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Abstract
We study the noncommutative rank problem, ncRANK, of computing the rank of matrices with
linear entries in n noncommuting variables and the problem of noncommutative Rational Identity
Testing, RIT, which is to decide if a given rational formula in n noncommuting variables is zero on
its domain of definition.

Motivated by the question whether these problems have deterministic NC algorithms, we revisit
their interrelationship from a parallel complexity point of view. We show the following results:
1. Based on Cohn’s embedding theorem [14, 15] we show deterministic NC reductions from mul-

tivariate ncRANK to bivariate ncRANK and from multivariate RIT to bivariate RIT.
2. We obtain a deterministic NC-Turing reduction from bivariate RIT to bivariate ncRANK,

thereby proving that a deterministic NC algorithm for bivariate ncRANK would imply that both
multivariate RIT and multivariate ncRANK are in deterministic NC.
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1 Introduction

There are two main algorithmic problems of interest in this paper. These are the noncom-
mutative Rational Identity Testing problem (RIT) and the noncommutative rank (ncRANK)
problem for matrices with linear entries.

The RIT problem is a generalization of multivariate polynomial identity testing to identity
testing of multivariate rational expressions. When the variables are commuting, rational
identity testing and polynomial identity testing are equivalent problems. On the other hand,
if the variables are all noncommuting, the RIT problem needs different algorithmic techniques
as rational expressions in noncommuting variables are more complicated. Mathematically,
rational expressions over noncommuting variables are quite well studied. They arise in the
construction of the so-called free skew fields [15]. Hrubes and Wigderson [21] initiated the
algorithmic study of RIT for rational formulas and gave a deterministic polynomial time
reduction from RIT to ncRANK. Subsequently, deterministic polynomial-time algorithms
were obtained independently by Ivanyos et al [23, 22] and by Garg et al [18, 19] for the RIT
problem, in fact they obtain deterministic polynomial time algorithms for ncRANK, and
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14:2 A Multivariate to Bivariate Reduction

using Hrubes-Wigderson reduction from RIT to ncRANK get a polynomial time algorithm
for RIT. The Ivanyos et al algorithm is algebraic and works for fields of all characteristics.
The Garg et al algorithm has an analytic flavor and is for the characteristic zero case.

The Edmonds’ Problem and ncRANK

The ncRANK problem is essentially the noncommutative version of the well-known Edmonds’
problem: determine the rank of a matrix M whose entries are linear forms in commuting
variables (see [23, 19, 7, 10] for more details). A special case of it is to determine if a square
matrix M with linear entries in commuting variables is singular. This is also known as
the symbolic determinant identity testing problem, SDIT. There is an easy randomized
NC algorithm for it, based on the Polynomial Identity Lemma [5, 28, 30, 16], by randomly
substituting scalar values for the variables from the field (or a suitable extension of it)
and evaluating the determinant using a standard NC algorithm. However, a deterministic
polynomial-time algorithm for SDIT is an outstanding open problem [7].

Recently, for the RIT problem the first deterministic quasi-NC algorithm has been
obtained [2]. Another recent development – building on the connection between the noncom-
mutative Edmonds’ problem and identity testing for noncommutative algebraic branching
programs [10] – is a generalization of the Edmond’s problem to a partially commutative
setting with application to the weighted k-tape automata equivalence problem [3].

1.1 This paper: overview of results and proofs
With this background, the natural algorithmic questions are whether RIT for noncommutative
rational formulas and ncRANK have deterministic NC algorithms. We revisit the problems
from this perspective and obtain the following new results.
1. We show that multivariate RIT for formulas is deterministic NC reducible to bivariate

RIT for formulas. More precisely, given a rational formula Φ(x1, x2, . . . , xn), computing
an element of the skew field F⦓X⦔, where X = {x1, x2, . . . , xn}, the deterministic NC
reduction replaces each xi by a formula Φi(x, y) computing a polynomial in F⟨x, y⟩. Then
the resulting rational formula

Ψ(x, y) = Φ(Φ1(x, y), Φ2(x, y), . . . , Φn(x, y))

has the property that

Φ(x1, x2, . . . , xn) ̸= 0 iff Ψ(x, y) ̸= 0.

2. We next show that multivariate ncRANK is deterministic NC reducible to bivariate
ncRANK. More precisely, given a d× d linear matrix A = A0 +

∑n
i=1 Aixi in noncom-

muting variables X = {x1, x2, . . . , xn}, where the Ai are matrices over the scalar field
F, we first give a deterministic NC reduction that transforms A to a d × d matrix B

whose entries are bivariate polynomials in F⟨x, y⟩, where x and y are two noncommuting
variables, where its entries B[i, j] are given by polynomial size noncommutative formulas,
with the property that ncrk(A) = ncrk(B). Then we examine the Higman linearization
process [21] that transforms B into a matrix B′ with linear entries in x and y such that the
noncommutative rank ncrk(B) of B can be easily recovered from ncrk(B′). We show that
this process can be implemented in deterministic NC (the earlier works [21, 22, 23, 19]
only consider its polynomial-time computability).
Additionally, we consider the more general problem ncRANKpoly of computing the
noncommutative rank of a matrix whose entries are noncommutative formulas computing
polynomials. We show using our parallel Higman linearization algorithm that ncRANKpoly

is also deterministic NC reducible to bivariate ncRANK.
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Both the multivariate to bivariate reductions, stated above, are crucially based on a
theorem of Cohn [14] (also see [15, Theorem 4.7.3]) which we will refer to as Cohn’s
embedding theorem and describe it later in the introduction.

3. Finally, obtaining a deterministic NC reduction from RIT to ncRANK turns out to be
quite subtle. From the work of Hrubes and Wigderson [21], who initiated this line of
research on RIT, we can only obtain a sequential deterministic polynomial-time reduction
from RIT to ncRANK. However, for our result we require an NC reduction. If the given
rational formula has logarithmic depth, then their result already implies an NC reduction.
Now, in the same paper [21], Hrubes and Wigderson have also shown a depth reduction
result for multivariate noncommutative rational formulas: every rational formulas of size
s is equivalent to a logarithmic depth rational formula of size poly(s). Their construction
is based on Brent’s depth reduction result for commutative arithmetic formulas. However,
due to noncommutativity and the presence of inversion gates, the formula constructed in
their proof needs to be different based on whether certain rational subformulas, arising
in the construction procedure, are identically zero or not. To algorithmize such steps in
the construction we need to use RIT as a subroutine. As RIT has a polynomial-time
algorithm [23, 19], the depth-reduction in [21] also has a polynomial time algorithm.1

As the third result of this paper, building on the Hrubes-Wigderson depth-reduction
construction, we are able to show that, with oracle access to RIT, rational formula
depth reduction can be done in deterministic NC. Using this we are able to obtain a
deterministic NC-Turing reduction from RIT to ncRANK. Hence, if bivariate ncRANK
is in deterministic NC we will obtain a deterministic NC algorithm also for RIT. We
leave open the question whether depth reduction of noncommutative rational formulas is
unconditionally in NC.

2 Preliminaries

In this section we recall the essential basic definitions and fix the notation.
Let F be a (commutative) field2 and X = {x1, x2, . . . , xn} be n free noncommuting

variables. The free monoid X∗ is the set of all monomials in the variables X. A noncom-
mutative polynomial f(X) is a finite F-linear combination of monomials in X∗, and the free
noncommutative ring F⟨X⟩ consists of all noncommutative polynomials.

Noncommutative Rational Formulas

An arithmetic circuit computing an element of F⟨X⟩ is a directed acyclic graph with each
indegree 0 node labeled by either an input variable xi ∈ X or some scalar c ∈ F. Each
internal node g has indegree 2 and is either a + gate or a × gate: it computes the sum (resp.
left to right product) of its inputs. Thus, each gate of the circuit computes a polynomial in
F⟨X⟩ and the polynomial computed by the circuit is the polynomial computed at the output
gate. A formula is restricted to have fanout 1 or 0.

1 In the commutative case, Brent’s result is parallelizable to yield an NC algorithm. For noncommutative
formulas without inversion gates we can obtain the depth-reduced formula in NC, as we will observe
later in the paper.

2 In this paper, F will either be the field of rationals or a finite field.

ICALP 2024



14:4 A Multivariate to Bivariate Reduction

When we allow the formulas/circuits to have inversion gates we get rational formulas
and rational circuits.

The Free Skew Field

We now briefly explain the free skew field construction. The elements of the free skew field
are noncommutative rational functions which are more complicated than their commutative
counterparts. Rational formulas in the commutative setting can be canonically expressed as
ratios of two polynomials. There is no such canonical representation for noncommutative
rational formulas.

Following Hrubes-Wigderson [21], we use Amitsur’s approach [1] for formally defining
skew fields.3

It involves defining appropriate notion of equivalence of formulas (intuitively, two formulas
are equivalent if they agree on their domain of definition). The equivalence classes under this
equivalence relation are the elements of the free skew field. We give the formal definitions
below.

Let Mk(F) denote the ring of k×k matrices with entries from field F. Note that a rational
formula Φ defines a partial function

Φ̂ : Mk(F)n 7→Mk(F)

that on input (a1, a2, . . . , an) ∈ Mk(F)n evaluates Φ by substituting xi ← ai for i ∈ [n].
Φ̂(a1, . . . , an) is undefined if the input to some inversion gate in Φ is not invertible in Mk(F).

▶ Definition 1. Let Φ be a rational formula in variables X. For each k ∈ N, let Dk,Φ be the
set of all matrix tuples (a1, a2, . . . , an) ∈Mk(F)n such that Φ̂(a1, a2, . . . , an) is defined. The
domain of definition of Φ is the union DΦ =

⋃
k Dk,Φ.

▶ Definition 2 ([21]).
A rational formula Φ is called correct if for every gate u of Φ the subformula Φu has a
nonempty domain of definition.
Correct rational formulas Φ1, Φ2 are said to be equivalent (denoted Φ1 ≡ Φ2) if the
intersection DΦ1 ∩ DΦ2 of their domains of definitions is nonempty and they agree on all
the points in the intersection.

We note that equivalent formulas need not have the same domain of definition. For
example, Φ1 = z1z2z3 and Φ2 = (z1z2z3 · (z2z3 − z3z2)−1) · (z2z3 − z3z2) are equivalent.
However, the domain of definition of Φ1 includes all matrix tuples, whereas the domain of
definition of Φ2 contains only matrix tuples (Z1, Z2, Z3) such that det(Z2Z3 − Z3Z2) ̸= 0.

The relation ≡ as defined above is an equivalence relation on rational formulas and the
equivalence classes, called rational functions, are the elements of the skew field F⦓X⦔ [21, 1].

Noncommutative Rank

We now recall the notion of rank for matrices over the noncommutative ring F⟨X⟩.

▶ Definition 3 (inner rank). Let M be a matrix over F⟨X⟩. Its inner rank is the least r

such that M can be written as a matrix product M = PQ where Q has r rows (and P has r

columns).

3 There are other ways to defining free skew fields [1, 6, 27, 11, 12, 13, 15].
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▶ Definition 4 (full matrices). An n× n square matrix M over F⟨X⟩ is full if it cannot be
decomposed as a matrix product M = PQ where P is n × r and Q is r × n for r < n. In
other words, an n× n matrix is called full precisely when its inner rank is n.

We can also define the rank of a matrix M to be the maximum r such that M contains an
r × r full submatrix. For matrices over F⟨X⟩ these notions of noncommutative rank coincide
as summarized below.4

▶ Proposition 5 ([15]). Let M be an n× n matrix over the ring F⟨X⟩. Then
M is a full matrix (that is, M has inner rank n) iff it is invertible over the skew field
F⦓X⦔.
More generally, M has inner rank r iff the largest full submatrix of M is r × r.

The Algorithmic Problems of Interest

At this point we formally define the problems of interest in this paper.
1. The multivariate RIT problem takes as input a rational formula Φ, computing a rational

function Φ̂ in F⦓X⦔, and the problem is to check if Φ is equivalent to 0? In the bivariate
RIT problem Φ computes a rational function in F⦓x, y⦔.

2. The multivariate ncRANK problem takes as input a matrix M with affine linear form
entries over X and the problem is to determine its noncommutative rank ncrk(M).
Bivariate ncRANK is similarly defined.

3. A more general version of ncRANK is ncRANKpoly in which the matrix entries are allowed
to be polynomials in F⟨X⟩ computed by noncommutative formulas. A closely related
problem is SINGULAR where the problem is to test if a square matrix M over F⟨X⟩
with entries computed by formulas is singular or not.

The complexity class NC and NC reductions

The class NC consists of decision problems that can be solved in polylog(n) time with poly(n)
many processors.5 For two decision problems A and B we say A is many-one NC reducible
to B if there is a reduction from A to B that is NC computable. Similarly, A is NC-Turing
reducible to B if there is an oracle NC algorithm for A that has oracle access to B.

It turns out that SINGULAR and ncRANK are equivalent even under deterministic NC
reductions.6

Cohn’s Embedding Theorem

We now give an outline of Cohn’s embedding theorem and how it gives us the desired reduction
from multivariate to bivariate RIT and also from multivariate to bivariate ncRANK. However,
for multivariate to bivariate reduction for ncRANK we will require additional NC algorithms
for formula depth reduction and Higman linearization.

Let X = {x1, x2, . . . , xn} be a set of n noncommuting variables, and let x, y be a pair
of noncommuting variables. We first recall the following well-known fact, observed in the
early papers on noncommutative polynomial identity testing [8, 26]: for noncommutative

4 For a ring R in general, a full matrix R need not be invertible (see [21] for an example).
5 This model is widely accepted as the right theoretical notion for efficient parallel algorithms.
6 As for M ∈ F⟨X⟩m×n, ncrk(M) = r iff r is a size of a largest sized invertible minor of M , so to compute

ncrk(M), it suffices to test singularity of matrix UMV , where U, V are generic r × m, n × r matrices
respectively with entries as fresh noncommuting variables for r ≤ min(m, n). See e.g. [19, Lemma A.3]
for details.

ICALP 2024



14:6 A Multivariate to Bivariate Reduction

polynomials in F⟨X⟩, the problem of polynomial identity testing (PIT) is easily reducible to
PIT for bivariate noncommutative polynomials in F⟨x, y⟩. Indeed, more formally, we have
the following easy to check fact.

▶ Proposition 6. The map

xi 7→ xi−1y, 1 ≤ i ≤ n

extends to an injective homomorphism (i.e. a homomorphic embedding) from the ring F⟨X⟩
to the ring F⟨x, y⟩.

However, in order to obtain our multivariate to bivariate reductions, we need a mapping
β : X → F⟨x, y⟩ which has the following properties:

For each i, there is a small noncommutative arithmetic formula that computes β(xi).
β extends to an injective homomorphism7, not just from the ring F⟨X⟩ to F⟨x, y⟩, but
also to an injective homomorphism from the skew field F⦓X⦔ to the skew field F⦓x, y⦔.
This will guarantee that for two rational formulas Φ1, Φ2 computing inequivalent rational
functions in F⦓X⦔ their images β(Φ1) and β(Φ2) also compute inequivalent rational
functions in F⟨x, y⟩.
Furthermore, in order to get the multivariate to bivariate reduction for ncRANK, we
will additionally require of the map β that for any matrix M over F⟨X⟩ its image β(M),
which is a matrix over F⟨x, y⟩ obtained by applying β to each entry of M , has the same
rank as M . Such a homomorphic embedding is called an honest embedding [14]. Here we
note that, full matrices over F⟨X⟩ are invertible over F⦓X⦔ [15]. Consequently if one
can lift embedding β to one between the corresponding free skew fields, it enforces β to
be an honest embedding.

The mapping xi 7→ xi−1y actually does not extend to an honest embedding as observed

in [14]. Indeed, the rank 2 matrix
(

x1 x2
x3 x4

)
has image

(
y xy

x2y x3y

)
=

(
1
x2

) (
y xy

)
which is rank 1. In general, a homomorphic embedding from a ring R to a ring R′ is an
honest embedding if it maps full matrices over R to full matrices over R′. We now state
Cohn’s embedding theorem.

For polynomials f, g ∈ F⟨x, y⟩ let [f, g] denotes the commutator polynomial fg − gf .
Cohn’s embedding map β : F⟨X⟩ → F⟨x, y⟩ is defined as follows.

Let β(x1) = y. For i ≥ 2, define β(xi) = [β(xi−1), x].
We can then naturally extend β to a homomorphism from F⟨X⟩ to F⟨y, x⟩, and it is easy
to check that it is injective. In fact, we can even assume |X| to be countably infinite.

▶ Theorem 7 (Cohn’s embedding theorem [15, Theorem 7.5.19]). The embedding map β :
F⟨X⟩ → F⟨x, y⟩ defined above extends to an embedding between the corresponding skew fields
β : F⦓Z⦔→ F⦓x, y⦔ and hence is an honest embedding.

Cohn’s construction is based on skew polynomial rings, which explains the appearance of the
iterated commutators β(xi) = [β(xi−1), x]. We briefly explain the underlying ideas in the
arxiv version [4]. For more details see [14, 15].

7 That is, a homomorphic embedding.
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3 The Reduction from multivariate RIT to bivariate RIT

The reduction follows quite easily from Theorem 7. However, we present some complexity
details in this section showing that it is actually a deterministic NC reduction. The following
lemma is useful to describe the reduction.

▶ Lemma 8. Recall the embedding map β defined above. β(z0) = y and β(zi+1) = [β(zi), x]
are polynomials in F⟨x, y⟩ for each i ≥ 0. Then, for n ≥ 1 we have

β(zn) =
n∑

i=0
(−1)i

(
n

i

)
xiyxn−i.

As a consequence, there is a deterministic NC algorithm that constructs a poly(n)-sized
formula for β(zn).

Proof. We will use induction on n. The base case follows from the fact that β(z1) = yx−xy.
Inductively assume the claim is true for all n. Now, β(zn+1) = [β(zn), x]

=
n∑

i=0
(−1)i

(
n

i

)
xiyxn−i+1 −

n∑
j=0

(−1)j

(
n

j

)
xj+1yxn−j by induction hypothesis

= yxn+1 +
n∑

i=1
(−1)i

(
n

i

)
xiyxn−i+1 +

n+1∑
i=1

(−1)i

(
n + 1− 1

i− 1

)
xiyxn+1−i

= yxn+1 +
n∑

i=1
(−1)i

[(
n + 1− 1

i

)
+

(
n + 1− 1

i− 1

)]
xiyxn−i+1 + (−1)n+1xn+1y

= yxn+1 + (−1)n+1xn+1y +
n∑

i=1
(−1)i

(
n + 1

i

)
xiyxn+1−i from Pascal’s identity

=
n+1∑
i=0

(−1)i

(
n + 1

i

)
xiyxn+1−i

This completes the inductive proof.
As the binomial coefficients can be computed in NC using Pascal’s identity, the expression

for β(zn) obtained above immediately implies an NC algorithm for construction of a poly(n)
sized formula for β(zn). ◀

▶ Theorem 9. The multivariate RIT problem is deterministic NC (in fact, logspace) reducible
to bivariate RIT. More precisely, given as input a rational formula Φ computing an element of
F⦓X⦔, X = {x1, x2, . . . , xn} there is a deterministic NC algorithm that computes a rational
formula Ψ computing an element of F⦓x, y⦔ such that Φ is nonzero in its domain of definition
iff Ψ is nonzero in its domain of definition.

Proof. We can identify F⦓X⦔ with F⦓z0, z1, . . . , zn−1⦔. Let Φi(x, y) be the poly(i) size
noncommutative formula computing the nested commutator β(zi) for each i. In the rational
formula Φ, for each i we replace the input zi to Φ by Φi(x, y). The new formula we obtain is

Ψ(x, y) = Φ(Φ1(x, y), Φ2(x, y), . . . , Φn−1(x, y)).

By Theorem 7, Ψ(x, y) ̸= 0 on its domain of definition iff Φ(z0, z1, . . . , zn−1) is nonzero on
its domain of definition. Furthermore, because β is an embedding, it is guaranteed that if Φ
has a nontrivial domain of definition then Ψ also has a nontrivial domain of definition.

As computation of Ψ from Φ involves only replacing the zi by Φi, the reduction is clearly
logspace computable. ◀

ICALP 2024



14:8 A Multivariate to Bivariate Reduction

4 Reduction from n-variate ncRANKpoly to 2-variate ncRANK

In this section we give a deterministic NC reduction from n-variate ncRANKpoly to bivariate
ncRANK. The basic idea of the reduction is as follows. Given a polynomial matrix8

M ∈ F⟨X⟩m×m such that each entry of M is computed by formula of size at most s. We
will use Cohn’s embedding theorem 7 to get a matrix M1 with bivariate polynomial entries
such that each entry of M1 is computed by a poly(n, s) size noncommutative formula and
ncrk(M) = ncrk(M1). Notice that M1 is an instance of bivariate ncRANKpoly. Next, we
need to give an NC reduction transforming M1 to an instance of bivariate ncRANK (which
will be a matrix with linear entries in x and y).

In order to do this transformation in NC, we will first apply the depth-reduction algorithm
of Lemma 10 to get matrix M2 whose entries are poly(n, s) size log-depth formulas that
compute the same polynomials as the corresponding entries of M1. Then we apply Higman
Linearization to M2 to obtain a bivariate linear matrix M3. For this we will use our parallel
algorithm for Higman Linearization described in Theorem 13. From the properties of Higman
linearization we can easily recover ncrk(M2) from ncrk(M3). In what follows, first we give a
deterministic NC algorithm for the depth reduction of noncommutative formulas and Higman
linearization process. We conclude the section by giving an NC reduction from multivariate to
bivariate ncRANK using above NC algorithms combined with Cohn’s embedding theorem 7.

4.1 Depth reduction for noncommutative formulas without divisions
In the commutative setting Brent [9] obtained a deterministic NC algorithm to transform a
given rational formula (which may have division gates) to a log-depth rational formula. In
the noncommutative setting, Hrubes and Wigderson [21] proved the existence of log-depth
rational formula equivalent to any given rational formula. Their proof is based on [9]. However,
it is not directly algorithmic as explained in the introduction. We will discuss it in more
detail in Section 5. However, it turns out that, if the noncommutative formula doesn’t have
division gates then the depth reduction is quite easy and we obtain a simple deterministic NC
algorithm for it that computes a log-depth noncommutative formula equivalent to the given
noncommutative formula. The proof is based Brent’s commutative version. We highlight the
distinctive points arising in the noncommutative version.

We introducing some notation. Let Φ be a noncommutative arithmetic formula computing
a polynomial in F⟨x1, x2, . . . , xn⟩. Let Φ̂ denote the polynomial computed by Φ. For a node
v ∈ Φ, let Φv denote the subformula of Φ rooted at node v, so Φ̂v is the polynomial computed
by the subformula rooted at v. For a node v ∈ Φ, let Φv←z be a formula obtained from Φ by
replacing the sub-formula Φv by single variable z. For a node v ∈ Φ, let wt(v) = |Φv| denote
the number of nodes in the subformula rooted at v. By size of formula Φ we refer to number
of gates in Φ.

▶ Lemma 10. Given a formula Φ of size s computing a noncommutative polynomial f ∈
F⟨x1, x2, . . . , xn⟩ there is an NC algorithm to obtain an equivalent formula Φ′ for f with
depth O(log s).

Proof. First we describe a recursive construction to compute a formula Φ′ equivalent to Φ
and inductively prove that the depth of Φ′ is c log2 s for an absolute constant c. Then we
analyze the parallel time complexity of the construction and prove that it can be implemented
in NC.

8 We can assume it is a square matrix without loss of generality.
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Let AΦ be s× s matrix such that for gates u, v ∈ Φ, (u, v)th entry of AΦ is 1 if gate v is
a descendent of gate u. Using the well-known pointer doubling strategy (see e.g. [29, 25]) we
can compute matrix AΦ in NC. So by adding elements in each row of AΦ, we can compute
wt(u) (that is the number of descendants of gate u ∈ Φ) in NC. Let v be a gate in Φ such
that s

3 ≤ wt(v) < 2s
3 . Such a gate always exists by a standard argument. Since we can

compute the number of descendants of a gate in NC, we can also find such a gate v in NC,
by simply having a processor associated to each gate to check the above inequalities. Now
we are ready to describe recursive construction of Φ′.
1. In NC find a gate v in Φ such that s

3 ≤ wt(v) < 2s
3 .

2. Let r = v0 be the root of Φ and v1, v2, . . . , vℓ−1 be gates on r to v path in Φ. Let v = vℓ.
For 1 ≤ i ≤ ℓ, let ui denote a sibling of vi. Let S1 be collection of all indices j such that
1 ≤ j ≤ ℓ, vj is a product gate and is a right child of its parent. Similarly let S2 be
collection of all indices j such that 1 ≤ j ≤ ℓ, vj is a product gate and is a left child of
its parent. Define formula Ψ1 =

∏
j∈S1

Φuj
. The product is computed using sequence of

multiplication gates, starting with Φuj for the first uj (one with smallest index j ∈ S1)
each multiplication gate multiplies the product so far from right by Φuj

for the next gate
uj , j ∈ S1, along the root to v path. Similarly define formula Ψ2 =

∏
j∈S2

Φuj
. Let Ψ3

be a formula obtained from Φ by replacing subformula Φv by zero.
3. Recursively in parallel compute log-depth formulas Ψ′1, Ψ′2, Ψ′3, Φ′v equivalent to Ψ1, Ψ2,

Ψ3 and Φv respectively.
4. Define formula Φ′ as (Ψ′1 · Φ′v) ·Ψ′2 + Ψ3.
From the definitions of Ψ1, Ψ2 and Ψ3 it is clear that the polynomial computed by Φ equals
(Ψ̂1 · Φ̂v) · Ψ̂2 + Ψ̂3, where Ψ̂1, Ψ̂1, Ψ̂1, Φ̂v are the polynomials computed by Ψ1, Ψ2, Ψ3 and
Φv respectively. Hence, Φ′, defined in Step 4, is equivalent to Φ.

Let d(s) denote the upper bound on the depth of the formula output by the above
procedure if size s formula is given to it as input. We use induction on the size s to
prove that d(s) ≤ c log2 s. As Ψ1, Ψ2 are disjoint subformulas of Φv←z, clearly we have
|Ψ1|+|Ψ2| ≤ |Φv←z|. Since |Φv| ≥ s

3 , it implies |Ψ1|, |Ψ2| ≤ |Φv←z| ≤ 2s
3 . From the definition

of Ψ3, it is clear that |Ψ3| ≤ |Φv←z| ≤ 2s
3 . So the size of each formula Ψ1, Ψ2, Ψ3 and Φv is

upper bounded by 2s
3 . Hence, inductively, for each of the formulas Ψ′1, Ψ′2, Ψ′3, Φ′v the depth is

upper bounded by c log2
2s
3 . As Φ′ is obtained from Ψ′1, Ψ′2, Ψ′3, Φ′v using two multiplications

and an addition as in Step 4, it follows that the depth of Φ′ = d(s) ≤ c log2
2s
3 + 3. Choosing

c ≥ 3
(log2 3−1) we get d(s) ≤ c log2

2s
3 + 3 ≤ c log2 s. This completes the induction, proving

that the depth of Φ′ is at most c log2 s.
Let t(s) denotes parallel time complexity of the above procedure. Since Steps 1, 2, 4

can be implemented in NC they together take (log s)k parallel time for an absolute constant
k. As all the recursive calls in Step 3 are processed in parallel, we have the recurrence
t(s) ≤ t(2s/3) + (log s)k. Hence, t(s) ≤ (log s)(k+1). This shows that the above procedure
can be implemented in NC, completing the proof of the theorem. ◀

▶ Remark 11. In Lemma 10, we avoid using the depth-reduction approach for noncommutative
rational formulas that is used in [21]. This is because it can introduce inversion gates even if
the original formula has no inversion gates. Instead, we directly adapt ideas from Brent’s
construction for commutative formulas to obtain the NC algorithm. We note here that
Nisan’s seminal work [24] also briefly mentions noncommutative formula depth reduction
(but not its parallel complexity or even in an algorithmic context).

Higman linearization which is sometimes called Higman’s trick was first used by Higman
in [20]. Cohn extensively used Higman Linearization in his factorization theory of free ideal
rings. Given a matrix with noncommutative polynomials as its entries, Higman linearization
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14:10 A Multivariate to Bivariate Reduction

process transforms it into a matrix with linear entries. This transformation process has
several nice properties such as: it preserves fullness of the matrix (that is the input polynomial
matrix is full rank iff final linear matrix is full rank), it preserves irreducibility of the matrix,
etc.

We first describe a single step of the linearization process applied to a single noncom-
mutative polynomial, which easily generalizes to matrices with polynomial entries. Given an
m×m matrix M over F⟨X⟩ such that M [m, m] = f + g × h, apply the following:

Expand M to an (m + 1)× (m + 1) matrix by adding a new last row and last column
with diagonal entry 1 and remaining new entries zero:[

M 0
0 1

]
.

Then the bottom right 2× 2 submatrix is transformed as follows by elementary row and
column operations(

f + gh 0
0 1

)
→

(
f + gh g

0 1

)
→

(
f g

−h 1

)
Given a polynomial f ∈ F⟨X⟩ by repeated application of the above step we will finally

obtain a linear matrix L = A0 +
∑n

i=1 Aixi, where each Ai, 0 ≤ i ≤ n is an ℓ× ℓ over F, for
some ℓ. The following theorem summarizes its properties.

▶ Theorem 12 (Higman Linearization [15]). Given a polynomial f ∈ F⟨X⟩, there are matrices
P, Q ∈ F⟨X⟩ℓ×ℓ and a linear matrix L ∈ F⟨X⟩ℓ×ℓ such that

P

(
f 0
0 Iℓ−1

)
Q = L (1)

with P upper triangular, Q lower triangular, and the diagonal entries of both P and Q are
all 1’s. (Hence, P and Q are both invertible over F⦓X⦔, moreover entries of P−1 and Q−1

are in F⟨X⟩).

Instead of a single f , we can apply Higman linearization to a matrix of polynomials M ∈
F⟨X⟩m×m to obtain a linear matrix L such that P (M ⊕ Ik)Q = L for invertible matrices
P, Q. Garg et al. [19] gave polynomial time algorithm to carry out Higman linearization for
polynomial matrix whose entries are given by noncommutative formulas. We will give an NC
algorithm to implement this transformation.

▶ Theorem 13. Let A ∈ F⟨X⟩n×n be a polynomial matrix such that each entry of A is
given by a noncommutative formula of size at most s. Then there is a deterministic NC
algorithm (with parallel time complexity poly(log s, log n)) to compute invertible upper and
lower triangular matrices P, Q ∈ F⟨X⟩ℓ×ℓ with all diagonal entries 1 and a linear matrix

L ∈ F⟨X⟩ℓ×ℓ such that P

(
A 0
0 Ik

)
Q = L, where ℓ = n + k and k is O(n2 · s). All the

entries of P, Q are computable by algebraic branching programs of size poly(n, s). Moreover
ncrk(A) + k = ncrk(L), hence the rank of A is easily computable from the rank of L.

The proof of the above theorem can be found in the arXiv version [4].
Using Theorem 7, Lemma 10 and Theorem 13 we get a deterministic NC reduction from

multivariate ncRANK to bivariate ncRANK.

▶ Theorem 14. There is a deterministic NC reduction from the multivariate ncRANK
problem to the bivariate ncRANK problem.
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5 NC Reduction from RIT to bivariate ncRANK

In this section we give an NC-Turing reduction from RIT to bivariate ncRANK. That is, we
design an NC algorithm for RIT assuming we have an oracle for bivariate ncRANK. Hrubes
and Wigderson in [21] give a polynomial time reduction from RIT to ncRANK problem [21,
Theorem 2.6]. Also they show that for any given rational formula Φ there is a log-depth
rational formula that is equivalent to Φ [21, Proposition 4.1].

Our key contribution here is to use Cohn’s embedding theorem to transform RIT problem
to the bivariate case. Then we parallelize the Hrubes-Wigderson reduction from RIT to
ncRANK. In fact, if the input rational formula is already logarithmic depth then the Hrubes-
Wigderson reduction from RIT to ncRANK can be implemented in NC. In this section we
design an NC algorithm for depth reduction of rational formulas (possibly with division
gates) assuming NC oracle for bivariate ncRANK.9 Indeed, the construction of an equivalent
log-depth rational formula, as described in [21], does not appear to be directly parallelizable,
as its description crucially requires rational formula identity testing.10

We show that, indeed, the depth-reduction proof in [21] can be parallelized step by step.
However, there are some key points where our algorithmic proof is different. Firstly, to solve
the RIT instance arising in the depth-reduction proof, we need to recursively depth-reduce the
corresponding subformula and then apply Hrubes-Wigderson reduction from RIT to ncRANK
on the constructed log-depth subformula. Secondly, we need to handle an important case
arising in the proof (namely, the case (2) in the description of the Normal-Form procedure in
the proof of the Lemma 17) which was not significant for the existential argument in [21].
In fact to handle this case, we require an argument based on Brent’s commutative formula
depth reduction [9].

In the detailed proof of Lemma 17, we first sketch our NC algorithm for depth reduction
of rational formula assuming oracle access to bivariate ncRANK. We highlight and elaborate
the key steps where our proof differs from [21]. We need to reproduce some parts of their
proof for completeness, for these parts we just sketch the argument and refer to [21] for the
details. Using this depth reduction algorithm we give an NC Turing reduction from RIT to
bivariate ncRANK, which is a main result of this section.

5.1 Depth reduction for noncommutative formulas with inversion gates
The following is a consequence of results in [21] and [17].

▶ Theorem 15 ([21, 17]). Let Φ be a rational formula of size s computing a non-zero rational
function in F⦓X⦔. If the field F is sufficiently large and k > 2s then, at a matrix tuple
(M1, M2, . . . , Mn) chosen uniformly at random from Mk×k(F)n, the matrix Φ̂(M1, . . . , Mn)
is nonsingular with “high” probability.

If F is small then we can pick the random matrices over a suitable extension field, and by
“high” probability we mean, say, 1− 2−Ω(s+n).

9 It is an interesting problem to devise an NC algorithm for rational formula depth reduction without
oracle access to singularity test.

10 The overall proof in [21] is based on the Brent’s depth-reduction of commutative rational formulas [9].
In the commutative case addressed by Brent, it turns out that the construction procedure does not
require oracle access to identity testing and he obtains an NC algorithm for obtaining the depth-reduced
formula.
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14:12 A Multivariate to Bivariate Reduction

Let Φ1 and Φ2 be correct rational formulas of size at most s computing rational functions
in F⦓X⦔. By Theorem 15 and a union bound argument, for a random matrix substitution
(M1, M2, . . . , Mn) from Mk×k(F)n, inputs to all the inversion gates in Φ1 and Φ2 simultan-
eously evaluate to non-singular matrices with “high” probability. Hence, for k sufficiently
large we have Dk,Φ1 ∩ Dk,Φ2 ̸= ∅. It follows that a random matrix tuple is in Dk,Φ1 ∩ Dk,Φ2

with high probability.
By Theorem 15 and the definition of correct rational formulas (Definition 2), it follows

that if Φ1 and Φ2 are size s correct formulas that are not equivalent then for a random
matrix substitution of dimension k > 2s both Φ1 and Φ2 are defined and they disagree with
high probability. As noted in Section 2, equivalent formulas need not have the same domain
of definition.

Lemma 17 is the main technical result of this section. It describes an NC algorithm for
depth-reduction of correct formulas assuming an oracle for bivariate ncRANK. The next
lemma is useful for establishing equivalences of formulas arising in the proof of Lemma 17.
Suppose Φ is a rational formula computing the rational function Φ̂. For a gate v in formula
Φ, Φv denotes the subformula rooted at v. The formula Φv←z ∈ F⦓X ∪ {z}⦔ is obtained
from Φ by replacing subformula Φv with fresh variable z.

▶ Lemma 16 (local surgery). Let Φ be a correct rational formula and v be a gate in Φ.
Suppose Ψ is a correct rational formula equivalent to Φv. Let Ψ′ = (A ·z +B) · (C ·z +D)−1 is
a formula equivalent to Φv←z such that A, B, C, D are correct formulas which do not depend
upon z and Ĉ · ∆̂ + D̂ ̸= 0 for any formula ∆ such that Φv←∆ is correct. Let Φ′ denote the
rational formula obtained by replacing z in Ψ′ by Ψ. Then Φ′ is correct and it is equivalent
to Φ.

Proof. From the definitions of Φv and Φv←z it follows that Φ = Φv←Φv
. As Φ is correct, from

the properties of formulas C, D as stated in the lemma it follows that ĈΦ̂v + D̂ ̸= 0. Which
implies ĈΨ̂ + D̂ ̸= 0 as Ψ ≡ Φv. This shows that the formula Φ′ = (A ·Ψ + B) · (C ·Ψ + D)−1

is correct. Now let τ = (M1, . . . , Mn) is a matrix tuple in DΦ ∩ DΦ′ , the intersection
of domains of definition of Φ and Φ′. This implies τ ∈ DΦv

as DΦ ⊆ DΦv
, Φv being

subformula of Φ. Similarly, τ ∈ DΨ as DΦ′ ⊆ DΨ, Ψ being a subformula of Φ′. So
τ ∈ DΦv

∩ DΨ. As Φv ≡ Ψ, it follows that Φv(τ) = Ψ(τ). As τ ∈ DΦ. It implies that
(M1, M2, . . . , Mn, Φv(τ)) = (τ, Φv(τ)) ∈ DΦv←z

. Similarly, as τ ∈ DΦ′ , it follows that
(τ, Ψ(τ)) ∈ DΨ′ . As Φv(τ) = Ψ(τ), it implies

(τ, Φv(τ)) = (τ, Ψ(τ)) ∈ DΦv←z
∩ DΨ′

As Φv←z ≡ Ψ′, this implies Φv←z(τ, Φv(τ)) = Ψ′(τ, Ψ(τ)). But Φv←z(τ, Φv(τ)) = Φ(τ) and
Ψ′(τ, Ψ(τ)) = Φ′(τ). So we get Φ(τ) = Φ′(τ) for any τ ∈ DΦ∩DΦ′ . Thus proving Φ ≡ Φ′. ◀

▶ Lemma 17. Given a correct formula Φ of size s computing a rational function f ∈ F⦓X⦔,
for sufficiently large s and absolute constants c, b

1. we give an NC algorithm, with oracle access to bivariate ncRANK, that outputs a correct
formula Φ′ of depth at most c log2 s which is equivalent to Φ.

2. If a variable z occurs in Φ at most once then we give an NC algorithm, with bivariate
ncRANK as oracle, that constructs correct rational formulas A, B, C, D which do not
depend on z with depth at most c log2 s + b and the formula Φ′ = (A · z + B) · (C · z + D)−1

is equivalent to Φ. Moreover, the rational function ĈΨ̂ + D̂ ̸= 0 for any formula Ψ such
that Φz←Ψ is correct.
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Proof. We give a recursive construction for both the parts and prove the correctness by
induction on s, the size of the formula Φ.

Depth-reduce(Φ).
Input: A correct formula Φ of size s computing a rational function in F⦓X⦔.
Output: A correct formula Φ′ of depth at most c log2 s such that Φ ≡ Φ′.
1. Find a gate v ∈ Φ such that s

3 < wt(v) ≤ 2s
3 .

2. In Parallel construct formulas Ψ, ∆ such that Ψ = Depth-Reduce(Φv) and ∆ =
Normal-Form(Φv←z, z).

3. Obtain formula Φ′ from ∆ by replacing z in ∆ by Ψ.
4. Output Φ′.

Normal-Form(Φ, z).
Input: A correct formula Φ of size s computing a rational function in F⦓X⦔ and a variable
z ∈ Φ which appears at most once in Φ
Output: A correct formula Φ′ which is of the form

Φ′ = (Az + B)(Cz + D)−1

where A, B, C and D are correct rational formulas which do not depend on z with depth at
most c log2 s + b. Moreover, the rational function ĈΨ̂ + D̂ ̸= 0 for any formula Ψ such that
Φz←Ψ is correct.

Let v1, v2, . . . , vℓ = z be gates on the path from root r of Φ to the leaf gate z, such that
vj is not an inverse gate. So parent of each vj has two children, and let ui denote the sibling
of vi. Use pointer doubling based parallel algorithm (as mentioned in the proof of Lemma
10) to compute wt(ui) and wt(vi) for all i ∈ [ℓ]. We call gate vi for i ∈ [ℓ] as a balanced gate
if wt(Φvi

), wt(Φvi←z′) ≤ 5s
6 . Now we consider two cases.

1. There exist a balanced gate vi:
a. Let v = vi. In parallel compute formulas Ψ1, Ψ2 such that

Ψ1 = (A1z′ + B1)(C1z′ + D1)−1 = Normal-Form(Φv←z′ , z′)
Ψ2 = (A2z + B2)(C2z + D2)−1 = Normal-Form(Φv, z)

b. Define formulas A, B, C, D as A1 ·A2 + B1 · C2, A1 ·B2 + B1 ·D2, C1 ·A2 + D1 · C2
and C1 ·B2 + D1 ·D2 respectively.

c. Let Φ′ = (A · z + B) · (C · z + D)−1

d. Output Φ′ and halt
2. There does not exist a balanced gate:

In this case, we can prove that there is a unique i ∈ [ℓ] such that wt(ui) > s
6 .

a. Let v be parent of the gate vi.
b. In Parallel find formulae Ψ1, Ψ2, Ψ3, Ψ4 such that

Ψ1 = (A1z′ + B1)(C1z′ + D1)−1 = Normal-Form(Φv←z′ , z′)
Ψ2 = (A2z + B2)(C2z + D2)−1 = Normal-Form(Φvi

, z)
Ψ3 = Depth-Reduce(Φui

)
Ψ4 = (Az + B)(Cz + D)−1 = Normal-Form(Φ′′, z)

where Φ′′ is obtained by replacing sub-tree rooted at ui by 0 in Φ.
c. Using the algorithm of Theorem 19 check if Ψ̂3 ≡ 0 in NC with oracle access to bivariate

ncRANK. If Ψ̂3 ≡ 0 then output Ψ4 and halt.
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d. If Ψ̂3 ̸≡ 0 then let Φ′ = (A · z + B) · (C · z + D)−1, where

A =


A1A2 + B1C2 + A1Ψ̂3C2 if vi is a +-gate
A1Ψ̂3A2 + B1C2 if vi is a ×-gate and is a right child of v

A1A2 + B1Ψ̂3
−1

C2 if vi is a ×-gate and is a left child of v

B =


A1B2 + B1D2 + A1Ψ̂3D2 if vi is a +-gate
A1Ψ̂3B2 + B1D2 if vi is a ×-gate and is a right child of v

A1B2 + B1Ψ̂3
−1

D2 if vi is a ×-gate and is a left child of v

C =


C1A2 + D1C2 + C1Ψ̂3C2 if vi is a +-gate
C1Ψ̂3A2 + D1C2 if vi is a ×-gate and is a right child of v

C1A2 + D1Ψ̂3
−1

C2 if vi is a ×-gate and is a left child of v

D =


C1B2 + D1D2 + C1Ψ̂3D2 if vi is a +-gate
C1Ψ̂3B2 + D1D2 if vi is a ×-gate and is a right child of v

C1B2 + D1Ψ̂3
−1

D2 if vi is a ×-gate and is a left child of v

e. Output Φ′ and halt.

Case 2 above is not explicitly dealt with in [21] as their focus is on the existence of a
log-depth formula equivalent to Φ. In contrast to that, in our case we want to algorithmically
construct log-depth formula Φ′ equivalent to Φ. This makes the details of Case 2 crucial
as the construction of Φ′ in Case 2 depends on whether Φ̂ui

≡ 0 or not. To solve this RIT
instance we need to recursively compute log-depth formula Ψ3 equivalent to Φui

and then
invoke algorithm of theorem 19 to carry out RIT test in NC with oracle access to bivariate
ncRANK, as in Step (c).

We first prove the correctness of both the algorithms described above using induction on
s, then we analyze the parallel complexity of both the algorithms. We will choose appropriate
constants c, b during the proof.

Correctness of the algorithm Depth-Reduce. We know that there exists a gate v ∈ Φ such
that s

3 < wt(v) ≤ 2s
3 . As in proof of Lemma 10 we can find such a gate v as required by Step

1 of the Depth-Reduce algorithm. Clearly, the formulas Φv and Φv←z are of size at most
2s/3. Using inductive assumption, we can construct a correct formula Ψ such that depth
of Ψ is at most c log2

2s
3 and Ψ ≡ Φv. Again using inductive assumption we can construct

correct formulas A, B, C, D (which do not depend on z) of depth at most c log2
2s
3 + b such

that the formula ∆ = (A · z + B) · (C · z + D)−1 is equivalent to Φv←z. Since Φ is equal to
the formula obtained from Φv←z by replacing z by Φv and Φ is correct so from inductive
assumption it follows that ĈΦ̂v + D̂ ̸= 0.

As Ψ ≡ Φv, ∆ ≡ Φv←z and ĈΦ̂v + D̂ ̸= 0 from Lemma 16 it follows that Φ′ is correct
and Φ′ ≡ Φ. Since Φ′ = (A · Ψ + B) · (C · Ψ + D)−1 we get that depth of Φ′ is at most
c log2

2s
3 + b + 4. By choosing constant c ≥ b+4

(log2 3−1) , we get that the depth of Φ′ is at
most c log2 s. Completing the inductive argument for the correctness proof of the algorithm
Depth-Reduce.
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Correctness of the algorithm Normal-Form. In case (1) we know that there exists a
balanced gate v = vi. We have wt(Φv), wt(Φv←z′) ≤ 5s

6 . So by inductive assumption we
know that the formulas Aj , Bj , Cj , Dj for j ∈ {1, 2} are correct, and their depths are at
most c log2

5s
6 + b. Now using compositionality of the z-normal forms as in Proposition 4.1

of [21] it follows that the formula Φ′ = (A · z + B) · (C · z + D)−1 is equivalent to Φ where
A, B, C, D are A1 ·A2 + B1 · C2, A1 ·B2 + B1 ·D2, C1 ·A2 + D1 · C2 and C1 ·B2 + D1 ·D2
respectively. Also, clearly the depth of A, B, C, D is at most c log2

5s
6 + b + 2. By choosing

c ≥ 2
(log2 6−log2 5) it follows that the depths of formulas A, B, C, D are at most c log2 s + b. To

complete the inductive proof we need to prove that Ĉπ̂ + D̂ ≠ 0 for any formula π such that
Φz←π is correct. Let π be such that Φz←π is correct. For simplicity lets denote formulas Φv

and Φv←z′ by α and β respectively. Since Φz←π is correct, it implies αz←π is correct as α is
a subformula of Φ. So by inductive assumption Ĉ2π̂ + D̂2 ̸= 0. Since Φz←π is correct, β being
a subformula of Φ it also implies βz′←γ is correct where γ = (A2 · π + B2) · (C2 · π + D2)−1.
By inductive assumption we get

Ĉ1γ̂ + D1 ̸= 0 which implies
Ĉ1[(Â2 · π̂ + B̂2) · (Ĉ2 · π̂ + D̂2)−1] + D1 ̸= 0 which implies

Ĉ1(Â2 · π̂ + B̂2) + D̂1(Ĉ2 · π̂ + D̂2) ̸= 0 as Ĉ2π̂ + D̂2 ̸= 0
So (Ĉ1Â2 + D̂1Ĉ2)π̂ + (Ĉ1B̂2 + D̂1D̂2) ̸= 0 which implies

Ĉπ̂ + D̂ ̸= 0

This completes the proof for case 1.
Next we argue that case 1 and case 2 together cover all the possibilities. To see this, we

will argue that if there does not exist a unique ui with wt(ui) ≥ s
6 then there must exist a

balanced gate. There are two possibilities: either for every gate ui, wt(ui) ≤ s
6 or there are

two or more gates ui’s with wt(ui) > s
6 If for every i ∈ [ℓ], wt(ui) ≤ s

6 , we find smallest j such
that

∑j
i=1 wt(ui) > s

6 . Clearly
∑j

i=1 wt(ui) ≤ 2s
6 , which implies wt(Φv), wt(Φv←z′) ≤ 5s

6 for
v = vi+1. So v is balanced. If there are two or more ui’s such that wt(ui) > s

6 then v be
parent of gate ui such that i is a largest index with wt(ui) > s

6 . Clearly v is a balanced gate.
This proves that case 1, 2 together cover all possibilities.

Assume that there is a unique i ∈ [ℓ] such that wt(ui) > s
6 . We first apply Depth-Reduce

on formula Φui and get a log-depth formula Ψ3 equivalent to Φui , we carry out this depth
reduction to efficiently test if Φui

≡ 0?. We will give details on this later when we figure
out the parallel time complexity of the algorithm. Now when Φui ≡ Ψ3 ≡ 0, clearly formula
Φ ≡ Φ′′ where Φ′′ is a formula obtained from Φ by replacing sub-formula rooted at ui

by 0. As wt(ui) > s
6 , we have |Φ′′| ≤ 5s

6 . So by inductive assumption, the correct sub-
formulas A, B, C, D of Ψ4 obtained by recursive call Normal-Form(Φ′′, z) have depth at most
c log2

5s
6 + b ≤ c log2 s + b and Ψ4 ≡ Φ′′ ≡ Φ. So it follows, Φz←π ≡ Φ′′z←π. Consequently

Φz←π is correct iff Φ′′z←π is correct. So from inductive hypothesis it follows that Ĉπ̂ + D̂ ̸= 0
for any formula π such that Φz←π is correct. This proves the correctness of Normal-form
procedure when Φui ≡ 0.

Now let Φui ̸≡ 0. Let v be the parent of ui. Below we discuss the case when v is ×-gate
and ui is a right child of v.

We have Ψ2 ≡ Φvi
≡ (A2 ·z+B2)·(C2 ·z+D2)−1. Let h1 = A2 ·z+B2 and h2 = C2 ·z+D2).

So Φvi
≡ h1 · h−1

2 . Now as v is ×-gate and vi, ui are left and right children of v respectively.
So we get Φv ≡ h1h−1

2 Φui ≡ h1h−1
2 Ψ3. We have Ψ1 ≡ Φv←z′ = (A1z′ + B1)(C1z′ + D1)−1.

So we get
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Φ ≡ ( A1 · (h1h−1
2 Ψ3) + B1) · ( C1 · (h1h−1

2 Ψ3) + D1)−1

≡ (A1 · h1 + B1 ·Ψ−1
3 h2) · h−1

2 Ψ3 · [ (C1 · h1 + D1 ·Ψ−1
3 h2) · h−1

2 Ψ3 ]−1

≡ (A1 · h1 + B1 ·Ψ−1
3 h2) · h−1

2 Ψ3 ·Ψ−1
3 h2 · (C1 · h1 + D1 ·Ψ−1

3 h2)−1

≡ (A1 · h1 + B1 ·Ψ−1
3 h2) · (C1 · h1 + D1 ·Ψ−1

3 h2)−1

By substituting values of h1, h2 and simplifying we get that Φ ≡ (A · z + B) · (C · z + D)−1

where A, B, C, D are A1 ·A2 + B1 ·Ψ−1
3 ·C2, A1 ·B2 + B1 ·Ψ−1

3 ·D2, C1 ·A2 + D1 ·Ψ−1
3 ·C2

and C1 ·B2 + D1 ·Ψ−1
3 ·D2 respectively as defined in Step 2(d).

As wt(ui) > s
6 , clearly |Φvi

|, |Φv←z′ | ≤ 5s
6 . Since

Ψ1 = (A1z′ + B1)(C1z′ + D1)−1 = Normal-Form(Φv←z′ , z′)
Ψ2 = (A2z + B2)(C2z + D2)−1 = Normal-Form(Φvi

, z)

So by inductive assumptions the sub-formulas A1, B1, C1, D1 of Ψ1 and the sub-
formulas A2, B2, C2, D2 of Ψ2 are correct and have depths at most c log2

5s
6 + b. As

Ψ3 = Depth-Reduce(Φui
) and |Φui

| < s by inductive assumption we get that the depth of Ψ3
is at most c log2 s. Clearly c log2

5s
6 + b ≤ c log2 s for c ≥ b

log2 6−log2 5) . So from expressions
for A, B, C, D it follows that the depth of A, B, C, D is at most depth of Ψ3 plus 4. Which
implies that the depth of A, B, C, D is at most c log2 s + 4 ≤ c log2 s + b if the constant b ≥ 4.
This gives us the desired bound on the depth of A, B, C, D. To summarize if we choose
constant b ≥ 4 and choose constant c such that it satisfies all the lower bounds required in
different steps of the above proof, we will get the desired bound on the depth of A, B, C, D.
We can show that Ĉπ̂ + D̂ ̸= 0 for any formula π such that Φz←π is correct. The proof
is similar to one for Case (1), we additionally need to take into account ×-gate at v while
composing z-Normal forms Ψ1 and Ψ2. We skip the details.

When v is a v is a ×-gate and ui is a left child of v, the composition of z-normal forms
is easy as we do not need an oracle access for RIT as in the case discussed above when ui

is the right child. In the commutative case we can by default assume that ui is the left
child. Precisely for this reason Brent’s construction [9] is independent of whether Φui ≡ 0
or not. We skip the details of cases when v is a +-gate or v is ×-gate and ui is the left
child which can be handled similar to case (1). This proves the correctness of the procedure
Normal-Form.

Next we analyze the parallel time complexity of both the procedures. Let t1(s), t2(s)
denote the parallel time complexities of the procedures Depth-Reduce and Normal-Form
respectively. The step (1) of the Depth reduce procedure can be implemented in NC so it
has parallel time complexity (log2 s)k for some absolute constant k. As both the formulas
Φv and Φv←z have sizes at most 2s/3, the parallel time complexity of step (2) is at most
max(t1(2s/3), t2(2s/3)). So we get the following recurrence for t1(s).

t1(s) ≤ (log2 s)a + max
(

t1

(
2s

3

)
, t2

(
2s

3

))
where a is an absolute constant. Now we obtain recurrence for t2(s). In Case (1) of
Normal-Form when there exist a balanced gate vi, we can find such a gate in NC. Both
the formulas Φv and Φv←z′ have the sizes at most 5s/6 so step 1(a) takes parallel time
max(t1(5s/6), t2(5s/6)). In case (2) the formulas Φv←z′ , Φvi and Φ′′ all have sizes at most
5s/6 and formula Φui

has size at most s− 1. So collectively we get the following recurrence
for t2(s)
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t2(s) ≤ (log2 s)b + max
(

t1

(
5s

6

)
, t2

(
5s

6

)
, t1(s− 1)

)
≤ (log2 s)b + max

(
t2

(
5s

6

)
, t1(s)

)
for an absolute constant b. The upper bound t1(s), t2(s) ≤ (log2 s)c for sufficiently large
constant c follows from an easy induction. Hence both the procedures can be implemented
in deterministic NC. ◀

Hrubes-Wigderson reduction from RIT to ncRANK

Now we recall the polynomial-time reduction from RIT to ncRANK from [21, Theorem 2.6].
Given a rational formula Φ their reduction outputs an invertible linear matrix M in the
variables X.11 Their reduction ensures that the top right entry of M−1 is Φ̂, the rational
function computed by the formula Φ. It turns out that if Φ is already of logarithmic depth
then their reduction can be implemented in NC.

▶ Theorem 18 ([21]). Let Φ be a rational formula of size s and depth O(log s) computing
a rational expression in F⦓X⦔ there is an NC algorithm to construct an invertible linear
matrix MΦ such that the top right entry of M−1

Φ is Φ̂.

Proof. We only briefly sketch the NC algorithm. Their reduction recursively constructs the
matrix MΦ, using the formula structure of Φ.

Given a formula Φ we can compute the sizes of all its subformulas in NC using a standard
pointer doubling algorithm. This allows us to estimate the dimensions of matrices MΦv

for subformulas Φv for each gate v of Φ. We can also compute in NC the precise location
for placement of the sub-matrices MΦv

inside the matrix MΦ following their construction.
Assuming that Φ is already of logarithmic depth, there are only O(log s) nested recursive
calls for this recursive procedure. This ensures that the overall process can be implemented
in NC. ◀

After constructing linear matrix MΦ such that the top right entry of M−1
Φ is Φ̂, define

matrix M ′ as M ′ =
(

vT MΦ
0 −u

)
where u, v are 1× k vectors, such that u = (1, 0, . . . , 0) and v = (0, 0, . . . , 0, 1) where k is

the dimension of the matrix MΦ. It follows that Φ̂ ̸= 0 iff M ′ is invertible in the skew field
F⦓X⦔ (see e.g. [18, Proposition 3.29]). So we have the following theorem.

▶ Theorem 19 ([21]). Let Φ be a rational formula of size s and depth O(log s) computing a
rational expression in F⦓X⦔ then there is an NC algorithm to construct a linear matrix M

such that Φ̂ ̸= 0 iff M is invertible in the skew field F⦓X⦔.

Now, from Lemma 17, Theorem 19, and Theorem 9, we obtain an NC Turing reduction from
multivariate RIT to bivariate ncRANK.

▶ Theorem 20. There is a deterministic NC Turing reduction from RIT problem to ncRANK
problem for bivariate linear matrices.

11 Notice that the entries of M−1 are elements of the skew field F⦓X⦔

ICALP 2024



14:18 A Multivariate to Bivariate Reduction

Concluding Remarks

Motivated by the question whether RIT and ncRANK have deterministic NC algorithms,
we show that multivariate RIT is NC-reducible to bivariate RIT and multivariate ncRANK
is NC-reducible to bivariate ncRANK. RIT is known to be polynomial-time reducible to
ncRANK, and indeed that is how the polynomial-time algorithm for RIT works, by reducing
to ncRANK and solving ncRANK. We show that RIT is deterministic NC-Turing reducible to
ncRANK. We prove this by showing that noncommutative rational formula depth reduction
is NC-Turing reducible to ncRANK. The main open problem is to obtain deterministic
NC algorithms for bivariate ncRANK and bivariate RIT. We also leave open finding an
unconditional NC algorithm for depth-reduction of noncommutative rational formulas.
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