
Functional Closure Properties of Finite
N-Weighted Automata
Julian Dörfler #

Saarland Informatics Campus (SIC), Saarbrücken Graduate School of Computer Science,
Saarland University, Germany

Christian Ikenmeyer #

University of Warwick, Coventry, UK

Abstract
We determine all functional closure properties of finite N-weighted automata, even all multivariate
ones, and in particular all multivariate polynomials. We also determine all univariate closure
properties in the promise setting, and all multivariate closure properties under certain assumptions
on the promise, in particular we determine all multivariate closure properties where the output
vector lies on a monotone algebraic graph variety.

2012 ACM Subject Classification Theory of computation → Automata extensions

Keywords and phrases Finite automata, weighted automata, counting, closure properties, algebraic
varieties

Digital Object Identifier 10.4230/LIPIcs.ICALP.2024.134

Category Track B: Automata, Logic, Semantics, and Theory of Programming

Related Version Full Version: https://arxiv.org/abs/2404.14245

Funding Christian Ikenmeyer : EPSRC EP/W014882/2

1 Finite N-weighted automata and functional closure properties

Let Σ be a finite set, for example Σ = {0, 1}. A finite N-weighted automaton with all
weights 1 is a nondeterministic finite automaton that on input w ∈ Σ⋆ outputs the number
of accepting computation paths on input w, instead of just outputting whether or not an
accepting computation path exists, see Def. 2.1 for the formal definition 1. While every
nondeterministic finite automaton determines a subset of Σ⋆, a finite N-weighted automaton
computes a function Σ⋆ → N. A function f : Σ⋆ → N can be presented as the series∑

w∈Σ⋆ f(w)w, and the set of series is denoted by N⟨⟨Σ⋆⟩⟩ in the automata literature, see
e.g. [9]2. The natural way of adding two functions Σ⋆ → N and adding two series in N⟨⟨Σ⋆⟩⟩
coincides, but in both presentations we have a natural way of taking the product, and those
do not coincide:
1. Pointwise product of functions Σ⋆ → N. This is called the Hadamard product.
2. Convolution of series, called the Cauchy product.
A series f is called recognizable if there is a finite N-weighted automaton that computes f .
The set of recognizable series is denoted by Nrec⟨⟨Σ⋆⟩⟩ in [9], but we denote it by #FA, to
emphasise that we undertake a study similar to #P in [11, Thm 3.13], [4, Thm 6], and
recently [12], but instead of polynomial-time Turing machines we study finite automata.

1 We use the equality of the number of accepting paths of an NFA and the output of the corresponding
N-weighted automaton, see [9, Exa. 2.2].

2 A series with finite support is called a polynomial, but we will not be concerned with the support of
series in this paper. Instead, we use the term polynomial as it is used in commutative algebra, and we
mean multivariate polynomials with rational coefficients.

EA
T
C
S

© Julian Dörfler and Christian Ikenmeyer;
licensed under Creative Commons License CC-BY 4.0

51st International Colloquium on Automata, Languages, and Programming (ICALP 2024).
Editors: Karl Bringmann, Martin Grohe, Gabriele Puppis, and Ola Svensson;
Article No. 134; pp. 134:1–134:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:jdoerfler@cs.uni-saarland.de
https://orcid.org/0000-0002-0943-8282
mailto:christian.ikenmeyer@warwick.ac.uk
https://orcid.org/0000-0003-4654-177X
https://doi.org/10.4230/LIPIcs.ICALP.2024.134
https://arxiv.org/abs/2404.14245
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

134:2 Functional Closure Properties of Finite N-Weighted Automata

The Kleene-Schützenberger theorem states that #FA is the smallest set that contains all
support 1 series and is closed under sums, Cauchy products, and Kleene-iterations (whenever
well-defined, a Kleene-iteration is the sum of all Cauchy powers), see [9, §4], but we will not
need this insight.

In this paper we study the functional closure properties3 of #FA. A function φ : Nm → N
is called a functional closure property of #FA if for all f1 ∈ #FA, f2 ∈ #FA, . . ., fm ∈ #FA
we have that φ(f1, . . . , fm) ∈ #FA. By φ(f1, . . . , fm) we mean the function that on input
w ∈ Σ⋆ outputs φ(f1(w), . . . , fm(w)).

Classically, one of the simplest functional closure properties of #FA is φ : N2 → N,
φ(f1, f2) = f1 + f2. This is a functional closure property of #FA, because given f1 ∈ #FA
and f2 ∈ #FA, we can show φ(f1, f2) = f1 + f2 ∈ #FA by an easy construction: The new
NFA consists of a copy of the NFA for f1 and a copy of the NFA for f2, and makes an initial
nondeterministic choice as to which NFA to run, see Lemma 3.1 for the details.

Another classical simple functional closure property of #FA is φ : N2 → N, φ(f1, f2) =
f1 · f2. This corresponds to the Hadamard product. This is a functional closure property of
#FA, because given f1 ∈ #FA and f2 ∈ #FA, we can show φ(f1, f2) = f1 · f2 ∈ #FA by the
following construction: The new NFA consists of the product NFA of the NFAs for f1 and
f2, and the accepting states correspond to pairs of accepting states, see Lemma 3.2 for the
details. This product construction corresponds to the Hadamard product.

The Cauchy product is also a product on the set #FA, but we explain now that the
Cauchy product is not “functional”, and hence it is out of scope for this type of studies. If
φ : Nm → N is a functional closure property of #FA, then we can study the corresponding
map φ̃ : #FA × #FA × · · · × #FA︸ ︷︷ ︸

m times

→ #FA. Observe that if φ is a functional closure property

of #FA, then by definition we have that for all pairs (w,w′) ∈ Σ⋆ × Σ⋆:
if (f1(w), . . . , fm(w)) = (f1(w′), . . . , fm(w′)), then φ̃(f1, . . . , fm)(w) = φ̃(f1, . . . , fm)(w′).

Let ζ : #FA → #FA denote the Cauchy square. We use the observation above to show
that ζ is not equal to φ̃ for any φ : N → N. Let m = 1 and f(w) = 1 if w = 1, f(w) = 0
otherwise. Clearly, f ∈ #FA. Then ζ(f)(11) = 1, and ζ(f)(w) = 0 for all w ̸= 11. In
particular ζ(f)(0) ̸= ζ(f)(11), even though f(0) = f(11). Hence, ζ ̸= φ̃ for all φ : N → N.

Numerous functional closure properties of #FA exist, for example the safe decrementation
max{0, f1 − 1}, and the binomial coefficient

(
f1
2
)
. But not all non-negative functions are

functional closure properties of #FA, for example (f1 − f2)2 is not, which can be shown using
the Pumping Lemma. In this paper, we determine all functional closure properties of #FA,
see §1.2 for the detailed statement.

1.1 Motivation
Functional closure properties can be studied for many different counting machine models
(also for example with different types of oracle access) and different types of input sets. The
first study of this type was done for nondeterministic polynomial-time Turing machines,
i.e., the class #P, see [11], [4], and the recent [12]. Recall that the class #P is the class of
functions f : Σ∗ → N for which a nondeterministic polynomial time Turing machine M exists
such that for all w ∈ Σ∗ the number of accepting paths for the computation M(w) is exactly
f(w). The papers mentioned above prove that the relativizing multivariate polynomial

3 See [11, Sec. 1] for the naming functional closure property. A different reasonable name would be
pointwise closure property.

J. Dörfler and C. Ikenmeyer 134:3

closure properties are exactly those polynomials that have nonnegative integers in their
expansion over the binomial basis, see [12]. A functional closure property φ : Nm → N of
#P is relativizing if φ is a closure property for all #PA, where A ⊂ Σ∗ is some oracle. The
hope is that for simpler models of computation no oracle access is required to determine the
functional closure properties, and we show that this is true for #FA, see §1.2.

Functional closure properties can be used directly to construct combinatorial proofs of
equalities and inequalities. For example, Fermat’s little theorem states that p divides ap − a.
The quantity 1

p (ap − a) has a combinatorial interpretation, which can be deduced from the
fact that 1

p ((f1)p − f1) is a univariate functional closure property of #P, see [12, Prop. 7.3.1],
which coincides with the original proof [18], see also [17, eq. (5)]). On the other hand, if a
function is not a functional closure property, then this means in a very strong sense that there
is no combinatorial interpretation for the quantity it describes. For example, the Hadamard
inequality ([10, §2.13], [3, §2.11], [12, eq. (2)]) states that

det
(

a11 ··· a1d

...
. . .

...
ad1 ··· add

)2

≤
∏d

i=1(a2
i1 + · · · + a2

id).

One could try to prove this by finding a combinatorial interpretation of the difference
H ≥ 0 of the right-hand side and the left-hand side, but even for d = 3 we have that

φ(f1, . . . , f9) = (f2
1 + f2

2 + f3
3) · (f2

4 + f2
5 + f3

6) · (f2
7 + f2

8 + f3
9) − det

(
f1 f2 f3
f4 f5 f6
f7 f8 f9

)
is not a 9-variate relativizing functional closure property of #P, see [12, §7.2]. In particular,

if the function is not a closure property of #P, then there are instantiations f1, . . . , f9 ∈ #P
such that φ(f1, . . . , f9) is not in #P, whereas a combinatorial interpretation of H should
yield φ(f1, . . . , f9) ∈ #P. This does not rule out a more indirect combinatorial proof for
the inequality: For example, for proving combinatorially that (a− 1)2 ≥ 0 one could try to
interpret the quantity (a − 1)2 combinatorially, but (f1 − 1)2 is not a relativizing closure
property of #P. However, f1 · (f1 − 1)2 = 6

(
f1
3
)

+ 2
(

f1
2
)

is a relativizing closure property
of #P (see [12, §2.4]). There is an obvious combinatorial interpretation of 6

(
a
3
)

+ 2
(

a
2
)

as
counting size 2 and 3 subsets with multiplicity 6 and 2, respectively. Hence this gives an
indirect combinatorial proof for the inequality (a − 1)2 ≥ 0 by providing a combinatorial
interpretation for a(a− 1)2.

Some inequalities are only true if the inputs satisfy certain constraints. For example, the
Ahlswede Daykin inequality, see [1], [2], [12, §1.2(3)]: If a0b0 ≥ c0d0 and a0b1 ≥ c0d1 and
a1b0 ≥ c0d1 and a1b1 ≥ c1d1, then (c0 + c1)(d0 +d1) ≥ (a0 +a1)(b0 + b1). If all quantities are
in #P, including the differences c0d0 − a0b0, can we conclude that (c0 + c1)(d0 + d1) − (a0 +
a1)(b0 + b1) is in #P? This is an example of a promise problem: We are given twelve #P
functions a0, a1, b0, b1, c0, c1, d0, d1, h1, h2, h3, h4 with the guarantee that a0b0 + h1 = c0d0,
a0b1 + h2 = c0d1, a1b0 + h3 = c0d1, a1b1 + h4 = c1d1. In other words, the 12-dimensional
output vector that we get for every w ∈ Σ∗ lies on a codimension 4 algebraic subvariety in
Q12. Recall that an algebraic subvariety is defined as the simultaneous zero set of a set of
polynomials. Since the 4 variables h1, . . . , h4 are determined by the other 8, this variety is a so-
called graph or graph variety. Numerous questions about combinatorial proofs for inequalities
from different areas of mathematics can be phrased in the language of graph varieties, see [12].
The idea is to collect the equations for a set S (the variety) into what is called the vanishing
ideal I, i.e., I = I(S) = {φ ∈ Q[f1, . . . , fm] | ∀(f1, . . . , fm) ∈ S : φ(f1, . . . , fm) = 0}; and
define the coordinate ring Q[S] as the quotient ring Q[f1, . . . , fm]/I(S), see [7]. An element in
the quotient ring is a coset with respect to the vanishing ideal. If there exists a representative

ICALP 2024

134:4 Functional Closure Properties of Finite N-Weighted Automata

φ′ in a coset φ+ I that is a functional closure property of #P, then every function in φ+ I

is a promise closure property of #P on the variety S. It is desirable to also have the opposite
direction, but this only holds under some reasonable restrictions on S, in particular it holds
for all graph varieties. This is used in [12, Prop. 2.5.1] to show that c0d0 − a0b0 is not a
relativizing promise closure property of #P on this graph variety. We prove the same strong
dichotomy for monotone graph varieties for #FA instead of #P, see Theorem 4.9.

The systematic study of combinatorial interpretations and combinatorial proofs via
definitions from computational complexity theory is a very recent research direction [15, 16, 12,
17, 13, 5, 6]. The goal is to determine whether or not certain quantities admit a combinatorial
description or not. Famous open questions of this type in algebraic combinatorics have been
listed by Stanley in [22], for example his problems 9, 10, and 12. As many combinatorialists
do, Stanley has phrased his questions in an informal way without mentioning counting classes.

The class #P is the correct class for some purposes, but for others it is too large. For
example, the determinant of a skew-symmetric matrix with entries from {−1, 0, 1} is always
non-negative, but this quantity is trivially in #P, because the determinant can be computed
in polynomial time. This gives no satisfying insight into whether or not this quantity has a
combinatorial interpretation. Smaller counting classes are required (see also the discussion
in [15, §1]), and we provide the first study of functional closure properties for the subclass
#FA ⊂ #P. Unlike the classification for #P, our results do not rely on oracle separations,
i.e., our classification is entirely unconditional.

1.2 Our results
Let n rem p ∈ {0, . . . , p− 1} denote the smallest nonnegative r such that n ≡p r. A function
φ : N → N is called ultimately PORC (Polynomial On Residue Classes4) if ∃p,N ∈ N
and there exist polynomials φ0, . . . , φp−1 : N → Q such that for every n ≥ N we have
φ(n) = φn rem p(n) 5.

We first classify the univariate functional closure properties of #FA:
Theorem (see Theorem 3.22). A function φ : N → N is a functional closure property of
#FA if and only if φ is an ultimately PORC function.

More generally, we classify the multivariate functional closure properties of #FA:
Theorem (see Theorem 3.23). A function φ : Nm → N is a functional closure property
of #FA if and only if φ can be written as a finite sum of finite products of univariate
ultimately PORC functions.

We analyze the special case of multivariate polynomials:
Theorem (see Lemma 3.26). A multivariate polynomial φ : Nm → N with rational
coefficients is a functional closure property of #FA iff for every ψ that can be formed
from φ by replacing any subset of variables – including the empty set – by constants from
N, then all dominating terms of ψ in the binomial basis have positive coefficients.

4 PORC functions are also known as quasipolynomials or pseudopolynomials, but we want to avoid those
names for the potential confusion to quasipolynomial growth and pseudopolynomial running times.

5 Note that each φ in this paper is defined on the natural numbers and maps to the natural numbers,
which is a subtle restriction. For example, a univariate polynomial φ : Q → Q maps integers to integers
if and only if its coefficients in the binomial basis are integers, see Section 2. However, non-negativity
is not an algebraic property. Also note that for the case of φ being just a univariate polynomial, the
corresponding linear recursive sequence can have negative entries in the matrix.

J. Dörfler and C. Ikenmeyer 134:5

We lift this result to monotone graph varieties (and to more general sets, see Theorem 4.6),
where we get exactly the desirable classification given by the vanishing ideal:

Theorem (see Theorem 4.9). Let S be a monotone graph variety and let I = I(S) be its
vanishing ideal. A multivariate polynomial φ : S → N is a functional promise closure
property of #FA with regard to S if and only if there exists ψ ∈ I such that φ+ ψ is a
multivariate functional closure property of #FA.

2 Notation

Let N = {0, 1, 2, . . .}. For a finite set Σ let Σ⋆ denote the set of all finite length sequences with
elements from Σ. The vector space of multivariate polynomials Q[f1, . . . , fm] in variables
f1, . . . , fm has a basis given by products of binomial coefficients:

{∏m
i=1
(

fi

ci

)}
c1,...,cm

, where
each ci ∈ N. Here we used

(
x
c

)
= 1

c!x · (x− 1) · . . . · (x− c+ 1) as a polynomial. This is called
the binomial basis. A multivariate polynomial φ is called integer valued if φ(Zm) ⊆ Z, which
is equivalent to φ(Nm) ⊆ Z, and which is also equivalent to all coefficients in the binomial
basis being integers, see for example [12, Prop. 4.2.1] for a short proof of this classical fact.

We now recall (see [9, Def. 2.1]) our main model of computation, the finite N-weighted
automaton, which we just call non-deterministic finite automaton (NFA) for brevity.

▶ Definition 2.1. An NFA M is a tuple (Q,Σ,wt, in, out) where the set of states Q and
the alphabet Σ are finite sets and wt : Q× Σ ×Q → N is the weighted transition function,
in : Q → N are the weighted initial states and out : Q → N are the weighted accepting
states6. A computation P for a word w = w1 . . . wn ∈ Σ⋆ of length n is a sequence q0q1 . . . qn

in Qn+1. It has multiplicity or weight7 w(P) = in(q0) ·
∏n

i=1 wt(qi−1, wi, qi) · out(qn) and
partial weight w(P) = in(q0) ·

∏n
i=1 wt(qi−1, wi, qi). We say that M computes f : Σ⋆ → N

where f(w) is the sum of the weights over all computations of M on w. The class #FA is
defined as the set of all functions f : Σ⋆ → N that are computed by NFAs.

If needed to distinguish these for different automata, we use a corresponding subscript,
for example the weights of computations in Mf would be denoted by wf , etc.

▶ Definition 2.2 (Simple NFA). We say an NFA M = (Q,Σ,wt, in, out) is simple if
im wt, im in, im out ⊆ {0, 1}.

The notion of a simple NFA also motivates our use of the term NFA opposed to N-weighted
automaton: We simply count the number of accepting paths of M on a word w. This is in
line with #P counting the number of accepting paths on a polynomial time non-deterministic
Turing machine.

▶ Lemma 2.3 (Folklore). For every NFA M there exists a simple NFA M ′ computing the
same function.

6 Note that in definitions by other authors one can find simpler versions of NFAs, in particular unweighted
initial and accepting states and unweighted edges while also restricting to a single initial state. We will
see soon that working with unweighted NFAs is not a restriction, but additionally restricting the model
to have a single initial state is strictly weaker, since this model could not compute any function f with
f(ε) > 1. To obtain the same expressiveness one would have to additionally allow for ε-transitions,
while disallowing cycles of ε-transitions to prevent infinite values for f .

7 We will use both of these terms interchangeably. For a weighted automaton, calling this weight is more
natural, while when looking at the underlying graph as a multigraph, multiplicity of paths and walks is
more natural.

ICALP 2024

134:6 Functional Closure Properties of Finite N-Weighted Automata

A proof of this simple fact can be found in the appendix of the full version, for the
sake of completeness. We denote by a ≡p b that a ∈ N and b ∈ N are congruent modulo

p ∈ N \ {0}. The indicator function 1n=c : N → N is defined as n 7→

{
1 if n = c

0 otherwise
and

analogously for different conditions. By abuse of notation, if we have a function f : Σ⋆ → N
and an expression φ : N → N in n, we replace n by f in the expression to denote φ ◦ f . For
example we use 1f=c to denote the function w 7→ 1f(w)=c, similarly

(
f
2
)

denotes the function
w 7→

(
f(w)

2
)
. Furthermore we use the notation [n] to denote the set {1, . . . , n} for any n ∈ N.

3 Functional closure properties

3.1 Univariate functional closure properties
We say a function φ : N → N is a functional closure property of #FA if φ(#FA) ⊆ #FA, i.e.
if for every function f ∈ #FA the function φ ◦ f is also in #FA. Our goal in this section is to
classify all functional closure properties of #FA. They will be precisely the ultimately PORC
functions.

We call a function φ : N → N an ultimately almost PORC function if there is a
quasiperiod p, an offset N ∈ N and constituents φ0, . . . , φp−1 : N → Q, where each φi

is either a polynomial with rational coefficients or a function in 2Θ(n), and for every n ≥ N

we have φ(n) = φn rem p(n). If all the constituents are polynomials, we call φ an ultimately
PORC function. The smallest representative of each constituent and of the finite cases before
the periodic behaviour is captured by the shifted remainder operator n sremp N , defined via

n sremp N =
{
n if n < N

min{k ≥ N | k ≡p n} if n ≥ N

The first half of the section is dedicated to proving that every ultimately PORC function
is a functional closure property of #FA, see Lemma 3.18. In order to prove this we show
that #FA is closed under

▶ Lemma 3.1 (Addition). If f, g ∈ #FA, then f + g ∈ #FA.

▶ Lemma 3.2 (Multiplication). If f, g ∈ #FA, then f · g ∈ #FA.

▶ Lemma 3.9 (Subtraction of constants). If f ∈ #FA, then ∀c ∈ N : max(f − c, 0) ∈ #FA.

▶ Lemma 3.10 (Clamping). If f ∈ #FA, then min(f, c) ∈ #FA for any constant c ∈ N.

▶ Lemma 3.11 (Comparison with constants). If f ∈ #FA, then the functions 1f=c, 1f≤c,
1f≥c are in #FA for any constant c ∈ N.

▶ Lemma 3.13 (Division by constants). If f ∈ #FA, then ∀c ∈ N \ {0} : ⌊f/c⌋ ∈ #FA.

▶ Lemma 3.14 (Modular arithmetic). If f ∈ #FA, then the function 1f≡cd is in #FA for
any constants c ∈ N \ {0} and d ∈ Zc.

▶ Lemma 3.15 (Binomial coefficients). If f ∈ #FA, then
(

f
c

)
∈ #FA for any constant c ∈ N.

While addition and multiplication are technically bivariate functional closure properties,
we list them here already since they are abundantly used throughout the proofs of the
univariate functional closure properties. Proofs of those two classical results can be found in
[8, Ch. 4.1 and 4.2.2] and in the appendix of the full version, for the sake of completeness.

J. Dörfler and C. Ikenmeyer 134:7

With the exception of binomial coefficients all the other closure properties need to be able
to “remove” some of the possible computations. For example, consider decrementation, the
special case of truncated subtraction by one, and consider some simple NFA M computing
some strictly positive function f . We now want to construct an NFA M ′ that computes f −1,
i.e. an NFA that has exactly one non-zero computation less than M (assuming computations
of weights zero or one). For this we want a procedure to single out one non-zero computation
of M to then change its weight to zero. For stronger models of computation – like polynomial
time non-deterministic Turing machines – this approach seems hopeless. Already deciding
the existence of one such computation is NP-hard. However for NFAs, deciding the existence
of a non-zero computation can be decided by a deterministic finite automaton, namely the
powerset automaton. Adjusting the powerset construction to filter out a single non-zero
computation, namely the lexicographically minimal one can then be used to show that
decrementation is a closure property of #FA.

Generalizing this approach to more general properties about the computations gives us
the framework of stepwise computation properties:

▶ Definition 3.3 (Stepwise computation property). Let M = (Q,Σ,wt, in, out) be an NFA.
A stepwise computation property prop is defined as prop = (S, init, step, cond) where S

is a finite set and init : Q → S, step : Q × Σ × Q × S → S and cond : S → {0, 1} are
functions. For w = w1 . . . wn ∈ Σ⋆ and a computation P = q0 . . . qn of M on w we define
a step sequence s0 := init(q0) and si := step(qi−1, wi, qi, si−1) for i ∈ [n]. We also write
prop(w,P) := cond(sn) to be the evaluation of the property.

These stepwise computation properties now enable us, given a simple NFA, to construct
NFAs computing both of the following:

▶ Lemma 3.4. Let Mf be a simple NFA computing a function f and let prop be a stepwise
computation property. Then there is an NFA M computing g(w) =

∑
P wf (P) · prop(w,P),

where the sum is over all computations P of Mf on w.

▶ Lemma 3.5. Let Mf be a simple NFA computing a function f and let prop be a stepwise
computation property. Then there is an NFA M computing g(w) =

∑
P prop(w,P), where

the sum is over all computations P of Mf on w.

Proof sketch. For both of these lemmas, we construct a sort of product automaton of Mf

and prop (represented by the set S), the details can be found in the appendix of the full
version. ◀

In other words, stepwise computation properties allow us to either “disable” specific
computations of Mf or they allow us to directly extract information about the computations
of Mf . Note that the restriction on the finiteness of S is necessary, as the elements of S
are hard-coded into the state space of the NFA in Lemmas 3.4 and 3.5. In particular, these
lemmas do not hold for even countably infinite S, which can be seen with the example S = N
when we define the stepwise computation property in such a way that prop(w,P) = 1 iff |w|
is prime, leading to an NFA recognizing the language of all words of prime length, a well
known contradiction.

Further note that these two constructions do not incur exponential blowups themselves,
however for most of our applications the set S will be of exponential size in the number of
states of Mf .

ICALP 2024

134:8 Functional Closure Properties of Finite N-Weighted Automata

Returning to our decrementation example, to use Lemma 3.4 we want to construct a
stepwise computation property prop with prop(w,P) = 0 iff P is the lexicographically smallest
non-zero weight computation on w. For this we can set S = P(Q) to be the set of all subsets
of states Q, denoting the set of states that currently are the endpoints of lexicographically
smaller partial computations of non-zero weight than the partial computation P we are
on. We need to store all such potential states, since some current partial non-zero weight
computations might not be possible to be completed to a full non-zero weight computation.
Initially this set contains all states that are smaller than the start state of P , the step
function then checks which lexicographically smaller partial computations can be extended
and whether any new partial computations that agreed with P up to this state can be
lexicographically smaller than P . Finally the cond function then checks whether there are
any such lexicographically smaller partial computations left that can be completed to a
non-zero weight computation, i.e. that end on a state q ∈ Q with out(q) = 1.

We want to generalize this idea to be able to generally create stepwise computation
properties that argue about the number of non-zero computations, either in total or lexico-
graphically smaller than a given computation. However doing this in general would require
choosing the set S as the set of functions Q → N, which is infinite. As a result we embed
the number of computations into finite semirings first to then extract the relevant infor-
mation. For this purpose we only consider semirings with both additive and multiplicative
identities. Homomorphisms h from a semiring R into another semiring R′ need to fulfill
h(a + b) = h(a) + h(b), h(a · b) = h(a) · h(b), h(1R) = 1R′ , h(0R) = 0R′ . Since every
element of N is either 0 or can be formed by repeated addition of 1, any homomorphism
from N into any other semiring is uniquely defined.

We can then use R to construct stepwise computation properties (the full proofs can be
found in the appendix of the full version). Combined with Lemmas 3.4 and 3.5 these use
similar ideas to [14].

▶ Lemma 3.6. Let N = (Q,Σ,wt, in, out) be a simple NFA and let R be a finite semiring and
let τ : N → R be the unique homomorphism from N to R. For any function π : R → {0, 1}
there is a stepwise computation property prop with prop(w,P) = π(τ(

∑
P ′ w(P ′))), where

the sum is over all computations P ′ of N on w, independent of P .

Proof sketch. Construct prop = (S, init, step, cond) via: S = Q → R, init(q) = r 7→
τ(in(r)), step(q, σ, q′, s) = r 7→

∑
r′∈Q s(r′) · τ(wt(r′, σ, r)), and cond(s) = π

(∑
r∈Q s(r) ·

τ(out(r))
)
. Let s0, . . . , sn be the step sequence of any computation P of w. Since τ is a

homomorphism, we can pull out τ . Thus si(q) = τ(
∑

P̃ w(P̃)), where the sum is over all
computations P̃ of w1, . . . wi ending in the state q. The condition cond then completes this
to prop(w,P) = π(τ(

∑
P ′ w(P ′))), where the sum is over all computations P ′ of N on w. ◀

▶ Lemma 3.7. Let M = (Q,Σ,wt, in, out) be a simple NFA with some ordering < of Q,
let R be a finite semiring and let τ : N → R be the unique homomorphism from N to
R. For any function π : R → {0, 1} there is a stepwise computation property prop with
prop(w,P) = π(τ(

∑
P ′ w(P ′))) for all non-zero computations P of N on w, where the sum

is over all computations P ′ of N on w that are lexicographically smaller than P .

Proof sketch. Construct prop = (S, init, step, cond) via: S = Q → R, init(q) = r 7→
τ(1r<q · in(r)), step(q, σ, q′, s) = r 7→

∑
r′∈Q s(r′) · τ(wt(r′, σ, r)) + τ(1r<q′ · wt(q, σ, r)),

cond(s) = π(
∑

r∈Q τ(out(r)) · s(r)). Let s0, . . . , sn be the step sequence of any computation
P = q0 . . . qn of w. Inductively we can show that si(r) =

∑
P ′ τ(w(P ′)) for all i ∈ {0, . . . , n}

and r ∈ Q, where the sum is over all computations P ′ = q′
0 . . . q

′
i of N on w1 . . . wi with

J. Dörfler and C. Ikenmeyer 134:9

q′
i = r that are lexicographically smaller than q0 . . . qi. Initially the only computations
P ′ = q′

0 that are lexicographically smaller than the computation q0 are the ones with
q′

0 < q0. For i > 0 for a computation P ′ = q′
0 . . . q

′
i to be lexicographically smaller than

q0 . . . qi there are two possibilities. Either q′
0 . . . q

′
i−1 is already lexicographically smaller than

q0 . . . qi−1 or q′
0 . . . q

′
i−1 = q0 . . . qi−1 and q′

i < qi. In the second case the weight of P ′ is
precisely w(qi−1, wi, q

′
i) since P is a computation of non-zero weight and thus weight exactly

1. Combining all of this, we can finish the proof of the claim with a similar argument to
Lemma 3.6. ◀

Note that the previous lemma makes no statement about the value of prop(w,P) for any
computations P of weight zero. However, this is enough for our uses, since we only combine
it with Lemma 3.4, i.e., prop(w,P) gets weighted by w(P).

Most commonly, as is the case for decrementation, we want to be able to exactly distinguish
the number of non-zero computations if it is less than k and otherwise be able to tell that
the number is at least k. This is achieved by using the following capped semiring:

▶ Definition 3.8 (Capped semiring). For k ∈ N we call the semiring Rk = {0, . . . , k} with
the operations a+R b := min(a+ b, k) and a ·R b := min(a · b, k) the capped semiring.

We can now show that decrementation is a functional closure property by simply using
Lemma 3.7 using the capped semiring R1 and π(a) = a to construct our wanted stepwise
computation property computing prop(w,P) = 0 iff P is the lexicographically smallest
non-zero weight computation on w.

Most of the remaining closure properties are now proven by using the capped semiring of
a specific size and choosing the function π accordingly, we will show this in detail for the
example of subtraction, the remaining proofs can be found in the appendix of the full version.

▶ Lemma 3.9 (Subtraction of constants). If f ∈ #FA, then ∀c ∈ N : max(f − c, 0) ∈ #FA.

Proof. Let Mf = (Qf ,Σ,wtf , inf , outf) be a simple NFA computing f with an arbitrary
ordering < on Qf . Lemma 3.7 on the capped semiring Rc with π(a) = 1a≥c for all a ∈ R
constructs a stepwise computation property prop with

prop(w,P) =

1 if the number of non-zero computations P ′ on w that arelex.
smaller than P is at least c

0 otherwise

for all computations P on w of non-zero weight, i.e., prop(w,P) = 0 iff P is one of the c
lexicographically smallest computations on w with non-zero weight. It follows that the NFA
M constructed by Lemma 3.4 computes g(w) = max(f(w) − c, 0). ◀

If instead of rejecting the c lexicographically smallest computations, we accept only those
computations, we compute the minimum of f and c.

▶ Lemma 3.10 (Clamping). If f ∈ #FA, then min(f, c) ∈ #FA for any constant c ∈ N.

By using the capped semiring Rc+1 with π=(a) = 1a=c, π≤(a) = 1a≤c and π≥(a) = 1a≥c,
we can compute the indicator functions 1f=c, 1f≤c and 1f≥c respectively.

▶ Lemma 3.11 (Comparison with constants). If f ∈ #FA, then the functions 1f=c, 1f≤c,
1f≥c are in #FA for any constant c ∈ N.

The previous lemma in particular also implies the following:

ICALP 2024

134:10 Functional Closure Properties of Finite N-Weighted Automata

▶ Lemma 3.12. If φ : N → N is a functional closure property of #FA and ψ : N → N is
an arbitrary function with φ(n) = ψ(n) for all but finitely many n ∈ N, then ψ is also a
functional closure property of #FA.

Proof. Let f ∈ #FA be arbitrary. Further let N ∈ N be such that φ(n) = ψ(n) for all
n ≥ N . Then (ψ◦f)(w) =

∑N−1
i=0 1f(w)=iψ(i)+1f(w)≥Nφ(f(w)) for all w ∈ Σ⋆. In particular

ψ ◦ f ∈ #FA since the ψ(i) are constants and φ ◦ f ∈ #FA. ◀

Division and modular arithmetic however use a different semiring: they use the finite
cyclic semiring Zc = {0, . . . , c− 1} with π(a) = 1a=c−1 and π(a) = 1a=d respectively.

▶ Lemma 3.13 (Division by constants). If f ∈ #FA, then ∀c ∈ N \ {0} : ⌊f/c⌋ ∈ #FA.

▶ Lemma 3.14 (Modular arithmetic). If f ∈ #FA, then the function 1f≡cd is in #FA for
any constants c ∈ N \ {0} and d ∈ Zc.

The previous closure properties turn out to already be sufficient to generate all functional
closure properties, so in particular they are sufficient to generate binomial coefficients by using
subtraction of constants, multiplication and division by constants by using the definition of
binomial coefficients as a polynomial:

(
x
c

)
= 1

c!x · (x− 1) · . . . · (x− c+ 1). Nonetheless, we
give an additional proof for binomial coefficients as a different interesting application of the
stepwise computation property framework.

▶ Lemma 3.15 (Binomial coefficients). If f ∈ #FA, then
(

f
c

)
∈ #FA for any constant c ∈ N.

Proof. Let Mf = (Qf ,Σ,wtf , inf , outf) be a simple NFA computing f and let c ∈ N. For
c < 2 the statement of this lemma is trivially true, so assume c ≥ 2.

We construct the c-fold product automaton M c
f = (Qc

f ,Σ,wtc
f , inc

f , outc
f) with

wtc
f ((q1, . . . , qc), σ, (q′

1, . . . , q
′
c)) =

∏c
i=1 wtf (qi, σ, q

′
i)

inc
f ((q1, . . . , qc)) =

∏c
i=1 inf (qi)

outc
f ((q1, . . . , qc)) =

∏c
i=1 outf (qi)

M c
f is a simple NFA and every computation on M c

f is the cartesian product of c
computations on Mf . Our aim is to now construct a stepwise computation property
prop = (S, init, step, cond) such that prop(w,P) = 1 iff P is composed of c pairwise distinct
computations8 on Nf .

For this let S be the set of all equivalence relations on the set [c]. We define init((q0, . . . , qc))
to be the equivalence relation R0 with (a, b) ∈ R0 iff qa = qb. Additionally we define
cond(R) = 1 iff R is the equivalence relation where every element is only equivalent to itself,
i.e. a computation gets accepted iff all its constituent computations are pairwise distinct.
Finally we define step((q1, . . . , qc), σ, (q′

1, . . . , q
′
c), R) to be the equivalence relation R′ defined

via (a, b) ∈ R′ iff (a, b) ∈ R and q′
a = q′

b. With a simple induction we can prove that for
a computation P = P1 × . . .× Pc and the step sequence R0, . . . , Rn we have (a, b) ∈ Ri iff
the computations Pa and Pb are identical for the first i steps. It follows that the NFA M

constructed by Lemma 3.4 computes g(w) =
(

f(w)
c

)
· c!. Now,

(
f
c

)
∈ #FA by Lemma 3.13. ◀

8 We could also require them to be sorted in lexicographical order by having S be the set of all total
preorders, but since we can divide by c! we are going with the easier exposition.

J. Dörfler and C. Ikenmeyer 134:11

While the combination of the previous lemmas can be used to show that any polynomial
written in the binomial basis with non-negative integer coefficients is a functional closure
property of #FA, we can do better by considering a shifted binomial basis. For example,
consider the polynomial φ(x) = x2

2 − 3x
2 + 1. This polynomial is non-negative for all x ∈ N.

Writing φ in the binomial basis we get φ(x) =
(

x
2
)

−
(

x
1
)

+ 1. If however we allow the upper
indices of the binomial basis to be shifted, we can write φ without the use of negative
coefficients as φ(x) =

(
x−1

2
)
. While x− 1 itself is not a functional closure property of #FA

the function max(x− 1, 0) is a functional closure property of #FA and is different from x− 1
for only finitely many x ∈ N. In the same way we see that φ′(x) :=

(max(x−1,0)
2

)
only differs

from φ for finitely many x ∈ N, namely x = 0. Using Lemma 3.12 to change those finitely
many values, we see that φ is indeed a functional closure property of #FA.

Generalizing this idea we will show with the next two lemmas that this is possible for
any φ with integer coefficients in the binomial basis, with a small restriction: We don’t show
that φ itself is a functional closure property of #FA, but rather that x 7→ max(φ(x), 0) is
one. Note that this restriction is the best we can hope for, since no computation in an NFA
can ever have negative weight.

▶ Lemma 3.16. Let φ(x) =
∑r

i=0 ai ·
(

x
i

)
with ai ∈ Z and ar > 0. Then there are

b0, . . . , br ∈ N and c0, . . . , cr ∈ N with φ(x) =
∑r

i=0 bi ·
(

x−ci

i

)
.

Proof sketch. We inductively prove this claim by using the Chu-Vandermonde identity
[21] on the term of highest degree. It allows us to replace the highest degree binomial via(

x−cr

r

)
=
∑r

i=0(−1)r−i
(

r−i+cr−1
r−i

)(
x
i

)
. For sufficiently large cr ∈ N this implies that the

leading term of φ(x) − ar ·
(

x−cr

r

)
again is positive and of smaller degree. ◀

A full proof of the previous lemma can be found in the appendix of the full version.

▶ Lemma 3.17 (Integer-valued polynomials). Let f ∈ #FA and let φ : Q → Q be an
integer-valued polynomial, then max(φ ◦ f, 0) ∈ #FA.

Proof. We can assume the leading coefficient of φ to be positive. Otherwise max(φ ◦ f, 0)
can be directly written as a finite sum

∑
i ci · 1f=i which is in #FA by Lemmas 3.1, 3.2 and

3.11. Write φ in the binomial basis as φ(x) = a0 ·
(

x
0
)

+ . . . + ar ·
(

x
r

)
with ar > 0. Since

φ is integer-valued, all of the ai are integers, see [12, Prop. 4.2.1]. Using Lemma 3.16 we
get a representation φ(x) =

∑r
i=0 bi ·

(
x−ci

i

)
with b0, . . . , br ∈ N and c0, . . . , cr ∈ N. For

x ≥ max{ci | 0 ≤ i ≤ r} =: N we have that
(

x−ci

i

)
=
(max(x−ci,0)

i

)
and thus ψ(x) :=∑r

i=0 bi ·
(max(x−ci,0)

i

)
only differs from x 7→ max(φ(x), 0) on finitely many inputs and is a

functional closure property of #FA by Lemmas 3.1, 3.2, 3.9 and 3.15. Lemma 3.12 then
finishes off the claim. ◀

We now have the tools available to show our claim that every ultimately PORC function
is a functional closure property of #FA.

▶ Lemma 3.18. Every ultimately PORC function is a functional closure property of #FA.

Proof. Let φ : N → N be an ultimately PORC function with period p comprised of the
polynomial constituents φ0, . . . , φp−1 : N → Q and N ∈ N, s.t. for all n ≥ N we have
φ(n) = φn rem p(n). Additionally let f ∈ #FA. We can write

φ ◦ f =
∑N−1

i=0 1f=i · φ(i) + 1f≥N · (
∑p−1

i=0 1f≡pi · ⌊max(φi ◦ f, 0)⌋) .

ICALP 2024

134:12 Functional Closure Properties of Finite N-Weighted Automata

S A

1 1

1
S

1, 1

Figure 1 NFAs computing the functions 1n 7→ n and 1n 7→ 2n respectively. Edges with a
multiplicity of 2 are denoted by listing the edge label twice.

Combining Lemmas 3.1, 3.2, 3.11 and 3.14 this shows φ◦f ∈ #FA, if we can show ⌊max(φi◦
f, 0)⌋ ∈ #FA for all i ∈ {0, . . . , p− 1}. To show this let αi be the common denominator of
the coefficients of φi. Then αi ·φi is a polynomial with integer coefficients, so it in particular
is an integer-valued polynomial and by Lemma 3.17 we have that max(αi · φi ◦ f, 0) ∈ #FA.
Combining this with Lemma 3.13 we get that

⌊
max(αi·φi◦f,0)

αi

⌋
= ⌊max(φi ◦ f, 0)⌋ ∈ #FA. ◀

The remainder of this section is dedicated to showing that no other functional closure
properties of #FA exist. This will make use of the following well known algebraic interpretation
of NFAs:

▶ Lemma 3.19 (see [19]). If M = (Q,Σ,wt, in, out) is an NFA, then there are matrices Aσ ∈
N|Q|×|Q| for each symbol σ ∈ Σ and vectors a, b ∈ N|Q|, s.t. M computes aT ·

(∏|w|
j=1 Awj

)
· b

for all w ∈ Σ⋆.

Proof. We index Aσ, a and b using states q, q′ ∈ Q. Choose (Aσ)q,q′ = wt(q, σ, q′), aq = in(q)
and bq = out(q). It is now easy to see that M computes exactly aT ·

(∏|w|
j=1 Awj

)
· b. ◀

When restricting to a unary alphabet Σ = {σ}, this degenerates the computed function
to aT · A|w|

σ · b. In order to analyze the behaviour of these functions we first analyze the
behaviour of the matrix power as a function in |w| in the next two lemmas. Their proofs can
be found in the appendix of the full version.

▶ Lemma 3.20. Let A ∈ Nk×k. Then any diagonal entry of An is a function f : N → N
with one of the following properties:
1. f(n) = 0 for all n ∈ N \ {0} and f(0) = 1.
2. There is a p ∈ N \ {0}, such that for all n ∈ N we have f(n) = 1n≡p0.
3. There is a p ∈ N \ {0} and a function g ∈ 2Θ(n), such that for all n ∈ N we have

f(n) = 1n≡p0 · g(n).
These naturally correspond to vertices v in the multigraph defined by the adjacency

matrix A with
1. no paths from v to v.
2. exactly one path from v to v of length p.
3. multiple walks from v to v where the lengths of all the walks from v to v have gcd p.
We can then lift this result to all entries of An.

▶ Lemma 3.21. If A ∈ Nk×k, then each entry of An is an ultimately almost PORC function.

▶ Theorem 3.22 (Classification of univariate functional closure properties of #FA). A function
φ : N → N is a functional closure property of #FA iff φ is an ultimately PORC function.
This even holds when #FA is restricted to unary languages.

Proof. Lemma 3.18 already shows that every ultimately PORC function is a closure property
of #FA. It remains to show that all functional closure properties of #FA are ultimately PORC
functions. For this let φ : N → N be a functional closure property of #FA. The function

J. Dörfler and C. Ikenmeyer 134:13

f : {1}⋆ → N defined by f(1n) = n is computed by the left NFA in Figure 1 and thus in #FA.
Consequently φ ◦ f ∈ #FA. Let M = (Q, {1},wt, in, out) be an NFA computing φ ◦ f . By
Lemma 3.19 this NFA induces a transition matrix A ∈ N|Q|×|Q| and vectors a, b ∈ N|Q|, s.t.
aTAnb = φ(f(1n)) = φ(n) for all n ∈ N. Every entry of An is an ultimately almost PORC
function by Lemma 3.21 and thus aTAnb = φ(n) is one as well. Let p be the quasiperiod of φ
and let φi be one of the constituents of φ corresponding to some residue class i ∈ {0, . . . , p−1}.
Assume for the sake of contradiction that φi grows in 2Θ(n), i.e. there is a constant γ ∈ R+

and N ∈ N, s.t. for every n ≥ N we have φi(n) ≥ 2γn. Consider the function fp,i : {1}⋆ → N
defined by fp,i(1n) = p · (2n + N) + i. We claim fp,i is in #FA. The function 1n 7→ 2n is
computed by the right NFA in Figure 1 and thus in #FA. The remainder of the claim follows
by Lemma 3.1 and Lemma 3.2. Note that fp,i(1n) ≡p i, so φ ◦ fp,i = φi ◦ fp,i has to be in
#FA as well. Furthermore φ(fp,i(1n)) = φi(fp,i(1n)) = φi(p · (2n +N) + i) ≥ 2γp·(2n+N)+γi

for all n ∈ N which is larger than any NFA can compute, since NFAs can only compute
functions that are at most linearly exponential in the length of the input. We conclude that
none of the constituents φi of φ can be exponential, so they are instead all polynomials,
making φ an ultimately PORC function. ◀

3.2 Multivariate functional closure properties
▶ Theorem 3.23 (Classification of multivariate functional closure properties of #FA). A function
φ : Nm → N is a functional closure property of #FA iff φ can be written as a finite sum of
finite products of univariate ultimately PORC functions.

Proof. By Theorem 3.22 any univariate ultimately PORC function is a closure property of
#FA. As such any finite sum or finite product of them is also a closure property of #FA by
Lemmas 3.1 and 3.2.

It remains to show that all functional closure properties of #FA are of this form. For this let
φ : Nm → N be a functional closure property of #FA. Define the alphabet Σ = {σ1, . . . , σm}
and the functions fi : Σ⋆ → N where fi(w) := #i(w) is defined as the number of occurences
#i(w) of the symbol σi in w. Applying the closure property to f1, . . . , fm gives that
φ ◦ (f1, . . . , fm) ∈ #FA and thus is computed by an NFA M = (Q,Σ,wt, in, out). This
induces transition matrices Aσ ∈ N|Q|×|Q| for each symbol σ ∈ Σ and vectors a, b ∈ N|Q|,
s.t. aT

∏|w|
j=1 Awj

b = φ(f1(w), . . . , fm(w)) for all w ∈ Σ⋆. Restricting to words of the form
w = σn1

1 σn2
2 · · ·σnm

m for n1, . . . , nm ∈ N gives aT
(∏m

i=1 A
ni
σi

)
b = φ(n1, . . . , nm). Using

Lemma 3.21 on each of the Ani
σi

we see that every entry of Ani
σi

is an ultimately almost PORC
function in ni. Consequently, every entry of

∏m
i=1 A

ni
σi

is a finite sum of products of different
ultimately almost PORC functions and the same holds for aT

(∏m
i=1 A

ni
σi

)
b = φ(n1, . . . , nm).

We now look at the individual summands of φ and prove that we can rewrite each one as a
product of ultimately PORC functions by one-by-one rewriting the exponential constituents.
For this let φ(1)(n1) · · ·φ(m)(nm) be one of the summands of φ where φ(1), . . . , φ(m) are
all ultimately almost PORC functions, with periods p1, . . . , pm, offsets N1, . . . , Nm and
constituents φ(i)

0 , . . . , φ
(i)
pi−1 for each i ∈ [m]. If none of the constituents are exponential

we are done. Otherwise let φ(i)
j be one of the exponential constituents, let γ ∈ R+ and let

N ∈ N, s.t. φ(i)
j (ni) ≥ 2γni for ni ≥ N . We claim we can set φ(i)

j (ni) = 0 without changing
the product φ(1)(n1) · · ·φ(m)(nm) for any n1, . . . , nm ∈ N. Call the resulting functions
ψ(i) and ψ

(i)
j . Assume for the sake of contradiction, that there are some c1, . . . , cm ∈

N where φ(1)(c1) · · ·φ(m)(cm) ̸= φ(1)(c1) · · ·φ(i−1)(ci−1) · ψ(i)(ci) · φ(i+1)(ci+1) · · ·φ(m)(cm).
This implies that φ(1)(c1) · · ·φ(i−1)(ci−1) · φ(i+1)(ci+1) · · ·φ(m)(cm) ̸= 0 and ci ≥ Ni as we
didn’t change any other functions except φ(i) for ni ≥ Ni.

ICALP 2024

134:14 Functional Closure Properties of Finite N-Weighted Automata

Constructing constant functions f ′
k(w) = ck for k ̸= i and the function f ′

i(w) = pi · (2|x| +
max(Ni, N)) + j which are all in #FA. We see that φ ◦ (f ′

1, . . . , f
′
m) ∈ #FA. Note that for

any w ∈ Σ⋆ we have f ′
i(w) ≥ max(Ni, N) and f ′

i(w) ≡pi
j and thus φ(i) ◦ f ′

i = ψ
(i)
j ◦ f ′

i .
Combining all of this we again reach a contradiction to the fact that NFAs can only compute
at most linearly exponential functions via

φ(f ′
1(w), . . . , f ′

m(w)) ≥ φ(1)(c1) · · ·φ(i−1)(ci−1) · φ(i)(f ′
i(w)) · φ(i+1)(ci+1) · · ·φ(m)(cm)

≥ φ(i)(f ′
i(w)) = φ

(i)
j (f ′

i(w)) = φ
(i)
j (pi · (2|w| + max(Ni, N)) + j)

≥ 2γpi·(2|w|+max(Ni,N))+γj .

Note that the first inequality holds due to all summands of φ being non-negative. ◀

Deciding whether a function φ has such a representation may not always be directly
visible, however if φ is a multivariate polynomial we can be more explicit. Every integer-
valued multivariate polynomial has integer coefficients when represented in the binomial
basis (see [12, Prop. 4.2.1] for a proof of this fact). We say a term a ·

(
x1
d1

)
· · ·
(

xm

dm

)
dominates

another term a′ ·
(

x1
d′

1

)
· · ·
(

xm

d′
m

)
if di ≥ d′

i for all i ∈ [m]. A term is a dominating term of
φ if it has non-zero coefficient and it is not dominated by any other term with non-zero
coefficient. We can use a similar approach to Lemma 3.16 to rewrite φ as a positive integer
linear combination of products of shifted binomials (details can be found in the appendix of
the full version).

▶ Lemma 3.24. Let φ(x1, . . . , xm) =
∑r

i=1 ai ·
∏m

j=1
(

xj

di,j

)
with ai ∈ Z and the coefficients

of the dominating terms being positive. Then there are a′
1, . . . , a

′
r′ ∈ N and c1, . . . , cr′ ∈ N

with φ(x1, . . . , xm) =
∑r′

i=1 a
′
i ·
∏m

j=1
(

xj−ci

di,j

)
.

We can then use a generalization of Lemma 3.17 and replace subtractions xi − c′ by
max(xi − c′, 0). However special care has to be taken for xi < c′, in which case xi has to be
replaced by the corresponding constants first. This adds the additional condition on φ.

▶ Lemma 3.25. Let φ : Nm → N be a multivariate polynomial with rational coefficients, such
that whenever ψ is formed from φ by replacing any set of variables – including the empty
subset – by constants from N, then all dominating terms of ψ have positive coefficients. Then
φ is a functional closure property of #FA.

▶ Lemma 3.26. A multivariate polynomial φ : Nm → N with rational coefficients is a
functional closure property of #FA iff for every ψ that can be formed from φ by replacing
any subset of variables – including the empty set – by constants from N, then all dominating
terms of ψ have positive coefficients.

Proof sketch. Lemma 3.25 already proves that all multivariate polynomials of this form are
functional closure properties of #FA. Now let φ : Nm → N be a multivariate polynomial
with rational coefficient and a functional closure property of #FA. By Theorem 3.23 φ can
be written as a finite sum of finite products of ultimately PORC functions. Note that the
leading coefficient of each constituent of these ultimately PORC functions is positive. By
multivariate polynomial interpolation we can now show that φ is already a finite sum of finite
products of these constituents. The dominating terms of φ are then formed by products of
the leading coefficients of the constituents and thus are positive. ◀

J. Dörfler and C. Ikenmeyer 134:15

4 Promise closure properties

▶ Definition 4.1. Let S ⊆ Nm and let φ : Nm → N be a function. We call φ a functional
promise closure property of #FA with regard to S if for every f1, . . . , fm ∈ #FA defined on
some shared alphabet Σ there is a function g ∈ #FA with g(w) = φ(f1(w), . . . , fm(w)) for
every w ∈ Σ⋆ for which (f1(w), . . . , fm(w)) ∈ S.

We now want to show that if S fulfils some property, namely admitting polynomial
cluster sequences (we postpone the definition to Definition 4.5), then for every functional
promise closure property with regard to S there is a functional closure property of #FA that
agrees with it on all tuples in S. In other words we can interpolate the functional promise
closure property φ on all values of S to obtain a functional closure property φ′ for all of #FA.
The proof for this follows along the following ideas: First, similar to Theorem 3.23, use the
functional closure property φ on the unary counting functions to find an equivalent function φ′

that is almost a functional closure property. However after this step some of the constituents
of the ultimately almost PORC functions might still be exponential. Theorem 3.23 then
proceeded by showing that we can replace all these exponential constituents by the constant
zero function, as otherwise we were able to reach a contradiction by constructing functions
f ′

1, . . . , f
′
m and an infinite sequence of inputs w(i), such that φ(f ′

1(w(i)), . . . , f ′
m(w(i))) grows

doubly exponential in the length of the inputs. However when dealing with functional
promise closure properties we have to be more careful when choosing f ′

1, . . . , f
′
m and the w(i),

because we need (f ′
1(w(i)), . . . , f ′

m(w(i))) ∈ S to reach a contradiction. Additionally we don’t
replace the exponential constituents by the constant zero-function but rather a polynomial
that behaves the same for small inputs. For this we need a special variant of univariate
polynomial interpolation that yields integer-valued polynomials that are non-negative for all
inputs from N:

▶ Lemma 4.2. Let c0, . . . , cN ∈ N. Then there is an integer-valued polynomial q : Q → Q
with q(n) = cn for all n ∈ {0, . . . , N} and q(n′) ≥ 0 for all n′ ∈ N.

To be able to hit all of S consistently we use independent binary encodings, that allow us
to hit all of Nm.

▶ Lemma 4.3 (Folklore). The function f : {0, 1}⋆ → N defined by being the value of
w ∈ {0, 1}⋆ interpreted as a binary number is in #FA. Additionally it is possible to extend
the domain of f to any alphabet Σ ⊇ {0, 1} where the value of f is determined while ignoring
any symbols not in {0, 1}.

For any n ∈ N we denote by bin(n) the unique binary representation of n without leading
zeros. We first show the methodology in detail by proving the univariate case.

▶ Theorem 4.4. Let S ⊆ N. Then any function φ : N → N is a functional promise closure
property of #FA with regard to S iff there is a functional closure property ψ : N → N of #FA
with φ|S = ψ|S.

Proof. If such a ψ exists, we directly see that φ is a functional promise closure property
of #FA with respect to S. Indeed for any f ∈ #FA we construct g = ψ ◦ f ∈ #FA and see
g(w) = φ(f(w)) for every w ∈ Σ⋆ with f(w) ∈ S.

Now on the other hand let φ be any functional promise closure property of #FA with
regard to S. Again define the alphabet Σ = {1} and the function f : Σ⋆ → N with
f(1n) := n. Applying the closure property to f gives that there is some g ∈ #FA with
g(1n) = φ(f(1n)) = φ(n) for all n ∈ S. Let M = (Q,Σ,wt, in, out) be an NFA computing g.

ICALP 2024

134:16 Functional Closure Properties of Finite N-Weighted Automata

This induces a transition matrix A ∈ N|Q|×|Q| and vectors a, b ∈ N|Q|, s.t. aTAnb = g(1n)
for all n ∈ N by Lemma 3.19. We now define χ(n) := aTAnb and see χ|S = φ|S . Using
Lemma 3.21 on An we see that every entry of An is an ultimately almost PORC function in
n and as such ψ is also an ultimately almost PORC function. Let p be the quasiperiod of χ
and let χ0, . . . , χp−1 be the constituents of χ and let N ∈ N be the offset after which χ is
defined by the constituents.

We claim that we can now replace every exponential constituent by a polynomial one
without changing the value of χ for any n ∈ S. For each i ∈ {0, . . . , p− 1} we distinguish two
cases, depending on whether Si := S ∩ (pZ+ i) is finite or it is infinite. If Si is a finite set, we
replace χ′

i with a polynomial that interpolates the same values as χi on Si. Lemma 4.2 ensures
that this polynomial is integer-valued and non-negative for all of N. If Si is an infinite set,
we replace χi by the constant zero function. Call the resulting ultimately PORC function ψ
with constituents ψi. Assume for the sake of contradiction there is an c ∈ S, s.t. χ(c) ̸= ψ(c).
Clearly such a c would have to be at least N . Now let i be, s.t. c ∈ Si. It must hold that
χi(c) ̸= ψi(c). Hence Si cannot be a finite set, since χi and ψi agree on Si. Therefore Si must
be infinite. Since χi is exponential there is a γ ∈ R+ and N ′ ∈ N, s.t. χi(n) ≥ 2γn for all
n ≥ N ′. Let f ′ ∈ #FA be the function of binary evaluation from Lemma 4.3 over the alphabet
Σ′ = {0, 1}. Then there is a g′ ∈ #FA with g′(bin(n)) = φ(f ′(bin(n))) = χ(f ′(bin(n))) for
all n ∈ S. Since Si is infinite, in particular Si must contain infinitely many values bigger
than max(N,N ′). For n ∈ Si with n ≥ max(N,N ′) we now have

g′(bin(n)) = χ(f ′(bin(n))) = χ(n) = χi(n) ≥ 2γn ≥ 2γ2|bin(n)|−1
,

which is a contradiction to NFAs only being able to only compute functions that are at most
linearly exponential in the input length. In conclusion Si cannot be infinite either and thus c
itself cannot exist. ◀

▶ Definition 4.5. A set S ⊆ Nm admits polynomial cluster sequences if for every
N1, . . . , Nm ∈ N, and p1, . . . , pm ∈ N the projection τ : S → {0, . . . , N1 + p1 − 1} × . . . ×
{0, . . . , Nm + pm − 1} defined by τ(n1, . . . nm) = (n1 sremN1 p1, . . . , nm sremNm

pm) has the
following property: Any preimage T of a singleton set under τ for every i ∈ [m] has either
bounded i-th coordinate or there is a polynomial q : N → N and an infinite subset T ′ ⊆ T

with unbounded i-th coordinate9 and with
∑m

j=1 nj ≤ q(ni) for all (n1, . . . , nm) ∈ T ′. We call
such an infinite subset a polynomial cluster sequence with regards to dimension i.

We call τ the shifted grid projection of S with respect to offsets N1, . . . , Nm and quasiperi-
ods p1, . . . , pm.

Intuitively this definition requires that each dimension is either bounded or can grow
reasonably quickly together with the other dimensions, even when restricted to inputs from
specific shifted residue classes. For example {(n2, n3) | n ∈ N} admits polynomial cluster
sequences, while {(n, 2n) | n ∈ N} does not.

▶ Theorem 4.6. Let S ⊆ Nm admit polynomial cluster sequences. Then any function
φ : Nm → N is a functional promise closure property of #FA with regard to S iff there is a
functional closure property ψ : Nm → N of #FA with φ|S = ψ|S.

The technical proof of the theorem can be found in the appendix of the full version. There
are multiple natural families for the set S such that S admits polynomial cluster sequences
which we describe in the following.

9 note that this property also follows directly from the polynomial bound on the other coordinates in the
i-th coordinate, but we have it as part of the definition for clarity.

J. Dörfler and C. Ikenmeyer 134:17

▶ Lemma 4.7. Any finite set S ⊆ Nm admits polynomial cluster sequences.

Proof. Independent of the offsets and quasiperiods and i ∈ [m] any subset of S always is
finite and thus bounded in every dimension. ◀

An affine variety is defined as the zero set of a finite number of multivariate polynomi-
als. A special case of affine varieties are graph varieties (also just called graphs, see [20,
§2.4, Exe. 12]). An affine variety S is a graph variety if there exist a finite number of j-
variate polynomials µ1, . . . , µk such that S = {(s1, . . . , sj , µ1(s1, . . . , sj), . . . , µk(s1, . . . , sj)) |
(s1, . . . , sj) ∈ Qj} ⊆ Qj+k. We call s1, . . . , sj the free variables, and the remaining variables
the dependent variables. We call S a monotone graph variety if µ1, . . . , µk are all monotone.

▶ Lemma 4.8. Let S ⊆ Qm = Qj+k be a monotone graph variety. Then the set S ∩ Nm

admits polynomial cluster sequences.

The proof of this lemma can be found in the appendix of the full version. All in all
this combines to the following theorem which characterizes the special case of multivariate
polynomial functional promise closure properties, the technical details can be found in the
appendix of the full version.

▶ Theorem 4.9. Let S ⊆ Qm = Qj+k be a monotone graph variety and let I = I(S) be
its vanishing ideal. A multivariate polynomial φ : S → N is a functional promise closure
property of #FA with regard to S if and only if there exists a ψ ∈ I such that φ + ψ is a
multivariate functional closure property of #FA.

5 Conclusion

We characterized the functional closure properties of #FA to be precisely the ultimately
PORC functions in the univariate case and combinations of ultimately PORC functions in
the multivariate case. Additionally we characterize promise functional closure properties of
#FA with regard to some natural families of sets S. Natural further directions of research are
now whether we can characterize the promise functional closure properties of #FA for more
sets S and whether our methods can be applied to characterize functional closure properties
for more powerful models of computation.

References
1 Rudolf Ahlswede and David E Daykin. An inequality for the weights of two families of

sets, their unions and intersections. Zeitschrift für Wahrscheinlichkeitstheorie und verwandte
Gebiete, 43:183–185, 1978.

2 Noga Alon and Joel H. Spencer. The Probabilistic Method, Third Edition. Wiley-Interscience
series in discrete mathematics and optimization. Wiley, 2008.

3 Edwin F Beckenbach and Richard Bellman. Inequalities. Springer, Berlin, 1961.
4 Richard Beigel. Closure properties of GapP and #P. In Proceedings of the Fifth Israeli

Symposium on Theory of Computing and Systems, pages 144–146. IEEE, 1997. doi:10.1109/
ISTCS.1997.595166.

5 Swee Hong Chan and Igor Pak. Computational complexity of counting coincidences. CoRR,
abs/2308.10214, 2023. doi:10.48550/arXiv.2308.10214.

6 Swee Hong Chan and Igor Pak. Equality cases of the alexandrov-fenchel inequality are not in
the polynomial hierarchy. CoRR, abs/2309.05764, 2023. doi:10.48550/arXiv.2309.05764.

7 David A. Cox, John Little, and Donal O’Shea. Ideals, varieties, and algorithms – An introduc-
tion to computational algebraic geometry and commutative algebra (2. ed.). Undergraduate
texts in mathematics. Springer, 1997.

ICALP 2024

https://doi.org/10.1109/ISTCS.1997.595166
https://doi.org/10.1109/ISTCS.1997.595166
https://doi.org/10.48550/arXiv.2308.10214
https://doi.org/10.48550/arXiv.2309.05764

134:18 Functional Closure Properties of Finite N-Weighted Automata

8 Manfred Droste, Werner Kuich, and Heiko Vogler. Handbook of weighted automata. Springer
Science & Business Media, 2009.

9 Manfred Droste and Dietrich Kuske. Weighted automata. In Jean-Éric Pin, editor, Handbook
of Automata Theory, pages 113–150. European Mathematical Society Publishing House, Zürich,
Switzerland, 2021. doi:10.4171/Automata-1/4.

10 HG Hardy, JE Littlewood, and G. Pólya. Inequalities. Cambridge University Press, 1952.
11 Ulrich Hertrampf, Heribert Vollmer, and Klaus W Wagner. On the power of number-theoretic

operations with respect to counting. In Proceedings of Structure in Complexity Theory. Tenth
Annual IEEE Conference, pages 299–314. IEEE, 1995. doi:10.1109/SCT.1995.514868.

12 Christian Ikenmeyer and Igor Pak. What is in #P and what is not? In 2022 IEEE 63rd
Annual Symposium on Foundations of Computer Science (FOCS), pages 860–871. IEEE, 2022.
doi:10.1109/FOCS54457.2022.00087.

13 Christian Ikenmeyer, Igor Pak, and Greta Panova. Positivity of the symmetric group characters
is as hard as the polynomial time hierarchy. In Proceedings of the 2023 Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA), pages 3573–3586. SIAM, 2023. doi:
10.1137/1.9781611977554.ch136.

14 Ines Klimann, Sylvain Lombardy, Jean Mairesse, and Christophe Prieur. Deciding unambiguity
and sequentiality from a finitely ambiguous max-plus automaton. Theoretical Computer Science,
327(3):349–373, 2004. doi:10.1016/j.tcs.2004.02.049.

15 Igor Pak. Complexity problems in enumerative combinatorics. In Proceedings of the Interna-
tional Congress of Mathematicians: Rio de Janeiro 2018, pages 3153–3180. World Scientific,
2018.

16 Igor Pak. Combinatorial inequalities. Notices of the AMS, 66(7), August 2019.
17 Igor Pak. What is a combinatorial interpretation? to appear: Proc. Open Problems in

Algebraic Combinatorics. https://www.samuelfhopkins.com/OPAC/files/proceedings/pak.
pdf, 2022.

18 J Peterson. Beviser for wilsons og fermats theoremer. Tidsskrift for mathematik, 2:64–65,
1872.

19 Marcel Paul Schützenberger. On the definition of a family of automata. Inf. Control.,
4(2-3):245–270, 1961. doi:10.1016/S0019-9958(61)80020-X.

20 Igor R Shafarevich. Basic algebraic geometry 1: Varieties in projective space. Springer Science
& Business Media, 3 edition, 2013.

21 Michael Spivey. The Chu-Vandermonde identity via Leibniz’s identity for derivatives. The
College Mathematics Journal, 47(3):219–220, 2016.

22 Richard P Stanley. Positivity problems and conjectures in algebraic combinatorics. Mathemat-
ics: frontiers and perspectives, 295:319, 1999.

https://doi.org/10.4171/Automata-1/4
https://doi.org/10.1109/SCT.1995.514868
https://doi.org/10.1109/FOCS54457.2022.00087
https://doi.org/10.1137/1.9781611977554.ch136
https://doi.org/10.1137/1.9781611977554.ch136
https://doi.org/10.1016/j.tcs.2004.02.049
https://www.samuelfhopkins.com/OPAC/files/proceedings/pak.pdf
https://www.samuelfhopkins.com/OPAC/files/proceedings/pak.pdf
https://doi.org/10.1016/S0019-9958(61)80020-X

	1 Finite N-weighted automata and functional closure properties
	1.1 Motivation
	1.2 Our results

	2 Notation
	3 Functional closure properties
	3.1 Univariate functional closure properties
	3.2 Multivariate functional closure properties

	4 Promise closure properties
	5 Conclusion

