d

d−1 , which matches the best lower bound known so far [24].

3.4.2 Real-valued polynomials
For bounded functions f : {−1, 1}n → [−1, 1] the definition of quantum uniform examples |ψf ⟩
is unclear. Given that bounded polynomials have received attention in a few works [39, 35, 26],
we propose a way learning them quantumly by accessing these polynomials through a block
encoding [18], i.e., a learning algorithm has access to a block encoding of the 2n-dimensional
diagonal matrix whose diagonal entries all equal f . To this end, we prove the following theorem.

▶ Proposition 8. Let f : {−1, 1}n → [−1, 1] be a degree-d polynomial. There is an algo-
rithm that (ε, δ)-learns f (in ℓ2-distance) using exp(Õ(

√
d3 + d log(1/ε)) log(1/δ)) copies of

a block-encoding of f .

The proof of Proposition 8 is a combination of the ideas of Eskenazis and Ivanisvili [26]
with the Fourier sampling and block-encoding quantum primitives. We remind the reader
that the merit of Eskenazis and Ivanisvili [26] was to bring down the classical complexity of
the problem from Od,ε(nd) to Od,ε(logn). Proposition 8 shows that the quantum complexity
this could be even reduced to Od,ε(1). Proposition 8 also implies a quantum speedup (with
respect to n), as the lower bound of Ω(2d + logn) also holds for membership queries6, which
are the classical analogue of accessing a unitary block-encoding of f .

5 For d ∈ N, the address function f : ({−1, 1}2)d−1 × {−1, 1}2d−1
→ {−1, 1} is defined as f(x, y) =∑

a∈{−1,1}d−1 ga(x)y(a), where we identify {−1, 1}d−1 with [2d−1] and ga(x) is 0 unless xi(1) = aixi(2)
for every i ∈ [n], in which case it takes the value

∏
i∈[n] xi(1) .

6 Making a membership query to f consists on accessing one pair (x, f(x)) where x is chosen by the
learner, not necessarily uniformly at random. If f is a Boolean function and Uf is the unitary defined by
Uf |x⟩ = f(x)|x⟩, then a membership query (x, f(x)) can be simulated by applying (H⊗Idn)CUf (H⊗Idn)
to |0⟩|x⟩ and measuring the first qubit in the computational basis. Note that Uf can be regarded as a
block-encoding of f .
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Remarkably, we highlight that although our results are about sample complexity, the
time complexity of our quantum algorithm of Proposition 8 scales as poly(n, exp(d1.5)), while
the current state-of-the-art classical algorithm [26] approximates the

(
n
d

)
Fourier coefficients,

so it requires poly(nd) time. In particular, for d = (logn)2/3, constant ε, δ, our quantum
algorithm has a time complexity of poly(n) time, while the state-of-the-art classical algorithm
runs in time npolylogn.

4 Learning algorithm for low-degree quantum channels

In this section we give our learning algorithm for quantum channels, i.e., prove Theorem 1.
To do that, we first need to prove a new BH inequality for quantum channels.

4.1 Bohnenblust-Hille inequality for quantum channels
In this section, we prove a Bohnenblust-Hille inequality for n-qubit quantum channels. In
fact, it is a result for superoperators which are bounded in the S1 to S1 norm (defined below),
of which quantum channels are a particular example. Hence, we will treat Φ as a linear map
from MN to MN , the space of N -dimensional matrices with N = 2n. In particular, we will
evaluate Φ on matrices that are not states. The S1 to S1 norm of superoperator is defined by

∥Φ∥S1→S1
= sup

M ̸=0

∥Φ(M)∥S1

∥M∥S1

,

where ∥M∥S1
is the Schatten 1-norm of M , i.e., the sum of the singular values of M .

To prove our theorem will reduce to the classical case of functions f : {−1, 1}n → R.

▶ Theorem 9 ([23]). Let p : {−1, 1}n → R of degree at most d. Then,

∥p̂∥ 2d
d+1

≤ C
√

d log d ∥p∥∞ ,

where C > 0 is a constant.

To achieve this reduction, for every superoperator Φ : MM → MN , we assign it a function
fΦ : {−1, 1}3n × {−1, 1}3n → C defined as follows. For a = (a1, a2, a3), b = (b1, b2, b3) ∈
{−1, 1}n × {−1, 1}n × {−1, 1}n and s, t ∈ {1, 2, 3}n, define the following matrices (which are
not necessarily states)

|as⟩⟨bt|= ⊗
i∈[n]

|χs(i)
as(i)⟩⟨χ

t(i)
bt(i)|,

where |χs
±1⟩ are the ±1 eigenstates of the single-qubit Pauli operators σs. The function

fΦ : {−1, 1}3n × {−1, 1}3n → C is then given by

fΦ(a, b) = 1
9n

∑
s,t∈{1,2,3}n

Tr[Φ
(
|as⟩⟨bt|

)
|bt⟩⟨as|],

where fΦ has the following properties, allowing us to reduce to the classical BH inequality.

▶ Lemma 10. Let Φ be a degree-d superoperator. Then, |fΦ(a, b)|≤ ∥Φ∥S1→S1
for all a, b

and
∥∥∥Φ̂

∥∥∥
p

≤ 9d
∥∥∥f̂Φ

∥∥∥
p
. The degree of fΦ as a multilinear polynomials is 2d.

Proof. We first show the bound on |fΦ|. Given that (|as⟩⟨bt|)(|as⟩⟨bt|)∗ = |as⟩⟨as|, we
have that∥∥|as⟩⟨bt|

∥∥
S1

=
∥∥|as⟩⟨bt|

∥∥
S∞

= 1. (6)
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Thus, we have that fΦ is bounded:

|fΦ(a, b)| ≤ 1
9n

∑
s,t∈{1,2,3}n

|Tr[Φ
(
|as⟩⟨bt|

)
|bt⟩⟨as|]|

≤ 1
9n

∑
s,t∈{1,2,3}n

∥∥Φ
(
|as⟩⟨bt|

)∥∥
S1

∥∥|bt⟩⟨as|
∥∥

S∞

≤ 1
9n

∑
s,t∈{1,2,3}n

∥Φ∥S1→S1

∥∥|as⟩⟨bt|
∥∥

S1

∥∥|bt⟩⟨as|
∥∥

S∞

≤ 1
9n

∑
s,t∈{1,2,3}n

∥Φ∥S1→S1
= ∥Φ∥S1→S1

,

where in the first inequality we have used the triangle inequality, in the second inequality
Riesz theorem, in the third the definition of S1 → S1 norm and in the fourth Equation (6).
We now prove that

∥∥∥Φ̂
∥∥∥

p
≤ 9−d

∥∥∥f̂Φ

∥∥∥
p

and that the degree of fΦ is 2d. It suffices to show
that

fΦ(a, b) =
∑

x,y∈{0,1,2,3}n

Φ̂(x, y)
3|x|+|y|

∏
i∈supp(x)

∏
j∈supp(y)

a
x(i)
i b

y(j)
j , (7)

where supp(x) = {i ∈ [n] : xi ̸= 0} and |x| is the size of supp(x). To prove Equation (7)
the key is observing that for every s, t ∈ {1, 2, 3}, x, y ∈ {0, 1, 2, 3} and a, b ∈ {−1, 1} we
have that

Tr[σx|χs
a⟩⟨χt

b|σy|χt
b⟩⟨χs

a|] =


0 if (s ̸= x and x ̸= 0) or (t ̸= y and y ̸= 0),
1 if x = 0 and y = 0,
a if s = x and y = 0,
b if x = 0 and t = y,

ab if s = x and y = t.

After taking tensor products, we observe that for every s, t ∈ {1, 2, 3}n, x, y ∈ {0, 1, 2, 3}n

and a = (a1, a2, a3), b = (b1, b2, b3) ∈ {−1, 1}n × {−1, 1}n × {−1, 1}n, it holds that

Tr[σx|as⟩⟨bt|σy|bt⟩⟨as|] =
∏

i∈supp x

∏
j∈supp y

a
x(i)
i b

y(j)
j δx(i),s(i)δy(j),t(j),

where δx,y is the delta function taking value of 1 when x = y, and 0 otherwise. In particular,
from this follows that

fΦx,y (a, b) = 1
9n

∑
s,t∈{1,2,3}n

Tr[σx|as⟩⟨bt|σy|bt⟩⟨as|] = 1
9n

∏
i∈supp x

∏
j∈supp y

a
x(i)
i b

y(j)
j

∑
s∈X ,t∈Y

1,

where X = {s ∈ {1, 2, 3}n : s(i) = x(i) ∀ i ∈ supp(x)}. Hence, as |X |= 3n−|x|, Equation (7)
follows for the case of Φx,y. By linearity, Equation (7) follows for every superoperator. ◀

▶ Theorem 11 (Bohnenblust-Hille inequality for S1 → S1 maps). Let Φ be a super-operator of
degree at most d. Then there exists a constant C such that∥∥∥Φ̂

∥∥∥
2d

d+1/2

≤ Cd ∥Φ∥S1→S1
.

In particular, if Φ is a quantum channel, then there exists a constant C such that∥∥∥Φ̂
∥∥∥

2d
d+1/2

≤ Cd.
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Proof. Let ℜfΦ : {−1, 1}n → R be defined as taking the real part of fΦ i.e., (ℜfϕ)(x) =
ℜ(fΦ(x)) and ℑfΦ : {−1, 1}n → R as taking the imaginary part of fΦ i.e., (ℑfϕ)(x) =
ℑ(fΦ(x)). Note that we have that f̂ϕ = ℜ̂fΦ + iℑ̂fΦ. By Lemma 10, |(ℜfϕ)(x)|, |(ℑfϕ)(x)|≤
|fΦ(x)|≤ ∥Φ∥S1→S1

and that the degree of both the real and imaginary part is at most 2d.
Hence, by the triangle inequality and Theorem 9 we have∥∥∥f̂Φ

∥∥∥
4d

2d+1

≤
∥∥∥ℜ̂fΦ

∥∥∥
4d

2d+1

+
∥∥∥ℑ̂fΦ

∥∥∥
4d

2d+1

≤ C
√

d log d ∥Φ∥S1→S1
.

Thus, using that
∥∥∥Φ̂

∥∥∥
2d/(d+1)

≤ 9d
∥∥∥f̂Φ

∥∥∥
2d/(d+1)

it follows that
∥∥∥Φ̂

∥∥∥
2d/(d+1)

≤ Cd ∥Φ∥S1→S1
.

This proves the first part of the statement.
For the second we just have to show that if Φ is a quantum channel, then ∥Φ∥S1→S1

is
bounded by a constant. Indeed, if M is self-adjoint, we can write it as M = M+ −M−, with
M+ and M− being positive semidefinite, so

∥Φ(M)∥S1

∥M∥S1

≤ Tr[Φ(M+)] + Tr[Φ(M−)]
Tr[M+] + Tr[M−] = 1, (8)

where in the first equality we have used that Φ is positive and in the second that is
trace perserving. Finally, any matrix M can be written as M = ℜM + iℑM , where
ℜM = (M +M∗)/2 and ℑM = (M −M∗)/2 are self-adjoint. Hence,

∥Φ(M)∥S1

∥M∥S1

≤
∥Φ(ℜM)∥S1

+ ∥Φ(ℑM)∥S1

∥M∥S1

≤
∥ℜM∥S1

+ ∥ℑM∥S1

∥M∥S1

≤
∥M∥S1

+ ∥M∥S1

∥M∥S1

= 2,

where in the first inequality we have used the triangle inequality, in the second inequality we
have used Equation (8) and in the third inequality that ∥ℜM∥S1

, ∥ℑM∥S1
≤ ∥M∥S1

. ◀

4.2 Learning low-degree quantum channels
Before we prove the main theorem of the section, we show that for given x, y ∈ {0, 1, 2, 3}n,
the corresponding Fourier coefficient Φ̂(x, y) can be efficiently learned. This is accomplished
through the combination of a few SWAP tests.

▶ Fact 12 (SWAP test for mixed states [37]). Let ρ, ρ′ be two states. Then, one can estimate
Tr[ρρ′] up to error ε with probability 1 − δ using O((1/ε)2 log(1/δ)) copies of ρ and ρ′.

▶ Lemma 13 (Pauli coefficient estimation for channels). Let x, y ∈ {0, 1, 2, 3}n. Then, Φ̂(x, y)
can be estimated with error ε and probability 1 − δ using O((1/ε)2 log(1/δ)) queries to Φ.

Proof. If x = y, we just have to prepare Φ̂ (which can be done by preparing the Choi
state J(Φ) following by a unitary transformation) and apply Fact 12 to Φ̂ and the state
ρ = |x⟩⟨x|. If x ̸= y, one first learns Φ̂(x, x) and Φ̂(y, y) with error ε as before. One the
one hand, one can learn Φ̂(x, x) + Φ̂(x, x) + 2ℜΦ̂(x, y), with error ε by applying Fact 12
to Φ̂ and 1/2

∑
z,t∈{x,y}|z⟩⟨t|. Hence, one learns ℜΦ̂(x, y) with error 3ε/2. On the other

hand, one can learn Φ̂(x, x) + Φ̂(y, y) + 2ℑΦ̂(x, y), with error ε by applying Fact 12 to Φ̂ and
1/2(|x⟩⟨x|+i|x⟩⟨y|−i|y⟩⟨x|+|y⟩⟨y|), and thus one can learn ℑΦ̂(x, y) with error 3ε/2. ◀

We will also need the following well-known result on learning discrete probability distributions.
See [17, Theorem 9] for a proof.

▶ Lemma 14. Let p = {p(x)}x be a probability distribution over some set X . Let p′ = (p′(x))x

the empirical probability distribution obtained after sampling T times from p. Then, for
T = O((1/ε)2 log(1/δ)) with probability 1 − δ we have that |p(x) − p′(x)|≤ ε for every x ∈ X .



S. Arunachalam, A. Dutt, F. . Escudero Gutiérrez, and C. Palazuelos 13:13

Now, we are ready to prove Theorem 1, which we restate for the convenience of the reader.

▶ Theorem 1. Let Φ be a n-qubit degree-d quantum channel. There is an algorithm that
(ε, δ)-learns Φ (in ℓ2-distance) using exp (Õ(d2 + d log(1/ε))) · log(1/δ) queries to Φ.

Proof. We first state the algorithm.

Algorithm 1 Learning low-degree channels via BH inequality.
Input: A quantum channel Φ of degree at most d, and error ε and a failure probability δ

1: Let c = ε2d+1C−d2

2: Prepare T1 = O((1/c)2 log(1/δ)) copies of Φ̂ to sample from (Φ̂(x, x))x. Let (Φ̂′(x, x))x

be the associated empirical distribution
3: for x, y ∈ Xc = {x : |Φ̂′(x, x)|≥ c} do
4: Prepare O((1/c)2(1/ε)2 log((1/c)2(1/δ))) copies of Φ̂ and use them to approximate

Φ̂(x, y) with Φ̂′′(x, y) using Lemma 13.
5: end for

Output:
∑

x,y∈Xc
Φ̂′′(x, y)Φx,y

Let c > 0 to be determined later. In the first part of the algorithm we prepare Φ̂ and
measure, i.e., we sample from (Φ̂(x, x))x∈{0,1,2,3}n . Let (Φ̂′(x, x))x∈{0,1,2,3}n be the empirical
distribution one obtains after T1 samples. E = {|Φ̂(x, x) − Φ̂′(x, x)|≤ c ∀x ∈ {0, 1, 2, 3}n}.
By Lemma 14, taking T1 to be O((1/c)2 log(1/δ)) ensures that

Pr[E ] ≥ 1 − δ.

Let Xc = {x : |Φ̂′(x, x)|≥ c}. Note that, as
∑

x∈Xc
Φ(x, x) ≤ 1,

|Xc|≤ c−1, (9)

and in the event of E we have that

x /∈ Xc =⇒ |Φ̂(x, x)|≤ |Φ̂′(x, x)|+||Φ̂(x, x)|−|Φ̂′(x, x)||≤ 2c. (10)

In particular, it follows that

x /∈ Xc =⇒ |Φ̂(x, y)|≤
√

|Φ̂(x, x)||Φ̂(y, y)| ≤
√

2c ∀ y ∈ {0, 1, 2, 3}n, (11)

where in the first inequality we have used that Φ̂ is positive semidefinite and in the second
inequality Equation (10) and that Φ̂(y, y) ≤ 1. We assume that the first part of the algorithm
succeeds, meaning that E happens. In the second part of the algorithm we approximate all
the Pauli coefficients of Xc × Xc with error cε and probability 1 − δ querying Φ just

T2 = O((1/c)4(1/ε)2 log((1/c)2(1/δ)))

times from Lemma 13. Note that T2 > T1, so this complexity dominates the one of the first
part of the algorithm. Let Φ̂′′(x, y) be these approximations and let Φc =

∑
x,y∈Xc

Φ̂′′(x, y)σx ·
σy. Now, we have that
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∥Φ − Φc∥2
2 =

∑
x,y∈Xc

|Φ̂(x, y) − Φ̂′′(x, y)|2+
∑

x∨y /∈Xc

|Φ̂(x, y)|2

≤ ε2 +
∑

x∨y /∈Xc

|Φ̂(x, y)|
1

d+1/2 |Φ̂(x, y)|
2d

d+1/2

≤ ε2 + (2c)
1/2

d+1/2

∥∥∥Φ̂
∥∥∥ 2d

d+1/2

2d
d+1/2

≤ ε2 + c
1/2

d+1/2Cd,

where in the equality we have used Parseval’s identity; in the first inequality we used Equa-
tion (9), the learning guarantees of the second part of the algorithm and that 2 = 1/(d +
1/2) + 2d/(d+ 1/2) ; in the second inequality we have used Equation (11); and in the third
inequality we used the Bohnenblust-Hille inequality for channels (Theorem 11). Hence, by
choosing

c = ε4d+2C−d2

we obtain the desired result. ◀

5 Learning quantum query algorithms

In this section, our goal will be to prove Theorem 5, restated below for the reader’s convenience.

▶ Theorem 5. For a quantum algorithm that makes d-queries as in Figure 1, its amplitudes
can be learned up to error ε in ℓ2

2 accuracy using O
(
(1/ε)d · logn

)
uniformly random samples.

Proof. Eskenazis and Ivanishvili [26] showed that a function f : {−1, 1}n → [−1, 1] with
degree at most d and

∥∥∥f̂∥∥∥
2d

d+1

≤ C, can be learned with success probablity 1−δ and error ε in

ℓ2
2 accuracy using O(ε−(d+1)C2d log(n/δ)) samples (x, f(x)), where x is drawn uniformly at

random from x ∈ {−1, 1}n. Arunachalam et al. [3] showed that the amplitudes of quantum
algorithms that d queries as in Figure 1 are completely bounded d-tensors. Hence, using
Theorem 15 (which we prove below) we can let C = 1, and obtain the desired result. ◀

5.1 The constant of the completely bounded BH inequality is 1
In this section we determine that the exact value of the constant of the completely bounded
BH inequality is 1. Before that, we first define the completely bounded norm. For d-linear
tensors, the completely bounded norm is defined as

∥T∥cb = sup

∥∥∥∥∥∥
∑

i∈[n]d

T̂iX1(i1) . . . Xt(it)

∥∥∥∥∥∥
op

, (12)

where Xs(is) are matrices of size m×m that have operator norm at most 1 and m ∈ N.

▶ Theorem 15. Let K ∈ {R,C}. Let T : (Kn)d → K be a d-linear form. Then,∥∥∥T̂∥∥∥
2d

d+1

≤ ∥T∥cb ,

and the inequality can be saturated.
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Theorem 15 establishes that the best constant for the completely bounded BH inequality is
exactly 1. This sharply contrasts with the current knowledge about the BH constants, where
only poly(d) upper bounds are known. We thus close one of the edges of comparison of the
three norms that appear in Grothendieck and Bohnenblust-Hille inequalities (see Figure 2).

∥B∥∞

∥B∥ 2d
d+1 ∥B∥cb

≤
√ 2 G

R ≥

≤ 1

∥T∥∞

∥T∥ 2d
d+1 ∥T∥cb

≤
po

ly(
d) C(d) ̸≥

≤ 1

Figure 2 Triangles of norm comparisons. In the left triangle, we display the norm comparisons
implied by the Littlewood [40] and Grothendieck inequalities [30] and our Theorem 15 for real
bilinear maps. In the right triangle, we depict the best upper bound for the BH constant [11], the
no extension of the Grothendieck inequality [49], and our Theorem 15 for d-linear tensors.

The main ingredient of the proof of Theorem 15 is a general lower bound for the completely
bounded norm, Lemma 17. This technique is inspired by the idea of Varoupoulos to rule out a
generalization of von Neumann’s inequality [56] and was recently used by Escudero-Gutiérrez
to show a particular case of the famous Aaronson and Ambainis conjecture of quantum
query complexity [25]. Theorem 15 follows from combining Lemma 17 with Blei’s inequality
Lemma 16. See [11, Theorem 2.1] for a proof of Blei´s inequality.

▶ Lemma 16 (Blei’s inequality). Let K ∈ {R,C} and let T̂ ∈ (K)nd . Then,( ∏
s∈[d]

∑
is∈[n]

√ ∑
i1,...,is−1,is+1,...,id∈[n]

|T̂i|2
) 1

d ≥
∥∥∥T̂∥∥∥

2d
d+1

.

▶ Lemma 17. Let K ∈ {R,C}, let T : (Kn)d → K be a d-linear form, and let s ∈ [d]. Then,

∥T∥cb ≥
∑

is∈[n]

√ ∑
i1,...,is−1,is+1,...,id∈[n]

|T̂i|2.

Proof. The proof involves evaluating Equation (12) on an explicit set of contractions (matrices
with operator norm at most 1). Let m =

∑s−1
r=0 n

r +
∑d−r

r=0 n
r and let {ei, fj : i ∈ [n]r, r ∈

{0} ∪ [d− s], j ∈ [n]t, t ∈ {0} ∪ [s− 1]} be an orthonormal basis of ℓm
2 (K), where we identify

[n]0 with ∅. We define m×m matrices X(i) for i ∈ [n] by

X(i)ej = e(i,j), if j ∈ [n]r, r ∈ {0} ∪ [d− s− 1],

X(i)ej =
∑

k∈[n]s−1 T̂ ∗
kijfk√∑

k1,...,ks−1,ks+1,...,kd∈[n]|T̂ |2(k1,...,ks−1,i,ks+1,...,kd)

, if j ∈ [n]d−s,

X(i)fj = δi,jsf(i1,...,is−1), if j ∈ [n]d−s, r ∈ {0} ∪ [d− 1].

For some intuition of the behaviour of these matrices, one may interpret the first d− s appli-
cations of the matrices X(i) as creation operators and the last s− 1 as destruction operators.
Assume for the moment that X(i) are contractions. Given that,

⟨f∅, X(i1) . . . X(id)e∅⟩ = T̂i∗√∑
i1,...,is−1,is+1,...,id∈[n]|T̂i|2

,
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it would then follow that

∥T∥cb ≥

∥∥∥∥∥∥
∑

i∈[n]d

T̂iX(i1) . . . X(id)

∥∥∥∥∥∥
op

≥
∑

i∈[n]d

T̂i
T̂ ∗

i√∑
k1,...,ks−1,ks+1,...,kd∈[n]|T̂ |2(k1,...,ks−1,is,ks+1,...,kd)

=
∑

is∈[n]

√ ∑
i1,...,is−1,is+1,...,id∈[n]

|T̂i|2,

as desired. It then remains to prove that the matrices X(i) are contractions. Given that X(i)
maps {ei : i ∈ [n]r, r ∈ {0} ∪ [d− s− 1]}, {ei : i ∈ [n]d−s} and {fi : i ∈ [n]r, r ∈ {0} ∪ [s]}
to orthogonal subspaces, it suffices to show that the X(i) are contractions when restricted
to those subspaces. For the first and third sets, this is true because X(i) maps each basis
vector of these sets to a different basis vector or to 0. For the second set, is also true because
for every λ ∈ Knd−s

∥∥∥∥∥∥X(i)
∑

j∈[n]d−s

λjej

∥∥∥∥∥∥
2

=

∥∥∥∥∥∥
∑

k∈[n]s−1(
∑

j∈[n]d−s λjT̂
∗
kij)fk√∑

k1,...,ks−1,ks+1,...,kd∈[n]|T̂ |2(k1,...,ks−1,i,ks+1,...,kd)

∥∥∥∥∥∥
2

=

√∑
k∈[n]s−1 |

∑
j∈[n]d−s λjT̂ ∗

kij|2√∑
k1,...,ks−1,ks+1,...,kd∈[n]|T̂ |2(k1,...,ks−1,i,ks+1,...,kd)

≤

√∑
k∈[n]s−1

∑
j∈[n]d−s |T̂ ∗

kij|2
√∑

j∈[n]d−s |λj|2√∑
k1,...,ks−1,ks+1,...,kd∈[n]|T̂ |2(k1,...,ks−1,i,ks+1,...,kd)

= ∥λ∥2 ,

where in the inequality we have used Cauchy-Schwarz for the sum over j. ◀

Proof of Theorem 15. The inequality ∥T̂∥ 2d
d+1

≤ ∥T∥cb follows from Lemmas 16 and 17. The
inequality is saturated by the form T (x1, . . . , xd) = x1(1). ◀
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