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Abstract
We provide a finite equational presentation of graphs of treewidth at most three, solving an instance
of an open problem by Courcelle and Engelfriet.

We use a syntax generalising series-parallel expressions, denoting graphs with a small interface.
We introduce appropriate notions of connectivity for such graphs (components, cutvertices, separation
pairs). We use those concepts to analyse the structure of graphs of treewidth at most three, showing
how they can be decomposed recursively, first canonically into connected parallel components, and
then non-deterministically. The main difficulty consists in showing that all non-deterministic choices
can be related using only finitely many equational axioms.
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1 Introduction

Treewidth is a graph parameter measuring how close a graph is from a forest. It is frequently
encountered in parameterised complexity: many NP-complete problems become polynomial
or even linear once parameterised using treewidth [4]. This parameter admits many equivalent
definitions. It was discovered at least by Bertelè and Brioschi [3], Halin [11], and Robertson
and Seymour [13] via tree decompositions for their celebrated graph minor theorem. It was
subsequently characterised using k-trees [2], k-elimination graphs [17, 16, 15], and chordal
graphs [13].

One may also consider syntaxes, most often generalising series-parallel expressions [1, 8, 6].
There, the idea is to use terms to denote graphs, and an important problem is to understand
when two terms denote the same graph. To this end, Courcelle and Engelfriet gave an
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135:2 A Finite Presentation of Graphs of Treewidth at Most Three
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)
Figure 1 Two parsings of a given graph.

equational axiomatisation for arbitrary graphs [7, p. 117]: a structured set of equations on
terms from which it is possible to equate all terms denoting a given graph. Unfortunately,
this axiomatisation is infinite. They note how finite fragments of the syntax make it possible
to capture precisely the graphs up to a given treewidth, while finite restrictions of their
axiomatisation seem to be incomplete.

This brings them to the following question [7, p. 118]: for a given bound k, is there a finite
equational presentation of graphs of treewidth at most k? The case of k = 1 concerns forests
and is relatively easy. The case of k = 2 has been given a solution a few years ago [5, 9].
Here we give a positive answer for k = 3: we provide a syntax of terms with an interpretation
map g from terms to graphs whose image is exactly the set of graphs of treewidth at most
three, and we give a finite list of equations whose equational theory (≡) characterises graph
isomorphism (≃). In symbols, we prove that for all terms t, u,

g(t) ≃ g(u) if and only if t ≡ u

Like Arnborg, Courcelle, Proskurowski and Seese [1], we work with hypergraphs with a list
of designated vertices, the sources, used as an interface to perform the following operations:

parallel composition (∥): glue the graphs together along their sources.
permutation (pG): given a permutation p, reorder the sources of G according to p.
lift (lG): add an isolated vertex to G and append it as last source.
forget (fG): remove the last source of G (keeping it as a mere vertex of the graph).

Consider the four graphs depicted in Figure 1, each with three sources denoted with numbered
squares. The neighbours of each edge are ordered, which we indicate by drawing an arrow
from the first to the second neighbour. The first graph on the left is the parallel composition
of the three other ones. The second one can be obtained from a binary edge a (with interface
its endpoints) by applying a lift to add a third isolated source and then swapping the last two
sources: (23)la. The third one can be obtained from a ternary edge b (again with interface its
endpoints), by forgetting the third source and adding a fresh one via a lift: lfb. The last one
can be constructed as f

(
(24)lc ∥ (14)ld

)
: reasoning top-down, we promote the inner vertex

as a fourth source, and then we put in parallel two graphs each with a single ternary edge
connecting three out of the four sources – both being obtained as appropriate permutations
of lifted edges.

We call parsings the expressions we obtain when decomposing graphs as above.
The way we parsed the graph on the right generalises to all graphs: first promote all inner

vertices as sources, and then build a large parallel composition of appropriately permuted
and lifted edges. For instance, the first graph on the left also admits the following parsing:

ff
(
(23)llla ∥ (35)llb ∥ (24)llc ∥ (124)lld

)
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While such a parsing exists for all graphs, it goes through an intermediate graph with a large
interface. Instead, the graphs of treewidth at most k are exactly those for which we can
find a parsing where all intermediate graphs have at most k + 1 sources (Proposition 4.1, [1,
Proposition 4.1]). This syntax for denoting precisely the graphs of treewidth at most k is
the starting point for the present work.

A derived operation is of particular interest. Consider three graphs x, y, z each with
three sources, and combine them as depicted on the right to obtain a new graph ◦(x, y, z).
This operation can be defined from the previous ones using the expression below.

z x
y

2

1 3

◦(x, y, z) ≜ f
(
(14)lx ∥ (24)ly ∥ (34)lz

)

It can be generalised into a n-ary operation on graphs with n sources, and when n = 2 we
recover the usual notion of series composition (with its arguments reversed).

Our goal is then to understand which laws are satisfied by the previous operations.
Amongst the natural ones, we have that parallel composition is associative and commutative,
that permutations commute over parallel compositions, and that applying two permutations
in a row amounts to applying the composite permutation. There are more involved ones.
For instance, we may also parse the first graph of Figure 1 by keeping edges a and c together
as long as possible, resulting in the expression written below it. We thus have two rather
different parsings for the same graph, which our axiomatisation should equate.

We proceed in two steps. First we use connectivity arguments in order to decompose any
graph into a parallel composition of permuted lifts of full prime graphs: non-empty graphs
which are connected through paths not using sources except possibly at their endpoints.
Figure 1 actually provided an example of such a decomposition, which is always unique for a
given graph. Using a few natural axioms, we show that every term can be rewritten under
such a form (Proposition 5.1). This makes it possible to focus on full prime graphs in the
second step, which is where the main difficulties arise.

A key property of full prime graphs of bounded treewidth is that either they are atomic
(i.e., reduced to a permutation of an edge), or they have a forget point: at least one of their
inner vertices can be promoted into a source without increasing the treewidth, thus making
it possible to parse the graph as a forget operation. The difficulty is that forget points are
not unique, resulting in several ways of parsing non-atomic full prime graphs. Consider for
instance the following tetrahedron on the left, with only two vertices marked as sources.

b a

c

d

1 2

Each of the two inner vertices is a forget point, so that modulo appropriate permutations of
edges, we may parse this graph as f(◦(a, b, c) ∥ d) or as f(◦(a, b, d) ∥ c). In this case, the two
forget points are relatively close, and one of our axioms makes it possible to jump directly
from one parsing to the other. A similar situation arises with the graph given on the right.

The cornerstone of our completeness proof is the fact that two parsings of a non-atomic full
prime graph can always be rewritten so as to agree on their forget point. This is Lemma 5.4,
and most of the paper is devoted to proving it.

ICALP 2024
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Figure 2 Separation pairs and graphs with several separation pairs.

To do so, we first delimit a class of vertices which we call anchors. Those can be thought
of as a generalisation of cutvertices [8, Section 1.4]. When a full prime graph has an anchor,
we show that we can use it as a universal agreement point (Lemma 7.1).

Unfortunately, there are graphs without anchors. We call them hard, they can be thought
of as specific unseparable graphs [8, Section 1.4]. The rest of the proof consists in a structural
analysis of hard graphs of treewidth at most three. We show that they admit separation
pairs: every hard graph has the shape on the left of Figure 2, and every parsing can be
rewritten as a double forget on some of these separation pairs (Lemma 8.5). However, as
illustrated on the right, separation pairs are not unique. In order to finish the proof, we
analyse how separation pairs relate to each other. There are easy cases like in the second
graph of Figure 2 where the diagonal separation pair connects the two vertical ones, and
previously encountered axioms make it possible to conclude. By analysing the shape of
graphs excluding the triangle between their sources as a minor (Proposition 8.7 – note that
cycles may still appear in such graphs), we show that all other situations reduce to one of the
two graphs on the right of Figure 2. There, the two outer-vertical pairs of inner vertices are
the only separation pairs, and they are disjoint. They correspond to distinct parsings of the
same graph, and we must include the corresponding equations to complete our list of axioms.

For the sake of readability, some proofs and details are provided in the appendix of the
full version [10].

2 Graphs, treewidth

A ranked set (or signature) is a set where every element has an associated natural number
called its arity. Throughout the paper we fix a ranked set Σ of letters, which we call the
alphabet. Given a set V , we denote by L(V ) the ranked set of duplicate-free lists over V ,
where the arity of a list is its length.

We consider labelled and ordered hypergraphs with interfaces, defined as follows:

▶ Definition 2.1. A graph is a tuple ⟨V, E, n, l, i⟩ where V is a finite set of vertices, E is a
finite ranked set of edges, i ∈ L(V ) is the interface, and n : E → L(V ) and l : E → Σ are
arity-preserving functions respectively giving the neighbours and the label of each edge.

The elements of a graph are its vertices and edges. The vertices appearing in the interface
of a graph are its sources. Vertices (resp. elements) which are not sources are called inner
vertices (resp. elements). A vertex is isolated if it is not in the neighbourhood of any edge.
The size of a graph G, written |G|, is its number of elements. The arity of a graph is that of
its interface. Two graphs G, H are isomorphic, written G ≃ H, if their vertex and edge sets
are related by structure-preserving bijections (cf. [10, Appendix A]). A graph is:

empty if its only elements are its sources;
atomic if its only inner element is an edge, whose neighbours comprise all the sources.

Our choice of considering ordered hypergraphs with interfaces comes from the need to
be able to substitute graphs for edges. A substitution is an arity-preserving function from
the alphabet to graphs. Given a graph G and a substitution σ, we write Gσ for the graph
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obtained from G by replacing all its a-labelled edges by copies of the graph σ(a), identifying
pairwise the neighbours of the edges with the interfaces of the copies. We say that G has
shape H when G ≃ Hσ for some substitution σ. For instance, the first graph of Figure 1 has
the following shapes (amongst other ones):

2

1 3

2

1 3

2

1 3

(Note that the edge orientation is irrelevant in a graph used as a shape, as well as the labelling
function – as long as it is injective, which will always be the case in the present paper.)

▶ Proposition 2.2. For all graphs G, H and all substitutions σ, ρ, if G ≃ H and σ(a) ≃ ρ(a)
for all letters a, then Gσ ≃ Hρ.

A graph in the sense of Definition 2.1 can be seen as a simple graph, its skeleton, by turning
all its edges and its interface into cliques (removing duplicate edges if necessary). This
operation makes it possible to use the standard notion of treewidth [8, Section 12.4]: the
treewidth of a graph is that of its skeleton. Equivalently, we can define it as follows.

▶ Definition 2.3. A tree decomposition of a graph is a tree whose nodes are labelled by sets
of vertices, called bags, such that

there is a bag containing all sources,
for each edge there is a bag containing its neighbours,
for each vertex, the bags containing it form a subtree.

The width of a tree decomposition is the size of its largest bag minus one. The treewidth of
a graph is the minimal width of its possible tree decompositions.

Observe that since the sources of a graph must be contained in a bag for all tree decompositions,
the treewidth of a graph is at least its arity minus one. Therefore, at treewidth at most three,
we only have graphs of arity up to four. The same constraint holds for the edge arities.

▶ Proposition 2.4. If a graph G and the graphs in the image of a substitution σ all have
treewidth at most k, then so does Gσ.

3 Graph operations

We can now define the operations discussed in the introduction.

▶ Definition 3.1. Let G, H be graphs of arity k.
The parallel composition of G and H, G ∥ H, is the graph of arity k obtained from the
disjoint union of G and H by pairwise merging their sources.
If k ≥ 1, the forget of G, fG, is the graph of arity k − 1 obtained from G by removing the
last vertex from its interface (keeping it in the vertex set).
The lift of G, lG, is the graph of arity k + 1 obtained from G by adding a new isolated
vertex, and appending it to its interface.
For a permutation p of [1, k], we denote by pG the graph obtained from G by permuting
its interface according to p.
We write ∅k for the empty graph of arity k, omitting k when it is clear from the context.
For a letter a ∈ Σ, we also write a for the atomic graph whose edge is labelled a and has
its neighbours appearing in the same order as in the interface.

ICALP 2024
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These operations all arise as substitutions of well chosen small graphs. By Proposition 2.4,
this entails that they preserve treewidth (except of course for lifts, which may increase it
when reaching the maximal arity). It remains to establish a few structural properties, in
order to show that every graph of treewidth at most k can be constructed from the above
operations up to arity k + 1 (Proposition 4.1 below).

A path in a graph is a sequence of elements such that any two consecutive elements consist
of an edge and one of its neighbours. An inner path is a path made only of inner elements,
except possibly for the endpoints.

▶ Definition 3.2. A graph is prime if it is not empty and all its inner elements are connected
by inner paths; it is full if none of its sources are isolated.

Observe that a graph is full prime iff all its elements are connected by inner paths. Amongst
the graphs in Figure 1, the first one is full but not prime, the three other ones are prime,
and only the last one is full prime.

▶ Lemma 3.3. Every graph is isomorphic to a permutation of lifts of a full graph. This
decomposition is unique up to permutation and isomorphism.

▶ Lemma 3.4. Every graph is isomorphic to a parallel composition of prime graphs. This
decomposition is unique up to reindexing and isomorphism.

We call (prime) components of a graph the prime graphs occurring in the latter decomposition.
We call reduced components of a graph the full prime graphs obtained by removing isolated
sources from its components.

We now give two key properties of full prime graphs of bounded treewidth. First, they
are always atomic at maximal arity.

▶ Proposition 3.5. Full prime graphs of treewidth at most k and arity k + 1 are atomic.

In the case of treewidth at most three, this means that when we decompose a graph of arity
four into prime components, then except for a number of four-edges between the sources, we
only get non-full components: drawing the graph as a tetrahedron between its sources, the
non-atomic components are glued through the faces (or edges, or vertices, or nothing), and
the interior of the tetrahedron remains empty. This corresponds to the characterisations of
treewidth at most k graphs as partial k-trees [2] or as subgraphs of chordal graphs whose
cliques are of size at most k + 1 [13].

Second, non-atomic full prime graphs have forget points, which we define as follows.

▶ Definition 3.6. When x is an inner vertex of a graph G, we write (G, x) for the graph
obtained from G by appending x to its interface; if this graph has treewidth at most k then
we say that x is a k-forget point of G.

▶ Proposition 3.7. Non-atomic full prime graphs of treewidth at most k have k-forget points.

4 Terms and axioms

We finally provide a notion of term for denoting graphs. We use a multisorted syntax: the
family (Tk)k∈N of sets of terms of a given arity is defined inductively by the following rules
(where p ranges over permutations of [1, k] and a over letters of arity k):

t, u ∈ Tk

t ∥ u ∈ Tk

t ∈ Tk

lt ∈ Tk+1

t ∈ Tk+1

ft ∈ Tk

t ∈ Tk

pt ∈ Tk ∅ ∈ Tk a ∈ Tk
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This syntax matches the operations in Definition 3.1. Accordingly, we obtain a recursive
arity-preserving function g from terms to graphs. We say that a term t denotes the graph G,
or that t is a parsing of G, when g(t) ≃ G. For instance, the expressions below the graphs in
Figure 1, seen as terms, are parsings of these graphs. Note that the number of inner vertices
of a graph is the number of forgets appearing in any of its parsings.

We shall sometimes mention terms and refer implicitly to their graphs; for instance
writing that a term is prime to mean that its graph is so.

The width of a term is the maximal arity of its subterms, minus one.

▶ Proposition 4.1. A graph has treewidth at most k iff it has a parsing of width at most k.

Proof. The backward implication is proven by induction on terms, using Proposition 2.4
and the observation that all operations arise as substitutions. For the direct implication, we
proceed by lexicographic induction on the size of the graph followed by k + 1 minus its arity
(recall that the arity is always lower or equal to the treewidth plus one).

If the graph has isolated sources, we use Lemma 3.3 to write it as a permutation of lifts
and proceed recursively. Otherwise it is full, and we decompose it into primes via Lemma 3.4:

if there are no components then the graph is empty and has a trivial parsing;
if there are at least two components then they are smaller, and we proceed recursively;
otherwise the graph is (full) prime; either it is atomic and it admits a permutation of a
letter as a parsing, or, by Proposition 3.7, it can be written as the forget of a graph of
the same size but increased arity, which we may parse recursively. ◀

The previous proposition holds for all bounds k on the treewidth. Some of our results
below also hold generically, and we will discuss these generalisations in Section 9. Still, from
this point on we focus on treewidth at most three.

▶ Convention 4.2. In the remainder, we only work with graphs of treewidth at most three.
We simply call terms the terms of width at most three, and forget points the 3-forget points.

A (term) substitution is an arity-preserving function from the alphabet to terms. Such a
function σ extends uniquely to a homomorphism σ̂ from terms to terms:

σ̂(t ∥ u) ≜ σ̂(t) ∥ σ̂(u) σ̂(lt) ≜ lσ̂(t)
σ̂(∅) ≜ ∅ σ̂(ft) ≜ fσ̂(t)
σ̂(a) ≜ σ(a) σ̂(pt) ≜ pσ̂(t)

A context of arity i → o is a term of arity o with a single occurrence of a designated letter h

of arity i, called the hole. Given such a context c and a term t of arity i, we write c[t] for
the term c where the hole is replaced by t. Note that c[t] = σ̂t(c) for the substitution σt

mapping h to t and fixing all other letters.
An equational theory is an equivalence relation R on terms, relating only terms of the

same arity, and which is closed under contexts and substitutions:
(t, u) ∈ R entails (c[t], c[u]) ∈ R for all contexts c of appropriate arity, and
(t, u) ∈ R entails (σ̂(t), σ̂(u)) ∈ R for all substitutions σ.

Given two terms t, u, we write t ∼= u when g(t) ≃ g(u). Thanks to Proposition 2.2, this
relation (∼=) is an equational theory, and our goal is to provide a finite list of axioms that
generates it.

We give such a list below; most axioms can be written explicitly, but three of them relate
rather large terms, which are best presented by their graphs. This is why we rely on the
following concept of forget axiom.

ICALP 2024
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FS0 FS1 FS2 FK

Figure 3 Forget axioms for anchors (swap and kite); x, y are the inner vertices.

FX FD

Figure 4 Forget axioms for hard graphs (cross and domino); x, y are the topmost inner vertices.

A forget axiom for a graph G with two forget points x, y is an equation of the shape
ft ≡ fu for some parsings t of (G, x) and u of (G, y).

▶ Definition 4.3 (Finite axiomatisation). We write ≡ for the least equational theory containing
the following axioms, for letters a, b, c of appropriate arities:
A1. a ∥ (b ∥ c) ≡ (a ∥ b) ∥ c, a ∥ b ≡ b ∥ a, and a ∥ ∅ ≡ a;
A2. pqa ≡ (p◦q)a for all permutations p, q, and ida ≡ a where id is the identity permutation;
A3. p(a ∥ b) ≡ pa ∥ pb and p∅ ≡ ∅ for all permutations p;
A4. l(a ∥ b) ≡ la ∥ lb and l∅ ≡ ∅;
A5. pfa ≡ f ṗa and lpa ≡ ṗla where ṗ is the extension of a permutation p of [1, k] to [1, k + 1];
A6. lfa ≡ frla and lla ≡ rlla for the permutation r that swaps the last two elements;
A7. fa ∥ b ≡ f(a ∥ lb);
FS. ffa ≡ ffra for the permutation r that swaps the last two elements;
as well as three forget axioms for the graphs with forget points FK, FX and FD in Figures 3&4
(for some arbitrary choice of interface ordering, edge orientation, and injective edge labelling).

The first eight items are universally quantified over all appropriate arities. For instance,
associativity of parallel composition (in A1) is an axiom at each arity, and a, b and ∅ may
have arity up to three in A4. Since we restrict globally to arities up to four, the list of axioms
is nevertheless finite.

Also note that even though the axioms are expressed using letters, they yield laws which
hold under all term substitutions since ≡ is defined as an equational theory.

FS comprises three axioms depending on the arity of a (2, 3, or 4), which we shall
sometimes refer to as FSi (with i = 0, 1, or 2, respectively). These are forget axioms for
the first three graphs in Figure 3, and we could have presented them as such. We cannot
express FS3 as it would require an edge of arity five; FK intuitively is a weakened version of
it, expressible at treewidth three.

We shall see at the end of Section 5 that the concrete choice of parsings for the forget
axioms FK, FX, and FD is irrelevant thanks to A1-7. The interested reader may find concrete
equations for them in [10, Appendix C].

▶ Proposition 4.4 (Soundness). If t ≡ u then t ∼= u.

Proof. Since ∼= is an equational theory, it suffices to check that the two members of each
axiom denote the same graph. This is by definition for the forget axioms, and a routine
verification for the other ones. ◀
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The axioms given textually in Definition 4.3 (A1-7 and FS) intuitively correspond to
those given for arbitrary graphs by Courcelle and Engelfriet [7, p.117], restricted to terms of
width at most three. (Modulo some translation since our syntaxes and sets of operations
differ.) This finite restriction is however incomplete for graphs of treewidth at most three: in
their completeness proof, Courcelle and Engelfriet need axioms of the form FSi for arbitrary
large arity i, even when dealing with graphs of small treewidth. Somehow, we prove below
that the forget axioms FS0, FS1, FS2, FK, FX, and FD suffice at treewidth at most three
to fulfil the role played by this infinite family of axioms. Also observe that while FK easily
generalises to deal with an arbitrary treewidth k (by replacing the source touching the three
edges by k − 2 sources), this is not the case for FX and FD.

5 Outline of the completeness proof

Using the first seven axioms, we easily obtain the following proposition. Together with
Lemmas 3.3 and 3.4, it makes it possible to normalise terms and to focus on full prime ones.

▶ Proposition 5.1. For all terms t, letters a, and graphs G, H, we have:
1. if g(t) ≃ ∅ then t ≡ ∅;
2. if g(t) ≃ a then t ≡ a;
3. if g(t) ≃ pG then there is a parsing u of G such that t ≡ pu;
4. if g(t) ≃ lG then there is a parsing u of G such that t ≡ lu;
5. if g(t) ≃ G ∥ H then there are parsings u of G and v of H such that t ≡ u ∥ v.

Proof sketch. All items but the third are proven by induction on t. The first three items
only need A1-4; the fourth one needs A5-6; the last one rests on the fourth one and A7. ◀

An item is patently missing from the previous proposition, for the forget operation. In
fact, a statement similar to the third and fourth items does not hold for the forget operation:
when t is a parsing of fG, nothing guarantees that G has a parsing at all: its treewidth may
be four; we need to restrict to those cases where the forgotten vertex is a forget point.

Given a term t denoting a graph G with an inner vertex x, we say that t reaches x if
there is a parsing t′ of (G, x) such that t ≡ ft′. We can easily prove the following property.

▶ Lemma 5.2. Every non-atomic full prime term reaches some forget point.

Proof. By induction on t, using Proposition 5.1 until we find a forget operation. ◀

However, this property is not enough, because it gives no control on the forget point which
is reached; instead, we would like to obtain:

▶ Statement 5.3 (Reaching forget points). Full prime terms reach all their forget points.

This statement holds, but we do not know how to prove it directly: we only get it a posteriori,
from the completeness. We prove a variant of it in the next section (Lemma 7.1), for anchors.

Instead, the cornerstone of our proof is the following lemma: any two parsings of a
non-atomic full prime graph may reach a common forget point.

▶ Lemma 5.4 (Forget point agreement). For all parsings t, u of a non-atomic full prime
graph, there is a forget point reached by both t and u.

The rest of the paper is devoted to proving this lemma, with which we conclude as follows.

▶ Theorem 5.5 (Completeness). For all parsings t, u of a given graph, we have t ≡ u.

ICALP 2024
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d
d d

a
ab d

a
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Figure 5 The series operations s(; d), s(a; d), s(a, b; d), and s(a, b, c; d).

Proof. We follow the same pattern as in the proof of the forward implication of Proposition 4.1:
we proceed by lexicographic induction on the size of the graph followed by 4 minus its arity.
If the graph has isolated sources, we use Lemma 3.3 and Proposition 5.1(3,4) to rewrite the
parsings into permuted lifts and proceed recursively. Otherwise it is full, and we decompose
it into primes via Lemma 3.4:

if there are no components then both parsings are equivalent to ∅ by Proposition 5.1(1);
if there are at least two components then we use Proposition 5.1(5) on both parsings and
we proceed recursively.
otherwise the graph must be (full) prime. Either it is atomic and we conclude by
Proposition 5.1(2,3), or Lemma 5.4 gives us two terms t′, u′ such that t ≡ f(t′), t′ ∼= u′,
and f(u′) ≡ u, and we can conclude since t′ ≡ u′ follows by induction hypothesis. ◀

We have only used Axioms A1-7 up to this point. We prove below that those axioms are
complete when there are few forget points. Say that a graph is easy if each of its non-atomic
reduced components G has only one forget point x, and in turn (G, x) is easy. (This definition
is well-founded by the same lexicographic ordering as we used in the above proof.)

▶ Proposition 5.6. For all parsings t, u of an easy graph, we have t ≡ u.

Proof. By adapting the previous completeness proof. Lemma 5.2 may replace Lemma 5.4
when we attain non-atomic full prime graphs: those are reduced components of the starting
graph and since those have only one forget point, all their parsings reach that one. ◀

None of the graphs in Figures 3 and 4 are easy: they are all full prime, each with two forget
points x, y (plus two symmetrical ones for FX and FD). Nevertheless, adding either x or y to
their interface makes them easy (cf. [10, Lemma D.1]). This is why the precise choice of
parsings does not matter when we use them as forget axioms in Definition 4.3.

6 Series decompositions

As explained in the introduction, there is a series operation on graphs which plays an
important role. We slightly generalise it here, and we show how to use it to analyse graphs
with a forget point.

Given k graphs G1, . . . , Gk of arity k and a graph H of arity k +1, we define the following
graph of arity k + 1, where pi denotes the permutation which swaps i and k + 1.

s(G1, . . . , Gk; H) ≜ p1lG1 ∥ · · · ∥ pklGk ∥ H

As is explicit from its definition, this operation on graphs is also a derived operation on
terms. We illustrate its behaviour at each arity in Figure 5. We recover the operation from
the introduction when the last argument is empty, and using a forget operation: we have
◦(u, v, w) = fs(u, v, w; ∅).

We use this operation in order to decompose full prime graphs along a given inner vertex.
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▶ Proposition 6.1 (Series decomposition). For all full prime graphs G of arity k with an
inner vertex x, there are graphs G1, . . . , Gk, H such that (G, x) ≃ s(G1, . . . , Gk; H) and
1. all components of H are full, and
2. if the jth source of a component of Gi is isolated, then i < j.
Such a decomposition is unique up to isomorphism.

We call Gi the ith series argument, and H the series factor of such a decomposition (at x).

Proof. We decompose (G, x) into prime components, which we classify according to their
isolated sources. Since G is full prime, x is never isolated. Full components go into the series
factor. Components where the first source is isolated go into the first series argument (under
the permutation p1, the first source gets swapped with x). Components where the second
source is isolated but not the first one go into the second series argument. Et caetera. ◀

Also note that we can follow such decompositions at the term level, modulo A1-7:

▶ Proposition 6.2. If a term t reaches the last source of a graph of the form s(G1, . . . , Gk; H),
then there are parsings u1, . . . , uk, v of G1, . . . , Gk, H such that t ≡ fs(u1, . . . , uk; v).

Proof. Consequence of Proposition 5.1. ◀

7 Anchors

In this section we define the concept of anchors – inner vertices with specific properties, and
we prove the following variant of Statement 5.3:

▶ Lemma 7.1 (Reaching anchors). Full prime terms reach all their anchors.

This lemma implies Lemma 5.4 when the considered graph has an anchor, by applying it to
both parsings. Therefore, once Lemma 7.1 proved, it will only remain to prove Lemma 5.4
for anchor-free graphs (Section 8).

The definition of anchor is the following; we only consider them in full prime graphs.

▶ Definition 7.2. An anchor in a (full prime) graph G is an inner vertex x such that either:
1. there are no full prime components in (G, x), or
2. there is an edge whose neighbours comprise at least x and all sources of G, or
3. there are two or more full prime components in (G, x).
Using series decompositions, x is an anchor whenever the series factor at x is empty, or has
only one edge, or has at least two components.

This last condition generalises the usual notion of cutvertex [8, Section 1.4]: such anchors
at arity zero when there are only binary edges are exactly cutvertices as usual. Removing
them disconnects the graph. The second branch in our definition may only arise with sources
and/or hyperedges; it is convenient to have it for the present proof, but it would probably be
more natural to disallow it in other contexts. Thanks to this alternative, all inner vertices in
the graphs in Figure 3 are anchors. In contrast, the graphs in Figure 4 have no anchors.

We prove below that all forget points are anchors at arity three. The converse holds at
all arities, but we only get it a posteriori, as a consequence of Lemma 7.1.

▶ Proposition 7.3. At arity three, all forget points are anchors.

Proof. If x is a forget point of a graph G of arity three, the full prime components of (G, x)
must be atomic by Proposition 3.5. Thus x is an anchor, by either the first or the second
condition in Definition 7.2. ◀
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We also find anchors easily at arities zero and one.

▶ Proposition 7.4. Non-atomic full prime graphs of arity in {0, 1, 3} have some anchor.

Proof. Every inner vertex is an anchor at arity zero, either because it is isolated (anchor
of the first kind), or because it belongs to some edge (anchor of the second kind). Every
immediate neighbour of the only source is an anchor at arity one (of the second kind). At
arity three we use Propositions 7.3 and 3.7. ◀

We first prove Lemma 7.1 for graphs of arity three, and then we show how to reduce the
other cases to that one (Section 7.2).

7.1 Parsing on anchors at arity three
A checkpoint between two vertices y, z of a graph G is an inner vertex x such that every
inner path from y to z goes through x. When y, z are not mentioned explicitly, they are
implicitly assumed to be sources. (This definition coincides with that from [5] at arity two.)
Analysing the components of (G, x) by the sources they touch, we see that the checkpoints
of a graph G of arity three are the inner vertices x for which G has the following shape:

x

This characterisation shows that checkpoints are anchors of the first kind in Definition 7.2.
Another important property at arity three is that if there are two anchors, then they must
be checkpoints for the same sources:

▶ Proposition 7.5. At arity three, every full prime graph with two distinct anchors x, y has
the following shape:

y
x

i

j

k

Proof of Lemma 7.1 at arity three. We proceed by induction on the size of the graph.
Let t be a parsing of a full prime graph G of arity three, with an anchor x. By Lemma 5.2,

t reaches some forget point y. If x = y then we are done. Otherwise, y is a second anchor by
Proposition 7.3, and G has the shape given by Proposition 7.5. Call A the graph between
i,k,y, and B the one between j, k, y. Since t reaches y we have a parsing t′ of (G, y) such
that t ≡ ft′. By analysing the full prime decomposition of (G, y), we can put t′ under the
form (j4)lu ∥ (i4)lv, where u is a parsing of A and v a parsing of B. Then we observe that
x is a checkpoint in A, and thus an anchor, so that u reaches x by induction hypothesis.
Therefore, u ≡ fu′ for some parsing u′ of (A, x). By analysing the full prime decomposition
of (A, x) as before, we deduce that t reaches x using FK. ◀

7.2 Parsing on anchors at lower arities
We now finish the proof of Lemma 7.1 by showing how to reduce the other cases to that of
arity three. We use for that the two following lemmas. The first one intuitively makes it
possible to zoom on a specific inner vertex by going under a forget operation. The second
one states that under some conditions, an anchor in fiG is also an anchor in G, allowing to
use the case of arity three.
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▶ Lemma 7.6. Let t be a term of arity up to two with an inner vertex x in a full prime
component. There is a term u such that t ≡ fu and x is either the last source of u or an
inner vertex of a full prime component of u.

▶ Lemma 7.7. For i > 0 let fiG be a full prime graph of arity k and x, y two distinct inner
vertices in a full prime component C of G. If x is an anchor of fiG and is in one of the first
k series arguments of the series decomposition of C at y, then x is a checkpoint in C.

(Note that the only isolated sources of the components of the i last series arguments in the
decomposition of C as above, are the i forgotten sources in fiG.)

Before we finish the proof of Lemma 7.1, also observe that FS implies fjpu ≡ fjqu for all
terms u of arity k and permutations p, q agreeing on the first k − j elements.

Proof of Lemma 7.1, at all arities. We prove the following generalisation, by induction on
the lexicographic product of |C| and 3 − k:

For all terms t of arity k ≤ 3, for all i ≤ k, if fit is full prime with an anchor x in a
full prime component C of t, then fit reaches x.

If k < 3 then we use Lemma 7.6 to obtain u such that fit ≡ fi+1u; if x is the last source of u

then we are done, otherwise we conclude by induction, since x lies in a component of C.
We now assume k = 3, and we rewrite t as tC ∥ t′, where tC is the full prime component

containing x. By Lemma 5.2, tC reaches some forget point y. Take a series decomposition
tC ≡ fs(t1, t2, t3; u) of tC at y. The series factor u cannot contain x since all its components
are atomic by Proposition 3.5. Thus x must be in a series argument.

If x is in one of the first 3− i series arguments, then by Lemma 7.7 x must be a checkpoint,
and thus an anchor of tC . Using Lemma 7.1 at arity three (Section 7.1), we obtain that tC

reaches x. So does t by A7, and finally fit by FS. Otherwise, x is in one of the last i series
arguments, say the jth one. The jth source sj is the only source that is necessarily isolated
in this argument. It is a source that is forgotten by the operations f i (see the figure below
for an illustration). Our goal is to “swap” this jth source for y in order to decrease the size
of C. Indeed the new component containing x will then be contained in t3, which is smaller
in size than C.

t2

t'

t1
t31 2

y

sj

Let S be the set of non-isolated sources in the component C ′ of s(t1, t2, t3; u) containing x.
Using FS we get a term t′′ such that fit ≡ f |S|t′′ and t′′ denotes g(t) with the inner vertices in
S upgraded as sources. By definition of t′′, C ′ is a full prime component of it. Furthermore,
up to isolated sources, C ′ is the same component as the one of s(t1, t2, t3; u) containing x.
This gives |C ′| < |C| and we conclude by induction on f |S|t′′. ◀

At this point, we have used axioms A1-7, FS, and FK, but not FX and FD.
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x

y

x

y

Figure 6 Separation pairs (y ⋄ x), and partial order on vertices (y ≺ x).

8 Separation pairs

We call hard the non-atomic anchor-free full prime graphs. Examples of such graphs were
given in Figure 2. Hard graphs have arity two by Propositions 7.4 and 3.5, and it only
remains to prove Lemma 5.4 for these graphs.

A forget pair in a graph G is a pair (x, y) of inner vertices such that (G, x, y) has treewidth
at most three. A parsing t of a graph G reaches a pair (x, y) of inner vertices if there is some
parsing t′ of (G, x, y) such that t ≡ fft′. By definition, a term may only reach forget pairs.
By FS, a term reaches (x, y) iff it reaches (y, x); it follows that every term reaching (x, y)
reaches both x and y.

Given two inner vertices x, y of a full prime graph of arity two, we write y ⋄ x when the
graph has the shape on the left of Figure 6, and y ≺ x when the graph has the shape on the
right (equivalently, when y is a checkpoint between x and some source). In the first case, we
say that (x, y) is a separation pair. We prove a few properties about such inner vertices.

▶ Lemma 8.1. If y ≺ x or y ⋄ x in a full prime graph G, then y is an anchor in (G, x), and
every parsing of G reaching x also reaches (x, y).

Proof. In both cases, there is no full prime component in (G, x, y), so that y is indeed an
anchor in (G, x). Now if t ≡ ft′ for some parsing t′ of (G, x), then t′ reaches y by Lemma 7.1:
t′ ≡ ft′′ for some parsing t′′ of (G, x, y). Thus t reaches (x, y). ◀

It follows that a full prime term reaches a separation pair iff it reaches any of its constituents.
We write S(x) for the series factor of a graph at some inner vertex x. When the graph is

hard, x is not an anchor, so that S(x) must be full prime and cannot contain just one edge.

▶ Proposition 8.2. For all hard graphs, ≺ is well-founded.

Proof. Observe that if y ≺ x then |S(y)| < |S(x)|. ◀

▶ Proposition 8.3. For all vertices x, y, z such that y ≺ x and x ⋄ z, we have y ⋄ z.

Proof. Consider an inner path between the two sources; we have to show that it visits either
y or z. It visits either x or z since (x, z) is a separation pair. If it visits x then it also visits
y since y is a checkpoint between x and one of the two sources. ◀

When the graph is hard in the previous proposition, it must have the following shape:

z

y x

In such a case, we intuitively prefer the separation pair (y, z) to (x, z). This leads us to
the notion of minimal separation pair. A vertex x is minimal if there is no vertex y such
that y ≺ x. A pair of vertices is minimal when its two elements are so.

The proposition below makes it possible to get separation pairs out of minimal vertices.
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▶ Proposition 8.4. Let x be a forget point in a hard graph. For all forget points y of S(x),
we have either y ≺ x or y ⋄ x.

Proof. Let us classify the components of (G, x, y) by their isolated sources. Full components
cannot exist as by Proposition 3.5 they would be edges and both x and y would be anchors
in G. So G must have the following shape:

x

y

If there is no inner path avoiding y between the sources in the bottom component, then y ⋄ x.
If there is no inner path avoiding y from x to one of the sources, then y ≺ x. Otherwise there
are at least two full prime components in (G, y), making y an anchor of G, which contradicts
G being hard. ◀

It follows easily that every hard graph has some separation pair – even a minimal one, which
will be useful to reduce the number of cases to study. However, we need to be more precise
and to keep track of terms.

▶ Lemma 8.5. Every hard term reaches some minimal separation pair.

Proof. Let t be a hard term. By Lemma 5.2 t reaches some forget point x, which we can
choose minimal by Proposition 8.2 and Lemma 8.1. Accordingly, let t′ be a parsing of (G, x)
such that t ≡ ft′. As S(x) is full prime and non-atomic, it has a forget point y. Since x is
minimal, (x, y) is a separation pair by Proposition 8.4. We can choose y to be minimal by
Proposition 8.3, and t reaches (x, y) by Lemma 8.1. ◀

As before with forget points, separation pairs are not unique (even minimal ones), and
we need to show how to move from one separation pair to another.

When studying the possible shapes of a hard graph H with distinct separation forget
pairs, we end up with a few shapes S such as the following one:

x

In such situations, we know that (H, x) has treewidth at most three, but (S, x) has treewidth
four. Therefore, for an appropriate notion of minor, (S, x) cannot be a minor of (H, x): the
treewidth may not increase when taking minors. We use this information in order to refine
the actual shape of H.

We use sourced simple graphs in order to define such a notion of minor. Those are triples
(V, E, S) made of a set V of vertices, a set E of unordered binary edges, and a subset S ⊆ V

of sources. We write Kk for the clique over k sources. Tree decompositions and treewidth [8,
Section 12.4] are adapted to sourced simple graphs by requiring the subset of sources to be
contained in some bag. A sourced minor of a (sourced simple) graph is a (sourced simple)
graph obtained from it by a sequence of the following operations: remove an edge, contract
an edge, remove an isolated vertex. Those operations do not increase the treewidth.

The footprint of a graph is the sourced simple graph obtained from it by replacing each
edge by a clique over its neighbours, forgetting labels, and turning the interface into a mere
set – note that we do not add a clique on the sources. A graph and its footprint have the
same tree decompositions, and thus the same treewidth. A sourced minor of a graph is a
sourced minor of its footprint.
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Note that graphs excluding K3 as a sourced minor need not be acyclic, as cycles may
occur away from the sources. The point of using sourced minors is that they behave well
with respect to substitutions, and thus shapes:

▶ Proposition 8.6. Given a graph G and a substitution σ, if Kk is a sourced minor of σ(a)
for all letters a of arity k, then the footprint of G is a sourced minor of Gσ.

Now observe that full prime graphs of arity two admit the sourced edge K2 as a sourced
minor. At arity three, we have the following property instead.

▶ Proposition 8.7. Every graph of arity three either has the sourced triangle K3 as a sourced
minor, or has one of the two following shapes:

Let us continue our example and come back to the previous hard graph H. Assume that the
binary edges in the given shape are instantiated by full prime graphs, and consider the three
graphs instantiating the ternary edges. If those three graphs have the triangle as a sourced
minor, then the footprint of (S, x) must be a sourced minor of (H, x), which is not possible.
Therefore, at least one of them must have one of the shapes given by Proposition 8.7. By
considering the different possibilities and continuing the same kind of reasoning, we end up
proving that in this case, H must have shape FX. In the general case, we obtain the following
classification.

▶ Proposition 8.8. Let G be a hard graph with two minimal separation forget pairs (x, y)
and (x′, y′). Possibly up to swapping x and y, and/or x′ and y′, either (x, y′) is a separation
pair (Case Z), or G has one of the following shapes, where in the leftmost case, z is minimal
and x′, y′ appear in the rightmost component:

y
z

x x

y

x'

y'

x

y

x'

y'
Case IH Case X Case D

The proof we provide in [10, Appendix F] actually establishes that in the case where (x, y′)
is a separation pair, then G has one of the following shapes:

y y'

x=x' x

y

x'

y'

x

y'

x'

y
Case Z1 Case Z2 Case Z3

We finally deduce that hard terms reach all their minimal separation forget pairs.

▶ Lemma 8.9. Let G be a hard graph with minimal separation forget pair (x′, y′). All
parsings t of G reaching a minimal separation pair (x, y) also reach (x′, y′).

Proof. We fix G, x′, y′, we proceed by induction on the size of the component of (G, x, y)
containing x′, and we use Proposition 8.8. If (x, y′) is a separation pair (Case Z), then we
use Proposition 8.1 twice: t reaches x, thus (x, y′), thus y′ in particular, thus (x′, y′). In
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Case IH we proceed by induction on (x, z), which is reached by t by similar reasoning, and
for which the induction measure decreases. In Case X and Case D, we conclude directly
by FX and FD, respectively. (In those latter two cases, we first need to rewrite t so that it
agrees syntactically with the shape of the axiom we use. We use Lemma 7.1 for that, which
requires showing that some of the inner vertices are anchors in appropriate subgraphs. To
do so, we exploit the fact that G is hard, so that the subgraphs corresponding to the edges
of the exhibited shape must be connected enough.) ◀

Together with Lemma 8.5, Lemma 5.4 follows, which concludes our completeness proof.

9 Conclusion and future work

We have provided a finite presentation of graphs of treewidth at most three. Our axioma-
tisation comprises axioms for dealing with full prime decompositions (A1-7), axioms for
reaching anchors (FS, FK), and two axioms for hard graphs (FX and FD).

An obvious question for future work is whether the approach presented here generalises
to the case of graphs of treewidth at most k.

It does so up to Section 7. The syntax we use readily characterises those graphs
(Proposition 4.1), and the seven first axioms as well as the results in Section 5 are not specific
to the case k = 3. Axioms for anchors (Figure 3) also generalise. Accordingly, our results
about series decomposition and anchors (Lemma 7.1) extend easily. In particular, non-atomic
full prime graphs of arity 0, 1 and k would always have an anchor.

This means we also have finite presentations for bounds k = 1, 2. (For k = 2 this
axiomatisation differs from the one previously proposed [5, 9], because the chosen syntax is
different: there, graphs of arity three are not considered, and parallel composition may be
applied to graphs of distinct arities.)

However, the results from Section 8 are specific to the case k = 3, and getting finite
presentations for larger values of k seems difficult. Following the strategy presented here, we
would need to prove the forget point agreement lemma (Lemma 5.4) for new hard graphs,
which may have arities between 2 and k − 1.

Still, we would like to emphasise the utility of such a generalisation in the context of
graph theory. Robertson and Seymour proved [14] that for all integers k there must be a
finite list of excluded minors characterising the class of treewidth at most k graphs. Consider
a minimal one amongst them, say H, along with a maximal clique over vertices x1, . . . , xi.
It is not difficult to prove that either H is Kk+2, or (H, x1, . . . , xi) is hard. Thus, studying
hard graphs of treewidth k + 1 might lead to a better understanding of excluded minors for
treewidth at most k.
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