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Abstract
We introduce a powerful termination algorithm for structurally recursive functions that improves on
the core ideas behind lexicographic termination algorithms for functional programs. The algorithm
generates linear-lexicographic combinations of primitive measure functions measuring the recursive
structure of terms. We introduce a measure language that enables the simplification and comparison
of measures and we prove meta-theoretic properties of our measure language. Moreover, we
demonstrate our algorithm, on an untyped first-order functional language and prove its soundness
and that it runs in polynomial time. We also provide a Haskell implementation. As part of this work,
we also show how to solve the maximisation of negative vector-components as a linear program.
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1 Introduction

To guarantee the total correctness of a program, it is essential to prove that the program
terminates [10]. While the halting problem is undecidable for general recursive functions [8,
21], there has been a long line of work on creating termination algorithms that automatically
determine whether certain classes of functions terminate [14, 22, 11, 7, 2, 1].

In the context of functional programming, a termination algorithm typically takes a
recursive function f as input and attempts to find a function from terms in the language to
some well-founded order; this function is called a measure function. When the measure is
applied to the arguments of f , it strictly decreases at each recursive call site [22, 11]. Such
a measure can be as simple as a single argument to the function that always decreases at
each recursive call. Such a simple measure is sufficient for demonstrating the termination of
primitive recursive functions [18]. For example, consider the following function defining the
binomial coefficient:

choose ⟨0, k⟩ = 1
choose ⟨n, 0⟩ = 1
choose ⟨S n, S k⟩ = choose ⟨n, S k⟩ + choose ⟨n, k⟩

To prove that choose terminates, we observe that the first projection of the argument, labelled
n, strictly decreases at each recursive call site. Since n is a natural number and the natural
numbers are well-ordered, we can conclude that choose must eventually terminate. Thus
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139:2 T-Rex: Termination of Recursive Functions Using Lexicographic Linear Combinations

a decreasing measure of choose is size ◦ π1. The measure of the argument to the choose
function is the function size ◦ π1, where the function π1 projects the first argument out of
the tuple and size returns the interpretation of object language number n in the underlying
language or logic.

Of course, termination arguments are not always as simple as finding a single argument
that decreases at every recursive call. Consider the following example:

ex1 ⟨0, 0⟩ = 0
ex1 ⟨S x, y⟩ = ex1 ⟨x, S y⟩
ex1 ⟨x, S y⟩ = ex1 ⟨x, y⟩.

In this example, no single part of the argument decreases at every recursive call. Hence,
we cannot simply find a measure by considering each projection separately. However, this
function terminates, and the argument for its termination can be generalised to determine
the termination of a larger class of functions.

Note that the first projection of the argument never increases in any recursive call, and in
the first recursive call, it strictly decreases. Hence the first recursive call can only be applied
a finite number of times, bounded by the size of the first projection. With this fact, we may
set the first recursive call aside. Observe that, considered alone, the second recursive call can
also only be called a finite number of times, as the second projection of the argument always
decreases. Thus, there can only be a finite number of recursive calls to this function overall.
This idea is captured by the fact that the lexicographic order of the size of the first followed
by that of the second argument decreases at each recursive call.

The Isabelle/HOL theorem prover [17] has a state-of-the-art termination algorithm that
uses this idea for automatically detecting termination arguments [7, 2]. This more involved
lexicographic order algorithm is quite powerful, covering termination arguments for various
functions with non-trivial termination proofs, including the merge function on sorted lists
and the Ackermann function [3]. However, it cannot handle the following function:

ex2 ⟨0, 0⟩ = 0
ex2 ⟨S (S x), y⟩ = ex2 ⟨x, S y⟩
ex2 ⟨x, S (S y)⟩ = ex2 ⟨S x, y⟩

Though there is no lexicographic combination of generated measures that decreases at every
recursive call, we know that this function must terminate because the sum of the arguments
is always decreasing. More precisely, the measure (λt. (size ◦ π1) t + (size ◦ π2) t) decreases
at every recursive call.

A termination algorithm that considers sums of the same generated measures as those of
Isabelle/HOL would be successful in proving termination for ex2 . If we were to also consider
linear combinations with coefficients in N, it would also prove termination for ex1 , since we
could take (λt. (2 · ((size ◦ π1) t)) + (size ◦ π2) t).

The Isabelle/HOL algorithm can also not handle the following example, which converts
from sparse lists to lists. Sparse lists provide a space-efficient representation of lists that
contain many repeated elements. For example the list [a, a, a, h, h] would be represented
as [(a, 3), (h, 2)]. We can more formally define the data type SparseList α as inductively
generated by elements SNil and SCons (x : α) (n : N) (xs : SparseList α). The following
function converts sparse lists to regular lists; defined through the usual Nil and Cons
constructors:

toList SNil = Nil
toList (SCons x 0 xs) = toList xs

toList (SCons x (S n) xs) = Cons x (toList (SCons x n xs)).
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ack ⟨0, n⟩ = S n

ack ⟨S m, 0⟩ = ack ⟨m, S 0⟩
ack ⟨S m, S n⟩ = ack ⟨m, ack ⟨S m, n⟩⟩

size ◦ π1 size ◦ π2 call 1 < ?
call 2 < ?
call 3 ≤ <

Figure 1 The Ackermann function is presented on the left and its difference matrix on the right.

This function terminates because either the number of SCons constructors decreases or it
stays the same and the number n decreases. As this function has a lexicographic termination
argument, we might expect the Isabelle/HOL termination algorithm to be able to handle
it. The reason it cannot is that Isabelle/HOL only generates measures that consider the
difference in the number of SCons constructors for each recursive function call – missing
the fact that the number inside the SCons decreases.

We provide a novel algorithm, called T-Rex, that proves termination for a large class
of functions including all the examples above. It first generates a set of measures based
on structural size that is sufficiently detailed to handle examples such as toList where
the decrease in structural size occurs within another data structure. It then determines
whether there exists a lexicographic combination of these measures that decreases at every
recursive call, or such an N-linear combination, as well as complex measures combining the
two (see ex4 ). We demonstrate how to analyse the termination of functional programs by
operating directly on and measuring the recursive structure of terms, without relying on the
type structure or using higher-order logic and theories of term rewriting. This means that
T-Rex can be used to analyse the termination of functional programs without relying on
an underlying theorem prover, making it accessible to a wider community. We provide an
implementation of our language and our T-Rex algorithm in Haskell.

2 Isabelle/HOL’s Termination Algorithm

Isabelle/HOL’s lexicographic termination algorithm [7] compares the measures of each
argument to the function to that of each recursive call. For example, consider the Ackermann
function (Figure 1). The Ackermann function has three recursive calls for which we need to
show a decrease between the structural size of the initial and recursive arguments.

The size-change information for these calls is represented in a matrix, where each row
corresponds to a recursive call and each column corresponds to a measure of part of the
argument. The size-change comparison matrix for ack example (Figure 1) consists of the
two columns that represent the size-change relation on the first and the second components
of the argument tuple, respectively.

The entries record the change between the original and recursive arguments, recorded
with the symbols <, ≤, and ?. The symbol < means that there is a strict decrease in the
size of the recursive call argument compared to the initial one, the symbol ≤ means that the
size decreases or remains the same, and the symbol ? means that the size either increased or
the relationship between the sizes is unknown.

From this point forward we omit the labels of the rows and columns of matrices, since
these labels clutter the notation and as we wish to orient the reader slowly to thinking
about these as matrices in the sense of linear algebra. This will ease introducing the ideas
for our extension to the termination algorithm. Isabelle/HOL’s lexicographic algorithm
works by mimicking the informal argument given in the introduction. It attempts to find
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139:4 T-Rex: Termination of Recursive Functions Using Lexicographic Linear Combinations

arguments that always either decrease or stay the same size (i.e., that have < and ≤ entries)
and removes these recursive calls from consideration. Phrased in terms of the matrix, the
algorithm repeatedly finds a column of the matrix with only < and ≤ entries, and which
must contain a < entry, and removes every row of the matrix that has a < entry in that
column. If it eventually removes all the rows of the matrix, then the function must terminate.

To find the corresponding measure, it just keeps track of the measure associated with
each column. Let m1 be the measure associated with the first encountered column that
only contains < and ≤ entries, m2 the measure associated with the second, and so on,
up to the measure associated with the last such column mn. The lexicographic measure,
[m1, m2, . . . , mn]lex, takes the measures m1 to mn, and combines their results into a lexico-
graphically ordered tuple. Isabelle/HOL’s lexicographic procedure produces a sequence of
measures that, when combined lexicographically, decreases at every recursive call.

Returning to the Ackermann example, the sequence of row eliminations computed by the
above algorithm is< ?

< ?
≤ <

⇝ [
≤ <

]
⇝ ∅.

where ∅ stands for the empty matrix. The corresponding measure computed by this procedure,
that decreases at every recursive call is [size ◦ π1, size ◦ π2]lex.

Limitations of the Isabelle/HOL algorithm

As noted earlier the Isabelle/HOL algorithm, while very effective for many problems, fails
to prove termination for examples such as ex2 . We can see this directly by generating the
corresponding size-change matrix for ex2 :[

< ?
? <

]
,

which cannot be reduced using the above procedure, since there is no column with only <

and ≤ entries. In order to extend this algorithm to prove the termination of such functions,
we need more information in these matrices. The information we will use is the numeric
increase or decrease of the measured size, when such a value is computable.

In this example, we can compute exactly how much each measure changes at each
recursive call and we want to maintain a matrix with entries corresponding to those numeric
size-changes, namely:[

−2 1
1 −2

]
.

With this information, we can add the columns of this matrix, to produce a single column
corresponding to the sum of these size changes, which in this case is negative in every entry,
i.e. decreases at every recursive call, hence, proving termination.

This idea requires we solve three problems: how to generate such matrices, how to
find such N-linear combinations, and how to integrate this approach with the lexicographic
algorithm. We first develop a language as well as a measure language in order to demonstrate
how measure generation works. From there, the remainder of the paper is dedicated to
solving these three problems.
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Function names f : N Variables x, y, z : V

Terms t ∈ T ::= var x | ⟨⟩ | ⟨t, t⟩ | inl t | inr t | roll {t} | app f t
Patterns p ∈ P ::= var x | ⟨⟩ | ⟨p, p⟩ | inl p | inr p | roll {p}

Function body B = [(P × T )] Program Γ : [(N × B)] ::= (f , b)
0 = roll {inl ⟨⟩} S n = roll {inr n}

Figure 2 Language Syntax.

3 Language

As our termination algorithm targets functional languages, we introduce a core calculus
that supports common features of these languages, such as recursion, pattern matching, and
standard algebraic data types. Standard ADTs can be encoded in our core language through
the constructors that the language provides: recursive structures (roll), products, sums and
unit. Our language is untyped, but would permit the addition of the standard type system
for these constructs. Our language does not support lambda terms. The concrete syntax of
our language is similar to Haskell function definitions. We provide examples in Sections 1, 2.

The syntax of our language is presented in Figure 2. A program is a sequence of function
declarations, which are themselves a pair of a function name and function body. Each
function body is a sequence of defining equations which are pairs of a pattern p and a term t.
We will write the elements of a function body in the form f p = t, where f is the function
name.

Each pattern has a corresponding term that it destructs on. Patterns contain binding
variables var x, var y, var z, written x, y, z for short, patterns for destructing sums inl p and
inr p, a pattern for destructing tuples ⟨p, p⟩, the pattern for destructing units ⟨⟩, and the
pattern for destructing rolls roll {p}. Terms include constructors for each of these as well as
function application app f t, written, f t for short. When defining a function, terms describe
how to build up the structure of the output using the variables bound by the input pattern.

4 Measure Language

We can prove that a function terminates by finding a measure of the size of the function’s
argument and showing that the argument’s size decreases on every recursive call. This is
called a measure function, and it is of type T → O from the set of terms T to some well-
ordered set O. In particular, we use the set of natural numbers (N) for primitive measures
and linear combinations of primitive measures, and the set of lists of natural numbers ([N])
under the lexicographic order for our overall lexicographic-linear measures.

There are five basic measures, unroll, uninl, uninr, π1, and π2. These deconstruct the
basic datatypes, roll, inl , inr , and the left and right subterms of ⟨−, −⟩ respectively. The
unroll destructor adds 1 to the return value, and uninl and uninr immediately terminate
when passed the opposite constructors inr and inl respectively. In addition, there are two
constant measures case01 and case10, that attempts to match the input term as a sum,
with case01 returning 0 for inl and 1 for inr , and case10 doing the opposite. There are two
measure operators: ◁ and fix. The measure operator ◁ functionally composes two measures,
and the fix measure operator repeatedly evaluates the given measure.

ICALP 2024
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Measure destructor md ::= unroll | uninl | uninr | π1 | π2

Recursive measure mr ::= md | mr ◁ md

Primitive measure m : M

m ::= (fix mr) | case01 | case10 | m ◁ md

Measure State Mst = (M × T × N) ⊎ N

Measure Evaluation Semantics (−)⇓ : (M × T × N) → Mst

((m ◁ unroll), (roll {t}), i)⇓ = (m, t, 1 + i)⇓
((m ◁ uninl), (inl t), i)⇓ = (m, t, i)⇓
((m ◁ uninr), (inr t), i)⇓ = (m, t, i)⇓
((m ◁ uninr), (inl t), i)⇓ = i
((m ◁ uninl), (inr t), i)⇓ = i
((m ◁ π1), ⟨s, t⟩, i)⇓ = (m, s, i)⇓
((m ◁ π2), ⟨s, t⟩, i)⇓ = (m, t, i)⇓
(case01, (inl t), i)⇓ = i
(case01, (inr t), i)⇓ = 1 + i
(case10, (inl t), i)⇓ = 1 + i
(case10, (inr t), i)⇓ = i
((fix m), t, i)⇓ = (((fix m) ◁ m), t, i)⇓
(m, t, i)⇓ = (m, t, i) otherwise

Measure Functional Semantics J−K : M → (T ⇀ N)

JmK t = (m, t, 0)⇓
Note that this function is partial as the result of ⇓ is not always a natural number.

Figure 3 Measure language semantics.

Semantics

The big-step evaluation semantics of the measure language (−)⇓, defined in Figure 3, takes
as input a triple consisting of a term t in T , a measure m and a natural number. If the
measure exhaustively destructures the term through the evaluation, the semantics returns a
natural number, and if the evaluation is stuck, the semantics returns a triple of the same
type as the input triple.

Note that the evaluation semantics is stuck when it encounters a term that is a variable,
a function application, or the term and the measure have mismatched term constructors and
measure destructors. The functional semantics abstracts from this case, only being defined
for closed terms where the measure and term constructors match.

We will prove that our algorithm correctly demonstrates termination (when it succeeds
in finding a measure) by showing that, for every initial argument ai and every argument
ar to the recursive calls, m ar < m ai [11]. Note that this method requires that ar and ai
are closed, that is contain no variables or function calls. We will ensure this in our proofs
by substituting variables for closed terms and functions for functions from closed terms to
closed terms.

Bounded Difference

In general, we will not be able to determine the exact measure of a term statically, as measure
execution can get stuck. Thus, we will need to approximate the difference between the partial
evaluations of a measure. This approximation must be an upper bound on the difference
between the measures (when applied to any substitution which results in a natural number).
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Bounded difference ( ⋆−) : Mst → Mst → Z ⊎ {ω}

(m, s, i) ⋆− (m, s, j) = i − j
i ⋆− (m′, t, j) = i − j

(m, s, i) ⋆− j = ω
(m, s, i) ⋆− (m′, t, j) = ω otherwise.

Figure 4 Bounded difference.

The bounded difference (Figure 4), written ⋆−, is a conservative estimate of the true
difference between the size of a measure applied to two arguments. It has four cases, which
depend on whether the measure fully executes and returns an integer, or whether the
execution gets stuck, resulting in a measure-term-integer triple. In the first case, the value is
exactly what the true subtraction would yield, as the s terms cancel. In the second case, we
take the pessimistic assumption that t evaluates to a natural number which maximises the
overall size of the difference; in this case, this occurs when t would evaluate to 0, so we may
safely ignore the term. The third and fourth cases, we again assume the term s maximises
the overall size. However, here s could evaluate to any natural number, and there is no finite
bound. Thus in these cases, we return the error value ω, to denote that the subtraction is
unboundedly large. We extend the order on integers to Z ⊎ {ω} by asserting that for all
n ∈ Z, n ≤ ω.

▶ Lemma 1 (Difference is Bounded). For all measures m : M , terms t1, t2 : T , and substitu-
tions θ, where JmK θ(t1) and JmK θ(t2) are defined,

JmK θ(t1) − JmK θ(t2) ≤ (m, t1, 0)⇓ ⋆− (m, t2, 0)⇓.

5 Combining Measures

The termination of a function can be proven by finding a well-founded measure of the size of
the arguments, such that the size of the arguments always decreases between the initial and
recursive calls of the function.

Our termination algorithm builds measures from three components: primitive measures,
linear measures, and lexicographic measures. Primitive measures are functions that transform
a term into a natural number, representing a certain measure of the size of that term. We
use “primitive measure” to refer both to the syntactic construct (M) and the corresponding
mathematical functions (T → N).

A linear combination of measures is a weighted sum of measures. Given a vector of
measures m : (α → N)n and a vector of weights w : Nn of the same length, we define

(·) : Nn → (α → N)n → (α → N)
w · m = (λx.

∑m
i=1 wi · mi(x)).

In our termination algorithm, we will only take linear combinations of primitive measures,
specialising the above to Nn → (T → N)n → (T → N).

Since linear programming methods need to work in an ordered field, the tools we use will
produce linear combinations of measures with positive rational coefficients. Finding such a
linear combination is equivalent to finding a linear combination with natural coefficients, as
the rational weights can be transformed to integers by multiplication of the least common
multiple of the divisors of the weights. Note that the Haskell implementation of our algorithm
uses fixed-point numbers, rather than exact arithmetic, which can lead to precision loss in
this step.

ICALP 2024
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6 Termination Algorithm

We want to show that our functions terminate, by showing that there is a measure of the
arguments that decreases between every recursive call. We do this by combining primitive
measures into linear combinations, and then making lexicographic combinations of these.
Our termination algorithm is composed of three main phases:
1. Generating primitive measures of structural size for the sub-terms of the argument.
2. Generating the primitive measure difference matrix, that captures the size change between

the initial and recursive arguments, as measured by the primitive measure functions.
3. Using the primitive measure difference matrix to find a lexicographic-linear combination

of the primitive measure functions that decreases over every recursive call.
Finding lexicographic-linear combinations can be further broken down into two steps

i. Using the integer-only columns of the primitive measure difference matrix to find a linear
combination of the primitive measure functions that decreases over the recursive calls
that correspond to these columns.

ii. Using the linear combination procedure iteratively to determine a lexicographic com-
bination of the linear measure functions that decreases over all recursive calls including
those that do not have a simple integer difference.

To see how this algorithm works in the case of lexicographic termination, consider ex3 .

ex3 ⟨x, y, S z⟩ = ex3 ⟨x, y, z⟩
ex3 ⟨x, S y, 0⟩ = ex3 ⟨x, y, h y⟩
ex3 ⟨S x, 0, 0⟩ = ex3 ⟨x, h x, h x⟩

Note that, in this example h is some arbitrary function, and that we assume that any function
called in a function definition (apart from the function being defined) terminates. That is,
we show termination conditional on all called functions also terminating. However, when
proving termination, we do not use any knowledge about the behaviour of called functions;
so we have no bounds on the value that h will return. The primitive measures for ex3 and
the resulting difference matrix are

m1 = (fix (uninr ◁ unroll)) ◁ π1

m2 = (fix (uninr ◁ unroll)) ◁ π2

m3 = (fix (uninr ◁ unroll)) ◁ π3

 0 0 −1
0 −1 ω

−1 ω ω

 .

The value ω marks the worst-case value difference. The function h is assumed to terminate
but may return a term of arbitrary size; thus the maximum bound of the change in value
cannot be any integer. Note that ω prevents any column containing it from being used in a
linear programming problem.

The ex3 function has a lexicographic termination argument, as m1 decreases or stays the
same everywhere, m2 decreases or stays the same when m1 stays the same, and m3 decreases
when m1 and m2 stay the same. By the lexicographic elimination algorithm, 0 0 −1

0 −1 ω

−1 ω ω

⇝ [
0 −1 ω

−1 ω ω

]
⇝

[
0 −1 ω

]
⇝ ∅.

Linear and lexicographic termination arguments can be combined together to find a linear-
lexicographic termination measure. To illustrate this, consider the function ex4 :

ex4 ⟨S x, y, z, v, w⟩ = ex4 ⟨x, h y, z, v, S w⟩
ex4 ⟨x, S y, S z, v, w⟩ = ex4 ⟨h x, y, z, S v, S w⟩
ex4 ⟨x, y, z, S S S v, w⟩ = ex4 ⟨x, h y, S z, v, S w⟩
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where h represents an arbitrary function. The following is the difference matrix for ex4 :

−1 ω 0 0 1
ω −1 −1 1 1
0 ω 1 −3 1

 .

Solving it requires both the linear and lexicographic aspects of our approach. This is again a
situation where the pure lexicographic algorithm is not applicable. Moreover, in this case,
one cannot find a positive rational linear combination of all the columns that results in a
vector that is strictly less than 0 in all its entries. Using both ideas, we want to find some
linear combination of the last three columns in the matrix, so as to eliminate some of the
ω entries. Fortunately, it is not difficult to see that, labelling the columns of the matrix
c1, c2, . . . , c5, one can take 2c3 + c4 + 0c5 = (0 − 1 − 1)T. (Where (−)T is vector/matrix
transposition.) This yields the following matrix

−1 ω 0
ω −1 −1
0 ω −1

 .

We now use the lexicographic algorithm to remove the last column and bottom-most two
rows, resulting in the matrix

[
−1 ω

]
, and then to reduce this matrix to ∅. Thus we have

obtained a termination proof. The corresponding measure that decreases at every recursive
call is [(2 · (size ◁ π3) + (size ◁ π4)), (size ◁ π1)]lex.

6.1 Primitive Measure Generation

Each term has several primitive measures, which are generated by observing how that term
is destructured in the definition of the recursive function. These primitive measures are made
of a composition of two parts: a function which descends through the non-recursive part of a
term to extract the recursively constructed term, and a measure of that recursive term.

For example, take the two terms ⟨roll {inr x}, ⟨⟩⟩ and ⟨x, ⟨⟩⟩, and assume the former is
the input argument to a function, and the second is the recursive argument. We can clearly
see that the structural size of the left part of the tuple decreases from input to recursive
call, due to the removal of the roll. We capture this intuition with the primitive measure
function (fix (uninr ◁ unroll)) ◁ π1. The purpose of this measure is to extract the recursive
part of the argument, i.e. to remove the ⟨−, ⟨⟩⟩ structure, and then to count the number of
nestings of the structure roll {inr −}.

Primitive measure generation is composed of two parts: generating the recursive part of
the measure and generating the function that extracts the recursive subterm. The function
primM R generates the recursive parts of the primitive measures. It takes a variable name
x, a partially constructed recursive measure mr, and a term t. The measure is initialised
with id for notational convenience where m ▷ id = m; in our implementation we use lists of
measure destructors.

ICALP 2024



139:10 T-Rex: Termination of Recursive Functions Using Lexicographic Linear Combinations

The recursive measures are generated by the function

primM R(x, mr, var y) =
{

{fix mr} if x = y ∧ mr ̸= id
∅ if x ̸= y ∨ mr = id

primM R(x, mr, ⟨⟩) = ∅
primM R(x, mr, ⟨t1, t2⟩) = primM R(x, (π1 ◁ mr), t1)

∪ primM R(x, (π2 ◁ mr), t2)
primM R(x, mr, inl t) = primM R(x, uninl ◁ mr, t)
primM R(x, mr, inr t) = primM R(x, uninr ◁ mr, t)
primM R(x, mr, roll {t}) = primM R(x, unroll ◁ mr, t)
primM R(x, mr, app f t) = ∅.

Consider the example above comparing x and roll {inl x}. As expected, the generator
produces the set {fix (uninl ◁ unroll)}. A more complex example is comparing x and
roll {⟨x, x⟩}; the measure set generated is {fix (π1◁unroll), fix (π2◁unroll)} with a generated
measure for each occurrence of x.

We can now generate a set of measures for recursive terms. However, we still need to
generate the part of the measure that extracts the subterm where the recursion occurs. This
part of the measure is appended to the recursive measures generated by calling primM R. It
is constructed by recursion on both the initial and recursive arguments.

primM (m, var x, u) = {r ◁ m | r ∈ primM R(x, id, u)}
primM (m, t, var y) = {r ◁ m | r ∈ primM R(y, id, t)}
primM (m, ⟨⟩, ⟨⟩) = ∅
primM (m, ⟨t1, t2⟩, ⟨u1, u2⟩) = primM (π1 ◁ m, t1, u1)

∪ primM (π2 ◁ m, t2, u2)
primM (m, inl t, inl u) = primM (uninl ◁ m, t, u)

∪ {case01 ◁ m, case10 ◁ m}
primM (m, inr t, inr u) = primM (uninr ◁ m, t, u)

∪ {case01 ◁ m, case10 ◁ m}
primM (m, roll {t}, roll {u}) = primM (unroll ◁ m, t, u)
primM (m, t, u) = ∅ otherwise

Note that sums, in addition to the measures of recursive size-change of the components, also
have measures to detect when a sum switches from left to right (or vice-versa). Due to these
measures and the fact we are finding linear combinations of primitive measures, we do not
need to generate quadratically many measures for the combinations of the left and right
submeasures, as done by others [7].

To generate the primitive measures for a function f , we first apply primM to every initial
and recursive argument pair in the equations defining f , initialising m with id. For each
measure m generated through this process, if m is of the form (fix (m′ ◁ · · · ◁ m′)) ◁ m′′,
with the m′ repeated, we simplify it to (fix m′) ◁ m′′. This step is useful in cases where,
for example, a function removes the same pattern multiple times; like ex2 , which removes
multiple S constructors. This simplification step ensures the simplified measure function
only removes one of these patterns at a time. The simplified measure returns the same size
as JmK when JmK is defined, and it is defined for more terms; this property follows from the
definition of the evaluation function.

With this method for primitive measure generation in hand, we return to the toList
example from Section 1. To demonstrate how this measure generation works, we first need
to unfold the SparseList and List constructors in toList according to Figure 5,
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Nil = roll {inl ⟨⟩}
Cons x xs = roll {inr ⟨x, xs⟩}

SNil = roll {inl ⟨⟩}
SCons x n xs = roll {inr ⟨x, ⟨n, xs⟩⟩}

Figure 5 Encodings of lists and sparse lists.

toList (roll {inl ⟨⟩}) = roll {inl ⟨⟩}
toList (roll {inr ⟨x, ⟨roll {inl ⟨⟩}, xs⟩⟩}) = toList xs

toList (roll {inr ⟨x, ⟨roll {inr n}, xs⟩⟩}) = roll {inr ⟨x, ⟨toList (roll {inr ⟨x, ⟨n, xs⟩⟩})⟩⟩}.

The primitive measure generation algorithm produces measures corresponding to the recursive
uses of both n and xs. The two measures, along with their difference matrix, are

m0 = fix (π2 ◁ π2 ◁ uninr ◁ unroll)
m1 = fix (uninr ◁ unroll ) ◁ (π1 ◁ π2 ◁ uninr ◁ unroll)

[
−1 ω

0 −1.

]
These can then be combined into an overall decreasing measure as [m0, m1]lex.

6.2 Primitive Measure Difference Matrix
The fundamental data structure used in our termination-checking algorithm, T-Rex, is the
primitive measure difference matrix, D : (Z⊎{ω})n×k, or difference matrix for short. Rows in
D represent argument-pairs and columns represent primitive measures. The elements are the
conservative size change between the initial argument and the recursive argument. Formally,
for any function definition (with n recursive calls), let the recursive call matrix of that
function be R : (T )n×2 where Ri1 is the pattern of the i-th recursive call (lifted to a term)
and Ri2 is the recursive argument term of the i-th recursive call. We define the difference
matrix D of a vector of k primitive measures, m : Mk, as Dij = (mj , Ri2, 0)⇓ ⋆− (mj , Ri1, 0)⇓
where 1 ≤ i ≤ n and 1 ≤ j ≤ k. This matrix captures the size-change information of the
measures m on every recursive call in the function. Note that it uses the upper bound
difference, ( ⋆−), and so the estimated difference can be unbounded, i.e. ω.

Returning to the function ex2 , the entries of the difference matrix evaluate to

mS x ⋆− (mS x + 2) = −2
(mS x + 1) ⋆− mS x = 1 and mS y ⋆− (mS y + 2) = −2

(mS y + 1) ⋆− mS y = 1
where mS = fix (uninr ◁ unroll),

This results in the following difference matrix:[
−2 1
1 −2

]
.

In example ex3 , the arbitrary functions result in the measures becoming incomparable,
resulting in ω. Consider the reduced differences that do not result in 0,

mS y ⋆− (mS y + 1) = −1
mS (h y) ⋆− 1 = ω

mS (h x) ⋆− 1 = ω

where mS = fix (uninr ◁ unroll).
When the measure of the recursive argument, on the left-hand side, is not a concrete integer
(e.g. mS (h y)), but the right hand side is, we can only pessimistically conclude that the
value could be any large natural number. Thus we return ω, to mark that we cannot handle
this case using linear arithmetic.
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6.3 Finding Linear Measures
We wish to use our primitive measures to create better measures; that is, measures that
decrease on more recursive calls. We will first consider linear combinations of measures. As
we discussed in the last section, the difference matrix captures the size change information
of the arguments as they change between recursive calls. This information helps determine
weights that can be used to construct a linear combination of the primitive measures. Note
that this phase only considers D matrices that contain no ω values. This enables applying
standard linear solvers. The ω values are handled at a later phase.

To find suitable weights, first we will show that any vector of positive weights w : (Z+)n

that satisfies the equation Dw ≤ 0 produces a non-increasing measure. Secondly, we will
determine how to pick the best such vector: that is, the one that produces a measure that
strictly decreases between the arguments of as many recursive calls as possible.

Decreasing linear combinations

The following lemma shows that any non-positive solution to Dw can be used to construct a
non-increasing measure.

▶ Lemma 2 (Soundness of linear measure construction). Given a vector of positive weights
w : (Z+)n, a vector of measures m : Mn, if there are no ω values in D and (Dw)i ≤ 0 for
row i, then for each initial-recursive argument pair Ri, and all substitutions θ where, for every
j, JmjK θ(Ri1) and JmjK θ(Ri2) are defined, then (w · JmK) θ(Ri2) − (w · JmK) θ(Ri1) ≤ 0.
Similarly, if (Dw)i < 0, then (w · JmK) θ(Rk2) − (w · JmK) θ(Rk1) < 0. (Where J−K is lifted
pointwise.)

To give an example, we return to the function ex2 , which has the difference matrix[
−2 1
1 −2

]
.

The weight vector w = (1 1)T produces the all-negative vector Dw = (−1 − 1)T. As such,
we can conclude that the measure (1 1)T · (m1 m2)T guarantees that ex2 terminates.

The maximal negative entries problem

This problem is concerned with finding the best weights w, that ensure that the maximum
number of recursive calls decrease. To see why not just any weight will do, consider again
the example ex4 . We showed that its matrix,−1 ω 0 0 1

ω −1 −1 1 1
0 ω 1 −3 1


was solvable using our proposed algorithm. However, had we chosen instead the linear
combination (1 1 0)T, this would have resulted in the output vector (0 0 − 2)T, which only
removes the final recursive call / row, resulting in the unsolvable subproblem:[

−1 ω

ω −1

]
.

Thus, we want to pick weights such that not only Dw ≤ 0, but also that Dw has as many
negative entries as possible. We call this the maximal negative entries (MNE) problem.

▶ Definition 3 (The Maximal Negative Entries Problem). For a matrix A, find a vector x
such that the vector Ax has a maximal number of negative entries.
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Reducing the MNE problem to a linear program

We want to find a programmatic method to solve this problem. This problem can be reduced
to solving a linear program. This is fortunate as linear programs are well-studied and they
are solvable in polynomial time [5].

The MNE problem tells us to maximise the number of strictly negative entries of Ax,
such that x ≥ 0 and Ax ≤ 0. We can reframe this as finding some slack vector c ≥ 0, such
that Ax + c = 0 and c has a maximal number of positive entries (as Ax = −c).

Secondly, note that solutions to this problem are linear, in the sense that if (x, c) is a
solution to Ax + c = 0 and c has maximal positive entries, then, for a positive scalar k,
A(kx) + kc = k(Ax + c) = 0, and so (kx, kc) is also a solution. The crucial thing to note
here is that we can scale up or down the size of any such solution vector by any positive
scaling factor. This means that a solution exists exactly when a solution exists that satisfies
the additional condition that c has entries that are either exactly 0 or greater than or equal
to 1. This allows us to take the final step in our transformation of this problem.

Break up c (with entries now guaranteed to be 0 or ≥1) into b + z, where b is bounded
between 0 and 1 and 0 ≤ z, The optimisation goal “maximise the sum of b” will produce a
solution (x, b, z) where b has entries that are either 0 or 1 (as b + z is 0 or ≥ 1) and z is the
slack necessary to make the sum cancel. Note that bi is 1 exactly when (Ax)i < 0, thus the
number of negative entries in Ax is equal to the sum of b. As the sum of b is maximised,
the number of negative entries in Ax is maximised.

Lastly, as z is only constrained to be ≥ 0, z is a slack vector of this new program. We
may simplify the program by removing z and turning the equality constraints to inequality
constraints. Thus, the maximal negative entries problem is equivalent to solving the linear
programming problem specified in Algorithm 1. Note that the program fails to find a
satisfactory solution for our purposes when it returns the all-zero vector.

Algorithm 1 LinMNE: A linear program for the MNE problem.

maximise
∑n−1

i=0 bi

subject to
xi, bi ∈ Q

Ax + b ≤ 0
0 ≤ xi

0 ≤ bi ≤ 1

Uniqueness of the maximal negative entry set

Even though the above program will find a set with a maximal number of negative entries,
we have not yet established that such a set is unique. If there are two solutions that identify
a different set of rows that decrease, this may lead to a different order of row elimination in
the lexicographic stage of our algorithm. Such a possibility threatens the complexity and
completeness of our algorithm. However, there is, in fact, a unique maximal set of negative
entries that solves the linear program. Note that this uniqueness is in the set of entries,
not in the solution; there can be many solutions, but all of them will show the same set of
recursive calls decrease.

▶ Theorem 4 (Unique Maximal Negative Entries). For every matrix A ∈ Qn×m, if ⟨x, b⟩ and
⟨x′, b′⟩ are solutions of the MNE problem for A, then b = b′.
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6.4 Finding Lexicographic Measures of Linear Combinations
The lexicographic phase of the algorithm solves the termination problem for a matrix of
weights that may include ω; the value that marks that a finite bound on the size change
could not be found. The algorithm finds a lexicographic combination of linear measures,
such that whenever a linear measure was approximated to ω, there is a lexicographically
larger linear measure that returns a natural number. This lexicographic algorithm follows
the same structure as Isabelle/HOL’s [7]. Our overall T-Rex algorithm proceeds as follows:

Algorithm 2 The T-Rex Termination Algorithm.

function T-Rex(m : [M ], D : Matrix (Z ⊎ ω)) : [[N × M ]] ⊎ fail
(Precondition: length(m) = columnN(D).)
out := [ ]
repeat

N := Extract the purely numeric (Z) columns of D
if N = ∅ then return fail end if ▷ (if there are no purely numeric columns, fail)
(x, b) := LinMNE(N)
x := select non-zero weights in x
if x = ∅ then return fail end if ▷ (if no measures were selected, fail)
x := x · lcm(denoms(w)) ▷ (normalise the weights to natural numbers)
D := D without rows where b is 1
(Note: recall the linear program establishes that (Dx)i is negative when bi = 1.)
wm := weights in x paired with their corresponding measures in m
out := out ::r wm ▷ (::r is concatenate to end)

until M = ∅
return out

end function
(Note: we elide the tracking of column indices for clarity.)

Since linear program solving is polynomial time [5] and the number of loops performed
is bounded by the number of rows in D, we can deduce that our algorithm also runs
in polynomial time. But of course, we would like to know slightly more than just the
correctness and complexity of our algorithm. Our algorithm is complete in the following
sense. If a lexicographic-linear combination of primitive measures exists, our algorithm
decides termination.

▶ Lemma 5. Let f be a function and let A be a matrix whose columns correspond to some
set of measures P whose elements we allow to be any N-linear combination of the columns of
the difference matrix of f . Then, there exists a lexicographic combination of the elements of
P which decreases at every recursive call of f if and only if we can reduce A to ∅ by removing
rows per the lexicographic algorithm.

▶ Theorem 6 (Decision Power of T-Rex). Given a function f with an associated set of
primitive measures P , if there exists some lexicographic order of N-linear combinations of
elements of P which decreases at every recursive call of f , then T-Rex will succeed.

7 Related Work

There is a relevant body of work in the context of analysing the termination of imperative
programs called synthesis of ranking functions. This was initially introduced by Floyd [10],
and later incorporated into Hoare logic to allow for proving the total correctness of imperative
programs. Ranking functions are directly analogous to measures. In the context of imperative
programs, ranking functions map variables that are updated in a loop body to a well-ordered
set, and to prove termination they must decrease at each iteration. Typically in this context,
the termination of a single loop with a single branch is studied, which broadly corresponds
in our context to studying functions with a single recursive call.
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A line of work on termination analysis is concerned with finding classes of programs (e.g.
programs that operate on reals) with linear loops for which termination is decidable, by
relating this problem to stability in control theory [20]. Part of the linear loops literature
is concerned with synthesising ranking functions for linear-constraint loops [6, 19]. Here,
we have a set of variables, a loop guard describing a linear constraint on these variables,
and at each iteration, we have updated our vector of variables x by an affine transformation
Ax+b [13]. (These affine transformations can always be converted to a linear transformation
A′x by adding more variables.) The kind of ranking functions synthesised for these problems
are similar to the lexicographic combinations of linear transformations that we see in our
work [6]. One main distinction is that in our work, there is almost always more than one
recursive call, and in their work, there is almost always some non-trivial condition on the
loop guard, providing different challenges and resulting in different algorithms for handling
termination within different programming language paradigms.

Linear and lexicographic termination techniques have also been explored in the context
of probabilistic imperative programming. Similar algorithms to the measure combination
step of the algorithm, utilising linear programming to combine size-change information, have
been independently developed in this context [4]. However, a direct comparison between
them presents a non-trivial challenge as this work operates on generalised transition systems
generated from analysis of imperative code, while our work operates on primitive measures.
Even given these similarities, our improved method of primitive measure generation handles
cases that the Isabelle/HOL algorithm does not, even with the purely lexicographic solver.

Our work is directly inspired by and most closely related to Isabelle/HOL’s lexicographic
termination algorithm [2, 7]. It constructs termination matrices based on the comparison
of arguments between the initial and recursive calls, as we do, but they do not compute
a numeric difference. Since this approach ignores the numerical difference and conflates
increase with uncertainty, it cannot be used to find linear combinations of measures. While
our matrices carry more information, our lexicographic matrix elimination algorithm is
structurally similar to Bulwahn et. al.’s lexicographic matrix elimination algorithm [7]. Note
that we do not drop columns, as this can cause unsoundness if the final column is not
wholly decreasing. Our algorithm also works without access to types or higher-order logic
simplification theories. Hence, it is extensible to various functional languages and can be
used without theorem-proving experience.

Another approach is the size-change termination method [16, 12], which is orthogonal to
our method, as it tracks the size change of data (i.e. the constructors around variables) in
function arguments, whereas we track the size change of the function arguments, disregarding
the flow of variables. Types can be used to restrict functions to use terminating recursion [1],
but this method requires user annotation, and cannot find complex linear termination
measures.

Other approaches for functional termination checking involve using an external term-
rewriting checker to show the termination of function programs [15]. This has the advantage
of bringing well-developed termination checkers for term rewriting systems to functional
termination checking, but requires that the semantics of the functional language be reflected
in a term rewriting system. Further, any witness of termination must be translated backwards
through this semantics. Our approach gives simple measure functions as witnesses.

8 Conclusion

We have developed T-Rex: a novel termination algorithm for recursive functions. It can prove
the termination of functions by lexicographically ordering linear combinations of primitive
measures that decrease at every recursive call. The primitive measures are computed directly
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by examining the structure of the recursive program. We define a language for simplifying
and comparing primitive measures that are used as part of our termination algorithm and
prove meta-theoretic properties of our measure language. We prove that T-Rex is sound,
that it runs in polynomial time and that it covers a large class of programs and demonstrate
the algorithm on an untyped first-order functional language. We provide an implementation
of the untyped language, measure language and of T-Rex in Haskell.
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A Proofs

A.1 Proofs from Section 4
To prove Lemma 1, we need the following lemmas.

▶ Lemma 7 (Measure Evaluation respects Substitution). For all substitutions θ,
1. if (m, t, i)⇓ = j then (m, θ(t), i)⇓ = j; and
2. if (m, t, i)⇓ = (m′, t′, j) then (m, θ(t), i)⇓ = (m′, θ(t′), j)⇓.

Proof Sketch. By induction on (m, t, i)⇓. We will only prove illustrative cases.
Stuck (m, t, i)⇓ = (m, t, i): Note that t is a variable, function, or doesn’t match m. If t is a

variable or function, θ(t) could be a new term, but in this case (m, θ(t), i)⇓ = (m, θ(t), i)⇓.
If t is a non-matching term, then θ cannot change it, and (m, θ(t), i)⇓ = (m, θ(t), i).

Uninr/Inl (m ◁ uninr, inl t, i)⇓ = i: as θ(inl t) = inl θ(t), (m ◁ uninr, θ(inl t), i)⇓ = i.
The other base cases proceed similarly.

Unroll/Roll ((m ◁ unroll), (roll {t}), i)⇓ = (m, t, 1 + i)⇓:
As θ(roll {t}) = roll {θ(t)},

(m ◁ unroll, θ(roll {t}), i)⇓ = (m ◁ unroll, roll {θ(t)}, i)⇓ = (m, θ(t), i + 1)⇓,

as required.
Fix ((fix m), t, i)⇓ = (((fix m) ◁ m), t, i)⇓:

((fix m), θ(t), i)⇓ = (((fix m) ◁ m), θ(t), i)⇓,

as required.
The other inductive cases proceed similarly. ◀

▶ Lemma 8 (Measure Evaluation Counter Export).
If (m, θ(t), i + j)⇓ = k iff (m, θ(t), i)⇓ = j + k.

Proof Sketch. A simple proof by splitting the iff, then induction on (−)⇓. ◀

With these lemmas in hand, we can prove Lemma 1.
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Proof of Lemma 1. Recall that we are guaranteed that (m, θ(t1), 0)⇓ and (m, θ(t2), 0)⇓ are
integers. We proceed by cases on (m, t1, 0)⇓ ⋆− (m, t2, 0)⇓.
Case 1: (m, t1, 0)⇓ = (m′, s, i) and (m, t2, 0)⇓ = (m′, s, j). Then

(m, θ(t1), 0)⇓ − (m, θ(t2), 0)⇓
= (m′, θ(s), i)⇓ − (m′, θ(s), j)⇓ (Case assumptions & Lemma 7)
= ((m′, θ(s), 0)⇓ + i) − ((m′, θ(s), 0)⇓ + j) (Lemma 8)
= i − j

= (m′, s, i) ⋆− (m′, s, j)
= (m, t1, 0)⇓ ⋆− (m, t2, 0)⇓.

Case 2: (m, t1, 0)⇓ = i and (m, t2, 0)⇓ = (m′, s, j). Then
(m, θ(t1), 0)⇓ − (m, θ(t2), 0)⇓

= i − (m′, θ(s), j)⇓ (Case assumptions & Lemma 7)
= i − (m′, θ(s), j)⇓ (Lemma 8)
≤ i − j

= i ⋆− (m′, s, j)
= (m, t1, 0)⇓ ⋆− (m, t2, 0)⇓.

Case 3+4: (m, t1, 0)⇓ ⋆− (m, t2, 0)⇓ evaluates to ω.

True as (m, θ(t1), 0)⇓ − (m, θ(t2), 0)⇓ is an integer, and for all k ∈ Z, k ≤ ω. ◀

A.2 Proofs from Section 6
For the following proof, we need to enrich ω with the properties that ω + k = k + ω = ω for
all k ∈ Z and n · ω = ω for all n ∈ Z+.

Proof of Lemma 2. Recall the initial and recursive arguments are stored in R. Thus, for
any recursive call in D, indexed by i, we have

(Dw)i =
k∑

j=0
wj · Rij

=
k∑

j=0
wj · ((mj , Ri2, 0)⇓ ⋆− (mj , Ri1, 0)⇓)

≥
k∑

j=0
wj · ((mj , θ(Ri2), 0)⇓ − (mj , θ(Ri1), 0)⇓) (Lemma 1)

=
k∑

j=0
wj · (JmjK θ(Ri2)) −

k∑
j=0

wj · (JmjK θ(Ri1))

= (λx.

k∑
j=0

wj · (JmjK x)) θ(Ri2) − (λx.

k∑
j=0

wj · (JmjK x)) θ(Ri1)

= (w · JmK) θ(Ri2) − (w · JmK) θ(Ri1).
Thus (Dw)i ≤ 0 implies (w · JmK) θ(Ri2) − (w · JmK) θ(Ri1) ≤ 0, and (Dw)i < 0 implies
(w · JmK) θ(Ri2) − (w · JmK) θ(Ri1) < 0. ◀

Proof of Theorem 4. Assume there are two solutions with a different set of negative entries
⟨x, b⟩ and ⟨x′, b′⟩. Let x′′ = x + x′ and b′′

j = max(bj , b′
j) for each 0 ≤ j < n. Then, the

tuple ⟨x′′, b′′⟩ is a more optimal solution.
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Firstly, ⟨x′′, b′′⟩ has a greater objective. As, by assumption, there is some component
different between b and b′, thus we have

∑n−1
i=0 bi <

∑n−1
i=0 b′′

i and
∑n−1

i=0 b′
i <

∑n−1
i=0 b′′

i .
Thus the objective is larger.

Secondly, ⟨x′′, b′′⟩ satisfies all constraints, as (i) by the fact we are taking a sum of
non-negative values, 0 ≤ x′′, (ii) by the fact we are taking a maximum, 0 ≤ b′′ ≤ 1, and (iii)
Ax′′ + b′′ ≤ 0 as

Ax′′ + b′′ ≤ 0 ⇐⇒ A(x + x′) + max(b, b′) ≤ 0
⇐⇒ Ax + Ax′ + max(b, b′) ≤ 0
⇐= Ax + Ax′ + b + b′ ≤ 0
⇐= Ax + b ≤ 0 ∧ Ax′ + b′ ≤ 0

Thus, our assumption was incorrect, and, by classical contradiction, the two solutions cannot
have a different set of negative entries. ◀

To prove Lemma 5, we require the following auxiliary lemma establishing the soundness
of lexicographic-linear combination:

▶ Lemma 9 (Soundness of lexicographic-linear combination). Given a list of weighted measures
wm : [[N × M ]] returned by the algorithm (Algorithm 2), then for each initial-recursive
argument pair Rk, and all substitutions θ where mij θ(Rk1) and mij θ(Rk2) are defined (for
every i and j), then

[. . . , wi · JmiK, . . . ]lex θ(Rk2) < [. . . , wi · JmiK, . . . ]lex θ(Rk1).

(Where wi and mi are the unzipping of wmi, and (·) and J−K are lifted pointwise over lists.)

Proof. By the construction of the output list and Lemma 2, there is a first wi, mi such that
wi ·JmiK θ(Rk2) < wi ·JmiK θ(Rk1) and for every i′ < i, wi′ ·Jmi′K θ(Rk2) = wi′ ·Jmi′K θ(Rk1).
This is the definition of a lexicographic decrease ◀

Proof of Lemma 5. Suppose there was some lexicographic combination of elements of P ,
which we will call [m1, m2, . . . mn]lex, which decreases at every recursive call of f but which
could not be found by removing rows from the associated matrix. At some point, by
assumption, this sequence of measures [m1, m2, . . . mn]lex must not be reachable by removing
rows from the matrix A, per the rule in the lexicographic algorithm. Call the first such
measure mi. Hence, by assumption once we remove all the rows corresponding to measures
m1, . . . , mi−1, we must not be able to proceed using the lexicographic algorithm. Hence,
there can be no column in the corresponding matrix with all entries less than or equal to 0
with at least one negative entry, namely the column associated with the measure mi cannot
have this property. But this means that there exists a recursive call on which the measure
[m1, m2, . . . mi]lex does not decrease, which is a contradiction. ◀

Proof of Theorem 6. Suppose this were not the case and there is a lexicographic order of
linear combinations of the primitive measures that could not be found by our algorithm. By
definition T-Rex can only fail if, at some stage of evaluation, it reaches a stage where there
is no non-trivial solution to the MNE problem using the numeric columns of the matrix. But
using Theorem 4, we know that each time we take a linear combination of numeric columns,
we get a vector whose number of negative entries is maximal and where the location of these
negative entries is unique. Hence, for any given numeric part of the matrix, there is a unique
set of rows R that is removed by the lexicographic phase of the algorithm such that any
other set of rows that could be removed by the process of taking linear combinations is a
subset of R. ◀
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