
Integer Linear-Exponential Programming in NP
by Quantifier Elimination
Dmitry Chistikov1 #

Centre for Discrete Mathematics and its Applications (DIMAP) &
Department of Computer Science, University of Warwick, Coventry, UK

Alessio Mansutti #

IMDEA Software Institute, Madrid, Spain

Mikhail R. Starchak #

St. Petersburg State University, Russia

Abstract
This paper provides an NP procedure that decides whether a linear-exponential system of constraints
has an integer solution. Linear-exponential systems extend standard integer linear programs with
exponential terms 2x and remainder terms (x mod 2y). Our result implies that the existential theory
of the structure (N, 0, 1, +, 2(·), V2(·, ·), ≤) has an NP-complete satisfiability problem, thus improving
upon a recent ExpSpace upper bound. This theory extends the existential fragment of Presburger
arithmetic with the exponentiation function x 7→ 2x and the binary predicate V2(x, y) that is true
whenever y ≥ 1 is the largest power of 2 dividing x.

Our procedure for solving linear-exponential systems uses the method of quantifier elimination.
As a by-product, we modify the classical Gaussian variable elimination into a non-deterministic
polynomial-time procedure for integer linear programming (or: existential Presburger arithmetic).

2012 ACM Subject Classification Computing methodologies → Symbolic and algebraic algorithms;
Theory of computation → Logic

Keywords and phrases decision procedures, integer programming, quantifier elimination

Digital Object Identifier 10.4230/LIPIcs.ICALP.2024.132

Category Track B: Automata, Logic, Semantics, and Theory of Programming

Funding Dmitry Chistikov: Supported in part by the Engineering and Physical Sciences Research
Council [EP/X03027X/1].
Alessio Mansutti: funded by the Madrid Regional Government (César Nombela grant 2023-T1/COM-
29001), and by MCIN/AEI/10.13039/501100011033/FEDER, EU (grant PID2022-138072OB-I00).
Mikhail R. Starchak: Supported by the Russian Science Foundation, project 23-71-01041.

1 Introduction

Integer (linear) programming is the problem of deciding whether a system of linear inequalities
has a solution over the integers (Z). It is a textbook fact that this problem is NP-complete;
however, proof of membership in NP is not trivial. It is established [3, 27] by showing that,
if a given system has a solution over Z, then it also has a small solution. The latter means
that the bit size of all components can be bounded from above by a polynomial in the bit
size of the system. Integer programming is an important language that can encode many
combinatorial problems and constraints from multiple application domains; see, e.g., [20, 32].

1 During the work on this paper, DC was a visitor to the Max Planck Institute for Software Systems
(MPI-SWS), Kaiserslautern and Saarbrücken, Germany, a visiting fellow at St Catherine’s College and
a visitor to the Department of Computer Science at the University of Oxford, United Kingdom.

EA
T

C
S

© Dmitry Chistikov, Alessio Mansutti, and Mikhail R. Starchak;
licensed under Creative Commons License CC-BY 4.0

51st International Colloquium on Automata, Languages, and Programming (ICALP 2024).
Editors: Karl Bringmann, Martin Grohe, Gabriele Puppis, and Ola Svensson;
Article No. 132; pp. 132:1–132:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:d.chistikov@warwick.ac.uk
https://orcid.org/0000-0001-9055-918X
mailto:alessio.mansutti@imdea.org
https://orcid.org/0000-0002-1104-7299
mailto:m.starchak@spbu.ru
https://orcid.org/0000-0002-2288-9483
https://doi.org/10.4230/LIPIcs.ICALP.2024.132
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

132:2 Integer Linear-Exponential Programming in NP by Quantifier Elimination

In this paper we consider more general systems of constraints, which may contain not
only linear inequalities (as in integer programming) but also constraints of the form y = 2x

(exponentiation base 2) and z = (x mod 2y) (remainder modulo powers of 2). Equivalently,
and embedding both new operations into a uniform syntax, we look at a conjunction of
inequalities of the form∑n

i=1

(
ai · xi + bi · 2xi +

∑n

j=1
ci,j · (xi mod 2xj)

)
+ d ≤ 0 , (1)

referred to as an (integer) linear-exponential system. In fact, the linear-exponential systems
that we consider can also feature equalities = and strict inequalities < .2

Observe that a linear-exponential system of the form x1 = 1 ∧
∧n

i=1(xi+1 = 2xi) states
that xn+1 is the tower of 2s of height n. This number is huge, and makes proving an
analogue of the small solution property described above a hopeless task in our setting. This
obstacle was recently shown avoidable [11], however, and an exponential-space procedure for
linear-exponential programs was found, relying on automata-theoretic methods. Our main
result is that, in fact, the problem belongs to NP.

▶ Theorem 1. Deciding whether a linear-exponential system over Z has a solution is in NP.

We highlight that the choice of the base 2 for the exponentials is for the convenience of
exposition: our result holds for any positive integer base given in binary as part of the input.

As an example showcasing the power of integer linear-exponential systems, consider
computation of discrete logarithm base 2: given non-negative integers m, r ∈ N, producing
an x ∈ N such that 2x − r is divisible by m. As sketched in [14], this problem is reducible to
checking feasibility (existence of solutions) of at most logm linear-exponential systems in two
variables, by a binary search for a suitable exponent x. Hence, improving Theorem 1 from
NP to PTime for the case of linear-exponential systems with a fixed number of variables
would require a major breakthrough in number theory. In contrast, under this restriction,
feasibility of standard integer linear programs can be determined in PTime [19].

For the authors of this paper, the main motivation for looking at linear-exponential systems
stems from logic. Consider the first-order theory of the structure (N, 0, 1,+, 2(·), V2(·, ·),≤),
which we refer to as the Büchi–Semenov arithmetic. In this structure, the signature (0, 1,+,≤)
of linear arithmetic is extended with the function symbol 2(·), interpreted as the function
x 7→ 2x, and the binary predicate symbol V2, interpreted as {(x, y) ∈ N×N : y is the largest
power of 2 that divides x}. Importantly, the predicate V2 can be replaced in this definition
with the function x mod 2y, because the two are mutually expressible:

V2(x, y) ⇐⇒ ∃v
(
2 · y = 2v ∧ 2 · (x mod 2v) = 2v

)
,

(x mod 2y) = z ⇐⇒ z ≤ 2y − 1 ∧
(
x = z ∨ ∃u (V2(x− z, 2u) ∧ 2y ≤ 2u)

)
.

Above, the subtraction symbol can be expressed in the theory in the obvious way (perhaps
with the help of an auxiliary existential quantifier for expressing x− z).

Büchi–Semenov arithmetic subsumes logical theories known as Büchi arithmetic and
Semenov arithmetic; see Section 2. As a consequence of Theorem 1, we show:

▶ Theorem 2. The satisfiability problem of existential Büchi–Semenov arithmetic is in NP.

2 While equalities are considered for convenience only (they can be encoded with a pair of inequalities ≤),
the addition of < is of interest. Indeed, differently from standard integer programming, one cannot
define < in terms of ≤, since 2y is not an integer for y < 0. Observe that (x mod 2y) = 0 when y < 0,
because over the reals (a mod m) = a − m

⌊
a
m

⌋
, where ⌊.⌋ is the floor function.

D. Chistikov, A. Mansutti, and M. R. Starchak 132:3

Theorems 1 and 2 improve upon several results in the literature. The most recent
such result is the exponential-space procedure [11] already mentioned above. In 2023, two
elementary decision procedures were developed concurrently and independently for integer
linear programs with exponentiation constraints (y = 2x), or equivalently for the existential
fragment of Semenov arithmetic: they run in non-deterministic exponential time [2] and in
triply exponential time [41], respectively. Finally, another result subsumed by Theorem 2 is
the membership in NP for the existential fragment of Büchi arithmetic [13].

Theorem 1 is established by designing a non-deterministic polynomial-time decision
procedure, which, unlike those in papers [11, 13] but similarly to [2, 41], avoids automata-
theoretic methods and instead relies on quantifier elimination. This is a powerful method
(see, e.g., [9] as well as Section 2) that can be seen as a bridge between logic and integer
programming. Presburger [30] used it to show decidability of linear integer arithmetic
(and Tarski for real arithmetic with addition and multiplication). For systems of linear
equations, quantifier elimination is essentially Gaussian elimination. As a little stepping
stone, which was in fact one of the springboards for our paper, we extend the PTime integer
Gaussian elimination procedure by Bareiss [1, 39] into an NP procedure for solving systems
of inequalities over Z (thus re-proving membership of integer linear programming in NP).

A look ahead. The following Section 2 recalls some relevant related work on logical theories
of arithmetic. At the end of the paper (Section 9) this material is complemented by a
discussion of future research directions, along with several more key references.

The NP procedure for integer programming is given as Algorithm 1 in Section 4. In this
extended abstract, we do not provide a proof of correctness or analysis of the running time,
but instead compare the algorithm with the classic Gauss–Jordan variable elimination and
with Bareiss’ method for systems of equations (that is, equalities). Necessary definitions and
background information are provided in the Preliminaries (Section 3).

Our core result is an NP procedure for solving linear-exponential systems over N. Its
pseudocode is split into Algorithms 2–4. These are presented in the same imperative
style with non-deterministic branching as Algorithm 1, and in fact Algorithm 3 relies
on Algorithm 1. Section 5 provides a high-level overview of all three algorithms together. To
this end, we introduce several new auxiliary concepts: quotient systems and quotient terms,
delayed substitution, and primitive linear-exponential systems. After this, technical details
of Algorithms 2–4 are given. Section 6 sketches key ideas behind the correctness argument,
and the text within this section is thus to be read alongside the pseudocode of Algorithms.
An overview of the analysis of the worst-case running time is presented in Section 7. The
basic definitions are again those from Preliminaries, and of particular relevance are the
subtleties of the action of term substitutions.

Building on the core procedure, in Section 8 we show how to solve in NP linear-exponential
systems not only over N but also over Z (Theorem 1) and how to decide Büchi–Semenov
arithmetic in NP (Theorem 2). The modifications to this procedure that enable proving
both results for a different integer base b > 2 for the exponentials are given in Appendix A.

2 Arithmetic theories of Büchi, Semenov, and Presburger

In this section, we review results on arithmetic theories that are the most relevant to our study.
Büchi arithmetic is the first-order theory of the structure (N, 0, 1,+, V2(·, ·),≤). By the

celebrated Büchi–Bruyère theorem [4, 5], a set S ⊆ Nd is definable in (N, 0, 1,+, V2(·, ·),≤)
if and only if the representation of S as a language over the alphabet {0, 1}d is recognisable

ICALP 2024

132:4 Integer Linear-Exponential Programming in NP by Quantifier Elimination

by a deterministic finite automaton (DFA). The theorem is effective, and implies that the
satisfiability problem for Büchi arithmetic is in Tower (in fact, Tower-complete) [31, 36].
The situation is different for the existential fragment of this theory. The satisfiability problem
is now NP-complete [13], but existential formulae are less expressive [15]. In particular,
this fragment fails to capture the binary language {10, 01}∗. Decision procedures for Büchi
arithmetic have been successfully implemented and used to automatically prove many results
in combinatorics on words and number theory [35].

Semenov arithmetic is the first-order theory of the structure (N, 0, 1,+, 2(·),≤). Its
decidability follows from the classical work of Semenov on sparse predicates [33, 34], and
an explicit decision procedure was given by Cherlin and Point [6, 28]. Similarly to Büchi
arithmetic, Semenov arithmetic is Tower-complete [8, 29]; however, its existential fragment
has only been known to be in NExpTime [2]. The paper [41] provides applications of this
fragment to solving systems of string constraints with string-to-integer conversion functions.

Büchi–Semenov arithmetic is a natural combination of these two theories. Differently from
Büchi and Semenov arithmetics, the ∃∗∀∗-fragment of this logic is undecidable [6]. In view of
this, the recent result showing that the satisfiability problem of existential Büchi–Semenov
arithmetic is in ExpSpace [11] is surprising. The proof technique, moreover, establishes the
membership in ExpSpace of the extension of existential Büchi–Semenov arithmetic with
arbitrary regular predicates given on input as DFAs. Since this extension can express the
intersection non-emptiness problem for DFAs, its satisfiability problem is PSpace-hard [22].
The decision procedure of [11] was applied to give an algorithm for solving real-world instances
of word equations with length constraints.

Both first-order theories of the structures (N, 0, 1,+,≤) and (Z, 0, 1,+,≤) are usually
referred to as Presburger arithmetic, because the decision problems for these theories are
logspace inter-reducible, meaning that each structure can be interpreted in the other. The
procedures that we propose in this paper build upon a version of the quantifier-elimination
procedure for the first-order theory of the structure (Z, 0, 1,+,≤). Standard procedures for
this theory [9, 26, 38] are known to be suboptimal when applied to the existential fragment:
throughout these procedures, the bit size of the numbers in the formulae grow exponentially
faster than in, e.g., geometric procedures for the theory [7]. A remedy to this well-known issue
was proposed by Weispfenning [39, Corollary 4.3]. We develop his observation in Section 4.

3 Preliminaries

We usually write a, b, c, . . . for integers, x, y, z, . . . for integer variables, and a, b, c, . . . and
x,y, z, . . . for vectors of those. By x \ y we denote the vector obtained by removing the
variable y from x. We denote linear-exponential systems and logical formulae with the letters
φ, χ, ψ, . . . , and write φ(x) when the (free) variables of φ are among x.

For a ∈ R, we write |a|, ⌈a⌉, and log a for the absolute value, ceiling, and (if a > 0)
the binary logarithm of a. All numbers encountered by our algorithm are encoded in
binary; note that n ∈ N can be represented using ⌈log(n+ 1)⌉ bits. For n,m ∈ Z, denote
[n,m] := {n, n+ 1, . . . ,m}. The set N of non-negative integers contains 0.

Terms. As in Equation (1), a (linear-exponential) term is an expression of the form∑n

i=1

(
ai · xi + bi · 2xi +

∑n

j=1
ci,j · (xi mod 2xj)

)
+ d, (2)

where ai, bi, ci,j ∈ Z are the coefficients of the term and d ∈ Z is its constant. If all bi and ci,j

are zero then the term is said to be linear. We denote terms by the letters ρ, σ, τ, . . . , and
write τ(x) if all variables of the term τ are in x. For a term τ in Equation (2), its 1-norm is
∥τ∥1 :=

∑n
i=1(|ai|+ |bi|+

∑n
j=1 |ci,j |) + |d|.

D. Chistikov, A. Mansutti, and M. R. Starchak 132:5

We use the words “system” and “conjunction” of constraints interchangeably. While
equalities and inequalities of a linear-exponential system are always of the form τ = 0, τ ≤ 0,
and τ < 0, for the convenience of exposition we often rearrange left- and right-hand sides and
write, e.g., τ1 ≤ τ2. In our procedures, linear-exponential systems may contain equalities,
inequalities, and also divisibility constraints d | τ , where τ is a term as in Equation (2),
d ∈ Z is non-zero, and | is the divisibility predicate, {(d, n) ∈ Z×Z : n = kd for some k ∈ Z}.
We write mod(φ) for the (positive) least common multiple of all divisors d appearing in
divisibility constraints d | τ of a system φ. For purely syntactic reasons, it is sometimes
convenient to see a divisibility constraint d | τ1 − τ2 as a congruence τ1 ≡d τ2, where d ≥ 1
with no loss of generality. We use the term divisibility constraint also for these congruences.

Substitutions. Our procedure uses several special kinds of substitutions. Consider a linear-
exponential system φ, a term τ , two variables x and y, and a ∈ Z \ {0}.

We write φ[τ / x] for the system obtained from φ by replacing every linear occurrence of x
outside modulo operators with τ . To clarify, this substitution only modifies the “ai · xi”
parts of the term in Equation (2), but not the “ci,j · (xi mod 2xj)” parts.
We write φ[τ / x mod 2y] and φ[τ / 2x] for the system obtained from φ by replacing with
τ every occurrence of (x mod 2y) and 2x, respectively.
We write φ[[τ

a / x]] for the vigorous substitution of τ
a for x. This substitution works as

follows. 1: Multiply every equality and inequality by a, flipping the signs of inequalities
if a < 0; this step also applies to inequalities in which x does not occur. 2: Multiply
both sides of divisibility constraints in which x occurs by a, i.e., d | τ becomes a · d | a · τ .
3: Replace with τ every linear occurrence of a · x outside modulo operators. Note that,
thanks to step 1, each coefficient of x in the system can be factorised as a ·b for some b ∈ Z.

We sometimes see substitutions [τ / τ ′] as first-class citizens: functions mapping systems to
systems. When adopting this perspective, φ[τ / τ ′] is seen as a function application.

4 Solving systems of linear inequalities over Z

In this section we present Algorithm 1 (GaussQE), a non-deterministic polynomial time
quantifier elimination (QE) procedure for solving systems of linear inequalities over Z, or in
other words for integer programming. A constraint (equality, inequality, or divisibility) is
linear if it only contains linear terms, as defined in Section 3.

We already mentioned in Section 1 that Integer Programming ∈ NP is a standard
result. Intuitively, the range of each variable is infinite, which necessitates a proof that
a suitable (and small) range suffices; see, e.g., [3, 27, 37]. Methods developed in these
references, however, do not enjoy the flexibility of quantifier elimination: e.g., they either do
not preserve formula equivalence or are not actually removing quantifiers.

▶ Theorem 3. Algorithm 1 (GaussQE) runs in non-deterministic polynomial time and,
given a linear system φ(x, z) and variables x, produces in each non-deterministic branch β
a linear system ψβ(z) such that

∨
β ψβ is equivalent to ∃xφ.

GaussQE is based on an observation by Weispfenning, who drew a parallel between
a weak form of QE and Gaussian variable elimination [39]. Based on this observation
and relying on an insight by Bareiss [1] (to be discussed below), Weispfenning sketched a
non-deterministic procedure for deciding closed existential formulae of Presburger arithmetic
in polynomial time. Although the idea of weak QE [39] has since been developed further [23],
the NP observation has apparently remained not well known.

ICALP 2024

132:6 Integer Linear-Exponential Programming in NP by Quantifier Elimination

Algorithm 1 GaussQE: Gauss–Jordan elimination for integer programming.

Input: x : sequence of variables; φ(x, z) : system of linear constraints.
Output of each branch (β): system ψβ(z) of linear constraints.
Ensuring:

∨
β ψβ is equivalent to ∃xφ.

1: replace each inequality τ ≤ 0 in φ with τ + y = 0, where y is a fresh slack variable
2: ℓ← 1; s← () ▷ s is an empty sequence of substitutions
3: foreach x in x do
4: if no equality of φ contains x then continue
5: guess ax+ τ = 0 (with a ̸= 0)← equality in φ that contains x
6: p← ℓ; ℓ← a ▷ previous and current lead coefficients
7: if τ contains a slack variable y not assigned by s then
8: guess v ← integer in [0, |a| ·mod(φ)− 1]
9: append [v / y] to s

10: φ← φ[[−τ
a / x]]

11: divide each constraint in φ by p ▷ in divisibility constraints, both sides are affected
12: φ← φ ∧ (a | τ)
13: foreach equality η = 0 of φ that contains some slack variable y not assigned by s do
14: replace η = 0 with η[0 / y] ≤ 0 if the coefficient at y is positive else with η[0 / y] ≥ 0
15: apply substitutions of s to φ
16: foreach x in x that occurs in φ do
17: guess r ← integer in [0,mod(φ)− 1]
18: φ← φ[r / x]
19: return φ

Due to space constraints, we omit the proof of Theorem 3, and explain instead only the
key ideas. We first consider the specification of GaussQE, in particular non-deterministic
branching. We then recall the main underlying mechanism: Gaussian variable elimination
(thus retracing and expanding Weispfenning’s observation). After that, we discuss extension
of this mechanism to tackle inequalities over Z.

Input, output, and non-determinism. The input to GaussQE is a system φ of linear
constraints, as well as a sequence x of variables to eliminate. The algorithm makes non-
deterministic guesses in lines 5, 8, and 17. Output of each branch (of the non-deterministic
execution) is specified at the top: it is a system ψβ of linear constraints, in which all variables
x in x have been eliminated. For any specific non-deterministic branch, call it β, the output
system ψβ may not necessarily be equivalent to ∃xφ, but the disjunction of all outputs
across all branches must be:

∨
β ψβ has the same set of satisfying assignments as ∃xφ.3

The number of non-deterministic branches (individual paths through the execution tree)
is usually exponential, but each of them runs in polynomial time. (This is true for all
algorithms presented in this paper.) If all variables of the input system φ are included in x,
then each branch returns a conjunction of numerical assertions that evaluates to true or false.

3 Formally, an assignment is a map ν from (free) variables to Z. It satisfies a constraint if replacing each
z in the domain of ν with ν(z) makes the constraint a true numerical assertion.

D. Chistikov, A. Mansutti, and M. R. Starchak 132:7

Gaussian elimination and Bareiss’ method. Consider a system φ of linear equations (i.e.,
equalities) over fields, e.g., R or Q, and let x be a vector of variables that we wish to eliminate
from φ. We recall the Gauss–Jordan variable elimination algorithm, proceeding as follows:
01: ℓ← 1
02: foreach x in x do
03: if no equality of φ contains x then continue
04: let ax+ τ = 0 (with a ̸= 0)← an arbitrary equality in φ that contains x
05: p← ℓ; ℓ← a

06: φ← φ[[−τ
a / x]]

07: divide each constraint in φ by p
08: return φ

By removing from this code all lines involving p and ℓ (lines 01, 05 and 07), we obtain a
naive version of the procedure: an equation is picked in line 04 and used to remove one of
its occurring variables in line 06. Indeed, applying a vigorous substitution [[−τ

a / x]] to an
equality bx+ σ = 0 is equivalent to first multiplying this equality by the lead coefficient a
and then subtracting b · (ax+ τ) = 0. The result is −bτ + aσ = 0, and x is eliminated.

An insightful observation due to Bareiss [1] is that, after multiple iterations, coefficients
accumulate non-trivial common factors. Lines 01, 05, and 07 take advantage of this. Indeed,
line 07 divides every equation by such a common factor. Importantly, if all numbers in the
input system φ are integers, then the division is without remainder. To show this, Bareiss
uses a linear-algebraic argument based on an application of the Desnanot–Jacobi identity
(or, more generally, Sylvester’s identity) for determinants [1, 10, 21]. Over Q, this makes
it possible to perform Gaussian elimination (its “fraction-free one-step” version) in PTime.
(This is not the only polynomial-time method; cf. [32, Section 3.3].)

Gaussian elimination for systems of equations can be extended to solving over Z, by
introducing divisibility constraints: line 06 becomes φ← φ[[−τ

a / x]]∧ (a | τ). However, while
the running time of the procedure remains polynomial, its effect becomes more modest: the
procedure reduces a system of linear equations over Z to an equivalent system of equations
featuring variables not in x and multivariate linear congruences that may still contain
variables from x. To completely eliminate x, further computation is required. For our
purposes, non-deterministic guessing is a good enough solution to this problem; see the final
foreach loop in lines 16–18 of GaussQE.

From equalities to inequalities. GaussQE extends Bareiss’ method to systems of inequal-
ities over Z. As above, the method allows us to control the (otherwise exponential) growth of
the bit size of numbers. Gaussian elimination is, of course, still at the heart of the algorithm
(see lines 2–6, 10, and 11), and we now discuss two modifications:

Line 1 introduces slack variables ranging over N. These are internal to the procedure and
are removed at the end (lines 13–15).
In line 5 the equality ax+ τ = 0 is selected non-deterministically.

The latter modification is required for the correctness (more precisely: completeness)
of GaussQE. Geometrically, for a satisfiable system of inequalities over Z consider the
convex polyhedron of all solutions over R first. At least one of solutions over Z must lie in
or near a facet of this polyhedron. Line 5 of Algorithm 1 attempts to guess this facet. The
amount of slack guessed in line 8 corresponds to the distance from the facet. Observe that
if ax+ τ = 0 corresponds to an equality of the original system φ, then every solution of φ
needs to satisfy ax+ τ = 0 exactly, and so there is no slack (lines 8–9 are not taken).

ICALP 2024

132:8 Integer Linear-Exponential Programming in NP by Quantifier Elimination

The values chosen for the slack variables in line 8 have, in fact, a counterpart in the
standard decision procedures for Presburger arithmetic. When the latter pick a term ρ to
substitute, the substitutions in fact introduce ρ + k for k ranging in some [0, ℓ], where ℓ
depends on mod(φ). The amount of slack considered in GaussQE corresponds to these
values of k. (Because of this parallel, making the range of guesses in line 8 symmetric, i.e.,
|v| ≤ |a| ·mod(φ)− 1, extends our procedure to the entire existential Presburger arithmetic.)

5 Solving linear-exponential systems over N: an overview

In this section we give an overview of our non-deterministic procedure to solve linear-
exponential systems over N. The procedure is split into Algorithms 2–4. A more technical
analysis of these algorithms is given later in Section 6.

Whenever non-deterministic Algorithms 1–4 call one another, the return value is always
just the output of a single branch, rather than (say) the disjunction over all branches.

Algorithm 2 (LinExpSat). This is the main procedure. It takes as input a linear-exponential
system φ without divisibility constraints and decides whether φ has a solution over N. The
procedure relies on first (non-deterministically) fixing a linear ordering θ on the exponential
terms 2x occurring in φ (line 2). For technical convenience, this ordering contains a term
2x0 , with x0 fresh variable, and sets 2x0 = 1. Variables are iteratively eliminated starting
from the one corresponding to the leading exponential term in θ (i.e., the biggest one), until
reaching x0 (lines 3–16). The elimination of each variable is performed by first rewriting
the system (in lines 8–14) into a form admissible for Algorithm 3 discussed below. This
rewriting introduces new variables, which will never occur in exponentials throughout the
entire procedure and are later eliminated when the procedure reaches x0. Overall, the
termination of the procedure is ensured by the decreasing number of exponentiated variables.
After LinExpSat rewrites φ, it calls Algorithm 3 to eliminate the currently biggest variable.

Algorithm 3 (ElimMaxVar). This procedure takes as input an ordering θ, a quotient system
induced by θ and a delayed substitution. Let us introduce these notions.

Quotient systems. Let θ(x) be the ordering 2xn ≥ 2xn−1 ≥ · · · ≥ 2x0 = 1, where n ≥ 1.
A quotient system induced by θ is a system φ(x,x′, z′) of equalities, inequalities, and
divisibility constraints τ ∼ 0, where ∼ ∈ {<,≤,=,≡d: d ≥ 1} and τ is an quotient term
(induced by θ), that is, a term of the form

a · 2xn + f(x′) · 2xn−1 + b · xn−1 + τ ′(x0, . . . , xn−2, z
′) ,

where a, b ∈ Z, f(x′) is a linear term, and τ ′ is a linear-exponential term in which the
variables from z′ do not occur exponentiated. Furthermore, for every variable z′ in z′,
the quotient system φ features the inequalities 0 ≤ z′ < 2xn−1 . The variables in x, x′

and z′ form three disjoint sets, which we call the exponentiated variables, the quotient
variables and the remainder variables of the system φ, respectively. We also refer to the
term b · xn−1 + τ ′(x0, . . . , xn−2, z

′) as the least significant part of the quotient term τ .
Importantly, quotient terms are not linear-exponential terms.

Here is an example of a quotient system induced by 2x3 ≥ 2x2 ≥ 2x1 ≥ 2x0 = 1, and having
quotient variables x′ = (x′

1, x
′
2) and remainder variables z′ = (z′

1, z
′
2)

−2x3 + (2 · x′
1 − x′

2 − 1) · 2x2 +
{
− 2 · x2 + 2x1 − (z′

1 mod 2x1)
}
≤ 0, 0 ≤ z′

1 < 2x2 ,

x′
1 · 2x2 +

{
x1 + z′

2 − 5
}

= 0, 0 ≤ z′
2 < 2x2 .

D. Chistikov, A. Mansutti, and M. R. Starchak 132:9

The curly brackets highlight the least significant parts of two terms of the system, the other
parts being ±z′

1 and ±z′
2 stemming from the inequalities on the right.

Delayed substitution. This is a substitution of the form [x′ · 2xn−1 + z′ / xn], where 2xn is
the leading exponential term of θ. Our procedure delays the application of this substitution
until xn occurs linearly in the system φ. One can think of this substitution as an equality
(xn = x′ · 2xn−1 + z′) in φ that must not be manipulated for the time being.

Back to ElimMaxVar, given a quotient system φ(x,x′, z′) induced by θ and the delayed
substitution [x′ · 2xn−1 + z′ / xn], the goals of this procedure are to (i) eliminate the quotient
variables x′ \ x′; (ii) eliminate all occurrences of the leading exponential term 2xn of θ and
apply the delayed substitution to eliminate the variable xn; (iii) finally, remove x′. Upon
exit, ElimMaxVar gives back to LinExpSat a (non-quotient) linear-exponential system
where xn has been eliminated; i.e., a system with one fewer exponentiated variable.

For steps (i) and (iii), the procedure relies on the Algorithm 1 (GaussQE) for eliminating
variables in systems of inequalities, from Section 4. This is where flexibility of QE is important:
in line 22 some variables are eliminated and some are not. Step (ii) is instead implemented
by Algorithm 4.

Algorithm 4 (SolvePrimitive). The goal of this procedure is to rewrite a system of
constraints where xn occurs exponentiated with another system where all constraints
are linear. The specification of the procedure restricts the output further. At its core,
SolvePrimitive tailors Semenov’s proof of the decidability of the first-order theory of the
structure (N, 0, 1,+, 2(·),≤) [34] to a small syntactic fragment, which we now define.

Primitive linear-exponential systems. Let u, v be two variables. A linear-exponential system
is said to be (u, v)-primitive whenever all its (in)equalities and divisibility constraints are of
the form a · 2u + b · v + c ∼ 0, with a, b, c ∈ Z and ∼ ∈ {<,≤,=,≡d: d ≥ 1}.

The input to SolvePrimitive is a (u, v)-primitive linear-exponential system. This procedure
removes all occurrences of 2u in favour of linear constraints, working under the assumption
that u ≥ v. This condition is ensured when ElimMaxVar invokes SolvePrimitive. The
variable u of the primitive system in the input corresponds to the term xn − xn−1, and
the variable v stands for the variable x′ in the delayed substitution [x′ · 2xn−1 + z′ / xn].
ElimMaxVar ensures that xn − xn−1 ≥ x′.

6 Algorithms 2, 3, 4: a walkthrough

Having outlined the interplay between Algorithms 2–4, we move to their technical description,
and present the key ideas required to establish the correctness of our procedure for solving
linear-exponential systems over N.

6.1 Algorithm 2: the main loop
Let φ(x1, . . . , xn) be an input linear-exponential system (with no divisibility constraints). As
explained in the summary above, LinExpSat starts by guessing an ordering θ(x0, . . . , xn)
of the form t1 ≥ t2 ≥ · · · ≥ tn ≥ 2x0 = 1, where (t1, . . . , tn) is a permutation of the terms
2x1 , . . . , 2xn , and x0 is a fresh variable used as a placeholder for 0. Note that if φ is satisfiable
(over N), then θ can be guessed so that φ ∧ θ is satisfiable; and conversely no such θ exists if
φ is unsatisfiable. For the sake of convenience, we assume in this section that the ordering
θ(x0, . . . , xn) guessed by the procedure is 2xn ≥ 2xn−1 ≥ · · · ≥ 2x1 ≥ 2x0 = 1.

ICALP 2024

132:10 Integer Linear-Exponential Programming in NP by Quantifier Elimination

Algorithm 2 LinExpSat: A procedure to decide linear-exponential systems over N.

Input: φ(x1, . . . , xn) : linear-exponential system (without divisibility constraints).
Output: True (⊤) if φ has a solution over N, and otherwise false (⊥).

1: let x0 be a fresh variable ▷ placeholder for 0
2: guess θ ← ordering of the form t1 ≥ t2 ≥ · · · ≥ tn ≥ 2x0 = 1, where (t1, . . . , tn) is a

permutation of the terms 2x1 , . . . , 2xn

3: while θ is not the ordering (2x0 = 1) do
4: 2x ← leading exponential term of θ ▷ in the i-th iteration, 2x is ti
5: 2y ← successor of 2x in θ ▷ and 2y is ti+1

6: φ← φ[w / (w mod 2x) : w is a variable]
7: z ← all variables z in φ such that z is x or z does not appear in θ

8: foreach z in z do ▷ form a quotient system induced by θ
9: let x′ and z′ be two fresh variables

10: φ← φ ∧ (0 ≤ z′ < 2y)
11: φ← φ[z′ / (z mod 2y)]
12: φ← φ[(z′ mod 2w) / (z mod 2w) : w is such that θ implies 2w ≤ 2y]
13: φ← φ[(x′ · 2y + z′) / z] ▷ replaces only the linear occurrences of z
14: if z is x then (x′

0, z
′
0)← (x′, z′) ▷ for delayed substitution, see next line

15: φ←ElimMaxVar(θ, φ, [x′
0 · 2y + z′

0 / x])
16: remove 2x from θ

17: return φ(0) ▷ evaluates to ⊤ or ⊥

The while loop starting in line 3 manipulates φ and θ, non-deterministically obtaining at
the end of the ith iteration a system φi(x, z) and an ordering θi(x), where x = (x0, . . . , xn−i)
and z is a vector of i fresh variables. The non-deterministic guesses performed by LinExpSat
are such that the following properties (I1)–(I3) are loop invariants across all branches,
whereas (I4) is an invariant for at least one branch (below, i ∈ [0, n] and (φ0, θ0) := (φ, θ)):
I1. All variables that occur exponentiated in φi are among x0, . . . , xn−i.
I2. θi is the ordering 2xn−i ≥ 2xn−i−1 ≥ · · · ≥ 2x1 ≥ 2x0 = 1.
I3. All variables z in z are such that z < 2xn−i is an inequality in φi.
I4. φi ∧ θi is equisatisfiable with φ ∧ θ over N.
More precisely, writing

∨
β ψβ for the disjunction of all the formulae φi ∧ θi obtained across

all non-deterministic branches, we have that
∨

β ψβ and φ ∧ θ are equisatisfiable. Therefore,
whenever φ∧θ is satisfiable, (I4) holds for at least one branch. If φ∧θ is instead unsatisfiable,
then (I4) holds instead for all branches.

The invariant above is clearly true for φ0 and θ0, with z being the empty set of variables.
Item (I2) implies that, after n iterations, θn is 2x0 = 1, which causes the while loop to exit.
Given θn, properties (I1) and (I3) force the values of x0 and of all variables in z to be zero,
thus making φ ∧ θ equisatisfiable with φn(0) in at least one branch of the algorithm, by (I4).
In summary, this will enable us to conclude that the procedure is correct.

Let us now look at the body of the while loop. Its objective is simple: manipulate
the current system, say φi, so that it becomes a quotient system induced by θi, and then
call Algorithm 3 (ElimMaxVar). For these systems, note that 2x and 2y in lines 4–5
correspond to 2xn−i and 2xn−i−1 , respectively. Behind the notion of quotient system there are
two goals. One of them is to make sure that 2x and 2y are not involved in modulo operations.
(We will discuss the second goal in Section 6.2.) The while loop achieves this goal as follows:

D. Chistikov, A. Mansutti, and M. R. Starchak 132:11

Since 2x is greater than every variable in φi, every (w mod 2x) can be replaced with w.
For 2y instead, we “divide” every variable z that might be larger than it. Observe that z
is either x or from the vector z in (I3) of the invariant. The procedure replaces every
linear occurrence of z with x′ · 2y + z′, where x′ and z′ are fresh variables and z′ is a
residue modulo 2y, that is, 0 ≤ z′ < 2y.

The above-mentioned replacement simplifies all modulo operators where z appears: (z mod 2y)
becomes z′, and every (z mod 2w) such that θi entails 2w ≤ 2y becomes (z′ mod 2w). We
obtain in this way a quotient system induced by θi, and pass it to ElimMaxVar.

Whilst the goal we just discussed is successfully achieved, we have not in fact eliminated
the variable x completely. Recall that, according to our definition of substitution, occurrences
of 2x in the system φ are unaffected by the application of [x′ · 2y + z′ / x] in line 13 of
LinExpSat. Because of this, the procedure keeps this substitution as a delayed substitution
for future use, to be applied (by ElimMaxVar) when x will finally occur only linearly.

6.2 Algorithm 3: elimination of leading variable and quotient variables
Let φ(x,x′, z′) be a quotient system induced by an ordering θ(x), with x exponentiated,
x′ quotient and z′ remainder variables, and consider a delayed substitution [x′ · 2y + z′ / x].
ElimMaxVar removes x′ and x, obtaining a linear-exponential system ψ that adheres to
the loop invariant of LinExpSat. This is done by following the three steps described in the
summary of the procedure, which we now expand.

Step (i): lines 3–22. This step aims at calling Algorithm 1 (GaussQE) to eliminate all
variables in x′ \x′. There is, however, an obstacle: these variables are multiplied by 2y. Here
is where the second goal behind the notion of quotient system comes into play: making sure
that least significant parts of quotient terms can be bounded in terms of 2y. To see what
we mean by this and why it is helpful, consider below an inequality τ ≤ 0 from φ, where
τ = a · 2x + f(x′) · 2y + ρ(x \ x, z′) and ρ is the least significant part of τ .

Since φ is a quotient system induced by θ, all variables and exponential terms 2w appearing
in ρ are bounded by 2y, and thus every solution of φ∧θ must also satisfy |ρ| ≤ ∥ρ∥1 ·2y. More
precisely, the value of ρ must lie in the interval [(r−1)·2y +1, r ·2y] for some r ∈ [−∥ρ∥1, ∥ρ∥1].
The procedure guesses one such value r (line 9). The inequality τ ≤ 0 can be rewritten as(

a · 2x + f(x′) · 2y + r · 2y ≤ 0
)
∧

(
(r − 1) · 2y < ρ ≤ r · 2y

)
. (3)

Fundamentally, τ ≤ 0 has been split into a “left part” and a “right part”, shown with big
brackets around. The “right part” (r − 1) · 2y < ρ ≤ r · 2y is made of two linear-exponential
inequalities featuring none of the variables we want to eliminate (x′ and x). Following the
same principle, the procedure produces similar splits for all strict inequalities, equalities, and
divisibility constraints of φ. In the pseudocode, the “left parts” of the system are stored in
the formula γ, and the “right parts” are stored in the formula ψ.

Let us focus on a “left part” a · 2x + f(x′) · 2y + r · 2y ≤ 0 in γ. Since θ implies 2x ≥ 2y,
we can factor out 2y from this constraint, obtaining the inequality a · 2x−y + f(x′) + r ≤ 0.
There we have it: the variables x′ \ x′ occur now linearly in γ and can be eliminated thanks
to GaussQE. For performing this elimination, the presence of 2x−y is unproblematic. In
fact, the procedure uses a placeholder variable u for 2x−y (line 1), so that γ is in fact a linear
system with, e.g., inequalities a · u + f(x′) + r ≤ 0. Observe that inequalities x′ ≥ 0 are
added to γ in line 22, since GaussQE works over Z instead of N. This concludes Step (i).

ICALP 2024

132:12 Integer Linear-Exponential Programming in NP by Quantifier Elimination

Algorithm 3 ElimMaxVar: Variable elimination for quotient systems.

Input: θ(x) : ordering of exponentiated variables;
φ(x,x′, z′) : quotient system induced by θ, with x exponentiated,

x′ quotient, and z′ remainder variables;
[x′ · 2y + z′/x] : delayed substitution for φ.

Output of each branch (β): ψβ(x \ x, z′) : linear-exponential system such that for every
z in z′, z does not occur in exponentials and 0 ≤ z < 2y occurs in ψβ .

Ensuring: (∃x θ) ∧
∨

β ψβ is equivalent to ∃x∃x′(θ ∧ φ ∧ x = x′ · 2y + z′) over N.

1: let u be a fresh variable ▷ u is an alias for 2x−y

2: γ ← ⊤; ψ ← ⊤
3: ∆← ∅ ▷ map from linear-exponential terms to Z
4: foreach (τ ∼ 0) in φ, where ∼ ∈

{
=, <,≤,≡d: d ≥ 1

}
do

5: let τ be (a · 2x + f(x′) · 2y + ρ), where ρ is the least significant part of τ
6: if a = 0 and f(x′) is an integer then ψ ← ψ ∧ (τ ∼ 0)
7: else if the symbol ∼ belongs to {=, <,≤} then
8: if ∆(ρ) is undefined then
9: guess r ← integer in [−∥ρ∥1, ∥ρ∥1]

10: ψ ← ψ ∧ ((r − 1) · 2y < ρ) ∧ (ρ ≤ r · 2y)
11: update ∆ : add the key–value pair (ρ, r)
12: r ← ∆(ρ)
13: if the symbol ∼ is < then
14: ∼ ←≤
15: r ← r + 1 ▷ (v < w) is equivalent to (v + 1 ≤ w)
16: γ ← γ ∧ (a · u+ f(x′) + r ∼ 0)
17: if the symbol ∼ is = then ψ ← ψ ∧ (r · 2y = ρ)
18: else ▷ ∼ is ≡d for some d ∈ N
19: guess r ← integer in [1,mod(φ)]
20: γ ← γ ∧ (a · u+ f(x′)− r ∼ 0)
21: ψ ← ψ ∧ (r · 2y + ρ ∼ 0)
22: γ ← GaussQE (x′ \ x′, γ ∧ x′ ≥ 0)
23: γ ← γ[2u / u] ▷ u now is an alias for x− y
24: (χ, γ)← SolvePrimitive(u, x′, γ)
25: χ← χ[x− y / u][x′ · 2y + z′ / x] ▷ apply delayed substitution: x is eliminated
26: if χ is (−x′ · 2y − z′ + y + c = 0) for some c ∈ N then
27: guess b← integer in [0, c]
28: γ ← γ ∧ (x′ = b)
29: ψ ← ψ ∧ (b · 2y = −z′ + y + c)
30: else
31: let χ be (−x′ · 2y − z′ + y + c ≤ 0) ∧ (d | x′ · 2y + z′ − y − r), with d, r ∈ N, c ≥ 3
32: guess (b, g)← pair of integers in [0, c]× [1, d]
33: γ ← γ ∧ (x′ ≥ b) ∧ (d | x′ − g)
34: ψ ← ψ ∧ ((b− 1) · 2y < −z′ + y + c) ∧ (−z′ + y + c ≤ b · 2y) ∧ (d | g · 2y + z′ − y − r)
35: assert(GaussQE(x′, γ) is equivalent to ⊤) ▷ upon failure, Algorithm 2 returns ⊥
36: return ψ

E
li

m
in

at
io

n
of

x
′
\
x

′
E

li
m

in
at

io
n

of
x

′

D. Chistikov, A. Mansutti, and M. R. Starchak 132:13

Before moving on to Step (ii), we justify the use of the map ∆ from line 3. If the procedure
were to apply Equation (3) and replace every inequality τ ≤ 0 with three inequalities, then
multiple calls to ElimMaxVar would produce a system with exponentially many constraints.
A solution to this problem is to guess r ∈ [−∥ρ∥1, ∥ρ∥1] only once, and use it in all the
“left parts” stemming from inequalities in φ having ρ as their least significant part. The
“right part” (r − 1) · 2y < ρ ≤ r · 2y is added to ψ only once. The map ∆ implements this
memoisation, avoiding the aforementioned exponential blow-up. Indeed, the number of least
significant parts grows very slowly throughout LinExpSat, as we will see in Section 7.

Step (ii): lines 23–25. The goal of this step is to eliminate all occurrences of the term
2x−y. For convenience, the procedure first reassigns u to now be a placeholder for x − y
(line 23). Because of this reassignment, the system γ returned by GaussQE at the end of
Step (i) is a (u, x′)-primitive linear-exponential system.

The procedure calls Algorithm 4 (SolvePrimitive), which constructs from γ a pair of
systems (χβ(u), γβ(x′)), which is assigned to (χ, γ). Both are linear systems, and thus all
occurrences of 2x−y (rather, 2u) have been removed. At last, all promised substitutions can
be realised (line 25): u is replaced with x− y, and the delayed substitution replaces x with
x′ · 2y + z′. This eliminates x. The only variable that is yet to be removed is x′ (Step (iii)).

It is useful to recall at this stage that SolvePrimitive is only correct under the assump-
tion that u ≥ x′ ≥ 0. This assumption is guaranteed by the definition of θ, the delayed
substitution, and the fact that u is a placeholder for x − y (and we are working over N).
Indeed, if x′ = 0, then the inequality 2x ≥ 2y in θ ensures u = x− y ≥ 0 = x′. If x′ ≥ 1,

u = x− y = x′ · 2y + z′ − y delayed substitution
≥ x′ · (y + 1) + z′ − y 2y ≥ y + 1, for every y ∈ N
= y · (x′ − 1) + x′ + z′ ≥ x′. since x′ ≥ 1.

Step (iii): lines 26–35. This step deals with eliminating the variable x′ from the formula
γ(x′) ∧ χ(x′, z′, y) ∧ ψ(x \ x, z′), where ψ contains the “right parts” of φ computed during
Step (i). The strategy to eliminate x′ follows closely what was done to eliminate the other
quotient variables from x′ during Step (i): the algorithm first splits the formula χ(x′, z′, y)
into a “left part”, which is added to γ and features the variable x′, and a “right part”, which
is added to ψ and features the variables z′ and y. It then eliminates x′ by calling GaussQE
on γ. To perform the split into “left part” and “right part”, observe that χ is a system of the
form either −x′ · 2y − z′ + y + c = 0 or (−x′ · 2y − z′ + y + c ≤ 0) ∧ (d | x′ · 2y + z′ − y − r)
(see the spec of SolvePrimitive). By arguments similar to the ones used for ρ in Step (i),
−z′ + y + c can be bounded in terms of 2y. (Notice, e.g., the similarities between the
inequalities in line 34 and the ones in line 10.) After the elimination of x′, if GaussQE does
not yield an unsatisfiable formula, ElimMaxVar returns the system ψ to LinExpSat.

Before moving on to the description of SolvePrimitive, let us clarify the semantics of
the assert statement occurring in line 35. It is a standard semantics from programming
languages. If an assertion b evaluates to true at runtime, assert(b) does nothing. If b
evaluates to false instead, the execution aborts and the main procedure (LinExpSat) returns
⊥. This semantics allows for assertions to query NP problems, as done in line 35 (and
in line 11 of SolvePrimitive), without undermining the membership in NP of LinExpSat.

ICALP 2024

132:14 Integer Linear-Exponential Programming in NP by Quantifier Elimination

Algorithm 4 SolvePrimitive: A procedure to decompose and linearise primitive systems.

Input: u, v : two varaibles; φ : (u, v)-primitive linear-exponential system.
Output of each branch (β): a pair of linear systems (χβ(u), γβ(v)) such that χβ(u) is

either of the form (u = a) or of the form (u ≥ b)∧ (d | u− r), where a, d, r ∈ N and b ≥ 3.
Ensuring: (u ≥ v ≥ 0) entails that

∨
β(χβ ∧ γβ) is equivalent to φ.

1: let φ be (χ ∧ ψ), where χ is the conjunction of all (in)equalities from φ containing 2u

2: (d, n)← pair of non-negative integers such that mod(φ) = d · 2n and d is odd
3: C ← max

{
n, 3 + 2 ·

⌈
log(|b|+|c|+1

|a|)
⌉

: (a · 2u + b · v + c ∼ 0) in χ, where ∼ ∈ {=, <,≤}
}

4: guess c← element of [0, C − 1] ∪ {⋆} ▷ ⋆ signals u ≥ C
5: if c is not ⋆ then
6: χ← (u = c)
7: γ ← φ[2c / 2u]
8: else ▷ assuming u ≥ C, (in)equalities in χ simplify to ⊤ or ⊥
9: assert(χ has no equality, and in all its inequalities 2u has a negative coefficient)

10: guess r ← integer in [0, d− 1] ▷ remainder of 2u−n modulo d when u ≥ C ≥ n
11: assert(d | 2u − 2n · r is satisfiable)
12: r′ ← discrete logarithm of 2n · r base 2, modulo d
13: d′ ← multiplicative order of 2 modulo d
14: χ← (u ≥ C) ∧ (d′ | u− r′)
15: γ ← ψ[2n · r/2u] ▷ 2n · r is a remainder of 2u modulo mod(ψ) = d · 2n

16: return (χ, γ)

6.3 Algorithm 4: from primitive systems to linear systems
Consider an input (u, v)-primitive linear-exponential system φ, and further assume we are
searching for solutions over N where u ≥ v. The goal of SolvePrimitive is to decompose φ
(in the sense of monadic decomposition [24, 16]) into two linear systems: a system χ only
featuring the variable u, and a system γ only featuring v.

To decompose φ, the key parameter to understand is the threshold C for the variable u
(line 3). This positive integer depends on two quantities, one for “linearising” the divisibility
constraints, and one for “linearising” the equalities and inequalities of φ. Below we first
discuss the latter quantity. Throughout the discussion, we assume u ≥ C, as otherwise the
procedure simply replaces u with a value in [0, C − 1] (see lines 6 and 7).

Consider an inequality a · 2u + b · v + c ≤ 0. Regardless of the values of u and v, as long
as |a · 2u| > |b · v + c| holds, the truth of this inequality will solely depend on the sign of the
coefficient a. Since we are assuming u ≥ v and u ≥ C ≥ 1, |a · 2u| > |b · v + c| is implied
by |a| · 2u > (|b|+ |c|) · u. In turn, this inequality is implied by u ≥ C, because both sides of
the inequalities are monotone functions, |a| · 2u grows faster than (|b|+ |c|) · u, and, given
C ′ := 3 + 2 ·

⌈
log(|b|+|c|+1

|a|)
⌉

(which is at most C), we have

|a| · 2C′
≥ |a| · 23 ·

(
|b|+ |c|+ 1
|a|

)2
>

(
|b|+ |c|

)
· 2

⌈
log(|b|+|c|+1

|a|)
⌉

+2 >
(
|b|+ |c|

)
· C ′ ,

where to prove the last inequalities one uses the fact that 2x+1 > 2 · x+ 1 for every x ≥ 0.
Hence, when u ≥ C, every inequality in φ simplifies to either ⊤ or ⊥, and this is also true
for strict inequalities. The Boolean value ⊤ arises when a is negative. The Boolean ⊥ arises
when a is positive, or when instead of an inequality we consider an equality.

D. Chistikov, A. Mansutti, and M. R. Starchak 132:15

It remains to handle the divisibility constraints, again under the assumption u ≥ C.
This is where the second part of the definition of C plays a role. Because u ≥ C ≥ n (see
the definition of (d, n) in line 2), we can guess r ∈ [0, d− 1] such that mod(φ) | 2u − 2n · r
(line 10). This constraint is equivalent to d | 2u−n − r and, since 2n and d are coprime, it
is also equivalent to d | 2u − 2n · r. It might be an unsatisfiable constraint: the procedure
checks for this eventuality in line 11, by solving a discrete logarithm problem (which can
be done in NP, see [18]). Suppose a solution is found, say r′ (as in line 12). We can then
represent the set of solutions of d | 2u − 2n · r as an arithmetic progression: it suffices to
compute the multiplicative order of 2 modulo d, i.e., the smallest positive integer d′ such
that d | 2d′ − 1. This is again a discrete logarithm problem, but differently from the previous
case d′ always exists since d and 2 are coprime. The set of solutions of d | 2u − 2n · r is given
by {r′ +λ · d′ : λ ∈ Z}, that is, mod(φ) | 2u− 2n · r is equivalent to d′ | u− r′. The procedure
then returns χ(u) := (u ≥ C ∧ d′ | u − r′) and γ(v) := ψ[2n · r / 2u] (see lines 14 and 15),
where ψ (defined in line 1) is the system obtained from φ by removing all equalities and
inequalities featuring 2u.

Elaborating the arguments sketched in this section, we can prove that Algorithms 2–4
comply with their specifications.

▶ Proposition 4. Algorithm 2 (LinExpSat) is a correct procedure for deciding the satisfiab-
ility of linear-exponential systems over N.

7 Complexity analysis

We analyse the procedure introduced in Sections 5 and 6 and show that it runs in non-
deterministic polynomial time. This establishes Theorem 1 restricted to N.

▶ Proposition 5. Algorithm 2 (LinExpSat) runs in non-deterministic polynomial time.

To simplify the analysis required to establish Proposition 5, we assume
that Algorithms 2–4 store the divisibility constraints d | τ of a system φ in a way such
that the coefficients and the constant of τ are always reduced modulo mod(φ). For example,
if mod(φ) = 5, the divisibility 5 | (7 · x + 6 · 2x − 1) is stored as 5 | (2 · x + 2x + 4). Any
divisibility can be updated in polynomial time to satisfy this requirement, so there is no
loss of generality. Observe that Algorithm 1 (GaussQE) is an exception to this rule, as
the divisibility constraints it introduces in line 12 must respect some structural properties
throughout its execution. Thus, line 23 of Algorithm 3 (ElimMaxVar) implicitly reduces
the output of GaussQE modulo m = mod(φ) as appropriate. Since GaussQE runs in
non-deterministic polynomial time, the reduction takes polynomial time too.

As is often the case for arithmetic theories, the complexity analysis of our algorithms
requires tracking several parameters of linear-exponential systems. Below, we assume an
ordering θ(x) = (2xn ≥ · · · ≥ 2x0 = 1) and let φ be either a linear-exponential system or a
quotient system induced by θ. Here are the parameters we track:

The least common multiple of all divisors mod(φ), defined as in Section 3.
The number of equalities, inequalities and divisibility constraints in φ, denoted by #φ.
(Similarly, given a set T , we write #T for its cardinality.)
The 1-norm ∥φ∥1 := max{∥τ∥1 : τ is a term appearing in an (in)equality of φ}. For
linear-exponential terms, ∥τ∥1 is defined in Section 3. For quotient terms τ induced by θ,
the 1-norm ∥τ∥1 is defined as the sum of the absolute values of all the coefficients and
constants appearing in τ . The definition of ∥φ∥1 excludes integers appearing in divisibility
constraints since, as explained above, those are already bounded by mod(φ).

ICALP 2024

132:16 Integer Linear-Exponential Programming in NP by Quantifier Elimination

The linear norm ∥φ∥L := max{∥τ∥L : τ is a term appearing in an (in)equality of φ}.
For a linear-exponential term τ =

∑n
i=1

(
ai · xi + bi · 2xi +

∑n
j=1 ci,j · (xi mod 2xj)

)
+ d,

we define ∥τ∥L := max{|ai| , |ci,j | : i, j ∈ [1, n]}, that is, the maximum of all coefficients
of xi and (xi mod 2xj), in absolute value. For a quotient term induced by θ, of the
form τ = a · 2xn + (c1 · x′

1 + · · ·+ cm · x′
m + d) · 2xn−1 + b · xn−1 + ρ(x0, . . . , xn−2, z

′), we
define ∥τ∥L := max

(
|b| , ∥ρ∥L,max{|ci| : i ∈ [1,m]}

)
, thus also taking into account the

coefficients of the quotient variables x′
1, . . . , x

′
m.

The set of the least significant terms lst(φ, θ) defined as
{
± ρ : ρ is the least significant

part of a term τ appearing in an (in)equality τ ∼ 0 of φ, with respect to θ
}

. We have
already defined the notion of the least significant part for a quotient term induced by θ
in Section 5. For a (non-quotient) linear-exponential system φ, the least significant part
of a term a · 2xn + b · xn + τ ′(x1, . . . , xn−1, z) is the term b · xn + τ ′.

Two observations are in order. First, the bit size of a system φ(x1, . . . , xn) (i.e., the
number of bits required to write down φ) is in O(#φ ·n2 · log(max(∥φ∥1,mod(φ), 2))). Second,
together with the number of variables in the input, our parameters are enough to bound all
guesses in the procedure. For instance, the value of c ̸= ⋆ guessed in line 4 of Algorithm 4
(SolvePrimitive) can be bounded as O(log(max(mod(γ), ∥χ∥1))).

The analysis of the whole procedure is rather involved. Perhaps a good overall picture
of this analysis is given by the evolution of the parameters at each iteration of the main
while loop of LinExpSat, described in Lemma 6 below. This loop iterates at most n
times, with n being the number of variables in the input system. Below, Φ stands for
Euler’s totient function, arising naturally because of the computation of multiplicative orders
in SolvePrimitive.

▶ Lemma 6. Consider the execution of LinExpSat on an input φ(x1, . . . , xn), with n ≥ 1.
For i ∈ [0, n], let (φi, θi) be the pair of a system and ordering obtained after the ith iteration
of the while loop of line 3, where φ0 = φ and θ0 is the ordering guessed in line 2. Then, for
every i ∈ [0, n− 1], φi+1 has at most n+ 1 variables, and for every ℓ, s, a, c, d ≥ 1,

if

#lst(φi, θi) ≤ ℓ
#φi ≤ s
∥φi∥L ≤ a
∥φi∥1 ≤ c
mod(φi) | d

then

#lst(φi+1, θi+1) ≤ ℓ+ 2(i+ 2)
#φi+1 ≤ s+ 6(i+ 2) + 2 · ℓ
∥φi+1∥L ≤ 3 · a
∥φi+1∥1 ≤ 25(i+ 3)2(c+ 2) + 4 · log(d)
mod(φi+1) | lcm(d,Φ(αi · d))

for some αi ∈ [1, (3 · a+ 2)(i+3)2]. The (i+ 1)st iteration of the while loop of line 3 runs in
non-deterministic polynomial time in the bit size of φi.

We iterate the bounds in Lemma 6 to show that, for every i ∈ [0, n], the bit size of φi is
polynomial in the bit size of the initial system φ. A challenge is to bound mod(φi), which
requires studying iterations of the map x 7→ lcm(x,Φ(α ·x)), where α is some positive integer.
We show the following lemma:

▶ Lemma 7. Let α ≥ 1 be in N. Consider the integer sequence b0, b1, . . . given by the
recurrence b0 := 1 and bi+1 := lcm(bi,Φ(α · bi)). For every i ∈ N, bi ≤ α2·i2 .

Given Lemma 6, one can show αj ≤ (∥φ∥L + 2)O(j3) for every j ∈ [0, n− 1]. Then, since
mod(φ0) = 1, for a given i ∈ [0, n − 1] we apply Lemma 7 with α = lcm(α0, . . . , αi) to
derive mod(φi+1) ≤ (∥φ∥L + 2)O(i6). Once a polynomial bound for the bit size of every φi is
established, Proposition 5 follows immediately from the last statement of Lemma 6.

D. Chistikov, A. Mansutti, and M. R. Starchak 132:17

8 Proofs of Theorem 1 and Theorem 2

In this section, we discuss how to reduce the task of solving linear-exponential systems over Z
to the non-negative case, thus establishing Theorem 1. We also prove Theorem 2.

Solving linear-exponential systems over Z (proof of Theorem 1). Let φ(x1, . . . , xn) be a
linear-exponential system φ(x1, . . . , xn) (without divisibility constraints). We can non-
deterministically guess which variables will, in an integer solution u ∈ Zn of φ, assume a
non-positive value. Let I ⊆ [1, n] be the set of indices corresponding to these variables. Given
i ∈ I, all occurrences of (x mod 2xi) in φ can be replaced with 0, by definition of the modulo
operator. We can then replace each linear and exponentiated occurrence of xi with −xi. Let
χ(x) be the system obtained from φ after these replacements.

The absolute value of all entries of u is a solution for χ over N. However, χ might feature
terms of the form 2−xi for some i ∈ I and thus not be a linear-exponential system. We show
how to remove such terms. Consider an inequality of the form τ ≤ σ, where the term τ

contains no 2−x and σ :=
∑

i∈I ai ·2−xi with some ai non-zero. Since each xi is a non-negative
integer, we have

∣∣∑
i∈I ai · 2−xi

∣∣ ≤∑
i∈I |ai| =: B. Therefore, in order to satisfy τ ≤ σ, any

solution v of χ must be such that τ(v) ≤ B. We can then non-deterministically add to χ
either τ < −B or τ = g, for some g ∈ [−B,B].
Case τ < −B. The inequality τ ≤ σ is entailed by τ < −B and can thus be eliminated.
Case τ = g for some g ∈ [−B, B]. We replace τ ≤ σ with g ≤ σ, and multiply both sides

of this inequality by 2Σi∈I xi . The resulting inequality is rewritten as g · 2z ≤
∑

i∈I ai · 2zi ,
where z and all zi are fresh variables (over N) that are subject to the equalities z =

∑
i∈I xi

and zi =
∑

j∈I\{i} xj . We add these equalities to χ.
In the above cases we have removed from χ the inequality τ ≤ σ in favour of inequalities and
equalities only featuring linear-exponential terms. Strict inequalities τ < σ can be handled
analogously; and for equalities τ = σ one can separately consider τ ≤ σ and −τ ≤ −σ. The
fresh variables z and zi can be introduced once and reused for all inequalities.

Repeating the process above for each equality and inequality yields (in non-deterministic
polynomial time) a linear-exponential system ψ that is satisfiable over N if and only if the input
system φ is satisfiable over Z. The satisfiability of ψ is then checked by calling LinExpSat.
Hence, correctness and NP membership follow by Propositions 4 and 5, respectively. ◀

Deciding existential Büchi–Semenov arithmetic (proof of Theorem 2). Let φ be a for-
mula in the existential theory of the structure (N, 0, 1,+, 2(·), V2(·, ·),≤) (i.e., Büchi–Semenov
arithmetic). By De Morgan’s laws, we can bring φ to negation normal form. Negated literals
can then be replaced by positive formulae: ¬V2(τ, σ) becomes V2(τ, z) ∧ ¬(z = σ) where z is
a fresh variable, ¬(τ = σ) becomes (τ < σ) ∨ (σ < τ), and ¬(τ ≤ σ) becomes σ < τ . Next,
occurrences of V2(·, ·) and 2(·) featuring arguments other than variables can be “flattened” by
introducing extra (non-negative integer) variables: e.g., an occurrence of 2τ can be replaced
with 2z, where z is fresh, subject to conjoining to the formula φ the constraint z = τ . Lastly,
recall that V2(x, y) can be rephrased in terms of the modulo operator via a linear-exponential
system 2 · y = 2v ∧ 2 · (x mod 2v) = 2v, where v is a fresh variable.

After the above transformation, we obtain a formula ψ of size polynomial with respect to
the original one. This formula is a positive Boolean combination of linear-exponential sys-
tems. A non-deterministic polynomial-time algorithm deciding ψ first (non-deterministically)
rewrites each disjunction φ1 ∨ φ2 occurring in ψ into either φ1 or φ2. After this step,
each non-deterministic branch contains a linear-exponential system. The algorithm then
calls LinExpSat. Correctness and NP membership then follow by Propositions 4 and 5. ◀

ICALP 2024

132:18 Integer Linear-Exponential Programming in NP by Quantifier Elimination

9 Future directions

We have presented a quantifier elimination procedure that decides in non-deterministic
polynomial time whether a linear-exponential system has a solution over Z. As a by-product,
this result shows that satisfiability for existential Büchi–Semenov arithmetic belongs to NP.
We now discuss further directions that, in view of our result, may be worth pursuing.

As mentioned in Section 2, the ∃∗∀∗-fragment of Büchi–Semenov arithmetic is undecidable.
Between the existential and the ∃∗∀∗-fragments lies, in a certain sense, the optimisation
problem: minimising or maximising a variable subject to a formula. It would be interesting
to study whether the natural optimisation problem for linear-exponential systems lies within
an optimisation counterpart of the class NP.

With motivation from verification questions, problems involving integer exponentiation
have recently been approached with satisfiability modulo theories (SMT) solvers [12]. The
algorithms developed in our paper may be useful to further the research in this direction.

Our work considers exponentiation with a single base. In a recent paper [17], Hieronymi
and Schulz prove the first–order theory of (N, 0, 1,+, 2N, 3N,≤) undecidable, where kN is
the predicate for the powers of k. Therefore, the first-order theories of the structures
(N, 0, 1,+, V2, V3,≤) and (N, 0, 1,+, 2(·), 3(·),≤), which capture 2N and 3N, are undecidable.
Decidability for the existential fragments of all the theories in this paragraph is open.

Lastly, it is unclear whether there are interesting relaxed versions of linear-exponential
systems, i.e., over R instead of Z. Observe that, in the existential theory of the struc-
ture (R, 0, 1,+, 2(·),≤), the formula x = 2y′+z′ ∧ y = 2y′ ∧ z = 2z′ defines the graph of the
multiplication function x = y · z for positive reals. This “relaxation” seems then only to be
decidable subject to (a slightly weaker version of) Schanuel’s conjecture [25]. To have an
unconditional result one may consider systems where only one variable occurs exponentiated.
These are, in a sense, a relaxed version of (u, v)-primitive systems. Under this restriction,
unconditional decidability was previously proved by Weispfenning [40].

References

1 Erwin H. Bareiss. Sylvester’s identity and multistep integer-preserving Gaussian elimination.
Math. Comput., 22:565–578, 1968. doi:10.1090/S0025-5718-1968-0226829-0.

2 Michael Benedikt, Dmitry Chistikov, and Alessio Mansutti. The complexity of Presburger
arithmetic with power or powers. In ICALP, pages 112:1–112:18, 2023. doi:10.4230/LIPICS.
ICALP.2023.112.

3 Itshak Borosh and Leon Bruce Treybig. Bounds on positive integral solutions of linear
Diophantine equations. Proc. Am. Math. Soc., 55(2):299–304, 1976. doi:10.2307/2041711.

4 Véronique Bruyère, Georges Hansel, Christian Michaux, and Roger Villemaire. Logic and
p-recognizable sets of integers. Bull. Belgian Math. Soc., 1(2):191–238, 1994. Corrigendum:
Bull. Belgian Math. Soc., 1, 1994, 577. doi:10.36045/bbms/1103408547.

5 J. Richard Büchi. Weak second-order arithmetic and finite automata. Math. Logic Quart.,
6(1-6):66–92, 1960. doi:10.1002/malq.19600060105.

6 Gregory Cherlin and Françoise Point. On extensions of Presburger arithmetic. In 4th Easter
Conference on Model Theory, volume 86 of Humboldt-Univ. Berlin Seminarberichte, pages
17–34, 1986. URL: https://webusers.imj-prg.fr/~francoise.point/papiers/cherlin_
point86.pdf.

7 Dmitry Chistikov, Christoph Haase, and Alessio Mansutti. Geometric decision procedures
and the VC dimension of linear arithmetic theories. In LICS, pages 59:1–59:13, 2022. doi:
10.1145/3531130.3533372.

https://doi.org/10.1090/S0025-5718-1968-0226829-0
https://doi.org/10.4230/LIPICS.ICALP.2023.112
https://doi.org/10.4230/LIPICS.ICALP.2023.112
https://doi.org/10.2307/2041711
https://doi.org/10.36045/bbms/1103408547
https://doi.org/10.1002/malq.19600060105
https://webusers.imj-prg.fr/~francoise.point/papiers/cherlin_point86.pdf
https://webusers.imj-prg.fr/~francoise.point/papiers/cherlin_point86.pdf
https://doi.org/10.1145/3531130.3533372
https://doi.org/10.1145/3531130.3533372

D. Chistikov, A. Mansutti, and M. R. Starchak 132:19

8 Kevin J. Compton and C. Ward Henson. A uniform method for proving lower bounds on
the computational complexity of logical theories. Ann. Pure Appl. Log., 48(1):1–79, 1990.
doi:10.1016/0168-0072(90)90080-L.

9 David C. Cooper. Theorem proving in arithmetic without multiplication. Machine Intelligence,
7(91-99):300, 1972.

10 Charles L. Dodgson. Condensation of determinants, being a new and brief method for
computing their arithmetical values. Proc. R. Soc. Lond., 15:150–155, 1867. doi:10.1098/
rspl.1866.0037.

11 Andrei Draghici, Christoph Haase, and Florin Manea. Semënov arithmetic, affine VASS, and
string constraints. In STACS, pages 29:1–29:19, 2024. doi:10.4230/LIPICS.STACS.2024.29.

12 Florian Frohn and Jürgen Giesl. Satisfiability modulo exponential integer arithmetic, 2024.
To appear in IJCAR. arXiv:2402.01501.

13 Florent Guépin, Christoph Haase, and James Worrell. On the existential theories of Büchi
arithmetic and linear p-adic fields. In LICS, pages 1–10, 2019. doi:10.1109/LICS.2019.
8785681.

14 Christoph Haase. Approaching arithmetic theories with finite-state automata. In LATA, pages
33–43, 2020. doi:10.1007/978-3-030-40608-0_3.

15 Christoph Haase and Jakub Różycki. On the expressiveness of Büchi arithmetic. In FoSSaCS,
pages 310–323, 2021. doi:10.1007/978-3-030-71995-1_16.

16 Matthew Hague, Anthony W. Lin, Philipp Rümmer, and Zhilin Wu. Monadic decomposition in
integer linear arithmetic. In IJCAR, pages 122–140, 2020. doi:10.1007/978-3-030-51074-9_
8.

17 Philipp Hieronymi and Christian Schulz. A strong version of Cobham’s theorem. In STOC,
pages 1–21, 2022. doi:10.1145/3519935.3519958.

18 Antoine Joux, Andrew Odlyzko, and Cécile Pierrot. The past, evolving present, and future of
the discrete logarithm. In Open Problems in Mathematics and Computational Science, pages
5–36. Springer, 2014. doi:10.1007/978-3-319-10683-0_2.

19 Hendrik W. Lenstra Jr. Integer programming with a fixed number of variables. Math. Oper. Res.,
8(4):538–548, 1983. doi:10.1287/moor.8.4.538.

20 Michael Jünger, Thomas M. Liebling, Denis Naddef, George L. Nemhauser, William R.
Pulleyblank, Gerhard Reinelt, Giovanni Rinaldi, and Laurence A. Wolsey. 50 years of integer
programming 1958–2008: From the early years to the state-of-the-art. Springer, 2009.

21 Anna Karapiperi, Michela Redivo-Zaglia, and Maria Rosaria Russo. Generalizations of
Sylvester’s determinantal identity, 2015. arXiv:1503.00519.

22 Dexter Kozen. Lower bounds for natural proof systems. In FOCS, pages 254–266, 1977.
doi:10.1109/SFCS.1977.16.

23 Aless Lasaruk and Thomas Sturm. Weak integer quantifier elimination beyond the linear case.
In CASC, pages 275–294, 2007. doi:10.1007/978-3-540-75187-8_22.

24 Leonid Libkin. Variable independence for first-order definable constraints. ACM Trans.
Comput. Log., 4(4):431–451, 2003. doi:10.1145/937555.937557.

25 Angus Macintyre and Alex J. Wilkie. On the decidability of the real exponential field. In
Piergiorgio Odifreddi, editor, Kreiseliana. About and Around Georg Kreisel, pages 441–467.
A K Peters, 1996.

26 Derek C. Oppen. Elementary bounds for Presburger arithmetic. In STOC, pages 34–37, 1973.
doi:10.1145/800125.804033.

27 Christos H. Papadimitriou. On the complexity of integer programming. J. ACM, 28(4):765–768,
1981. doi:10.1145/322276.322287.

28 Françoise Point. On decidable extensions of Presburger arithmetic: from A. Bertrand numera-
tion sytems to Pisot numbers. J. Symb. Log., 65(3):1347–1374, 2000. doi:10.2307/2586704.

29 Françoise Point. On the expansion (N; +, 2x) of Presburger arithmetic, 2007. Preprint. URL:
https://webusers.imj-prg.fr/~francoise.point/papiers/Pres.pdf.

ICALP 2024

https://doi.org/10.1016/0168-0072(90)90080-L
https://doi.org/10.1098/rspl.1866.0037
https://doi.org/10.1098/rspl.1866.0037
https://doi.org/10.4230/LIPICS.STACS.2024.29
https://arxiv.org/abs/2402.01501
https://doi.org/10.1109/LICS.2019.8785681
https://doi.org/10.1109/LICS.2019.8785681
https://doi.org/10.1007/978-3-030-40608-0_3
https://doi.org/10.1007/978-3-030-71995-1_16
https://doi.org/10.1007/978-3-030-51074-9_8
https://doi.org/10.1007/978-3-030-51074-9_8
https://doi.org/10.1145/3519935.3519958
https://doi.org/10.1007/978-3-319-10683-0_2
https://doi.org/10.1287/moor.8.4.538
https://arxiv.org/abs/1503.00519
https://doi.org/10.1109/SFCS.1977.16
https://doi.org/10.1007/978-3-540-75187-8_22
https://doi.org/10.1145/937555.937557
https://doi.org/10.1145/800125.804033
https://doi.org/10.1145/322276.322287
https://doi.org/10.2307/2586704
https://webusers.imj-prg.fr/~francoise.point/papiers/Pres.pdf

132:20 Integer Linear-Exponential Programming in NP by Quantifier Elimination

30 Mojżesz Presburger. Über die Vollständigkeit eines gewissen Systems der Arithmetik ganzer
Zahlen, in welchem die Addition als einzige Operation hervortritt. In Comptes Rendus du
I Congrès des Mathématiciens des Pays Slaves, pages 92–101. Warsaw, 1929.

31 Sylvain Schmitz. Complexity hierarchies beyond Elementary. ACM Trans. Comput. Theory,
8(1):3:1–3:36, 2016. doi:10.1145/2858784.

32 Alexander Schrijver. Theory of linear and integer programming. Wiley-Interscience series in
discrete mathematics and optimization. Wiley, 1999.

33 Aleksei L. Semenov. On certain extensions of the arithmetic of addition of natural numbers.
Math. USSR Izv., 15(2):401–418, 1980. doi:10.1070/im1980v015n02abeh001252.

34 Aleksei L. Semenov. Logical theories of one-place functions on the set of natural numbers.
Math. USSR Izv., 22(3):587–618, 1984. doi:10.1070/im1984v022n03abeh001456.

35 Jeffrey Shallit. The Logical Approach to Automatic Sequences: Exploring Combinatorics on
Words with Walnut. Cambridge University Press, 2022. doi:10.1017/9781108775267.

36 Larry J. Stockmeyer and Albert R. Meyer. Word problems requiring exponential time:
Preliminary report. In STOC, pages 1–9, 1973. doi:10.1145/800125.804029.

37 Joachim von zur Gathen and Malte Sieveking. A bound on solutions of linear integer
equalities and inequalities. P. Am. Math. Soc., 72(1):155–158, 1978. doi:10.1090/
S0002-9939-1978-0500555-0.

38 Volker Weispfenning. The complexity of almost linear Diophantine problems. J. Symb.
Comput., 10(5):395–404, 1990. doi:10.1016/S0747-7171(08)80051-X.

39 Volker Weispfenning. Complexity and uniformity of elimination in Presburger arithmetic. In
ISSAC, pages 48–53, 1997. doi:10.1145/258726.258746.

40 Volker Weispfenning. Deciding linear-exponential problems. SIGSAM Bull., 34(1):30–31, 2000.
doi:10.1145/373500.373513.

41 Hao Wu, Yu-Fang Chen, Zhilin Wu, Bican Xia, and Naijun Zhan. A decision procedure for
string constraints with string-integer conversion and flat regular constraints. Acta Inform.,
2023. doi:10.1007/s00236-023-00446-4.

A Theorem 1 holds for any positive integer base given in binary

Algorithm 2 and Algorithm 3 are agnostic with regard to the choice of the base k ≥ 2. They
do not inspect k and see exponential terms kx as purely syntactic objects. Their logic does
not need to be updated to accommodate a different base. To add support for a base k given
in input to these two algorithms, it suffices to replace in the pseudocode every 2 with k.

Algorithm 4 is different, as it uses properties of exponentiation. In that algorithm, line 2
must be updated as follows. The pair (d, n) is redefined to be such that d is the largest
integer coprime with k dividing mod(γ), and kn is the smallest power of k divisible by mod(γ)

d .
For example, in the case when k = 6 and mod(γ) = 60, we obtain d = 5 and n = 2, because
36 is the smallest power of 6 divisible by 60

5 = 12. It is clear that n ≤ ⌈log(mod(γ))⌉, and
the pair (d, n) can be computed in deterministic polynomial time.

Apart from this update, it suffices to replace every occurrence of 2n · r with mod(φ)
d · r, and

every remaining occurrence of 2 with k (except for the constant 2 appearing in the expression
3 + 2 ·

⌈
logk(|b|+|c|+1

|a|)
⌉
). This means that the discrete logarithm problems of lines 11–13

must be solved with respect to k instead of 2 (but this can still be done in non-deterministic
polynomial time). No other change is necessary.

https://doi.org/10.1145/2858784
https://doi.org/10.1070/im1980v015n02abeh001252
https://doi.org/10.1070/im1984v022n03abeh001456
https://doi.org/10.1017/9781108775267
https://doi.org/10.1145/800125.804029
https://doi.org/10.1090/S0002-9939-1978-0500555-0
https://doi.org/10.1090/S0002-9939-1978-0500555-0
https://doi.org/10.1016/S0747-7171(08)80051-X
https://doi.org/10.1145/258726.258746
https://doi.org/10.1145/373500.373513
https://doi.org/10.1007/s00236-023-00446-4

	1 Introduction
	2 Arithmetic theories of Büchi, Semenov, and Presburger
	3 Preliminaries
	4 Solving systems of linear inequalities over Z
	5 Solving linear-exponential systems over N: an overview
	6 Algorithms 2, 3, 4: a walkthrough
	6.1 Algorithm 2: the main loop
	6.2 Algorithm 3: elimination of leading variable and quotient variables
	6.3 Algorithm 4: from primitive systems to linear systems

	7 Complexity analysis
	8 Proofs of Theorem 1 and Theorem 2
	9 Future directions
	A Theorem 1 holds for any positive integer base given in binary

