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Abstract
We consider numbers of the form Sβ(u) :=

∑∞
n=0

un
βn , where u = ⟨un⟩∞

n=0 is an infinite word over
a finite alphabet and β ∈ C satisfies |β| > 1. Our main contribution is to present a combinatorial
criterion on u, called echoing, that implies that Sβ(u) is transcendental whenever β is algebraic.
We show that every Sturmian word is echoing, as is the Tribonacci word, a leading example of
an Arnoux-Rauzy word. We furthermore characterise Q-linear independence of sets of the form
{1, Sβ(u1), . . . , Sβ(uk)}, where u1, . . . , uk are Sturmian words having the same slope. Finally, we
give an application of the above linear independence criterion to the theory of dynamical systems,
showing that for a contracted rotation on the unit circle with algebraic slope, its limit set is either
finite or consists exclusively of transcendental elements other than its endpoints 0 and 1. This
confirms a conjecture of Bugeaud, Kim, Laurent, and Nogueira.
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1 Introduction

A well-known conjecture of Hartmanis and Stearns asserts that for an integer b ≥ 2 and
a sequence u ∈ {0, . . . , b − 1}ω that is computable by linear-time Turing machine (in the
sense that given input n in unary, the machine outputs the first n elements of u in time
O(n)), the number Sb(u) :=

∑∞
n=0

un

bn is either rational or transcendental. This conjecture
remains open and is considered to be very difficult [4]. Among many other consequences, the
conjecture implies that integer multiplication cannot be done in linear time [7].

A weaker version of the Hartmanis-Stearns conjecture was formulated in 1968 by Cobham,
who conjectured that every irrational automatic number is transcendental [9]. In other words,
if b ≥ 2 is an integer and u is an automatic word, then the number Sb(u) is either rational
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or transcendental. Note that every automatic word is morphic, and that morphic words
are precisely those that can be generated by so-called tag machines, a restricted class of
linear-time Turing machines [4]. The transcendence of irrational automatic numbers over
an integer base was proven in 2004 by Adamczewski, Bugeaud, and Luca [3]. It is noted
in [1] that extending this result from the class of automatic words to the more general
class of morphic words (specifically, for those generated by morphisms with polynomial
growth) encompasses recognised open problems in transcendence theory. In another direction,
Adamczewski and Faverjon [5] proved a generalisation of Cobham’s conjecture to algebraic
number bases. Their result entails that for an algebraic number β, with |β| > 1 and automatic
sequence u over a finite alphabet {0, 1, . . . , k − 1}, the number Sβ(u) either lies in the field
Q(β) or is transcendental.

Closely connected with the class of morphic words, one has Sturmian words and, more
generally, Arnoux-Rauzy words [6]. A Sturmian word is an infinite word over the alphabet
{0, 1} that has n + 1 factors of length n for all n ∈ N. In terms of factor complexity,
Sturmian words are thereby the simplest non-periodic infinite words. Arnoux-Rauzy words
are a generalisation of Sturmian words to the alphabet {0, 1, . . . , k − 1} for arbitrary k.
Among other properties, an Arnoux-Rauzy word on a k-letter alphabet has factor complexity
(k − 1)n + 1. We refer to [6, Definition 3.3] for the precise definition. Perhaps the best-known
example of a Sturmian word is the Fibonacci word, while the best-known example of an
Arnoux-Rauzy word that is not Sturmian is the Tribonacci word. It so happens that both
these words are morphic, although not automatic. The Fibonacci word is the fixed point of
the morphism 0 7→ 01, 1 7→ 0, while the Tribonacci word is the fixed point of the morphism
0 7→ 01, 1 7→ 02, 2 7→ 0. More generally, Arnoux-Rauzy words can be generated by iterating a
finite set of morphisms via so-called S-adic generation. Sturmian and Arnoux-Rauzy words
are also intimately connected with dynamical systems. In their pioneering work [20, 21],
Morse and Hedlund showed that every Sturmian word arises as the coding of a translation of
the one-dimensional torus and, following the work of Rauzy [23], a subclass of Arnoux-Rauzy
words can be realised as natural codings of toral translations in higher dimension [6].

There is an extensive literature on transcendence of Sturmian and Arnoux-Rauzy words
over an integer base b ≥ 2. Danilov [10] proved the transcendence of Sb(u) for u the Fibonacci
word. This result was significantly strengthened by Ferenczi and Mauduit [11], who proved the
transcendence of Sb(u), for u either a Sturmian word or an Arnoux-Rauzy word on alphabet
{0, 1, 2}. This result was extended to Arnoux-Rauzy words over alphabet {0, 1, . . . , k − 1}
for any k in [24]. Meanwhile, Bugeaud et al. [8] showed the Q-linear independence of sets of
the form {1, Sb(u1), Sb(u2)}, where u1, u2 are Sturmian words having the same slope (where
the slope of a Sturmian word is the limiting frequency of 1’s, which always exists).

Our interest in this paper is in proving transcendence results for Sturmian and Arnoux-
Rauzy words over an algebraic-number base β, with |β| > 1. Here the picture is less complete
compared to the case that β is an integer. Laurent and Nogueira [14] observe that if u is a
characteristic Sturmian word (cf. Section 3.3), then the transcendence of Sβ(u) follows from
a classical result of Loxton and Van der Poorten [17, Theorem 7] concerning transcendence
of Hecke-Mahler series. For u having linear subword complexity (which includes all Arnoux-
Rauzy words), it follows from [2, Theorem 1] that Sβ(u) is either transcendental or lies in the
field Q(β), subject to a non-trivial inequality between the height of β and a combinatorial
parameter of u called the Diophantine exponent. Most closely related to the present work,
recently [18], introduced a criterion that can be used to show transcendence of Sβ(u) for a
Sturmian word u and any β.
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The main contribution of the present paper is to give a new combinatorial criterion on an
infinite word u, called echoing, that implies that Sβ(u) :=

∑∞
n=0

un

βn is transcendental for any
algebraic number β. The echoing condition is an evolution of the above-mentioned criterion
of [18] that allows both handling certain Arnoux-Rauzy words over non-binary alphabets as
well as giving a considerably simplified treatment of Sturmian words. To illustrate the utility
of the echoing notion, we show that every Sturmian word is echoing, as is the Tribonacci
word, a leading example of an Arnoux-Rauzy word. We anticipate that the notion will find
further applications among Arnoux-Rauzy words, and note that the thesis [13] contains
further examples of such that are echoing. We also employ the echoing condition to give
sufficient and necessary conditions for the Q-linear independence of a set of Sturmian numbers
{1, Sβ(u1), . . . , Sβ(uk)}, where u1, . . . , uk, are Sturmian words that have the same slope.

In Section 7 we give an application of our results to the theory of dynamical systems. We
consider the set C of limit points of a contracted rotation f on the unit interval, where f

is assumed to have an algebraic contraction factor. The set C is finite if f has a periodic
orbit and is otherwise a Cantor set, that is, it is homeomorphic to the Cantor ternary set
(equivalently, it is compact, nowhere dense, and has no isolated points). In the latter case
we show that all elements of C except its endpoints 0 and 1 are transcendental. Our result
confirms a conjecture of Bugeaud, Kim, Laurent, and Nogueira, who proved a special case
of this result in [8]. We remark that it is a longstanding open question whether the actual
Cantor ternary set contains any irrational algebraic elements.

2 Preliminaries

This section contains some number-theoretic preliminaries that will be used in Section 6.
For functions f and g, we use the Vinogradov notation f ≪ g to mean f = O(g).
Let K be a number field of degree d and let M(K) be the set of places of K. We divide

M(K) into the collection of infinite places, which are determined either by an embedding of
K in R or a complex-conjugate pair of embeddings of K in C, and the set of finite places,
which are determined by prime ideals in the ring OK of integers of K.

For x ∈ K and v ∈ M(K), define the absolute value |x|v as follows: |x|v := |σ(x)|1/d in
case v corresponds to a real embedding σ : K → R; |x|v := |σ(x)|2/d in case v corresponds
to a complex-conjugate pair of embeddings σ, σ : K → C; finally, |x|v := N(p)−ordp(x)/d if v

corresponds to a prime ideal p in O and ordp(x) is the order of p as a divisor of the ideal xO.
With the above definitions we have the product formula:

∏
v∈M(K) |x|v = 1 for all x ∈ K∗.

Given a set of places S ⊆ M(K), the ring OS of S-integers is the subring comprising all
x ∈ K such |x|v ≤ 1 for all finite places v ∈ S.

For m ≥ 2 the absolute Weil height of x = (x1, . . . , xm) ∈ Km is defined to be

H(x) :=
∏

v∈M(K)

max(|x1|v, . . . , |xm|v) .

This definition is independent of the choice of field K containing x1, . . . , xm. Note the
restriction m ≥ 2 in the above definition. For x ∈ K we define its height H(x) to be H(1, x).
For a non-zero polynomial f =

∑s
i=0 aiX

i ∈ K[X], where s ≥ 1, we define its height H(f)
to be the height of its coefficient vector (a0, . . . , as).

The following special case of the p-adic Subspace Theorem of Schlickewei is one of the
main ingredients of our approach.

ICALP 2024
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▶ Theorem 1. Let S ⊆ M(K) be a finite set of places of K that contains all infinite
places. Let v0 ∈ S be a distinguished place. Given m ≥ 2, let L(x1, . . . , xm) be a linear form
with algebraic coefficients and let i0 ∈ {1, . . . , m}. Then for any ε > 0 the set of solutions
a = (a1, . . . , am) ∈ (OS)m of the inequality

|L(a)|v0 ·

( ∏
(i,v)∈{1,...,m}×S

(i,v) ̸=(i0,v0)

|ai|v

)
≤ H(a)−ε

is contained in a finite union of proper linear subspaces of Km.
We will also need the following additional proposition about roots of univariate polyno-

mials.
▶ Proposition 2 ([15, Proposition 2.3]). Let f ∈ K[X] be a polynomial with at most k + 1
terms. Assume that f can be written as the sum of two polynomials g and h, where every
monomial of g has degree at most d0 and every monomial of h has degree at least d1. Let β

be a root of f that is not a root of unity. If d1 − d0 > log(k H(f))
log H(β) then β is a common root of

g and h.

3 Echoing Words

In this section we present the main definition of the paper, the notion of echoing word. Before
we present this, by way of motivation we present an informal analysis of the periodicity
properties of the Fibonacci and Tribonacci words.

3.1 The Fibonacci Word
Let Σ = {0, 1} and consider the morphism σ : Σ∗ → Σ∗ given by σ(0) = 01 and σ(1) = 0.
The Fibonacci word F∞ ∈ Σω is the morphic word

F∞ := lim
n→∞

σn(0) = 01001010010010100 . . . .

In more detail, the Fibonacci word F∞ is the limit of the sequence of finite words (Fn)∞
n=0

given by Fn = σn(0) for all n (observe that Fn is a prefix of Fn+1 for all n, so the limit is
well defined). Note that the sequence (Fn)∞

n=0 satisfies the recurrence

Fn = Fn−1Fn−2 (n ≥ 2)

analogous to that satisfied by the sequence of Fibonacci numbers.
The Fibonacci word is not periodic and hence F∞ is not equal to any its tails tln(F∞) for

n > 0. However, if the shift n is judiciously chosen then, intuitively speaking, the mismatches
between F∞ and tln(F∞) are few and far between. This intuition will be formalised in the
definition of echoing word. It turns out that a particularly good choice of shifts is to take
them from the sequence ⟨1, 2, 3, 5, 8 . . .⟩ of Fibonacci numbers: for example, juxtaposing F∞
and tl5(F∞) and writing mismatches in bold we see:

F∞ := 010010100100101001010010010100100101001 . . .

tl5(F∞) := 010010010100101001001010010010100101001 . . .

Here, we see that each mismatch involves a factor 10 of F∞ for which the corresponding
factor in tl5(F∞) is the reverse, 01. In fact, we see the same phenomenon for all shifts of F∞
by an element of the Fibonacci sequence. Furthermore, it turns out that for each successive
such shift, the distance between the mismatching factors increases. This is formalised below
as the expanding gaps property. We will show that the preceding observations about the
Fibonacci word generalise to arbitrary Sturmian words.
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3.2 The Tribonacci Word
Recall that Sturmian words have factor complexity p(n) = n + 1 and thus can be considered
as the simplest non-periodic infinite words. A natural candidate for the next simplest such
class is the set of Arnoux-Rauzy words. Over a ternary alphabet such words have factor
complexity p(n) = 2n+1. A prototypical example of an Arnoux-Rauzy word is the Tribonacci
word, which we introduce next.

Let Σ = {0, 1, 2} and consider the morphism σ : Σ∗ → Σ∗ given by σ(0) = 01, σ(1) = 02,
and σ(2) = 0. The Tribonacci word W∞ ∈ Σω is the morphic word

W∞ := σω(0) = 0102010010201 . . . .

In more detail, the Tribonacci word W∞ is the limit of the sequence of finite words (Wn)∞
n=0

given by Wn = σn(0) for all n (again we have that Wn is a prefix of Wn+1 for all n, so the
limit is well defined). Observe that the sequence of words (Wn)∞

n=0 satisfies recurrence

Wn = Wn−1Wn−2Wn−3 (n ≥ 3) .

Associated with the Tribonacci word we have the sequence ⟨tn⟩∞
n=0 of Tribonacci numbers,

defined by the recurrence tn = tn−1 + tn−2 + tn−3 and initial conditions t0 = 1, t1 = 2, t2 = 4.
Clearly the word Wn has length tn for all n ∈ N.

In the spirit of our analysis of the Fibonacci word, we match the Tribonacci word against
shifts of itself by elements of the Tribonacci sequence ⟨1, 2, 4, 7, 13, . . .⟩. By way of example,
below we compare W∞ and tl13(W∞):.

T∞ :=0102010010201010201001020102010010201010201001020100102010102 . . .

tl13(T∞) :=0102010010201020100102010102010010201001020101020100102010201 . . .

Similar to the example of the Fibonacci word, the mismatches above appear as a fixed
set of factors (either 10,20, or 102) in T∞ that get reversed in tl13(T∞). Unlike with the
Fibonacci word, this time the factors may appear close to each other. Nevertheless, by
suitably grouping these factors, we recover a form of the expanding gaps property and we are
moreover able to show that the mismatches between T∞ and its shifts are relatively sparse.

3.3 Definition of Echoing Words
Inspired by the respective examples of the Fibonacci and Tribonacci words, we give in this
section the formal definition of echoing word.

Given two non-empty intervals I, J ⊆ N, write I < J if a < b for all a ∈ I and b ∈ J , and
define the distance of I and J to be d(I, J) := min{|a − b| : a ∈ I, b ∈ J}.

▶ Definition 3. Let Σ ⊆ Q be a finite alphabet. An infinite word u = u0u1u2 . . . ∈ Σω is
said to be echoing if for all c, ε1 > 0, there exists d ≥ 2 and for all n ∈ N there exist positive
integers rn, sn and intervals {0} < I1,n < · · · < Id,n < {sn + 1} of total length ℓn, such that:
1. the sequence ⟨rn⟩∞

n=0 is unbounded and sn ≥ crn for all n;
2. for all n it holds that {i ∈ {0, . . . , sn} : ui ̸= ui+rn

} ⊆
⋃d

j=1 Ij,n and ℓn ≤ ε1sn;
3. as n → ∞ we have d({0}, I1,n) = ω(log(rn + ℓn)) and d(Ij,n, Ij+1,n) = ω(log ℓn) for

1 ≤ j ≤ d − 1;
4. for all β ∈ Q such that |β| > 1 and all n ∈ N there exist at least two j ∈ {1, . . . , d} such

that
∑

i∈Ij,n
(ui − ui+rn

)β−i ̸= 0.

ICALP 2024
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Properties 1–4 concern the factors ⟨u0, . . . , usn⟩ and ⟨urn , . . . , urn+sn⟩ of u. The inequality
in Property 1 allows us to take the prefix length sn to be an arbitrarily large multiple of the
shift rn. We call this the Long-Overlap Property. Informally speaking, Property 2 says that
mismatches between the above two factors can be grouped into a fixed number d of intervals
whose total length ℓn is small in proportion to sn. We call this the Short-Intervals Property.
Property 3 gives lower bounds on the length of the gaps between the above-mentioned
intervals. We call this the Expanding-Gaps Property. Property 4 will be used to show, in case
β is algebraic, that the words ⟨u0, . . . , usn⟩ and ⟨urn , . . . , urn+sn⟩ denote different numbers
base β for infinitely many n. We call this the Non-Vanishing Property.

The Fibonacci and Tribonacci words are both echoing. The formal proofs will be given
respectively in Section 4 and Section 5. As suggested by the examples above, in the case of
the Fibonacci word a suitable choice for the sequence ⟨rn⟩∞

n=0 of shifts will be the Fibonacci
sequence, while in the case of the Tribonacci word it will be the Tribonacci sequence. In
the case of the Fibonacci word (and other Sturmian words) all of the intervals Ij,n will be
doubletons, whereas in the case of the Tribonacci word their total length ℓn grows linearly
with sn.

We conclude this section with some remarks about related work. The notion of a echoing
word is reminiscent of the transcendence conditions of [1, 8, 11] in that it concerns periodicity
in an infinite word. The ability to choose the parameter c to be arbitrarily large (the
Long-Overlap property) is key to our being able to prove transcendence results over an
arbitrary algebraic base β. In compensation, we allow for a small number of mismatches,
as detailed in the Short-Interval property. This should be contrasted with the notion of
stammering word in [1, 3, Section 4], where there is no allowance for such discrepancies and
in which the quantity corresponding to c is determined in advance by the word (cf. the notion
of the Diophantine exponent of a word in [2]).

4 Sturmian Words are Echoing

In this section we show that Sturmian words are echoing and, more generally, that a pointwise
linear combination of a collection of Sturmian words having the same slope is echoing.

We will work with a characterisation of Sturmian words in terms of dynamical systems.
Write I := [0, 1) for the unit interval and given x ∈ R denote the integer part of x by ⌊x⌋ and
the fractional part of x by {x} := x − ⌊x⌋ ∈ I. Let 0 < θ < 1 be an irrational number and
define the rotation map R = Rθ : I → I by R(y) = {y + θ}. Given x ∈ I, the θ-coding of x is
the infinite word u = u1u2u3 . . . defined by un := 1 if Rn(x) ∈ [0, θ) and un := 0 otherwise.
As shown by Morse and Hedlund, u is a Sturmian word and, up to changing at most two
letters, all Sturmian words over a binary alphabet arise as codings of the above type for some
choice of θ and x. In particular, for the purposes of establishing our transcendence results
we may work exclusively with codings as defined above. The number θ is equal to the slope
of the Sturmian word, as defined in Section 1. The θ-coding of 0 is in particular called the
characteristic (or standard) Sturmian word of slope θ.

The main result of this section is as follows:

▶ Theorem 4. Let θ ∈ (0, 1) be irrational. Given a positive integer k, let c0, . . . , ck ∈ C and
x1, . . . , xk ∈ I with c1, . . . , ck non-zero. Suppose that xi − xj ̸∈ Zθ + Z for all i ̸= j. Writing
⟨u(i)

n ⟩∞
n=0 for the θ-coding of xi, for i = 1, . . . , k, define un := c0 +

∑k
i=1 ciu

(i)
n for all n ∈ N.

Then u = ⟨un⟩∞
n=0 is echoing.
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Proof. We start by recalling some basic notions concerning continued fractions (see [12,
Chapter 10] for details). Let

θ =
1

a0 +
1

a1 +
1

a2 +
.. .

be the simple continued-fraction expansion of θ. Given n ∈ N, we write pn

qn
for the n-th

convergent of the above continued fraction, which is obtained by truncating it at an. Then
⟨qn⟩∞

n=0 is a strictly increasing sequence of positive integers such that ∥qnθ∥ = |qnθ − pn|,
where ∥α∥ denotes the distance of α ∈ R to the nearest integer. We moreover have that
qnθ − pn and qn+1θ − pn+1 have opposite signs for all n. Finally we have the law of best
approximation: q ∈ N occurs as one of the qn just in case ∥qθ∥ < ∥q′θ∥ for all q′ with
0 < q′ < q.

To establish that u is echoing, given c > 0 we define ⟨rn⟩∞
n=0 to be the subsequence of

⟨qn⟩∞
n=0 comprising all terms qn such that ∥qnθ∥ = qnθ −pn > 0. We thereby have that either

rn = q2n for all n or rn = q2n+1 for all n, so ⟨rn⟩∞
n=0 is an infinite sequence that diverges to

infinity. Next, define d := (k + 1)c and for all n ∈ N define sn to be the greatest number
such that the words u0 . . . usn and urn · · · urn+sn have Hamming distance 2d. Since u is not
ultimately periodic, sn is well-defined.

Short-Intervals Property. Given n ∈ N, denote the set of positions at which u0 . . . usn
and

urn . . . usn+rn differ by

∆n :=
{

m ∈ {0, . . . , sn} : um ̸= um+rn

}
. (1)

We claim that for n sufficiently large, m ∈ ∆n if and only if there exists ℓ ∈ {1, . . . , k} such
that one of the following two conditions holds:

(i) Rm(xℓ) ∈ [1 − ∥rnθ∥, 1),
(ii) Rm(xℓ) ∈ [θ − ∥rnθ∥, θ).

We moreover claim that for all m there is at most one ℓ such that Condition (i) or (ii) holds.
Assuming the claim, since Rm(xℓ) ∈ [1−∥rnθ∥, 1) if and only if Rm+1(xℓ) ∈ [θ−∥rnθ∥, θ),

it follows that the elements of ∆n come in consecutive pairs, i.e., we can write

∆n =
d⋃

j=1
{ij,n, ij,n + 1} ,

where i1,n < · · · < id,n are the elements m ∈ ∆n that satisfy Condition (i) above for
some ℓ, while i1,n + 1 < · · · < id,n + 1 are those that satisfy Condition (ii). Defining
Ij,n := {ij,n, ij,n + 1} for j ∈ {1, . . . , d}, we have that Item 2 of Defintion 3 is satisfied.
Indeed, since the intervals I1,n, . . . , Id,n have total length ℓn = 2d, for any choice of ε1 > 0
we have ℓn ≤ ε1sn for n sufficiently large.

It remains to prove the claim. To this end note that for a fixed ℓ ∈ {1, . . . , k}, for all
m we have that u

(ℓ)
m ≠ u

(ℓ)
m+rn

iff exactly one of Rm(xℓ) and Rm+rn(xℓ) lies in the interval
[0, θ) iff one of Condition (i) or Condition (ii), above, holds. Moreover, since xℓ − xℓ′ ̸= θ

(mod 1) for ℓ ̸= ℓ′, we see that for n sufficiently large there is at most one ℓ ∈ {1, . . . , k}
such that u

(ℓ)
m ̸= u

(ℓ)
m+rn

. We deduce that um ̸= um+rn if and only if u
(ℓ)
m ̸= u

(ℓ)
m+rn

for some
ℓ ∈ {1, . . . , k}. This concludes the proof of the claim.

ICALP 2024
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Long-Overlap Property. Our objective is to show that sn ≥ crn for all n ∈ N. We have
already established that there are d = (k + 1)c distinct m ∈ ∆n that satisfy Condition (i),
above, for some ℓ ∈ {1, . . . , k}. Thus there exists ℓ0 ∈ {1, . . . , k} and ∆′

n ⊆ ∆n such
that |∆′

n| ≥ c and all m ∈ ∆′
n satisfy Condition (i) for ℓ = ℓ0. In this case we have

∥(m1 − m2)θ∥ < ∥rnθ∥ for all m1, m2 ∈ ∆′
n. By the law of best approximation it follows

that every two distinct elements of ∆′
n have difference strictly greater than rn. But this

contradicts |∆′
n| = c, given that ∆′

n ⊆ {0, 1, . . . , crn}.
Expanding-Gaps Property. By definition of i1,n, . . . , id,n, for all 1 ≤ j1 < j2 ≤ d there
exists ℓ1, ℓ2 ∈ {1, . . . , k} with Rij1,n(xℓ1), Rij2,n(xℓ2) ∈ [1 − ∥rnθ∥, 1). We deduce that

∥(ij2,n − ij1,n)θ + xℓ1 − xℓ2∥ ≤ ∥rnθ∥ . (2)

We claim that the left-hand side of (2) is non-zero. Indeed, the claim holds if ℓ1 = ℓ2
because θ is irrational, while the claim also holds in case ℓ1 ≠ ℓ2 since in this case we have
xℓ1 − xℓ2 ̸∈ Zθ + Z by assumption. Since moreover the right-hand side of (2) tends to zero
as n tends to infinity, we have that ij2,n − ij1,n = ω(1) as n → ∞. Since ℓn = 2d is constant,
independent of n, we have ij2,n − ij1,n = ω(ℓn). Finally, we have i1,n > rn by the requirement
that ||Rin,1(xℓn,1)|| < ||rnθ|| and the best-approximation property of rn. Clearly this entails
that i1,n = ω(log(rn + ℓn)). This completes the verification of Item 3 of Definition 3(3).
Non-Vanishing Property. Consider m ∈ ∆n satisfying Condition (i) above, i.e., such that
Rm(xℓ) ∈ [1 − ∥rnθ∥, 1) for some ℓ ∈ {1, . . . , k}. Then we have

u(ℓ)
m = 0, u

(ℓ)
m+1 = 1 and u

(ℓ)
m+rn

= 1, u
(ℓ)
m+rn+1 = 0 . (3)

Moreover for all ℓ′ ̸= ℓ and n sufficiently large we have

u(ℓ′)
m = u

(ℓ′)
m+rn

and u
(ℓ′)
m+1 = u

(ℓ′)
m+rn+1 . (4)

From Equations (3) and (4) we deduce that um ̸= um+rn
, um+1 ̸= um+1+rn

, and um+um+1 =
um+rm

+ um+rn+1. But this implies that βum + um+1 ̸= βum+rn
+ um+rn+1 for all β ≠ 1.

This establishes Item 4 of Definition 3. ◀

5 The Tribonacci Word is Echoing

5.1 The Matching Morphism
In this section we define a morphism in order to understand how the Tribonacci word aligns
with shifts of itself. This is an instance of a construction that is used elsewhere to show that
for certain morphisms, the associated shift dynamical system has pure discrete spectrum
(see the notion of balanced pairs in [16] and [22, Definition 6.8]).

Recall that the Tribonacci word W∞ is defined over the alphabet Σ = {0, 1, 2} as
a fixed point of the morphism σ(0) = 01, σ(1) = 02, σ(2) = 0. We define an alphabet
∆ = {a0, . . . , a10} whose elements are certain ordered pairs of words in Σ+ having the same
Parikh image. For intuition we represent the elements of ∆ as tiles as follows:

a0 =
[
0 1
1 0

]
a1 =

[
1 0
0 1

]
a2 =

[
0 2
2 0

]
a3 =

[
2 0
0 2

]
a4 =

[
1 0 2
2 0 1

]
a5 =

[
2 0 1
1 0 2

]

a6 =
[
0 1 0 2
2 0 1 0

]
a7 =

[
2 0 1 0
0 1 0 2

]
a8 =

[
0
0

]
a9 =

[
1
1

]
a10 =

[
2
2

]
We partition ∆ into a set ∆0 := {a0, . . . , a7} of mismatches and a set ∆1 := {a8, a9, a10} of
matches.
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Define morphisms top, bot : ∆∗ → Σ∗ such that top extracts the word on the top of each
tile and bottom extracts the word on the bottom, e.g.,

top
([

0 1
1 0

])
= 01 and bot

([
1 0 2
2 0 1

])
= 201 .

Below we define the matching morphism µ : ∆∗ → ∆∗, which is characterised by the following
properties:

top ◦ µ = σ ◦ top and bot ◦ µ = σ ◦ bot . (5)

Specifically we have

µ

([
0 1
1 0

])
:=
[
0
0

] [
1 0 2
2 0 1

]
µ

([
1 0 2
2 0 1

])
:=
[
0
0

] [
2 0 1 0
0 1 0 2

]
µ

([
1 0
0 1

])
:=
[
0
0

] [
2 0 1
1 0 2

]
µ

([
2 0 1
1 0 2

])
:=
[
0
0

] [
0 1 0 2
2 0 1 0

]
µ

([
0 2
2 0

])
:=
[
0
0

] [
1 0
0 1

]
µ

([
2 0 1 0
0 1 0 2

])
:=
[
0
0

] [
0 1
1 0

] [
0 2
2 0

] [
0 1
1 0

]
µ

([
2 0
0 2

])
:=
[
0
0

] [
0 1
1 0

]
µ

([
0 1 0 2
2 0 1 0

])
:=
[
0
0

] [
1 0
0 1

] [
2 0
0 2

] [
1 0
0 1

]
and

µ

([
0
0

])
:=
[
0
0

] [
1
1

]
µ

([
1
1

])
:=
[
0
0

] [
2
2

]
µ

([
2
2

])
:=
[
0
0

]
.

For later use we remark that the morphism ι : Σ∗ → ∆∗, defined by ι(0) = a0, ι(1) =
a2, ι(2) = a8 satisfies top ◦ ι = σ, while bot ◦ ι and tl ◦ σ agree on Σω. It follows that

top(ι(W∞)) = W∞ and bot(ι(W∞)) = tl(W∞) . (6)

Associated with the morphism µ we have its incidence matrix M(µ) ∈ N11×11, where
M(µ)i,j := |µ(ai)|j is the number of occurrences of aj in µ(ai) for all i, j ∈ {0, . . . , 10}. It
is straightforward that M(µ)n

i,j = |µn(ai)|j for all n and all i, j ∈ {0, . . . , 10}. Matrix M(µ)
admits a block decomposition

M(µ) =
(

B1 B2
0 B3

)
,

where B1 is the restriction of M(µ) to the set of mismatch symbols ∆0 and B3 is the
restriction to the set of match symbols ∆1. By direct calculation one see that both B1 and
B3 are primitive and have respective spectral radii ρ′ ≈ 1.395 and ρ ≈ 1.839. 1

We hence have that for all n ∈ N and i ∈ {0, . . . , 7},∑7
j=0 |µn(ai)|j
|µn(ai)|

=
∑7

j=0 M(µ)n
i,j∑10

j=0 M(µ)n
i,j

≤
∑7

j=0(Bn
1 )i,j∑2

j=0
∑n−1

k=0(Bk
1 B2Bn−k

3 )i,j

≪
(

ρ′

ρ

)n

. (7)

We deduce that the frequency of mismatch symbols in µn(a0) converges to 0 as n tends to
infinity. The above reasoning shows, inter alia that for all a ∈ ∆ the sequence |µn(a)| = Θ(ρn)
and hence there exists a constant κ such that |µn(a)| ≤ κ|µn(b)| for all a, b ∈ ∆ and all n

sufficiently large.

1 The inequality ρ′ < ρ implies that the Tribonacci morphism has pure discrete spectrum (see [22, Section
6.3] and the references therein).
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5.2 Matching Polynomials
Define eval : Σ∗ → Z[x] by eval(u0 . . . un) :=

∑n
i=0 uix

i. For all i ∈ {0, . . . , 7} and n ∈ N
define the matching polynomial Pi,n(x) ∈ Z[x] by

Pi,n := eval(top(µn(ai))) − eval(bot(µn(ai))) . (8)

By inspection, the only common root of Pi,0(x) for i ∈ {0, . . . , 7} is x = 1.
Observe that for all n ∈ N and i ∈ {0, 1, 2, 3} we have

top(µn(a2i)) = bot(µn(a2i+1)) and bot(µn(a2i)) = top(µn(a2i+1)) ,

and hence P2i,n(x) = −P2i+1,n(x). As a consequence we can focus our attention on the even-
index polynomials P0,n, P2,n, P4,n, and P6,n. Indeed, writing P n := (P0,n, P2,n, P4,n, P6,n) ∈
Z[x]4 and

Mn := (−1) ·


0 0 −xtn 0

xtn 0 0 0
0 0 0 xtn

xtn + xtn+1 xtn+tn+1 0 0

 ,

then we have P n+1 = Mn P n for all n ∈ N. But now, since P 0(β) ̸= 0 for all β ̸= 1 and
det(Mn) = −xtn+1+4tn , it follows that P n(β) ̸= 0 for all β ∈ C \ {0, 1}.

5.3 Putting Things Together
▶ Theorem 5. The Tribonacci word u := W∞ is echoing.

Proof. We refer to Definition 3. Let c, ε1 > 0 be given and write w := ι(u0u1 . . . uc−1) ∈ ∆∗.
It follows from (6) that top(w) is a prefix of u and bot(w) is a prefix of tl(u). Given n0 ∈ N,
write

µn0(w) = w0ai1w1 · · · wd−1aid
wd , (9)

where w0, . . . , wd ∈ ∆∗
1 are sequences of match symbols and ai1 , . . . , aid

∈ ∆0 are mismatch
symbols. For n0 ∈ N sufficiently large it holds that µn0(w) contains at least two occurrences
of every mismatch symbol and the proportion of mismatch symbols in µn0(w) is at most
ε1/κ, for κ as in Section 5.1.

For all n ∈ N, referring to Equation (9), we have

µn+n0(w) = µn(w0) µn(ai1)︸ ︷︷ ︸
I1,n

µn(w1) · · · µn(wd−1) µn(aid
)︸ ︷︷ ︸

Id,n

µn(wd) . (10)

The data to show the echoing property are as follows. For all n ∈ N define rn := |σn(0)| =
tn+n0 , sn := |top(µn+n0(w))|, and we take d as in (9). For all j ∈ {1, . . . , d} we define
Ij,n ⊆ N to be the interval of positions in µn+n0(a0) corresponding to the shortest suffix of
µn(aij

) that contains all mismatch symbols that occur therein (see (10)).
From Equation (5) we have top(µn+n0(w)) = ⟨u0, . . . , usn

⟩ and bot(µn+n0(w)) =
⟨urn

, . . . , usn+rn
⟩. Since top(w) contains at least c occurrences of the letter 0, we get

that sn ≥ crn, establishing the Long-Overlap Property.
By construction, the intervals I1,n, . . . , Id,n contain all indices where the above two strings

differ and they have total length at most ε1sn, establishing the Short-Intervals Property.
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By definition of the matching polynomials, it holds that Pij ,n(β−1) is the product of∑
i∈Ij,n

(ui − ui+rn
)β−1 and a power of β for all j ∈ {1, . . . , d}. We have shown in Section 5.2

that the vector (P0,n(β−1), . . . , P7,n(β−1)) is non-zero for all n. Since all mismatch symbols
occur at least twice among ai1 , . . . , aid

, we have that Pij ,n(β−1) is non-zero for at least two
different choices of j ∈ {1, . . . , d}. It follows that

∑
i∈Ij,n

(ui − ui+rn
)β−1 is non-zero for at

least two different values of j, establishing the Non-Vanishing Property.
Finally, note that there is at least one letter between each pair of intervals Ij,n in (10).

Hence the inequality |µ(an)| ≤ κ|µn(b)| for a, b ∈ ∆ implies that d({0}, I1,n) ≫ sn and
d(Ij,n, Ij+1,n) ≫ sn for all j ∈ {0, . . . , d−1}, which implies the Expanding-Gaps Property. ◀

6 Transcendence Results

6.1 Transcendence for Echoing Words
▶ Theorem 6. Let Σ be a finite set of algebraic numbers and let u ∈ Σω be an echoing word.
Then for any algebraic number β such that |β| > 1, the sum α :=

∑∞
n=0

un

βn is transcendental.

Proof. Suppose for a contradiction that α is algebraic. By scaling, we can assume without
loss of generality that Σ consists solely of algebraic integers. Let K be the field generated
over Q by {β} ∪ Σ and write S ⊆ M(K) for the set comprising all infinite places of K and
those finite places of K arising from prime-ideal divisors of elements of {β} ∪ Σ. Let v0 ∈ S

be the place corresponding to the inclusion of K in C. Recall that |a|v0 = |a|1/[K:Q], where
|a| denotes the usual absolute value on C.

Applying the definition of echoing sequence (as given in Definition 3) for values of c

and ε1 to be specified later, we obtain d ≥ 2 such that for all n ∈ N there are rn, sn ∈ N
and intervals {0} < I1,n < · · · < Id,n < {sn + 1}, of total length ℓn, satisfying Items 1–4
of Definition 3.

For n ∈ N, define an = (a1,n, . . . , ad+3,n) ∈ (OS)d+3 by

a1,n := βrn , a2,n :=
rn∑

i=0
uiβ

rn−i, a3,n := 1, aj+3,n :=
∑

i∈In,j

(ui+rn − ui)β−i (j = 1, . . . , d)

The Non-Vanishing Property (Definition 3(4)) implies that for all n ∈ N we have aj+3,n ̸= 0
for at least two elements j ∈ {1, . . . , d}. By passing to a subsequence we henceforth assume
without loss of generality that there exists J ⊆ {1, . . . , d}, of cardinality at least two, such
that for all j and n, aj+3,n ̸= 0 if and only if j ∈ J .

▷ Claim 7. If F (x1, . . . , xd+3) =
∑

i∈{1,2,3}∪J αixi is a linear form with coefficients in K

such that F (an) = 0 for infinitely many n, then αj = 0 for all j ∈ J .

The proof of the claim is as follows. For all n ∈ N we have F (an) = Pn(β) for the polynomial
Pn(x) := P0,n(x) +

∑
j∈J Pj,n(x), where

P0,n(x) := α1xrn + α2

rn∑
i=0

uix
rn−i + α3 and Pj,n(x) := αj

∑
i∈Ij,n

(ui − ui+rn
)x−i .

Polynomial Pn has at most rn + ℓn monomials. From Proposition 2 and the property
d({0}, I1,n) = ω(log(rn + ℓn)) (see Definition 3(3)), we deduce that

∑
j∈J Pj,n(β) = 0 for

infinitely many n. Now
∑

j∈J Pj,n(x) comprises at most ℓn monomials. Thus Proposition 2
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and the assumption that d(Ij,n, Ij+1,n) = ω(log ℓn) for all j ∈ {1, . . . , d − 1}, entail that for
infinitely many n we have Pj,n(β) = 0 for all j ∈ J . But Pj,n(β) = αjaj,n and so, since
aj,n ̸= 0 for all j ∈ J , we have αj = 0 for all j ∈ J . This concludes the proof of the claim.

Consider the linear form L0(x1, . . . , xd+3) := αx1 − x2 − αx3 −
∑

j∈J xj+3. Then there
exists c1 > 1 such that for all n,

0 < |L0(an)| =
∣∣∣βrnα −

∑rn

i=0 uiβ
rn−i + α +

∑
j∈J

∑
i∈Ij,n

(ui − ui+rn
)βi
∣∣∣

=
∣∣∑∞

i=sn+1(ui − ui+rn)β−i
∣∣ < c1|β|−sn ,

(11)

where the left-hand inequality follows from an application of Claim 7 to L0. Consider a
linear form L(x1, . . . , xd+3) with the following properties: (i) L has coefficients in K; (ii) L

has support {xi : i ∈ I ∪ J} for some I ⊆ {1, 2, 3}; (iii) 0 < |L(an)| < c1|β|−sn for all
n ∈ N; (iv) the set I is minimal with respect to set inclusion among linear forms satisfying
(i)–(iii). We have just exhibited a form, namely L0, that satisfies Conditions (i)–(iii), so L is
well-defined.

Let c2 ≥ 2 be an upper bound of the set of numbers {|γ|v : γ ∈ {β} ∪ A ∪ A − A, v ∈ S}.
Then for v ∈ S, by the assumption that sn ≥ crn we have

|a2,n|v ≤
rn∑

i=0
ci+1

2 ≤ crn+2
2 ≤ c

(c−1sn+2)
2 . (12)

We moreover have

∏
j∈J

∏
v∈S

|aj+3,n|v ≤
∏
j∈J

∏
v∈S

|Ij,n|∑
i=0

ci+1
2 ≤

∏
j∈J

c
|S|(2+|Ij,n|)
2 ≤ c

|S|(2d+ε1sn)
2 , (13)

where we use the assumption that the intervals I1,n, . . . , Id,n have total length ℓn ≤ ε1sn.
We also have

∏
v∈S |a1,n|v =

∏
v∈S |βrn |v = 1 by the product formula and, obviously,∏

v∈S |a3,n|v = 1.
Pick i0 ∈ I ∪ J . Then, combining (12) and (13) and the bound |L(an)| < c1|β|−sn , we

have

|L(an)|v0 ·
∏

(i,v)∈(I∪J)×S
(i,v) ̸=(i0,v0)

|ai,n|v ≤ c
(sn(ε1+c−1)+2d+2)|S|
2 · (c1|β|−sn)1/[K:Q] . (14)

For c sufficiently large, ε1 sufficiently small, and all but finitely many n, the right-hand side
of (14) is less than |β|−sn/2[K:Q]. On the other hand, there exists a constant c3 > 0 such
that the height of an satisfies the bound H(an) ≤ |β|c3sn for all n. Thus there exists ε > 0
such that the right-hand side of (14) is at most H(an)−ε for infinitely many n.

Given (14), we can apply Theorem 1 to obtain a non-zero linear form L′(x1, . . . , x3+d)
that has coefficients in K and support in {xi : i ∈ I ∪ J}, such that for infinitely many n ∈ N
we have both 0 < |L(an)| < c1|β|−sn and L′(an) = 0. By Claim 7, the support of L′ is in fact
contained in I. Hence, by subtracting a suitable multiple of L′ from L we obtain a linear form
L′′(x1, . . . , x3+d) with strictly fewer coefficients than L such that 0 < |L′′(an)| < c1|β|−sn

for infinitely many n ∈ N. But this contradicts the minimality of the support of L. ◀

6.2 Transcendence for Sturmian Words and the Tribonacci Word
Combining the transcendence result for echoing words (Theorem 6) with the fact that
Sturmian words and the Tribonacci word are echoing (Theorem 4 and Theorem 5), we obtain:
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1

δ

δ + λ − 1

0
1−δ

λ
1

Figure 1 A plot of fλ,δ : I → I.

▶ Theorem 8. Let β be an algebraic number with |β| > 1.
1. Let u1, . . . , uk be Sturmian words with the same slope such that ui is not a suffix of uj

for all i ̸= j. Then {1, Sβ(u1), . . . , Sβ(uk)} is linearly independent over Q.
2. Let u be the Tribonacci word. Then Sβ(u) is transcendental.

7 Application to Limit Sets of Contracted Rotations

Let 0 < λ, δ < 1 be real numbers such that λ + δ > 1. We call the map f = fλ,δ : I → I

given by f(x) := {λx + δ} a contracted rotation with slope λ and offset δ. Associated with f

we have the map F = Fλ,δ : R → R, given by F (x) = λ{x} + δ + ⌊x⌋. We call F a lifting of
f : it is characterised by the properties that F (x + 1) = F (x) + 1 and {F (x)} = f({x}) for
all x ∈ R. The rotation number θ = θλ,δ of f is defined by

θ := lim
n→∞

F n(x0)
n

,

where the limit exists and is independent of the initial point x0 ∈ R.
If the rotation number θ is irrational then the restriction of f to the limit set

⋂
n≥0 fn(I)

is topologically conjugated to the rotation map R = Rθ : I → I with R(y) = {y + θ}. The
closure of the limit set is a Cantor set C = Cλ,δ, that is, C is compact, nowhere dense,
and has no isolated points. On the other hand, if θ is rational then the limit set C is the
unique periodic orbit of f . For each choice of slope 0 < λ < 1 and irrational rotation number
0 < θ < 1, there exists a unique offset δ such that δ + λ > 1 and the map f has rotation
number θ. It is known that such δ must be transcendental if λ is algebraic [14].

The main result of this section is as follows:

▶ Theorem 9. Let 0 < λ, θ < 1 be such that λ is algebraic and θ is irrational. Let δ be
the unique offset such that the contracted rotation fλ,δ has rotation number θ. Then every
element of the Cantor set Cλ,δ other than 0 and 1 is transcendental.

A special case of Theorem 9, in which λ is assumed to be the reciprocal of an integer, was
proven in [8, Theorem 1.2]. In their discussion of the latter result the authors conjecture the
truth of Theorem 9, i.e., the more general case in which λ may be algebraic. As noted in [8],
while Cλ,δ is homeomorphic to the Cantor ternary set, it is a longstanding open problem,
formulated by Mahler [19], whether the Cantor ternary set contains irrational algebraic
elements.
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Proof of Theorem 9. For a real number 0 < x < 1 define

ξx :=
∑
n≥1

(⌈x + (n + 1)θ⌉ − ⌈x + nθ⌉) λn

ξ′
x :=

∑
n≥1

(⌊x + (n + 1)θ⌋ − ⌊x + nθ⌋) λn .

Note that for all x the binary sequence ⟨ ⌈x + (n + 1)θ⌉ − ⌈x + nθ⌉ : n ∈ N ⟩ is the coding of
−x − θ by 1 − θ (as defined in Section 4) and hence is Sturmian of slope 1 − θ. Similarly, the
binary sequence ⟨ ⌊x + (n + 1)θ⌋ − ⌊x + nθ⌋ : n ∈ N ⟩ is the coding of x + θ by θ and hence is
Sturmian of slope θ. Thus for all x, both ξx and ξ′

x are Sturmian numbers.
It is shown in [8, Lemma 4.2]2 that for every element of y ∈ Cλ,δ \ {0, 1}, either there

exists z ∈ Z and 0 < x < 1 with x ̸∈ Zθ + Z such that

y = z + ξ0 − ξ−x

or else there exists a strictly positive integer m and γ ∈ Q(β) such that

y = γ + (1 − β−m) ξ′
0 .

In either case, transcendence of y follows from Theorem 8. ◀
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