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Abstract
Orbit-finite sets are a generalisation of finite sets, and as such support many operations allowed for
finite sets, such as pairing, quotienting, or taking subsets. However, they do not support function
spaces, i.e. if X and Y are orbit-finite sets, then the space of finitely supported functions from X to
Y is not orbit-finite. We propose a solution to this problem inspired by linear logic.
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1 Introduction

The class of orbit-finite sets is a class of sets that contains all finite sets and some infinite
sets, but still shares some properties with the class of finite sets. The idea, which dates back
to Fraenkel–Mostowski models of set theory, is to begin with an infinite set A of atoms or
urelements. We think of the atoms as being names, such as Eve or John, and atoms can only
be compared with respect to equality. Intuitively speaking, an orbit-finite set is a set that
can be constructed using the atoms, such as A2 or A∗, subject to the constraint that there
are finitely many elements up to renaming atoms. For example, A2 is orbit-finite because it
has two elements up to renaming atoms, namely (John, John) and (John, Eve), while A∗ is
not orbit-finite, because the length of a sequence is invariant under renaming atoms, and
there are infinitely many possible lengths. For a survey on orbit-finite sets, see [5].

The notion of orbit-finiteness can be seen as an attempt to find an appropriate notion of
finiteness for the nominal sets of Gabbay and Pitts [20]. This attempt emerged from the
study of computational models such as monoids [6] and automata [7] over infinite alphabets.
Let us illustrate orbit-finiteness using an automaton example.
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▶ Example 1.1 (An orbit-finite automaton). Let L ⊆ A∗ be the language of words in which
the letter from the first position does not appear again. This language contains John · Mark
· Mark · Eve, because John does not reappear, but it does not contain John · Mark · John.
To recognize this language, we can use a deterministic automaton, which uses its state to
remember the first letter. In this automaton, the input alphabet is Σ = A and the state
space is Q = 1 + 1 + A. In this state space, there are two special states, namely the initial
state and a rejecting error state, and furthermore there is one state for each atom a ∈ A,
which represents a situation where the first letter was a but it has not been seen again yet.
This state space is infinite; but it is orbit-finite, since each of the three components in Q

represents a single orbit. ⌟

Orbit-finite sets have many advantages, which ensure that they are a good setting for
automata theory, and discrete mathematics in general. For example, an orbit-finite set can
be represented in a finite way [5], which ensures that it becomes meaningful to talk about
algorithms that input orbit-finite sets, such as an emptiness check for an automaton. Also,
orbit-finite sets are closed under taking disjoint unions and products, which ensures that
natural automata constructions, such as the union of two nondeterministic automata or the
product of two deterministic automata can be performed.

However, orbit-finite sets do not have all the closure properties of finite sets. Notably
missing is the powerset operation, and more generally taking function spaces. For example,
if we look at the powerset of A, then this powerset will not be orbit-finite, since already
the finite subsets give infinitely many orbits (two finite subsets of different sizes will be in
different orbits). The lack of powersets means that one cannot do the subset construction
from automata theory, and in particular deterministic and nondeterministic automata are
not equivalent. This non-equivalence was known from the early days of automata for infinite
alphabets [16], and in fact, some decision problems, such as equivalence, are decidable
for deterministic automata but undecidable for nondeterministic automata [17]. Another
construction that fails is converting a deterministic automaton into a monoid [6, p. 221]; this
is because function spaces on orbit-finite sets are no longer orbit-finite, as explained in the
following example.

▶ Example 1.2 (Failure of the monoid construction). Let us show that the automaton from
Example 1.1 cannot be converted into a monoid. The standard construction would be to
define the monoid as the subset M ⊆ Q→ Q of all state transformations, namely the subset
generated by individual input letters. Unfortunately, this construction does not work. This
is because in order for two input words to give the same state transformation, they need
to have the same set of letters that appear in them. In particular, the corresponding set of
set transformations is not orbit-finite, for the same reason as why the finite powerset is not
orbit-finite. Not only does the standard construction not work, but also this language is not
recognized by any orbit-finite monoid. ⌟

An attempt to address this problem was provided in [24, 9], based on single-use functions.
The idea, which originates in linear types and linear logic, is to restrict the functions so that
they use each argument at most once. For example, consider the following two functions
that input atoms and output Booleans:

a ∈ A 7→

{
true if a = John
false otherwise

a ∈ A 7→

{
true if a = John or a =Eve
false otherwise

Intuitively, the first function is single-use, since it compares the input atom to John only,
while the second function is not single-use, since it requires two comparisons, with John and
Eve. Here is another example, which shows that the problems with the monoid construction
from Example 1.2 could be blamed on a violation of the single-use condition.
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▶ Example 1.3. Consider the transition function of the automaton in Example 1.1, which
inputs a state in 1 + 1 + A together with an input letter from A, and returns a new state.
This function is not single use. Indeed, if the state is in A, then the transition function
compares it for equality with the input letter; but if the comparison returns true, another
copy of the old state must be kept as the new state for future comparisons. ⌟

If one restricts attention to functions that are single-use, much of the usual robustness of
automata theory is recovered, with deterministic automata being equivalent to monoids, and
both being equivalent to two-way deterministic automata [9].

Despite the success of the single-use restriction in solving automata problems, one would
ideally prefer a more principled approach, in which instead of defining single-use automata,
we would define a more general object, namely single-use sets and functions. Then the
definitions of automata and monoids, as well theorems speaking about them, should arise
automatically as a result of suitable closure properties of the sets and functions.

This approach was pursued in [24], in which a category of orbit-finite sets with single-use
functions was proposed. In this corresponding category, one can represent the set of all
single-use functions between two orbit-finite sets X and Y as a new set, call it X ⇒ Y ,
which is also orbit-finite. However, as we will see later in this paper, this proposal is not
entirely satisfactory, since it fails to account for standard operations that one would like to
perform on function spaces, most importantly partial application (currying). In the language
of category theory, the proposal from [24] failed to be a monoidal closed category.

Contributions of this paper. The main contribution of this paper is to propose a notion of
single-use sets and functions, which extends the proposal from [24], but which is rich enough
to be closed under taking function spaces. More formally, we propose a category of single-use
functions between orbit-finite sets equipped with additional metadata, and we prove that a
suitable quotient of this category is symmetric monoidal closed (Theorem 4.2).

The main idea is to follow the tradition of linear types, and extend the type system
from [24] with a new type constructor &. This way we can distinguish between two kinds of
products namely X ⊗ Y (in [24] denoted as X × Y ) and X&Y . Thanks to this distinction,
the function space can be built so that the appropriate operations on functions, namely
application and currying, can be implemented in a single-use way.

Our proposed category is strongly inspired by linear types, and the proof that it admits
function spaces uses a form of game semantics – a tool that we take from programming
language theory. However, as far as we know, it is an original idea to have an infinite but
orbit-finite base type A, and to observe that all constructions in game semantics are consistent
with orbit-finiteness. We believe that the resulting category deserves further study, and that
it is an interesting and non-trivial example of a category representing “finite” objects.

Some further adjacent developments – such as an alternative solution to the problem of
function spaces, using vector spaces of orbit-finite dimension – are presented in Section 7.

2 Sets with atoms

We begin with a brief introduction to orbit-finite sets. For a more detailed treatment, see [5].
Fix for the rest of this paper a countably infinite set A, whose elements will be called

atoms. We assume that A has no other structure except for equality; we will only be interested
in notions which are equivariant, i.e. invariant under renaming atoms. For example, A has
only two equivariant subsets, namely the empty and full subsets. On the other hand, the
set A2 has four equivariant subsets (∅, A2, the diagonal and its complement). In order to
meaningfully speak about equivariant subsets, we must be able to have an action of atom

ICALP 2024
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renamings on the set, as formalized in the following definition. The finite support condition
is a technical condition that ensures that the action is well-behaved; it dates back to the
work of Fraenkel and Mostowski, and is explained in the survey texts [20, 5].

▶ Definition 2.1. A set with atoms is a set X, equipped with an action of the group of atom
renamings, subject to the following finite support condition: for every x ∈ X there is a finite
set of atoms, such that if an atom renaming π fixes all atoms in the set, then it also fixes x.

The idea is that a set with atoms is any kind of object that deals with atoms, such as the
set A∗ of all words over the alphabet A, or the family of finite subsets of A. Among such
objects, we will be interested in those which are “finite”. This will be formalized by saying
that there are finitely many orbits, as described below. Define the orbit of an element x in
a set with atoms to be the elements that can be obtained from x by applying some atom
renaming. For example, in the set A2, the orbit of (John, Eve) contains (Mark, John), but it
does not contain (John, John). The orbits form a partition of a set with atoms.

▶ Definition 2.2. A set with atoms is called orbit-finite if it has finitely many orbits.

Typical examples of orbit-finite sets are polynomial expressions such as A4 +A3 +A3 + 1.
Here, 1 represents the set of zero-length sequences; this set has a unique element which is its
own orbit. For example, A3 has five orbits, because there are five possible ways of choosing a
pattern of equalities in a sequence of three names. On the other hand, A∗ has infinitely many
orbits, since sequences of different lengths are necessarily in different orbits. The family of
finite subsets of A is also not orbit-finite, because subsets of different sizes are in different
orbits. The full powerset PA is not even a legitimate object in our setting, because some of
its elements, i.e. some subsets of A, violate the finite support condition.

2.1 Finiteness of function spaces
As mentioned above, orbit-finite sets can be seen as a certain generalization of finite sets.
They allow some, but not all, operations that can usually be done on finite sets. For example,
orbit-finite sets are closed under disjoint unions X + Y and products X × Y . Another good
property is that an orbit-finite set has only finitely many equivariant subsets (an equivariant
subset is one that is invariant under the action of atom permutations). This is because an
equivariant subset is a union of some of the finitely many orbits. This accounts for some of
the good computational properties of orbit-finite sets.

If X and Y are orbit-finite sets, the set of equivariant functions X → Y is always literally
finite, because it is an equivariant subset of X×Y . However, as we have seen in Example 1.2,
when converting an automaton to a monoid, we want to use the partial applications δ(−, a)
of the transition function δ : Q× Σ→ Q; while δ is equivariant, in general, δ(−, a) is not.
But it is finitely supported, i.e. invariant under all atom renamings that fix some finite set of
atoms that depends only on the function. The issue is that the finitely supported function
space from X to Y is not orbit-finite.

▶ Example 2.3. The function A → A below is finitely supported, because it is invariant
under all atom renamings that fix Mark, John, Eve and Bill:

f(a) =
{

Mark if a ∈ {John, Eve, Bill}
a otherwise

If π is the atom renaming that swaps Mark with Adam, then applying it to the function
f defined above gives the function π(f) that has the same definition (or source code, if a
programming intuition is to be followed), except that Mark is used instead of Adam.
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In the case of A→ A, the finitely supported function space is not orbit-finite. Indeed, the
condition a ∈ {John, Eve, Bill} can be replaced by a ∈ X for any finite set X ⊂ A \ {Mark}
of exceptional values, and two choices of X of different cardinalities will give us two functions
in different orbits. ⌟

3 Single-use sets and functions

The lack of function spaces is the problem addressed in this paper. Our solution builds on
the idea from [24, Section 2.2], which is to consider only functions that are single-use. This
notion, already illustrated intuitively in the introduction, is formalized in Section 3.1, where
we show how it almost, but not quite, achieves function spaces. Then, in the rest of this
section, we show how function spaces can be recovered by using a more refined type system.

3.1 Single-use functions over polynomial orbit-finite sets
We do not define the single-use functions on all orbit-finite sets, but only a syntactically
defined fragment, namely the polynomial orbit-finite sets, which are sets that can be generated
from 1 and A using products × and disjoint unions +. Therefore, we will allow orbit-finite
sets like 1 + A2, but we will not allow orbit-finite sets like the set of non-repeating pairs
{(a, b) | a ̸= b ∈ A } or the set of unordered pairs {{a, b} | a ̸= b ∈ A }. It is an open problem
to find a satisfactory definition of single-use functions on all orbit-finite sets. (A simple hack
is to use a quotienting construction, similar to Section 4, but what we would really like to do
is to identify some extra structure in a set, possibly an action of some yet unknown group or
semigroup, which enables us to speak about single-use functions.)

Consider two polynomial orbit-finite sets X and Y . To define which functions X → Y

are single-use, we use an inductive definition. We begin with certain functions that are
considered single-use, such as the equality test of type A× A→ 1 + 1. These functions are
called the prime functions, and their full list is given in Figure 1. Next, we combine the prime
functions into new ones using three combinators. The first, and most important, combinator
is function composition. Then, we have two combinators for the two type constructors: if
two functions f1 : X1 → Y1 and f2 : X2 → Y2 are single-use, then the same is true for:

f1 × f2 : X1 ×X2 → Y1 × Y2 f1 + f2 : X1 + X2 → Y1 + Y2

(x1,x2)7→(f1(x1),f2(x2)) left(x1) 7→left(f1(x1)) right(x2)7→right(f2(x2)).

Crucially, the list of prime single-use functions does not contain the copying function
a ∈ A 7→ (a, a) ∈ A2. Therefore, an alternative name for the single-use functions is copyless.
If we added copying, then we would get all finitely supported functions [24, Lemma 23].

▶ Example 3.1. Consider the function of type A3 → A which inputs a triple (a, b, c) of
atoms and returns a if c is equal to Mark, and b otherwise. This function is a single-use
function. It is obtained by composing the six functions listed below:

Function Type after function
Append 1. A × A × A × 1
Replace added 1 with Mark using the constant function. A × A × A × A
Apply the equality test to the last two components. A × A × (1 + 1)
Distribute. A × A × 1 + A × A × 1
Project to first and second components, respectively. A + A
Co-diagonal A

ICALP 2024



130:6 Function Spaces for Orbit-Finite Sets

Table 1 The prime single-use functions for polynomial orbit-finite sets X, Y and Z.

Function Type Definition

Functions about A
equality test A × A → 1 + 1 a, b 7→ if a = b then true else false
constant a 1 → A x 7→ a

identity A → A x 7→ x

Functions about ×
commutativity of × X × Y → Y × X x × y 7→ y × x

first projection X × Y → X x × y 7→ x

second projection X × Y → Y x × y 7→ y

append 1 X → X × 1 x 7→ x × ()
associativity of × (X × Y ) × Z → X × (Y × Z) (x × y) × z 7→ x × (y × z)

Functions about +
first co-projection X → X + Y x 7→ left(x)
second co-projection Y → X + Y y 7→ right(y)

co-diagonal X + X → X

{
left(x) 7→ x

right(x) 7→ x

commutativity of + X + Y → Y + X

{
left(x) 7→ right(x)
right(y) 7→ left(y)

associativity of + (X + Y ) + Z → X + (Y + Z)

 left(left(x)) 7→ left(x)
left(right(y)) 7→ right(left(y))
right(z) 7→ right(right(z))

Distributivity

+ distributes over × X × (Y + Z) → (X × Y ) + (X × Z)
{

x × (left(y)) 7→ left(x × y)
x × (right(z)) 7→ right(x × z)

To justify this description, one should also show that the six functions are single-use.
Appending 1, distributivity and co-diagonal are prime functions. The other three are
obtained by combining prime functions using the combinators. For example, the equality
test is paired, using the combinator for ×, with the identity on the remaining two atoms. ⌟

The design goal of the single-use restriction is to have orbit-finite function spaces. The
rough idea is that a single-use function can only use a bounded number of atoms in its source
code, which guarantees orbit-finiteness of the function space.

▶ Example 3.2. Consider the functions of type A→ 1 + 1, which can be seen as subsets of
the atoms, with 1 + 1 representing the Booleans.

The finitely supported functions A→ 1 + 1 correspond to the finite or co-finite subsets of
A. Therefore, the set of such functions admits an equivariant bijection with a disjoint
union of two copies of the finite powerset PfinA, in particular it is not orbit-finite.
There are four possible single-use functions A→ 1 + 1: (a) always return true; (b) always
return false; (c) check for equality with some fixed atom a; (d) check for inequality (̸=)
with some fixed atom a. Therefore, the set of single-use functions admits an equivariant
bijection with the orbit-finite set 1 + 1 + A + A. ⌟
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The above example shows that the space of single-use functions of some type X → Y is
orbit-finite, and in fact it can be described using a polynomial orbit-finite set. This is true
for every choice of polynomial orbit-finite sets X and Y , as proved in [24, Theorem 5], and
illustrated in the following example.

▶ Example 3.3. Assume that the input type X is some power of the atoms Ak, and the
output type Y does not use atoms, e.g. it is Y = 1 + 1. The assumption on the input type
can be made without loss of generality using distributivity, while the assumption on the
output type is a proper restriction, but it will allow us to skip some technical details of the
general construction while retaining the important intuitions. We describe below a type that
represents all single-use functions from Ak to Y ; we shall denote it by Ak ⇒ Y . Note that
⇒ is not a primitive type constructor in our grammar of types; it is a notation that stands
for the inductive construction below.

This type is defined by induction on k. In the base case of k = 0 we simply need to give
a value from the output type, and therefore A0 ⇒ Y is the same as Y . Consider now the
induction step of k > 0. We observe that a single-use function that inputs Ak must begin
with some equality test, and then continue with one of two single-use functions that have
fewer arguments (one for the case when the equality test returns true, and one for the other
case). This observation leads to the following definition of the type Ak ⇒ Y :∐

i∈{1,...,k}

A× (Ak−1 ⇒ Y )× (Ak−1 ⇒ Y )

︸ ︷︷ ︸
starts by comparing i-th

coordinate to some constant

+
∐

i,j∈{1,...,k}

(Ak−2 → Y )× (Ak−2 → Y )

︸ ︷︷ ︸
starts by comparing the
i-th and j-th coordinates

.

Note that the above representation of the function space is not necessarily unique, i.e. the
same function can be represented in several different ways. For example, the order in which
equality tests are performed will matter for the representation, but might not matter for the
function. This is not something that we worry about; it is dealt with in Section 4. ⌟

Unfortunately, the proposal illustrated in Example 3.3 and described in more detail in [24]
does not give a satisfactory solution to the problem of function spaces. The problem is
that the set of representations X ⇒ Y should also support operations on functions. More
specifically, we should be able to indicate single-use operations which do the following:
evaluation: a single-use function from (X ⇒ Y )×X to Y which inputs a representation of

a function and applies it to an argument;
composition: a single-use function from (X ⇒ Y )× (Y ⇒ Z) to (X ⇒ Z) which inputs the

representations of two functions and returns a representation of their composition;
currying (i.e. partial application): for each single-use function from X × Y to Z, there

should be a single-use function from X to Y ⇒ Z which inputs a first argument and
returns a representation of the partially applied function.

Only in the presence of all of these operations can we speak of a function space, and
the corresponding category can be called closed. (Composition can be obtained through
evaluation and currying, so the essential operations are evaluation and currying.) The
following example shows that the currying operation is not single-use, and therefore the
space of single-use functions as defined in this section is not closed.

▶ Example 3.4. Consider the single-use function

f : A× A→ 1 + 1 (a, b) 7→
{

result of test a = Mark if b = Eve
result of test a = John otherwise.

ICALP 2024
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The currying of this function, is a new function which maps a first argument a ∈ A to the
partially applied function f(a, _). This currying is

a 7→


b 7→ b = Eve if a = Mark
b 7→ b ̸= Eve if a = John
b 7→ false otherwise

Recall that in Example 3.2 we showed that the space of single-use functions of type A→ 1+1
can be represented as 1 + 1 + A + A. If we use this representation, then the currying of the
function f is not single-use, because we need to compare the input atom a to two constants,
Mark and John. If we use the representation from Example 3.3, then the corresponding type
will be A⊗ (1 + 1)2, but the problems with currying will persist. ⌟

For similar reasons, the function space we proposed above does not support function
composition either; it cannot be used to convert automata into single-use monoids since the
resulting monoid would need to use function composition as its monoid operation.1

3.2 Linear types and single-use functions on them
To solve the problems above, we introduce a more refined type system, which is based on
linear types. The main idea is to pay more attention to types in Example 3.3, where we
describe a single-use function by specifying the first equality test that it makes, and then
giving two descriptions of the functions that will be used in each of the two possible outcomes
of the equality test. The main observation is that these two outcomes are mutually exclusive,
and therefore we intend to use only one of the two descriptions. For this reason, we will use
a type constructor & that comes from linear logic. The intended meaning is that an object
of type X&Y consists of two objects, but with the ability to use only one of them. Since
linear logic uses ⊗ for the product that we have so far denoted by ×, we will also follow that
convention. Using these two products, the appropriate type for Example 3.3 becomes:∐

i∈{1,...,k}

A⊗ ((Ak−1 ⇒ Y )&(Ak−1 ⇒ Y )) +
∐

i,j∈{1,...,k}

(Ak−2 → Y )&(Ak−2 → Y ).

Under this definition, the problems from Example 3.4 will be solved, at least for the particular
type considered in that example. However, by introducing a new type constructor, we will
have to redefine the single-use functions, and then we will have to give a representation of
functions that allow this new type constructor, without incurring the need to add any other
new type constructors. This is what we will do now.

▶ Definition 3.5 (Linear types). A linear type is any expression constructed from the atomic
types 1 and A using three2 binary type constructors +, & and ⊗.

1 This problem is solved in [9] and [24] in a different way, namely by showing that every orbit-finite
monoid necessarily divides a single-use monoid, using a Krohn-Rhodes construction. However, this
construction is difficult and delicate, in particular it does not work for atoms that have more structure
than equality alone. In contrast, the proposal that we give in this paper works for other kinds of atoms,
as discussed in Section 6.

2 We set up our type system without using the multiplicative disjunction &of linear logic. This is a
common practice in linear type systems, as they are often based on intuitionistic linear logic, rather
than classical linear logic (see e.g. [1]). It is also worth mentioning that our type system is in fact
affine [13, §1.2.1], as we are going to allow discarding the unused values of A. However, since there is no
risk of confusion, we have decided to use the name linear types for the sake of simplicity.
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In our linear types, it is only the products that are differentiated, while + comes in only one
version. Here is the intuitive explanation of the difference between the two kinds of products,
following Girard [13, §1.1.2]. Having a pair x ⊗ y is like having the ability of using both
components x and y. On the other hand, having a pair x&y is like having the ability to use
one of the two components, at our choice, but not both at once. For example, the input
type of the equality test will be A⊗ A not A&A, since the test will need to consume both
arguments. This intuition can only go so far; for example, it is not entirely clear what “our
choice” means. We revisit this intuition in Section 5, where game semantics will be used to
indicate who makes which choices.

We think of each linear type X as representing a set [[X]], as defined below:

[[1]] = 1 [[A]] = A [[X + Y ]] = [[X]] + [[Y ]] [[X ⊗ Y ]] = [[X&Y ]] = [[X]]× [[Y ]].

All sets that arise in this way will be polynomial orbit-finite sets. Note that the two kinds
of product represent the same set, namely the set of pairs in the usual set-theoretic sense.
However, the two type constructors will be different, because different functions will be
allowed to operate on them. As the expression goes, “the proof of the pudding is in the
eating”; in this case the pudding is the types and the eating is the functions.

As we did in Section 3.1, the single-use functions will be defined in terms of prime
functions and combinators. The combinators are the same, except that instead of f1 × f2 we
now have two ways of pairing functions, using ⊗ and &. The prime functions are inherited
from the previous system, with × understood as ⊗, together with a few new functions for &,
as described in Table 2. This is summarized in the following definition.

▶ Definition 3.6 (Single-use functions). The class of single-use functions is the least class of
functions with the following properties:
1. It contains the functions from Tables 1 and 2, with × in Table 1 understood as ⊗;
2. It is closed under composition, as well as under combining functions using +, ⊗ and &.

Table 2 Prime single-use functions that involve &.

Function Type Definition
diagonal X → X&X x 7→ x&x

first projection X&Y → X x&y 7→ x

second projection X&Y → Y x&y 7→ y

& distributes over ⊗ X ⊗ (Y &Z) → (X ⊗ Y )&(X ⊗ Z) x ⊗ (y&z) 7→ (x ⊗ y)&(x ⊗ z)

& distributes over + X + (Y &Z) → (X&Y ) + (X&Z)
{

x&left(y) 7→ left(x&y)
x&right(z) 7→ right(x&z)

Formally speaking, a single-use function consists of an input linear type X, an output
linear type Y , and a function between the sets [[X]] and [[Y ]] that is generated using the
prime functions and combinators from the above definition. As was the case in Section 3.1,
all single-use functions are finitely supported. Therefore, one can think of the single-use
functions of type X → Y as being a subset of the set of all finitely supported functions from
[[X]] to [[Y ]]. This subset is strict: as we will see, the space of single-use functions will be
orbit-finite, unlike the space of all finitely supported functions. We will be thinking of the
single-use functions as a category.

▶ Definition 3.7 (Category of single-use sets). The category of single-use sets is:
1. The objects are linear types, as per Definition 3.5.
2. The morphisms between types X and Y are single-use functions from [[X]] to [[Y ]].
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In the very definition of the above category, there is a faithful functor to the category
of orbit-finite sets with finitely supported functions. This functor maps objects X to their
underlying sets [[X]], which are orbit-finite sets, and it maps morphisms to the corresponding
functions. The functions seen to be finitely supported, and the functor is faithful by definition,
since the morphisms in Definition 3.7 are defined to be single-use functions.

The main technical result of this paper is that the category of single-use sets has function
spaces, as stated in the following theorem. The appropriate product will be ⊗, and not &.
Since the Cartesian product in our category is & and not ⊗, this means that the result we
are targeting is symmetric monoidal closed with respect to ⊗, and not Cartesian closed. For
now, our theorem stops a bit short of saying that the category is monoidal closed, since
several different elements of the function space might represent the same function; but we
will come back to this in Section 4.

▶ Theorem 3.8. Let V and W be objects (i.e. linear types). There exists an object, denoted
by V ⇒W , and a morphism (i.e. a single-use function) eval : (V ⇒W )⊗ V →W with the
following property. For every morphism f : X ⊗ V →W there is a (not necessarily unique)
morphism h : X → (V ⇒W ) such that the following diagram commutes:

X ⊗ V (V ⇒W )⊗ V

W

h⊗id

f
eval

The above theorem is the main technical contribution of this paper. The difficulty in its
proof is finding a representation of the single-use functions that is rich enough to capture all
functions, but simple enough to be described by a linear type (in particular, the corresponding
set will be orbit-finite). In Section 3.1, when the types did not have “&”, we could pull off a
relatively simple construction, which was possible mainly due to the strong distributivity
rules that allowed converting each type into a normal like An1 + · · ·+ Anℓ . In the presence
of “&”, the distributivity rules are not as strong, and the way in which a single-use program
can interact with its input is rather subtle. Our solution is presented in Section 5.

4 Quotienting by partial equivalence relations

A drawback of Theorem 3.8 is that the function space V ⇒ W can contain different
representations of the same function; this will mean that currying is not unique. To overcome
this issue, we use a simple quotient construction, inspired by a classical technique used in
realizability semantics of typed λ-calculi (see e.g. [3, Chapter 15]).

Define a partial equivalence relation to be a relation that is symmetric and transitive, but
not necessarily reflexive. This is the same as (complete) equivalence relation on some subset,
hence we may speak of the quotient of a set by a partial equivalence relation (which is an
usual quotient of a subset). We will use a partial equivalence on the function space X ⇒ Y

to: (1) remove objects that do not represent any morphism; (2) identify two objects if they
represent the same morphism. After such a quotient, the function space will have unique
representations for functions.

▶ Definition 4.1. The quotiented single-use category is:
Objects are pairs (linear type X, equivariant partial equivalence relation on [[X]]);
The set of morphisms between objects (X,∼X) and (Y,∼Y ) is the quotient of the set of
single-use functions from X to Y by

f ∼ g :⇐⇒ ∀x, x′ ∈ [[X]], x ∼X x′ ⇒ f(x) ∼Y g(x′)



M. Bojańczyk, L. T. D. Nguyễn, and R. Stefański 130:11

We can then define the function space object from (X,∼X) to (Y,∼Y ) as (X ⇒ Y,∼X⇒Y )
where two elements of X ⇒ Y are related by the partial equivalence relation ∼X⇒Y when
the single-use functions they represent are related by the above-defined ∼. The quotiented
single-use category is also equipped with a tensor product ⊗ on its objects.

▶ Theorem 4.2. The quotiented single-use category, equipped with the tensor product ⊗, is
a monoidal closed category, i.e. it satisfies the conclusions of Theorem 3.8, but, furthermore,
the morphism h is unique.

5 Game semantics

This section is devoted to the proof of Theorem 3.8. To construct the function space X ⇒ Y ,
we use game semantics to identify a certain normal form of programs that compute single-use
functions. The presentation in this section is self-contained, and does not assume any
knowledge of game semantics. We base our notation on [2].3

Let us begin with a brief motivation for why game semantics will be useful.
While it is intuitively clear which functions should be allowed as single-use for simple

types such as A→ 1 + 1 or A⊗A→ A + A, these intuitions start to falter when considering
more complex types. How can one show that a function is not single-use? If one were to use
the definition of single-use functions alone, then one would need to rule out any possibility
of constructing the function from the primes using the combinators, including constructions
that use composition many times, and with unknown intermediate types.

This is the reason why we consider game semantics. It will allow us to give a more
principled description of the intuition that pairs of type X⊗Y can be used on both coordinates,
while pairs of type X&Y can be used on a chosen coordinate only. The idea behind game
semantics is to give the description in terms of an interaction between two players:
1. System, who represents the function (we will identify with this player); and
2. Environment, who supplies inputs and requests outputs of the function.
One of the intuitions behind the setup is that if a type X&Y appears in the input of the
function, then it is the System who can choose to use X or Y , while if the type appears in
the output, then it is the Environment who makes the choice. (In this paper, we consider
functions of first-order types of the form X → Y , where X and Y are linear types that
do not use →, and therefore there will be a clear distinction between input and output
values.) Before giving a formal definition of game semantics, we give simple example of the
interaction.

▶ Example 5.1. Consider the two types X ⊗ (Y &Z) and (X ⊗ Y )&(X ⊗ Z). Among the
prime functions in Table 2, we find distributivity in the direction →, but not in the direction
←. We explain this asymmetry using the interaction between two players System and
Environment4.

Let us first consider the interaction in the direction →. The player Environment begins
by requesting an output. Since this output is of type (X ⊗ Y )&(X ⊗ Z), this means that
Environment can choose to request either of the two types X ⊗ Y and X ⊗ Z. Suppose that
Environment requests X ⊗ Y . Now System needs to react, and produce two elements: one of
type X and one of type Y . Both can be obtained from the input; for the second one player
System can choose how to resolve the input Y &Z to get the appropriate value.

3 Another standard reference for the category of “simple games” upon which we build is [15]. For a recent
survey of modern game semantics, see [10].

4 Observe that in Table 1 the (+, ⊗)-distributivity is also only given in one direction. In that case the
inverse is, in fact, a single-use function, as it can be constructed from prime functions.
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Consider now the interaction in the opposite direction ←. As we will see, System will
be unable to react to the behavior of Environment, which demonstrates that there is no
distributivity in this direction. The problem is that Environment can begin by requesting an
element of type X, since the output type is X ⊗ (Y &Z), while still reserving the possibility
to request Y &Z in the future (because the tensor product ⊗ means that both output values
need to be produced). To produce this element, System will need choose one of the two
coordinates in the input type (X ⊗ Y )&(X ⊗ Z), and any of these two choices will be
premature, since Environment can then request the opposite choice in the output type. ⌟

As illustrated in the above example, we will use a game to describe the possible behaviours
of a function X → Y . The game will be played in an arena, arising from the linear types X

and Y , which will tell us what moves are possible for the two players. In each arena, we will
be interested in strategies for System, telling us how System should react to Environment’s
moves. Morally, such a strategy will say how the function reacts to requests in the output
type Y and values in the input type X.

Proof scheme for Theorem 3.8. In the remainder of this section, we define the arenas and
strategies of our game semantics. Our main Theorem 3.8 will then follow from the two key
properties below, that we establish in the technical appendix of the full version.
Representation of single-use functions by strategies: To a strategy in the arena for X →

Y , we will assign a single-use function of type X → Y that it represents. This mapping
will be partial, i.e. some ill-behaved strategies will not represent any functions. We will
show that the set of strategies in the arena is large enough to represent all single-use
functions.

Representation of strategies by a linear type: We shall build a linear type X ⇒ Y which
can represent all well-formed strategies on the arena for X → Y . In particular, this
implies that such strategies form an orbit-finite set. Furthermore, this linear type X ⇒ Y

will be equipped with single-use evaluation and currying functions, as required.

5.1 Arenas and strategies without constants and equality tests
We begin with a simpler version of the game semantics, in which the arenas and strategies
will describe functions that are not allowed to perform equality tests, nor to use constants.
These strategies will model functions such as the identity function A→ A, which directly
passes its input to its output, but they will not model the equality test A⊗ A→ 1 + 1, or
the constant functions of type 1→ A. The general idea is to use standard game semantics
for linear logic, with an extra feature that we call register operations. The register operations
will be used to model the way in which atoms are passed from the input to output. For
example, in the identity function, Environment will write the input atom into the register,
and then System will read the output atom from that register. The following definition of an
arena is based on the definition from [2, p. 4], slightly adapted for the context of this paper:

▶ Definition 5.2 (Arena). An arena consists of:
1. A set of moves, with each move having an assigned owner, who is either “System” or

“Environment”, and one of three register operations, which are “none”, “read”, or “write”.
2. A set of plays, which a set of finite sequences of moves that is closed under prefixes, and

such that in every play, the owner of the first move is Environment, and then the owners
alternate between the two players.

▶ Remark 5.3. In all arenas that we consider, the “read” moves will be owned by System and
the “write” moves will be owned by Environment. Therefore, we could simplify the register
operations and have just one, called “read/write”, whose status is determined by its owner.
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In this paper, all the strategies that we consider shall be for player System.

▶ Definition 5.4. A strategy in an arena is a subset of plays in the arena, which:
1. is closed under prefixes;
2. if the strategy contains a play p that ends with a move owned by System, then it also

contains all possible plays in the arena that extend p with one move of Environment;
3. if the strategy contains a play p that ends with a move owned by Environment, then it

contains exactly one play in the arena that extends p with one move of System;
4. there is some k such that all plays in the strategy have length at most k;
5. every “read” move is directly preceded by a “write” move (in particular a play cannot

begin with “read”), and every “write” move is either the last move, or directly succeeded
by a “read” move.

Conditions 2 and 3, which are standard in game semantics (cf. [2, p. 5]), guarantee that
the strategy is deterministic and only “ends” when Environment has no moves to play. Let
us now comment on the last two conditions, which are not standard.

The fourth condition is motivated by the idea that we study “finite” types, and there will
be no need for unbounded computations5

The last condition will be called the immediate read condition. It ensures that there is
matching between “read” and “write” moves in plays that do not end with write. Since
“write” will always be owned by Environment, the immediate read condition will ensure a
matching between “write” and “read” moves.

We now show how to associate to each linear type a corresponding arena, and also how to
associate an arena to a function type X → Y (which is not a linear type in the sense of
Definition 3.5) between linear types X and Y . The arenas that we construct so far will not
be our final proposal, since the corresponding strategies will not be able to use constants or
perform equality tests; this will be fixed in Section 5.2. Before giving a formal definition, we
begin with a simple example.

▶ Example 5.5. We define an arena for A→ A. It will be rather impoverished, since the only
allowed strategy in it will correspond to the identity function. However, this is consistent
with the stage that we are at, where we only consider functions that do not use constants or
perform equality tests; for such functions of type A→ A the only possibility is the identity.

The arena describes the following interaction between the two players: Environment
requests an output, then System requests an input, then Environment grants the input, and
finally System grants the output by forwarding the input that was granted. It has 4 moves:

move owner register operation
request output Environment none
request input System none
grant input Environment write
grant output System read

The plays are defined as all sequences that begin with a move of Environment, alternate
between players, use each move only once, and have the following condition: “grant output”
can only be played after “request output”, and likewise for “grant input” and “request input”.

5 This condition is only meaningful, if there are arenas that admit plays of unbounded length. Since,
in this section, all the arenas will be finite this condition will be vacuously true. It will only become
relevant in Section 5.2, once we introduce arenas with constants and equality tests.

ICALP 2024



130:14 Function Spaces for Orbit-Finite Sets

A

B

⊗
 

Env

A

B

Sys
ask

left

right

Env

Sys

Sys

A

B

left

right

acknowledge

acknowledge

Figure 1 Pictures of the operations A ⊗ B, A + B, A&B and A ⊗ B respectively on arenas.
The picture for ⊗ is less useful than the next two, since the root node of the tree is not a player,
but a node labelled by ⊗. The intuition is that the game is played in parallel on both arenas, and
therefore a position in it can be visualized as a pair of positions in the two arenas.

A quick inspection of this definition reveals that there is a unique maximal play, where
the moves are played in the order from the table, and all other plays are prefixes of this
maximal play. Because of the uniqueness of responses, the set of plays is also a strategy. As
mentioned at the beginning of this example, the strategy describes the identity function. ⌟

We hope that the above example explains some intuitions about how arenas describe types
and strategies describe functions. We now give a formal definition which is compositional:
we define arenas for the basic types 1 and A, and then we define operations on arenas that
correspond to the type constructors +, &, and ⊗. We begin with the basic types.

▶ Definition 5.6 (Arenas for 1 and A).
1. The arena for the type 1 is empty: there are no moves, the only play is the empty sequence.
2. The arena for type A has two moves, which must be played one after the other: first

player Environment makes a move called “request” that has no register operation, and
then player System responds with a move called “grant” that has register operation “read”.

In the above definition, we only described the behaviour of A when viewed as an output
type. To get the input type, where the players are swapped and read is swapped with write,
we will use duality, which is another operation on arenas. This operation is defined below,
together with other operations that correspond to the type constructors.

▶ Definition 5.7. Let A and B be arenas. We define the following arenas (see also Figure 1):
Ā This is called the dual arena of A. The moves and plays are the same as in A, except the

owners are swapped, and the “read” and “write” register operations are swapped.
A + B The moves in this arena are the disjoint union of the moves of A and B, with inherited

owners and register operations, plus three extra moves: “ask” owned by Environment, and
“left”, “right” owned by System. The plays are defined as follows. Player Environment
begins with an ask move, then System responds with a left or right move, and the remaining
sequence is a play in the arena A or B, depending on whether System chose left or right.

A&B The moves in this arena are the disjoint union of the moves of A and B, with inherited
owners and register operations, plus three extra moves: “acknowledge” owned by System,
and “left”, “right” owned by Environment. The plays are defined as follows. Environment
begins by choosing left or right, then System responds with an acknowledge move, and
the remaining sequence is a play in either A or B, depending on Environment’s choice.
(This construction differs slightly from the one from [2, Exercise 1.10] – this is because
we want to keep it analogous to the construction for A + B.)

A ⊗ B The moves in this arena are the disjoint union of the moves of A and B, with
inherited owners and register operations. A play in this arena is any shuffle of plays in
the two arenas A and B. (A shuffle of two words is any word obtained by interleaving
them, e.g. shuffles of “abc” and “123” include “a1b23c” and “12ab3c”). By Definition 5.6,
we require that the owners of the move alternate in the interleaved sequences. See [2, p.7].
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Equipped with the above definitions, we present our first attempt at assigning arenas to
types. In the second item of the following definition, we use the name library-less, because
our second and final definition of the arena for a function type, as presented in the next
section, will be equipped with an extra feature that will be called a library.

▶ Definition 5.8. Let X and Y be linear types.
The arena for X is defined by inductively applying the constructions from Definition 5.6
and Definition 5.7 according to the structure of the type.
The library-less arena for X → Y is defined to be (dual of arena of X) ⊗ (arena of Y ).

▶ Example 5.9. The library-less arena for the identity type A→ A is the same as the arena
that we explicitly defined in Example 5.5. It can be drawn as the following picture:

Env

Sys

Sys

Env

request output

request input

grant output
read

write
grant input

⊗ 

As discussed previously, our notion of arenas does not yet take into account some
structure on the atoms. This will be fixed in the next section, by modifying the second item
in Definition 5.8. On the other hand, the arenas from the first item, for linear types without
function types, are already in their final form.

In principle the construction from the second item in Definition 5.8 can be nested, and thus
used to assign arenas to higher-order types that can nest → with the other type constructors.
This is how it is usually done in linear logic. However, the construction that we will describe
in the next section will be less amenable to nesting, and will use it only to describe functions
between types that do not use →.

5.2 Arenas and strategies with constants and equality tests
In Section 5.1, we described arenas for functions that did not use the structure of the atoms,
i.e. constants and equality tests. We now show how these arenas can be extended to cover
this structure. The general idea is to equip the arenas with an extra part, which we call the
library, that describes the allowed operations on the atoms. (The library as we present it
here only contains functions for equality and constants, but in the proof of Theorem 6.2, we
will use a library that has other relations beyond equality. )

▶ Definition 5.10. The library arena and its parts are defined as follows (cf. Figure 2).
1. The constant choice arena is the following arena A+ 1 moves: first player System chooses

an atom, then player Environment plays move with register operation “write”.
2. The equality test arena is an arena which the plays are as follows:

a. first System plays a move with register operation “read”;
b. then Environment plays an move with no register operation;
c. then System plays a move with register operation “read”;
d. then Environment plays one of two moves, called = and ̸=, with no register operation.

3. The library arena is obtained by applying ⊗ to infinitely6 many copies of the constant
choice arena and infinitely many copies of the equality test arena.
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The constant choice arena:
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The equality test arena:
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Figure 2 Pictures of the library arenas. We use the convention that the register operations are
in red, and the names of the moves, which have no other role than to distinguish them, are in black.
Note that the first move in this arena is owned by System, and we assume in Definition 5.2 that the
first move is owned by Environment. This is because this arena, like all arenas in Definition 5.10, is
not intended to be a stand-alone arena, but only as part of the bigger arena from Definition 5.11
where the first move is indeed owned by Environment.

The library arena is infinite. Taking the tensor product of infinitely many copies of the
two arenas ensures that the library arena satisfies the following property, which corresponds
to the ! operation from linear logic:

library arena ≡ (constant choice arena)⊗ (equality test arena)⊗ (library arena). (1)

In the above, ≡ refers to isomorphism of arenas, which is defined in the natural way: this
is a bijection between the moves, which is consistent with the owners, register operations
and plays in the expected way. Another property is that the library arena is isomorphic to a
tensor product of itself:

library arena ≡ library arena⊗ library arena. (2)

We are now ready to give the final definition of arenas for functions between linear types,
which takes into account the structure of the atoms.

▶ Definition 5.11 (Function arena). For linear types X and Y , the arena of X → Y is

(library arena)⊗ (dual arena of X)⊗ (arena of Y ).

This completes the game semantics of linear types and functions between them. We do not
intend to give game semantics for higher-order types, such as functions on functions etc. As a
result, we will only be using the dual once, namely for the arena of the input type. Also, note
that the read/write operations will be used in a restricted way, as announced in Remark 5.3,

6 Observe that the shuffle operation from Definition 5.7 can also be used for infinite families of arenas.
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namely that the “read” moves will be owned by System and the “write” moves will be owned
by Environment. This is because the library arena has this property, the arena for A has
this property, and all operations on arenas that we have defined preserve this property.

As said before, the rest of the proof of Theorem 3.8 takes place in the technical appendix.

6 Beyond equality

So far, we have studied the case when the atoms are equipped with equality only. Consider
now a more general case: let A be any relational structure, i.e. any set equipped with relations
(but not functions). For example, we could use the rational numbers with their linear order.
Another example would be Presburger arithmetic, i.e. (N, +). Since we want to have relations
only, we think of addition as a ternary relation x + y = z. The construction from Section 3
of the single-use category can be generalized to this case; and not only is the definition of
the category generic, but the same is true for the proof that function spaces exist.

▶ Definition 6.1 (Single-use functions over a relational structure). Let A be a relational
structure. The single-use category over A is defined in the same way as in Definition 3.7,
except that the list of prime functions is extended with one prime function An → 1 + 1 for
every n-ary relation in the vocabulary of A. (Here, the power An uses ⊗.)

▶ Theorem 6.2. Consider a relational structure A, in which for every k ∈ {0, 1, . . .} there
are finitely many relations of arity k. Then the single-use category over A satisfies the weak
universal property stated in Theorem 3.8.

In the above statement, “weak” alludes to the non-uniqueness of currying; we could again get
a symmetric monoidal closed category by performing the quotient construction of Section 4.

The theorem is proved in the same way as Theorem 3.8. The assumption on the vocabulary
is used to ensure that in the corresponding game semantics (cf. Section 5), there are finitely
available moves in any given moment, because the vocabulary can only be queried up to the
maximal number of atoms in the input, due to the single-use restriction.

Note that this theorem can be applied to any relational structure, including undecidable
ones. Clearly, there must be some benefit from assuming that the structure has a decidable
first-order theory, which means that there is an algorithm which checks if a first-order
sentence is true in the structure. The benefit is that we can check if two morphisms are
equal, as expressed in the following theorem, whose assumption applies to structures such as
Presburger arithmetic, or the real field (R, +, ·,≤).

▶ Theorem 6.3. Consider a relational structure A, in which for every k ∈ {0, 1, . . .} there
are finitely many relations in the vocabulary that have arity k. If this structure has a decidable
first-order theory, then there is an algorithm for the following problem:
Input: Two morphisms, described by expressions using prime functions and combinators.
Question: Are they the same morphism?

7 Further topics

Two-way automata. Theorem 6.3 gives us a reasonable category of single-use functions over
a relational structure with a decidable first-order theory. However, the latter property is not
the only one needed to ensure that the category is appropriate to automata. If we want to
model automata and their decision procedures, we will also need to execute certain fixpoint
algorithms, as explained in [5]. In order to allow it, we assume that A is an oligomorphic (see

ICALP 2024



130:18 Function Spaces for Orbit-Finite Sets

[5, Definition 3.9]) structure. It is a standard assumption in the theory of sets with atoms,
used to ensure that the notion of orbit-finite set is meaningful. Examples of oligomorphic
structures include the atoms with equality only, the rational numbers with their linear order,
and the Rado graph. Non-examples include Presburger arithmetic and the real field.

▶ Theorem 7.1. Let A be an oligomorphic structure with a decidable first-order theory. Then
the emptiness problem is decidable for single-use deterministic two-way automata over A.

In the proof of this theorem, we show that the single-use category over an oligomorphic
structure A is traced with respect to the coproduct +, and use this to model deterministic
two-way automata over A. The idea that traced monoidal categories are a natural setting
for two-way automata comes from [14].

Orbit-finite dimensional vector spaces. An alternative solution for the problem of function
spaces – our central motivation in this paper – is to use vector spaces of orbit-finite dimension.
The technical tools for this were developed already in [8]; our contribution here is mainly
one of perspective, namely framing it as a symmetric monoidal closed category.

▶ Theorem 7.2. The category of orbit-finitely spanned vector spaces [8, Section VI] is
symmetric monoidal closed, with respect to the tensor product.

▶ Remark 7.3. A similar result was observed in [22, Theorem 3.8], but using the smaller
category of vector spaces that admit an orbit-finite basis.
An advantage of the vector space category is its simplicity, and the fact that it is “bigger” in
the following sense: The two solutions for function spaces discussed in this paper, namely the
single-use solution and the vector space solution, sit on both sides of the classical category of
orbit-finite sets, as witnessed by two faithful functors, one from the single-use category to
the orbit-finite category, and one from the orbit-finite category to the vector space category.
However, there are two limitations of the orbit-finitely spanned vector spaces.

First, the existence of function spaces is dependent on the choice of atoms. Theorem 7.2
works when the atoms have equality only, and it also works when the atoms are equipped
with a total order. This is because the dual spaces are orbit-finitely spanned in these cases,
as proved in [8, Corollary VI.5]. However, this is no longer the case for other choices of
atoms, such as the Rado graph, see [8, Example 9]. This is in contrast to the single-use
category, where the existence of function spaces is independent of the choice of atoms.

A second limitation is that unlike the single-use category (cf. Theorem 7.1), the vector
space category does not support two-way automata. This is because this category generalizes
the orbit-finite category (i.e. it admits a faithful functor from it), and in the orbit-finite
category emptiness is undecidable for deterministic two-way automata [17, Theorem 5.3].
This precludes the kind of traced construction that we did in the single-use category. This
issue appears already without atoms: the category of finite-dimensional vector spaces is not
traced with respect to the sum ⊕ of vector spaces.

Related work: categories and λ-calculus. There have been several works using category
theory to generalize classical operations on automata, such as the coalgebraic “generalized
powerset construction” [23]. The closest to the philosophy that this paper might be the
work of Colcombet and Petrişan [11]: it introduces a setting where automata over different
categories may be studied and compared (see e.g. [4] for applications). Within this setting,
Pradic and the second author have investigated some properties of automata over symmetric
monoidal closed categories [18, Sections 1.2.3 and 4.7–4.8].
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The latter emerged as part of their research on “implicit automata” [19, 18, 21], which is
about relating the expressive power of automata and typed λ-calculi. In [18, Chapter 4], a
monoidal closed category of single-use assignments on string-valued registers is built and used
to relate a register-based string transducer model to a λ-calculus with linear types. Indeed,
symmetric monoidal closed categories are famous for providing denotational semantics for
the linear λ-calculus. Similarly, our results here could serve to characterize the languages of
words with atoms studied by the first and third author in [9] via some typed λ-calculus.

Conversely, our Theorem 3.8 might also be provable by representing single-use functions
as λ-terms (or programs in some richly structured syntactic formalism) instead of strategies
over games. Indeed, it is a classical fact that a simple type is inhabited by finitely many
linear λ-terms up to β-conversion (when there are no primitive constants), and variations on
this fact have been used in the literature to relate automata and λ-calculus [19, 12].
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