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Abstract
In this article, we investigate the structure of the trees in the pushdown hierarchy, a hierarchy of
infinite graphs having a decidable MSO-theory. We show that a binary complete tree in the pushdown
hierarchy must contain at least two different subtrees which are isomorphic. We extend this property
to any tree with no leaves and with chains of unary vertices of bounded length. We provided two
applications of this result. A first application in formal language theory, gives a simple argument to
show that some languages are not deterministic higher-order indexed languages. A second application
in number theory shows that the real numbers defined by deterministic higher-order pushdown
automata are either rational or transcendental.
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1 Introduction

The pushdown hierarchy (also called the Caucal hierarchy) is a robust hierarchy of infinite
directed graphs for which monadic second-order logic (MSO) is decidable. These graphs
have a countable set of vertices but their edges and nodes are labeled and colored by finite
sets. Such infinite graphs with decidable MSO-theories play an important role in automated
program verification as they provide a framework in which the model-checking problem for
many relevant properties such as termination and safety is decidable. The robustness of the
pushdown hierarchy is witnessed by its numerous characterizations and closure properties
(we refer the reader to [21] for a survey).

A first characterization of the pushdown hierarchy is via graph transformations following
the original idea of Caucal [10]. Every graph in the pushdown hierarchy can be constructed
starting from a finite tree by combining two graph transformations that preserve the decidab-
ility of MSO-theories namely MSO-interpretations [12] and graph unfolding [13]. As shown
in Figure 1, the pushdown hierarchy consists of two intertwined hierarchies: one of classes
of trees pTreenqně0 and one of classes of graphs pGraphnqně0. The class Tree0 contains
all finite trees and for n ě 0, Graphn contains all graphs that can be MSO-interpreted
in a tree of Treen. The trees in Treen`1 are the unfoldings of the graphs in Graphn. In
particular, Graph0 contains all finite graphs, Tree1 contains the regular trees and the graphs
in Graph1 are the prefix-recognizable graphs [9]. This hierarchy is closed under most if not
all transformations known to preserve the decidability of MSO-theories [8]. It is in particular
closed under MSO-transductions [13] and the Muchnik’s iteration [22]. More recently, the
pushdown hierarchy was shown to be closed under MSO+Ufin-interpretations in [20].
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Figure 1 The construction of the pushdown hierarchy using MSO-interpretations and the unfolding
operation.

The graphs and trees in the pushdown hierarchy admit several alternative characterizations.
The graphs in Graphn are (up-to isomorphism) the transition graphs of higher-order pushdown
automata of order n (see [8]). Higher-order pushdown automata [16] are a generalization of
the standard model of pushdown automata which manipulates stacks of stacks at order 2,
stacks of stacks of stacks at order 3, ... The deterministic terms in Treen`1 are the solutions
of higher-order safe recursion schemes of order-n [10, 15].

These different characterizations make it easy to show that a graph belongs to the
pushdown hierarchy. It is rather more complicated to show that a graph does not belong
to the pushdown hierarchy. Still the question of characterizing the graphs in this hierarchy
has received a lot of attention. There are two main approaches. One approach is to work
with higher-order pushdown automata and to develop pumping lemmas for these automata
[5, 6, 18, 19]. A second approach is to focus on structural properties of the graphs and to
work by induction of the level in the hierarchy using graph transformations [1, 7]. The most
involded separation result, namely the separation between trees produced by safe and unsafe
recursion schemes was obtained with the first approach [19]. However this approach is much
more technically involved and arguably the technical results obtained are less likely to be
reusable. In this work, we follow the second approach.

Our starting point is a question asked to the first author by Wolfgang Thomas. He asked
whether the pushdown hierarchy contains irrational algebraic numbers such as

?
2. Meaning,

does there exists an infinite word (i.e., a unary tree) in the pushdown hierarchy that encodes
the expansion of

?
2 in some base ℓ ě 2? Sadly with this precise statement, the question

seems still far out of reach1. But the recent work of [3] shows that if we choose to represent
a real number in r0, 1s not by its expansion but by a particular tree encoding this expansion,
the trees associated with irrational algebraic numbers have strong structural properties: they
are deterministic, mostly-complete and all their subtrees are non-isomorphic. The trees
representing expansions of real numbers in r0, 1s are implicit in the work of [3] and generalize
the definition of automatic real numbers [4]. Indeed they coincide with a generalization of
automatic real numbers in which deterministic finite automata are replaced by deterministic
higher-order pushdown automata [11].

1 In this sense, the pushdown hierarchy is known to contain all the rational numbers and all the morphic
numbers (and hence all the automatic numbers) in r0, 1s. Indeed morphic sequences have been shown
to belong to Tree2 in [10, Proposition 3.2]. Hence the pushdown hierarchy contains expansions of
transcendental numbers (see [2]) but is not known to contain the expansions of any irrational algebraic
number.
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In Section 4 and Section 5, we show that any tree with no leaves and with chains of unary
vertices of bounded length in the pushdown hierarchy must contain two different isomorphic
subtrees. The main technical ingredient is a precise description of the MSO-interpretations
constructing a complete binary tree from a complete binary tree. In Section 6, we give two
applications of this result. First, we show how it can be used to show that certain languages
such as the language Lww “ tww | w P t0, 1u˚u cannot be accepted by any deterministic
higher-order pushdown automaton. Second, we show that a real number in r0, 1s represented
by a tree in the pushdown hierarchy is either rational or transcendental (i.e., not algebraic).
As the real numbers with a tree in Tree1 are the automatic reals numbers, the result was
proved for level 1 in [2]. It was also shown for level 2 in [3].

2 Preliminaries

Notations. Let Σ˚ denote the set of all words over the alphabet Σ. We write u Ď v if u is
a prefix of v and u Ĺ v if u is a strict-prefix of v. If Σ is equipped with a total order relation,
we denote by ălex the resulting lexicographic ordering on words over Σ.

Infinite graphs and trees. In this article, we consider graphs with countably many vertices
with labeled edges and colored vertices. Let Σ be a finite set of edge labels and Θ be a finite
set of vertex colors, a graph G labeled by Σ and colored by Θ is a tuple pV,E,Cq where V is
a countable set of vertices, E Ď V ˆ Σˆ V is a set of labeled edges, C Ď Θˆ V is the set of
colors. A graph G is deterministic if for all σ P Σ and all vertices u, v and v1, u σ

ÝÑ
G

v and

u
σ
ÝÑ

G
v1 then v “ v1.

A path π in a graph G from u to v is a sequence u0σ0u1 ¨ ¨ ¨σn´1un P V pΣV q˚ such that
u0 “ u, un “ v and pui, σi, ui`1q P E for i P r0, n ´ 1s. This path is labeled by the word
w “ σ0 ¨ ¨ ¨σn´1. We write u w

ÝÑ
G

v (or simply u
w
ÝÑ v if G is clear from the context) to

denote the existence of such a path. We extend this notation to a language L over Σ by
taking u L

ÝÑ v if and only if u w
ÝÑ v for some w P L. To improve readability, we write ÝÑ

instead of Σ
ÝÑ, ÝÑ˚ instead of Σ˚

ÝÑ and ÝÑ` instead of Σ`

ÝÑ.
For two graphs G1 and G2, we write G1 „ G2 to denote the existence of an isomorphism

between G1 and G2.
A graph T is a tree if there exists a vertex r called the root of T such that there exists a

unique path from the root to any vertex. Vertices in a tree are called nodes. A node v is a
child of a node u if u Σ

ÝÑ v. In this case, we say that u is the parent of v. A node v is a
descendant of u if u ÝÑ˚ v which we also denote by u ĎT v. The subtree of a tree T rooted
at a node u, denoted by T|u, is the tree obtained by restricting T to u and its descendants.

Every node in a deterministic tree is uniquely identified by the label of the unique path
from the root to this vertex. As a result, a deterministic tree T labeled by Σ and colored
by Θ is determined up-to isomorphism by a mapping from a prefix-closed subset of Σ˚ to
the subsets of Θ. When reasoning up to isomorphism, we will not distinguish between a
deterministic tree and the associated mapping. We always assume that Σ comes with a fixed
arbitrary order and hence that the nodes of a deterministic tree can be compared using the
lexicographic order.

A complete binary tree is a deterministic tree labeled by t0, 1u in which every node has
two children. The 0-child is called the left-child and the 1-child is called the right-child. For
a direction γ P tÒ,Ö,Œu, we say that v is the γ-successor of u, if v is the parent of u and

ICALP 2024



131:4 The Structure of Trees in the Pushdown Hierarchy

γ “Ò or if v is the left-child (resp. right-child) of u and γ “Ö (resp. γ “Œ). We say that v
is in direction γ relative to u, if the γ-successor of u is on the minimal path (ignoring the
orientations of the edges) from u to v.

Monadic-second order logic on graphs. We define monadic-second order logic (MSO) over
graphs with labeled edges and colored nodes as usual. We use lowercase letters x, y, z, . . . for
first order variables and uppercase letters X,Y, Z, . . . for second order variables. The atomic
formulas are x “ y, x P X, x σ

ÝÑ y and θpxq for σ an edge label and θ a color. MSO-formulas
are obtained by applying boolean operators (␣ and _) and existential quantifiers (D) over
both first and second order variables. To improve readability, we will freely use any definable
notion as syntactic sugar: @, ñ, X Ď Y , . . .

The notion of free variables is defined as usual. We write φpx1, . . . , xn, X1, . . . , Xmq

when the free variables of a formula φ are among x1, . . . , xn, X1, . . . , Xm. A closed formula
does not have any free variables. For a graph G and a formula φpx1, . . . , xn, X1, . . . , Xmq,
we write G |ù φru1, . . . , un, U1, . . . , Ums when the graph satisfies the formula if the free
variables x1, . . . , xn, X1, . . . , Xm are respectively interpreted as u1, . . . , un, U1, . . . , Um where
the ui’s are vertices and Ui’s are sets of vertices. The MSO-theory of a graph G is a set
of closed formulas satisfied by G. A vertex u of a graph G is MSO-definable in G if there
exists a formula φpxq such that u is the only vertex such that G |ù φrus. The notion of an
MSO-definable set of vertices is defined similarly.

Graph transformations. An MSO-interpretation I (on graphs) is given by a tuple of MSO-
formulas pδpxq, pφσpx, yqqσPΣ, pφθpxqqθPΘq where Σ and Θ are finite sets of labels and colors
respectively. An MSO-recoloring is a special case of MSO-interpretation which does not erase
any vertices (i.e., δpxq “ true) and preserves all edges (i.e., φσpx, yq “ x

σ
ÝÑ y for σ P Σ).

An MSO-transduction (see [12]) is the composition of a K-copying operation followed by
an MSO-interpretation. For a finite set of labels K “ tk1, . . . , knu, the K-copying operation
adds for every vertex u of the graph, fresh vertices u1, . . . , un as well as edges from u to ui

labeled by ki for each i P r1, ns.
The unfolding of a graph G from a vertex s is the tree denoted by UnfpG, sq whose

vertices consists of all paths in G starting from s and with an edge labeled by a from a path
π to a path π1 if π1 “ πat for some vertex t. Furthermore a path π, ending at a vertex t of
G, is colored in UnfpG, sq with the same colors as t in G.

3 The pushdown hierarchy

The pushdown hierarchy contains the (possibly infinite) graphs which can be constructed
using MSO-interpretations combined with the unfolding operation starting from a finite tree.
The pushdown hierarchy consists of two intertwined hierarchies of classes of graphs2: one
containing trees pTreenqnPN and one containing graphs pGraphnqnPN such that:

Tree0 is the class of all finite trees;
for n ě 0, Graphn is the class of all graphs G such that there exists an MSO-interpretation
I and a tree T P Treen with G „ IpT q;
for n ě 1, Treen is the class of trees such that there exists a graph G P Graphn´1 and a
vertex u P G such that T „ UnfpG, uq.

2 All the graphs we consider are labeled and colored by finite sets: only the set of vertices is infinite.
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As both MSO-interpretations and the unfolding (from an MSO-definable vertex) preserve
the decidability of MSO-theories [12, 13], it follows that all graphs in the pushdown hierarchy
have a decidable MSO-theory [8]. Our main contribution only uses the following closure
properties which follow from [8]:

▶ Theorem 1 ([8]). The following properties hold:
1. For n ě 0, for a deterministic tree T in Treen and an MSO-recoloring µ, the tree µpT q

belongs to Treen.
2. For n ě 0, the class Graphn is closed under MSO-transductions and under restriction

to reachable vertices from a given vertex (not necessarily MSO-definable) and Treen is
closed under taking subtrees.

3. For n ě 1, every graph G P Graphn is isomorphic to IpT q for some complete binary tree
T P Treen and some MSO-interpretation I. Furthermore, we can assume that for all
nodes s ‰ s1 of IpT q, s and s1 are incomparable for ĎT .

3.1 MSO-interpretations and tree-walking automata
By Property 1 of Theorem 1, every graph in Graphn can be MSO-interpreted in a complete
binary tree. In [7, 8], it is shown that MSO-interpretations applied to deterministic trees
can be described using only MSO-recolorings and tree walking automata. To simplify the
presentation, we tailor our definitions to complete binary trees (cf. Remark 4).

A tree-walking automaton on complete binary trees colored by Θ is a tuple A “

pQ, qA, F,∆q where Q is the finite set of states, qA P Q is the initial state, F Ď Q ˆ 2Θ is
the set of accepting conditions and ∆ Ď Q ˆ 2Θ ˆ tÒ,Ö,Œu ˆ Q is the set of transitions.
Intuitively, a transition pp, c, γ, qq expresses that if the automaton is in state p on a node u
colored by the colors of c, it can move in state q to the γ-successor of u.

A run of a tree-walking automaton A on a complete binary tree T starting from a node u0
in state q is a finite sequence q0u0q1u1 ¨ ¨ ¨ qnun P pQVT q

` with q0 “ q and for i P r0, n´ 1s,
there exists a transition δ “ pqi, T puiq, γ, qi`1q P ∆ with ui`1 the γ-successor of ui. A run is
accepting if pqn, T punqq belongs to F . A tree-walking automaton A accepts a pair of nodes
pu, vq if there exists an accepting run of A on T from the initial state qA starting at u and
ending in v.

On complete binary trees, tree-walking automata can accept any MSO-definable binary
relation provided that the trees are recolored with a suitable MSO-recoloring.

▶ Proposition 2 ([7, 8]). For every binary complete tree T and every MSO-formula φpx, yq,
there exists an MSO-recoloring µ and a tree-walking automaton Aφ which accepts on µpT q

the pairs of nodes pu, vq such that T |ù φru, vs.

In this article, we need a stronger result in the case when the MSO-formula φpx, yq

defines a functional relation (i.e., for each node u, there exists at most one node v such that
T |ù φru, vs). Under this restriction, we will show that the tree-walking automaton can be
chosen to be deterministic and non-backtracking on T .

A tree-walking automaton is said to be deterministic if for all state q and set of colors
c P 2Θ, pq, c, γ, pq P ∆ and pq, c, γ1, p1q P ∆ implies that γ “ γ1 and p “ p1. This notion of
determinism guarantees that there is at most one run starting from a given node in a given
state but it does not forbid the tree-walking automaton from visiting the same node twice.
A tree-walking automaton is said to be non-backtracking on T if none of its runs on T visits
the same node twice. In particular a non-backtracking automaton, when going from u to v,
will always follow the shortest path from u to v (ignoring the orientations of the edges).

ICALP 2024



131:6 The Structure of Trees in the Pushdown Hierarchy

▶ Proposition 3. For every complete binary tree T and every MSO-formula φpx, yq functional
on T , there exist an MSO-recoloring µ and a deterministic and non-backtracking tree-walking
automaton Aφ which accepts on µpT q the pairs of nodes pu, vq such that T |ù φru, vs.

Proof Sketch. Let A be the non-deterministic tree-walking automaton and µA be the MSO-
recoloring obtained for φpx, yq in Proposition 2. Our aim is to define a new coloring µB

that captures the functional behavior of A on T . For this we define, for every node u and
every state p of A, targetpu, pq to be the unique node v such that all accepting runs of A on
µApT q starting in state p at u end in v. If no such node v exists, targetpu, pq is undefined.
As A accepts a functional relation, if A accepts a pair pu, vq then for the initial state qA of
A, targetpqA, uq is defined and equal to v.

To define the coloring µB, we fix an arbitrary order on the states of A. For each state
p of A, we color a node u by the tuple pp, γ, qq if targetpu, pq is defined and equal to v, γ
is the direction in tÒ,Ö,Œu of v relative to u and q is the smallest state of A such that
targetpuγ , qq “ v with uγ the γ-successor of u. Such a state q must exists, as every run from
u to v must go through uγ . This coloring can be defined in MSO as µA is MSO-definable.

The deterministic and non-backtracking automaton B has the same states, initial state
and acceptance conditions as A. In a state p at a node u colored with a tuple pp, γ, qq, the
automaton moves in the direction γ to the state q. It is easy to show that B accepts pu, vq
on µBpT q if and only if A accepts pu, vq on µApT q which concludes the proof. ◀

▶ Remark 4. To ease the presentation, we only defined tree-walking automata on binary
complete trees but they can be defined to work on general deterministic trees and the results
of both Proposition 2 and Proposition 3 generalize to this setting.

As a spin-off result, we obtain a simple proof to an open question of [10, Question b]
which asks (when reformulated in the setting of this article) if all deterministic trees in
Treen can be obtained by replacing general MSO-interpretations by a restricted sub-class
called deterministic rational inverse mapping. A deterministic rational inverse mapping is
an MSO-interpretation in which edges are defined by deterministic tree-walking automata
working on deterministic trees (cf. Remark 4) and the colors are obtained by renaming or
erasing the existing colors. Only vertices that are source or target of an edge are kept (i.e.
δpxq :“ Dy,

Ž

σPΣ φσpx, yq _ φσpy, xq).
By a direct induction on the level of the pushdown hierarchy and using Proposition 3, we

obtain the following proposition.

▶ Proposition 5. Every deterministic tree in Treen is obtained by a n-fold application of a
deterministic inverse rational mapping followed by an unfolding starting with a finite tree.

4 Trees with no self-similarities in the pushdown hierarchy

A tree is said to have a self-similarity if it contains two different subtrees which are isomorphic.
The main contribution of this article is the following theorem.

▶ Theorem 6. Every complete binary tree in the pushdown hierarchy has self-similarities.

Trees with no self-similarities are called pure in this article. To prove Theorem 6, we
need to show that the pushdown hierarchy does not contain any pure binary complete tree.
Assume toward a contradiction that it does. Let n0 ě 0 denote the smallest level such that
either Graphn0 or Treen0 contain such a tree.
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Consider the case where Treen0 contains some pure complete binary tree Tpure. As
Tpure is infinite, we must have n0 ě 1 and by definition of Treen0 , the tree Tpure is (up-to
isomorphism) the unfolding of a graph G P Graphn0´1 from some vertex rG. By Property 2
of Theorem 1, we can assume w.l.o.g. that all the vertices of G are reachable from rG. As
all subtrees of the unfolding of G from rG are non-isomorphic, every vertex of G must be
reachable by exactly one path from rG. Indeed, if a node s was reachable by two different
paths π1 ‰ π2 from rG, then the subtrees rooted at π1 and at π2 in UnfpG, rGq would be
isomorphic. This implies that G is a tree. As every tree is isomorphic to its unfolding from its
root, the graph G must be isomorphic to Tpure. Hence G „ Tpure is a pure tree in Graphn0´1
which contradicts the definition of n0.

u0

c0

u1

c1
u2

c2

u5c5 u7

c7

1

1
0

a

u0

c0

u1 c1 u2

c2

u3 c3 u4

c4

u5 c5 u6 c6 u7

c7

1

1

1

0

0

0 1

Figure 2 A tree T with a distinguished set of nodes U “ tu0, u1, u2, u5, u7u (on the left) and the
induced tree TU (on the right). The chunk Cu2 is highlighted in orange.

It only remains to consider the case where Graphn0 contains a pure binary tree Tpure but
Treen0 does not contain any pure complete binary trees. By definition of Graphn0 and by
Property 3 of Theorem 1, there must exist a complete binary tree T and an MSO-interpretation
I such that Tpure is isomorphic to IpT q. We will show that if an MSO-interpretation is able
to produce a pure complete binary tree when applied to some complete binary tree T , then
the tree T must be a pure tree in disguise.

To formalize what we mean, we recall the notion of embedding in a tree which is illustrated
in Figure 2. A set of nodes U in a tree T which contains a unique minimal element induces a
tree denoted by TU . Intuitively this tree is obtained by restricting the tree T to the vertices
in U while preserving their colors and inheriting the ancestor relation from T . The label
of an edge pu, vq in TU is the label of the first edge in the unique path from u to v in T .
Remark that we present the notion in its most general form but we will mainly work with
embedding defining binary complete trees.

▶ Definition 7. An embedding in a tree T labeled by Σ is a set of nodes U which contains a
unique minimal element for the ancestor relation ĎT . This element is called the root of the
embedding. This embedding induces the tree TU whose nodes are the elements of U and such
that u x

ÝÑ v P TU if and only if u xw
ÝÑ v P T for some w P Σ˚ and there are no v1 P U such

that u Ĺ v1 Ĺ v. Moreover the nodes of U have the same colors in T and TU .

In Proposition 8, we show that, after applying a suitable MSO-recoloring to the tree T ,
the resulting tree embeds a pure complete binary tree. This is the main technical contribution
of this paper.

▶ Proposition 8. Let Tpure and T be two complete binary trees and let I be an MSO-
interpretation such that T “ IpT q. If Tpure is pure then there exists an MSO-recoloring µ
and an embedding SI MSO-definable in µpT q which induces a pure complete binary tree.

ICALP 2024



131:8 The Structure of Trees in the Pushdown Hierarchy

We defer the proof of this proposition to Section 5, to first show how it can be used to
conclude the proof of Theorem 6. By applying Proposition 8, we obtain an MSO-recoloring
µ and an embedding SI MSO-definable in µpT q which induces a pure binary complete tree.
The tree µpT q belongs to Treen0 by Property 1 of Theorem 1. To reach a contradiction, we
will show that the tree induced by SI in µpT q belongs to Treen0 .

▶ Proposition 9. Let n ě 0, let T be a deterministic tree in Treen and let U be an MSO-
definable embedding in T inducing a deterministic tree TU . The tree TU belongs to Treen.

Proof Sketch. For n “ 0, the result is immediate. Hence we assume that n ě 1 and
furthermore using the closure properties of Theorem 1, we can assume that the root of the
embedding is the root of the tree T . Thanks to Property 1 of Theorem 1, we can color the
nodes of U in T with a fresh color $ to obtain a tree T$ also in Treen. Consider the following
MSO-interpretation I that produces TU from T$: it only keeps the vertices colored by $ and
for x P Σ, it defines an x-labeled edge between two such vertices u and v if and only if v can
be reached from u by a path labeled by a word in xΣ˚ which does not visit any vertices
colored by $ (except u or v). Furthermore, I erases the color $ and preserves all other colors.
Clearly, the tree induced by U on T is isomorphic to IpT$q. By definition of Treen, the tree
T$ is the unfolding of some graph G P Graphn´1 from some vertex r. The key ingredient is
that because IpT$q is deterministic, the MSO-interpretation I commutes with the unfolding.
It follows that TU „ IpT$q „ UnfpIpGq, rq. Hence TU is isomorphic to the unfolding of the
graph IpGq in Graphn´1 and belongs to Treen. ◀

By Proposition 9, the tree induced by SI in µpT q belongs to Treen0 and by Proposition 8
it is pure which brings the contradiction and conclude the proof of Theorem 6.

Clearly, Theorem 6 does not hold for all trees in the pushdown hierarchy. For instance, the
pushdown hierarchy contains infinite unary trees corresponding to non-ultimately-periodic
infinite words3 which are therefore pure. However, Theorem 6 can be extended to any tree
that does not contain arbitrary long chains of unary vertices.

▶ Corollary 10. Every tree in the pushdown hierarchy with no leaves and in which the length
of all chains of unary vertices is bounded has self-similarities.

Remark that if we simply ask that there is no infinite chains of unary vertices, Corollary 10
no longer holds. It is possible to construct a pure binary tree in Graph2 in which all chains
of unary vertices are finite. As illustrated in Figure 3, an example of such a tree can
be obtained by starting with a copy of the complete binary tree and replacing each node
u “ u1 ¨ ¨ ¨un P t0, 1u` by the finite chain ‚ u1

ÝÑ ‚
u2
ÝÑ ‚ ¨ ¨ ¨

un
ÝÑ ‚.

5 Proof of Proposition 8

This section is devoted to proving Proposition 8. For the rest of the section, we fix a complete
binary tree T and an MSO-interpretation I such that IpT q is a pure complete binary tree.
Furthermore for each label x P t0, 1u, we fix a deterministic and non-backtracking tree-walking
automaton Ax with states in Qx and an MSO-recoloring µx such that Ax accepts the pair
pu, vq on µxpT q if and only if u x

ÝÑ v in IpT q. We assume Q0 and Q1 are disjoint and take
Q “ Q0 ZQ1.

3 For example, the unary trees representing the morphic words belong to Tree2 (see [10, Proposition 3.2]).
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(ε)

(1)

(0)

(01)

(00)

(010)

(011)

1
1

0 0
1

0 1

0 0 0

0

1
0 1 0

Figure 3 An example of a pure non-complete binary tree in Graph2. This tree has its edges
labeled by t0, 1u. It is obtained by replacing each node u “ u1 ¨ ¨ ¨un P t0, 1u

` of the complete binary
tree by a finite line of length |u| in which the i-th edge is labeled by ui. The corresponding node of
the complete binary tree is in green between brackets.

In Subsection 5.1, we define an MSO-definable embedding SI inducing in T a complete
binary tree. In Subsection 5.2, we define a MSO-recoloring µ of T . In Subsection 5.3, we
show that the binary complete tree induced by SI in µpT q is pure.

5.1 Definition of the embedding SI

Let us start by remarking that any embedding S in a tree T induces a partition of the nodes
of the tree T in regions, we call them chunks. A chunk of T is a set of nodes obtained by
removing a finite number of subtrees from a subtree of T . Hence a chunk C is described by
its boundary pu0, . . . , unq which is a sequence of nodes of T with u0 the root of the chunk
and the u1, . . . , un are descendants of u0 which are the pairwise incomparable roots of the
subtrees that are removed from T|u0 . In other terms, C “ T|u0z

Ť

iPr1,ns T|ui
. We call n the

degree of the chunk C.
To every node s in an embedding S, we associate the chunk Cs rooted at s defined by the

boundary ps, s1, . . . , snq where s1, . . . , sn are the children of s in the tree TS in lexicographical
order. This notion is illustrated in Figure 2. The chunks pCsqsPS form a partition of the
subtree of T rooted at rS , the root of the embedding S. For our purpose, it is more convenient
to obtain a partition of the whole tree T . Hence, we define CrS

by the boundary pε, s1, . . . , snq

instead of prS , s1, . . . , snq.
The content of a chunk C is the set of nodes kept by the interpretation I (i.e., C X IpT q).

We can leverage the fact that IpT q is a complete binary tree to show that for any chunk
with a finite content, the size of the content is bounded by a constant that only depends on
the degree of the chunk and on the interpretation I.

▶ Lemma 11. Under the assumptions of this section, for all m ě 0, there exists a constant
d ě 0 depending only on m and on the MSO-interpretation I such that for each chunk C of
degree m, if the content of C is finite, then the size of this content is bounded by d.

Proof. Let C be a chunk of degree m ě 0 with a boundary pu0, u1, . . . , umq and let d :“
2pm` 1qmaxp|Q0|, |Q1|q.

Assume toward a contradiction that C has a finite content U of size k ą d. As IpT q is a
tree, IpT q restricted to the content U of C is a forest F with k vertices and hence at most
k ´ 1 edges. As IpT q is a complete binary tree, there are at least 2k ´ pk ´ 1q “ k ` 1 edges
of IpT q starting in U and ending outside of C. By the pigeonhole principle, at least ℓ ą k`1

2
edges share the same label x P t0, 1u. Let pv1, w1q, . . . , pvl, wlq be an enumeration of these
edges. As vi belongs to C and wi does not, the accepting run of Ax on µxpT q for the pair
pvi, wiq must cross the boundary of C. By the pigeonhole principle, at least ℓ

m`1 of these
runs cross the boundary of C at the same ui0 with i0 P r0, ns. As ℓ

m`1 ą maxp|Q0|, |Q1|q,
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there exists two different runs (corresponding to two different edges) reaching ui0 in the
same state. This implies that these two different edges must have the same target which
contradicts the fact that IpT q is a tree. ◀

▶ Definition 12. The embedding SI is composed of all nodes u for which both their left and
right subtrees contain infinitely many nodes of IpT q.

Using Lemma 11, we can show that the content of the chunks associated with SI are
finite and hence bounded.

▶ Proposition 13. The set SI is an MSO-definable embedding in T defining a complete
binary tree. Moreover, for all s P SI , the content of the chunk Cs has size at most d where d
is a constant that only depends on I.

Proof Sketch. For a node u of T , we write Infpuq if there are infinitely many nodes of IpT q
below u.

We start by showing that for all node u satisfying Infpuq, there exist two incomparable
descendants v and v1 of u such that Infpvq and Infpv1q. Assume towards a contradiction
that it is not the case for some u P T . Let v1, v2, . . . be an enumeration of the descendants
v of u for which Infpvq holds. For all i ě 1, the content of the chunk Ci with boundary
pu, viq must be finite otherwise it would contain a descendant v of u satisfying Infpvq which
is incomparable with vi. By assumption, the vi’s belong to the same infinite branch and
hence T|u “

Ť

iě1 Ci. Therefore the size of the content of the Ci’s must be unbounded which
contradicts Lemma 11.

As the least common ancestor of v and v1 belongs to SI , we have shown that below
every node u satisfying Infpuq there exists an element of SI . It immediately follows that SI
is non-empty and that below each of the two children of an element of SI , there exists a
unique minimal element in SI (as SI is closed under least common ancestor). This shows
that SI induces a complete binary tree. As on deterministic trees the predicate Infpuq is
MSO-definable, the embedding SI is also MSO-definable.

Using Lemma 11, it only remains to show that content of every chunk Cs for s P SI is
finite. Toward a contradiction, assume that for some s P SI which is not the root of the
embedding, the chunk Cs with boundary ps, s0, s1q has an infinite content. There must exist
some s1 in Cs satisfying Infps1q and which is incomparable with both s0 and s1. By symmetry,
we can assume that s1 is in the left subtree of s. In this case, the least common ancestor of
s1 and s0 would belong to SI and would be strictly between s and s0 which would contradict
the definition of s0. The case of the chunk of root of the embedding is treated with similar
arguments. ◀

5.2 Definition of the MSO-recoloring µ of the nodes of the embedding
The MSO-recoloring µ will color each vertex s P SI with a tuple pFs, πs, ψsq where Fs is the
forest obtained by restricting IpT q to the chunk Cs and πs and ψs are two finite functions
describing how to reconnect the forest Fs to the other forests to obtain IpT q.

The forest Fs. For a node s P SI , let v1, . . . , vn with 0 ď n ď d, be an enumeration in
lexicographic order of the content of Cs. The nodes of the forest Fs are in r1, ns and for
x P t0, 1u, i x

ÝÑ j in Fs if and only if vi
x
ÝÑ vj in IpT q and for a color c, i is colored by c in

Fs if and only if vi is colored by c in IpT q.
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The partial function πs. The partial function πs provides information on the edges that
connect the forest Fs to the rest of IpT q. Consider a vertex i P r1, ns of Fs and a label
x P t0, 1u such that i has no outgoing x-labeled edge in Fs. Because IpT q is complete, there
is an edge vi

x
ÝÑ v in IpT q. The node v is outside of the chunk Cs and hence the unique run

of Ax accepting the pair pvi, vq on µxpT q must exit the chunk through one of its boundaries4

γ P troot, left, rightu in a state qγ P Qx. As Ax follows the minimal path from vi to v, it crosses
the boundary exactly once. The partial function πs : r1, ds ˆ t0, 1u Ñ troot, left, rightu ˆQ
associates pi, xq to pγ, qγq if the x-labeled edge outgoing from i is missing in Fs and is
undefined otherwise.

The partial function ψs. The partial function ψs provides information on the behavior
of the automata A0 and A1 when entering the chunk Cs from one of its boundaries. Let
γ P troot, left, rightu be a boundary symbol and let sγ be the corresponding node in the
boundary of Cs. The value of ψspγ, qq will provide information on the unique accepting run
ρ of Ax on µxpT q starting in state q at sγ (if it exists). If the run ρ enters Cs and ends
at a vertex vi of the content of Cs, then ψspγ, qq is defined to be i. If the run ρ enters Cs

and exits through a boundary γ ‰ γ1 P troot, left, rightu in some state q1, then ψspγ, qq is
defined to be pγ1, q1q. In all other cases, ψs is undefined. As a result ψs is a partial mapping
troot, left, rightu ˆQÑ r1, ds Y ptroot, left, rightu ˆQq.

▶ Lemma 14. The recoloring µ which colors every s P SI with the color pFs, πs, ψsq and
leave all other nodes uncolored is MSO-definable.

5.3 The tree induced by SI on µpT q is pure

We start by showing how IpT q can be reconstructed from the complete binary tree induced by
the embedding SI in µpT q. This tree, denoted E in the following, is essentially the mapping
associating to every node s P SI the tuple pFs, ψs, πsq.

Every node in IpT q corresponds to a unique node in some forest coloring of E. More
precisely, for a node u P IpT q, the address of u is the unique pair ps, iq such that u is the i-th
node in lexicographic order of the content of the chunk Cs. Let Addr “ tps, iq P SI ˆ r1, ds |
Epsq “ pFs, πs, ψsq and i P Fsu be the set of all valid addresses.

We now define a deterministic tree R whose nodes are the addresses in Addr and which
we will prove to be isomorphic to IpT q in Proposition 16.

In the tree R, an address ps, iq P Addr inherits the colors of the corresponding vertex
in Fs. Hence, we define Colorsps, iq to be tθ P Θ | Epsq “ pFs, πs, ψsq and pθ, iq P Fsu. To
define the edges of the tree R, we introduce, for each label x P t0, 1u, a function Targetx

which defines the target of all the x-labeled outgoing edges in R. To define Targetx, we need
two auxiliary functions Travel and Follow. These definitions are illustrated in Figure 4.

For ps, γq P SI ˆ troot, left, rightu, we define Travelps, γq to be equal to ps1, γ1q if upon
leaving Cs by the boundary γ, we enter Cs1 by its boundary γ1.

For all s P SI , γ P troot, left, rightu and q P Qx, Followps, γ, qq is recursively defined by
ps, jq if ψspγ, qq “ j P r1, ds and by Followps1, γ2, q1q if ψspγ, qq “ pγ

1, q1q and Travelps, γ1q “

ps1, γ2q. Intuitively, Followps, γ, qq gives the address of the end of the run of Ax starting in q
at the boundary γ of Cs.

4 If the boundary of Cs is ps, s0, s1q, then s correspond to root, s0 to left and s1 to right.
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r
Followpr, right, q1q
ψrpright, q1q “ pleft, pq

v ψvproot, pq “ 3

0

s
Followps, left, qq
ψspleft, qq “ proot, q1q

1

uπ1p2, 1q “ proot, qq

0
2

1

4 3

0

0 1

Target1pu, 2q

3

2 4

1

0 1

0

Followps, left, q1q

Figure 4 An example of the computation of the function Target. The red path represents the
successive recursive calls made when computing Target1pu, 2q “ pv, 3q. As there is no edge from
2 labeled by 1 in Fu, Target1pu, 2q calls Followps, left, qq, as Travelpu, rootq “ ps, leftq following the
function π1p2, 1q “ proot, qq. In turn, Followps, left, qq calls Followpr, right, q1

q as ψspleft, qq “ proot, qq

and Travelps, rootq “ pr, rightq. It then proceeds to call Followps, left, q1
q as before, which follows

ψvproot, pq “ 3 ending the run on the vertex 3 of the forest Fv.

For x P t0, 1u, Targetxps, iq is defined to be ps, jq if i x
ÝÑ j belongs to Fs otherwise, the

x-labeled outgoing edge from i is missing from the forest Fs and πspi, xq is defined and equal
to some pγ, qq P troot, left, rightu ˆQx and Targetxps, iq is taken to be Followps1, γ1, qq where
ps1, γ1q “ Travelps, γq.

▶ Lemma 15. For two addresses psu, iuq and psv, ivq P Addr respectively corresponding to
nodes u and v in IpT q, we have Targetxpsu, iuq “ psv, ivq if and only if u x

ÝÑ v in IpT q.
Furthermore, as the tree-walking automaton Ax is non-backtracking in T , for all s P SI such
that s Ď su and s Ď sv, the recursive calls to Follow made when computing Targetxpsu, iuq

will all stay below s.

From this lemma, it follows that the tree R is isomorphic to IpT q.

▶ Proposition 16. The deterministic binary tree R with nodes in Addr and defined by Colors,
Target0 and Target1 is isomorphic to IpT q.

We use this reconstruction of IpT q in E presented above to show that any self-similarity
in E would lead to a self-similarity in IpT q which is impossible by assumption.

▶ Proposition 17. Under the assumptions of this section, for the MSO-recoloring µ and the
MSO-definable embedding SI defined previously, the deterministic binary tree E induced by
SI on µpT q does not have any self-similarities.

Proof. Assume toward a contradiction that E has a self-similarity and let s1 ‰ s2 be two
nodes of E such that E|s1 „ E|s2 . Recall that the nodes of E are the elements of SI and
that the ancestor relation ĎE coincide with the ancestor relation ĎT of T on SI ˆ SI . In
the following, we say that an address pt, iq P Addr is below a node s of E if t is descendant
of s in E (or equivalently in T ).

▷ Claim 18. There exists an address pt, jq P Addr below s1 such that all the descendants of
pt, jq in the tree R of Proposition 16 have an address below s1.
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Proof. For a label x P t0, 1u, consider the set Xx of addresses ps, iq below s1 such that
Targetxps, iq is not below s1. By definition of Targetx, there exists γ P tleft, rightu such that
for all ps, iq P Xx, Targetxps, iq must be equal to Followps1, γ, qq for some q. By the pigeonhole
principle, Xx is of size at most |Qx| as otherwise we would have two addresses in Xx with
the same value of Targetx which would contradict the fact that R is a tree.

The set Y of addresses ps, iq having a descendant (in R) in the finite set X0 YX1 is itself
finite. Let k be the maximal depth of an s P E such that ps, iq P Y for some i. As s1 belongs
to SI , we have by definition of SI that there are infinitely many vertices of IpT q below s1
in T . Let Z be the corresponding set of addresses. Remark that all these addresses are
necessarily below s1 as if a node r P IpT q has an address ps, iq then s is the greatest ancestor
of r which belongs to SI . Hence as Z is infinite, it must contain an element pt, jq with t at
depth greater than k in T . By definition of the depth k, this implies that all descendants of
pt, jq in R are below s1. ◁

As E|s1 and E|s2 are isomorphic, there exists a (unique) bijection h that maps every node
s of E|s1 to the corresponding node hpsq in E|s2 . Let t1 “ hptq be the node corresponding
to t in E|s2 . In particular, t and t1 have the same color in R and hence pt1, jq is an address
in Addr. We claim that T1 “ R|pt,jq is isomorphic to T2 “ R|pt1,jq which will bring the
contradiction as R „ IpT q is assumed to be pure. To see this, consider two descendants
pt1, j1q and pt2, j2q of pt, jq such that pt1, j1q

x
ÝÑ

R
pt2, j2q and hence Targetxpt1, j1q “ pt2, j2q.

By definition of pt, jq, we have that both t1 and t2 are below s1. The recursive calls to Follow
made when computing Targetxpt1, j1q stay inside the subtree E|s1 (cf. Lemma 15). As E|s2

is isomorphic to E|s1 , we have that Targetxphpt1q, j1q “ phpt2q, j2q. This implies our claim
and conclude the proof. ◀

6 Applications

In this section, we leverage the well-known connection between the deterministic trees in the
pushdown hierarchy and the trees defined by deterministic higher-order pushdown automata
(presented in Subsection 6.1) to give two applications of our main results: one in formal
language theory in Subsection 6.2 and one in number theory in Subsection 6.3.

6.1 Higher-order pushdown automata
Higher-order pushdown automata are a generalization of the standard model of pushdown
automata. To simplify the presentation, we only define formally higher-order pushdown
automata of order 2. We refer the reader to [15] for a definition at all orders.

An order-2 pushdown automaton works on a stack of stacks, called an order-2 stack. We
start by defining order-1 and order-2 stacks and the operation to manipulate them. Let Γ be
a stack alphabet and let K R Γ be a distinguished bottom of stack symbol. An order-1 stack is
a sequence Kγ1 . . . γn P KΓ˚, denoted by r γ1 . . . γn s1. The symbol γn is the top-most symbol
of the stack and r s1 is called the empty order-1 stack. An order-2 stack is a non-empty
sequence s1, . . . , sn of order-1 stacks denoted by r s1, . . . , sn s2. The order-1 stack sn is the
top-most order-1 stack and r r s1 s2 is the empty order-2 stack.

We now define operations on order-2 stacks. For every symbol γ P Γ, the operation pushγ

pushes the symbol γ on the top-most order-1 stack (i.e., pushγpr s1, . . . , r γ1, . . . , γm s1 s2q “

r s1, . . . , r γ1, . . . , γm, γ s1 s2). The operation pop1 removes the top-most symbol of the top-
most order-1 stack provided that m ě 1 (i.e., pop1pr s1, . . . , r γ1, . . . , γm s1 s2q is undefined if
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m “ 0 and is equal to r s1, . . . , r γ1, . . . , γm´1 s1 s2 if m ě 1). The operation copy2 copies the
top-most order-1 stack (i.e., copy2pr s1, . . . , sn s2q “ r s1, . . . , sn, sn s2). Finally, the operation
pop2 removes the top-most order-1 stack, if the order-2 stack is not reduced to one order-1
stack (i.e., pop2pr s1, . . . , sn s2q “ r s1, . . . , sn´1 s2).

An order-2 pushdown automaton P (with ε-transitions) is defined by a tuple pQ, q0,Σ,∆q
where Q is a finite set of states, q0 P Q is the initial state, Σ is a finite set of input symbols,
∆ is the set of transitions of the form pp, γ, σ, op, qq with p, q P Q, γ P ΓY tKu, σ P ΣY tεu
and op an operation in tpop1,pushγ ,pop2, copy2u. We furthermore assume that states of P
can be partitioned into QΣ ZQε such that states in QΣ (resp. in Qε) are only the source of
transitions labeled by Σ (resp. labeled by ε). The automaton is said to be deterministic if
for all q P Q, γ P ΓY tKu and σ P ΣY tεu, there exists at most one transition in ∆ starting
with pq, γ, σq and if there exists a transition starting with pq, γq labeled by ε then it is the
only transition starting with pq, γq.

A configuration of an order-2 pushdown automaton is a pair pq, sq with q P Q and s

an order-2 stack. For σ P Σ Y tεu, the automaton P induces a relation σ
ÝÑ

P
between the

configurations of P defined by: pp, sq σ
ÝÑ

P
pq, s1q if there exists a transition pp, γ, σ, op, qq with

s1 “ oppsq and γ is the top-most symbol of the top-most order-1 stack of s. From these
relations, we can define the relation w

ùñ
P

for each w P Σ˚ in the usual way. If the automaton
P is deterministic, we define for all w P Σ˚, δP pwq to be the unique configuration pq, sq (if it
exists) such that pq0, r r s1 s2q

w
ùñ

P
pq, sq with s a stack and q P QΣ.

If we fix a set F Ď QΣ of final states, the automaton P accepts the language LpP q
of words over Σ defined by LpP q :“ tw P Σ˚ | pq0, r r s1 s2q

w
ùñ

P
pq, sq ^ q P F u. Figure 5

gives an example of a deterministic order-2 pushdown automaton accepting the language
t1n0n1n | n ě 1u.

If we fix a finite set Θ of vertex colors and a mapping Col : QΣ Ñ 2Θ, a deterministic
order-2 pushdown automaton P defines a deterministic tree T pP q with edges labeled by
Σ and with nodes colored by Θ. This tree is given by the partial function TP from Σ˚ to
2Θ such that for all w P Σ˚, TP pwq “ Colpqq if δP pwq is defined and equal to pq, sq and is
undefined otherwise.

The trees defined in this way are the deterministic trees in the pushdown hierarchy.

▶ Theorem 19 ([10, 15]). The deterministic trees in Treen are the trees defined by determ-
inistic higher-order pushdown automata of order n´ 1.

6.2 Deterministic vs non-deterministic higher-order pushdown automata
Let Σ be a finite alphabet. For a language L Ď Σ˚ and a word w P Σ˚, recall that the
left-quotient of L by w, denoted by w´1L, is the set w´1L :“ tu P Σ˚ | wu P Lu. We can
leverage Theorem 19 to show that if all the left-quotients of a language are different then
this language cannot be accepted by any deterministic higher-order pushdown automaton.

▶ Theorem 20. Let Σ be a finite alphabet with at least two symbols and L be a language
over Σ. If for all w1 ‰ w2 P Σ˚, we have w´1

1 L ‰ w´1
2 L, the language L cannot be accepted

by a deterministic higher-order pushdown automaton of any order. In particular, this is the
case for the languages: tww | w P Σ˚u, tw | w a palindrome in Σ˚u and twfp|w|q | w P Σ˚u

for f : NÑ N strictly increasing.

Proof Sketch. Let Σ be a finite alphabet with a least two symbols and L be a language over
Σ. Assume that for all w1 ‰ w2 P Σ˚, w´1

1 L ‰ w´1
2 L.
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q0 q1

K, 1,pushY

X|Y, 1,pushX

qε

X|Y, 0, copy1

q2

X|Y, ε, pop1

X, 0,pop1

q3

Y, 0,pop2

X, 1,pop1

q4

Y, 1,pop1

Figure 5 A deterministic higher-order pushdown automaton of order-2 recognizing the lan-
guage t1n0n1n

| n ě 1u with q0 its initial state and q4 its final state. Note that the loop on the
state q1 labeled by X|Y, 1, pushX is actually depicting two transitions: pq1, X, 1, pushX , q1q and
pq1, Y, 1, pushX , q1q and similarly for the transitions going from q1 to qε and from qε to q2. For
example, the accepting run for the word 110011 is the following pq0, r r s1 s2q

1
ÝÑ pq1, r rY s1 s2q

1
ÝÑ

pq1, r rY X s1 s2q
0

ÝÑ pqε, r rY X s1rY X s1 s2q
ε

ÝÑ pq2, r rY X s1rY s1 s2q
0

ÝÑ pq3, r rY X s1 s2q
1

ÝÑ

pq3, r rY s1 s2q
1

ÝÑ pq4, r r s1 s2q.

Consider the deterministic complete tree TL : Σ˚ Ñ t0, 1u labeled by Σ and colored
by t0, 1u defined by TLpwq “ 1 if and only if w P L. By Theorem 19, TL belongs to the
pushdown hierarchy if and only if L is accepted by a deterministic higher-order pushdown
automaton of some order. The assumption of the language L is equivalent to requiring all the
subtrees of TL to be non-isomorphic. Hence TL does not belong to the pushdown hierarchy
by Corollary 10 and our claim follows. ◀

We remark that the language tw | w a palindrome in Σ˚u is accepted by a non-determinis-
tic pushdown automaton, the language tww | w P Σ˚u is accepted by a non-deterministic
order-2 pushdown automaton and tw|w| | w P Σ˚u is accepted by a non-deterministic order-3
pushdown automaton.

6.3 Real numbers defined by deterministic higher-order pushdown
automata

We introduce a generalization of the notion of automatic sequence [4] by replacing the
deterministic finite automata used to generate automatic sequences by deterministic higher-
order pushdown automata. This generalization follows an approach initiated in [3, 11] and is
explicitely mentioned in the conclusion of [11].

Recall that an automatic sequence in base b ě 2 is an infinite sequence λ1λ2 ¨ ¨ ¨ P Λω which
is defined using a deterministic finite automaton A over the alphabet Σb :“ t0, 1, . . . , b´ 1u.
For all i ě 1, the automaton outputs the symbol λi after having read the decomposition xiyb
of i in base b. For the automaton A to output symbols in Λ, we simply associate a symbol in
Λ to every state of A using a mapping Output : QÑ Λ.

Similarly, a deterministic order-k pushdown automaton P over Σb :“ t0, . . . , b ´ 1u
equipped with an output function Output : QΣ Ñ Λ defines a sequence λ1λ2 ¨ ¨ ¨Λω if for
all i ě 1, δP pxiybq “ pq, sq with Outputpqq “ λi. If such an automaton exists, the sequence
λ1λ2 ¨ ¨ ¨ P Λω is said to be automatic of order k in base b.

For two bases ℓ and b ě 2, a real number in r0, 1s is said to be pℓ, bq-automatic of order-k
if it admits an expansion 0.α1α2 ¨ ¨ ¨ in base ℓ and the sequence α1α2 ¨ ¨ ¨ P t0, ℓ ´ 1uω is
automatic of order-k in base b.

For instance, consider the real number α whose binary expansion is 0.α1α2 ¨ ¨ ¨ with
αm “ 1 if m “ 23n ´ 22n ` 2n ´ 1 for some n ě 1 and αm “ 0 otherwise. This number
α “

ř

ně1 2´23n
`22n

´2n
`1 is p2, 2q-automatic of order-2. To see this, remark that for all n ě 1,
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the binary decomposition of 23n ´ 22n ` 2n ´ 1 is 1n0n1n. Hence an order-2 deterministic
pushdown automaton describing the sequence α1α2 . . . can be obtained by making the
deterministic order-2 pushdown automaton presented in Figure 5 complete.

An alternative definition of pℓ, bq-automatic numbers of order-k can be achieved by
considering what we call the pℓ, bq-tree of the real number. For a real number α with
a presentation 0.α1α2 ¨ ¨ ¨ in base ℓ ě 2, we can associate its pℓ, bq-tree Tα which is the
deterministic tree whose edges are labeled by t0, . . . , b´ 1u and whose nodes are colored by
a unique color in t0, . . . , ℓ´ 1u. The domain of the tree Tα is tεu Y r1, ℓ´ 1sr0, ℓ´ 1s˚, for
all i ě 1, Tαpxiybq “ αi and by convention, Tαpεq is taken to be 0. Thanks to Theorem 19, a
real number α is pℓ, bq-automatic of order k if and only if it admits an pℓ, bq-tree in Treek`1.

The notion of pℓ, bq-tree is implicit in the work of [3] where the authors use it to give a
sufficient condition for a irrational number to be transcendental.

▶ Theorem 21 ([3]). Let ℓ ě 2, b ě 2, 0 ď α ď 1 a real number and let Tα be an pℓ, bq-tree
for α. If Tα has self-similarities then α is either rational or transcendental.

By Corollary 10, it immediately follows that:

▶ Corollary 22. For all ℓ ě 2 and all b ě 2, the pℓ, bq-automatic real number of order k are
either rational or transcendental.

7 Conclusion

In this article, we have shown that every tree in the pushdown hierarchy with no leaves
and with chains of unary vertices of bounded length must contain self-similarities. This in
particular implies that the trees produced by safe recursion schemes have this property. It is
an ongoing work to generalize this property to general unsafe recursion schemes [17]. This
would in particular prove that collapsible pushdown automata, a generalization of higher-order
pushdown automata cannot be used to generate irrational algebraic numbers [14].
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