
Solving Promise Equations over Monoids and
Groups
Alberto Larrauri #Ñ

Department of Computer Science, University of Oxford, UK

Stanislav Živný # Ñ

Department of Computer Science, University of Oxford, UK
Abstract

We give a complete complexity classification for the problem of finding a solution to a given system
of equations over a fixed finite monoid, given that a solution over a more restricted monoid exists.
As a corollary, we obtain a complexity classification for the same problem over groups.

2012 ACM Subject Classification Theory of computation Ñ Problems, reductions and completeness;
Theory of computation Ñ Constraint and logic programming

Keywords and phrases constraint satisfaction, promise constraint satisfaction, equations, minions

Digital Object Identifier 10.4230/LIPIcs.ICALP.2024.146

Category Track B: Automata, Logic, Semantics, and Theory of Programming

Related Version Full Version: https://arxiv.org/abs/2402.08434 [40]

Funding This research was funded in whole by UKRI EP/X024431/1. For the purpose of Open
Access, the author has applied a CC BY public copyright licence to any Author Accepted Manuscript
version arising from this submission. All data is provided in full in the results section of this paper.

1 Introduction

Constraint satisfaction problems (CSPs) form a large class of fundamental computational
problems studied in artificial intelligence, database theory, logic, graph theory, and computa-
tional complexity. Since CSPs (with infinite domains) capture, up to polynomial-time Turing
reductions, all computational problems [11], some restrictions need to be imposed on CSPs
in order to have a chance to obtain complexity classifications. One line of work, pioneered in
the database theory [36], restricts the interactions of the constraints in the instance [30, 41].

Another line of work, pioneered in [34, 26], restricts the types of relations used in the
instance; these CSPs are known as nonuniform CSPs, or as having a fixed template/constraint
language. Such CSPs with infinite domains capture graph acyclicity, systems of linear
equations over the rationals, and many other problems [10]. Already fixed-template CSPs
with finite domains form a large class of fundamental problems, including graph colourings [32],
variants of the Boolean satisfiability problem, and, more generally, systems of equations over
different types of finite algebraic structures. Even then, the class of finite-domain CSPs
avoided a complete complexity classification for two decades despite a sustained effort.

In 2017, Bulatov [20] and, independently, Zhuk [47] classified all finite-domain CSPs
as either solvable in polynomial time or NP-hard, thus answering in the affirmative the
Feder-Vardi dichotomy conjecture [26]. In the effort to answer the Feder-Vardi conjecture,
many complexity dichotomies were established in restricted fragments of CSPs. This included
conservative CSPs [19], or equations over finite algebraic structures such as semigroups,
groups, and monoids [29, 35]. In particular, while systems of equations1 over Abelian groups
are solvable in polynomial time, they are NP-hard over non-Abelian groups [29].

1 Some papers use the term a linear equation.

EA
T

C
S

© Alberto Larrauri and Stanislav Živný;
licensed under Creative Commons License CC-BY 4.0

51st International Colloquium on Automata, Languages, and Programming (ICALP 2024).
Editors: Karl Bringmann, Martin Grohe, Gabriele Puppis, and Ola Svensson;
Article No. 146; pp. 146:1–146:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:alberto.larrauri@cs.ox.ac.uk
https://albertolarrauri.github.io/
https://orcid.org/0000-0002-5935-4917
mailto:standa.zivny@cs.ox.ac.uk
https://www.cs.ox.ac.uk/standa.zivny/
https://orcid.org/0000-0002-0263-159X
https://doi.org/10.4230/LIPIcs.ICALP.2024.146
https://arxiv.org/abs/2402.08434
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

146:2 Solving Promise Equations over Groups and Monoids

One of the recent research directions in constraint satisfaction that has attracted a lot of
attention is the area of promise CSPs (PCSPs) [3, 13, 5]. The idea is that each constraint has
two versions, a strong version and a weak version. Given an instance, one is promised that a
solution satisfying all strict constraints exists and the goal is to find a solution satisfying all
weak constraints, which may be an easier task. The prototypical example is the approximate
graph colouring problem [28]: Given a 3-colourable graph, can one find a 6-colouring? The
complexity of this problem is open (but believed to be NP-hard). Despite a flurry of papers
on PCSPs, e.g., [27, 1, 4, 17, 43, 44, 6, 2, 21, 14, 15, 24, 22], the PCSP complexity landscape
is widely open and unexplored. It is not even clear whether a dichotomy should be expected.
Even the case of Boolean PCSPs remain open, the state-of-the-art being a dichotomy for
Boolean symmetric PCSPs [27]. This should be compared with Boolean (non-promise) CSPs,
which were classified by Schaefer in 1978 [45]. Schaefer’s tractable cases include the classic
and well-known examples of CSPs: equations and graph colouring. Both have been studied
on non-Boolean domains and their complexity is well understood. However, the complexity
of the promise variant of these fundamental problems is open. The first problem, graph
colouring, leads to the already mentioned approximate graph colouring problem, which is a
notorious open problem, despite recent progress [5, 38]. In this paper, we look at the second
problem, and study PCSPs capturing systems of equations.

Contributions

The precise statements of all our main results are presented in Section 3.
As our most important contribution, in Section 5 we establish a complexity dichotomy

for PCSPs capturing promise systems of equations over finite monoids, and over finite groups
as a special case. Perhaps unsurprisingly, the tractability boundary is linked to the notion of
Abelianness, just like in the non-promise setting, but the result is non-trivial and requires
some care. Our main tool is the “the algebraic approach to PCSPs” [5]. The influential
paper [5] identified minions as an important concept. Minions generalise the notion of “a
family of functions that is closed under permuting arguments, identifying arguments, and
adding dummy arguments”. A crucial example is the polymorphism minion of a PCSP
template. Polymorphisms can be seen as high-dimensional symmetries of a PCSP template
and capture the complexity of the underlying computational problem [13, 5]. Following the
algebraic approach [5], hardness of a PCSP is established by showing that the associated
polymorphism minion is, in some sense, limited. Conversely, if this minion is rich enough
then the PCSP can be shown to be solvable via some efficient algorithm [5, 16, 22, 15].

To prove our main result, we study a class of minions that arise naturally from monoids,
which we call monoidal minions. In Section 4 we show a complexity dichotomy for PCSPs
whose polymorphism minions are homomorphically equivalent to some monoidal minion.
This is our second contribution, which may be of independent interest. In particular, the
concept of monoidal minions captures studied minions, cf. Remark 14 in Section 3.

All our tractability results use solvability via the BLP ` AIP algorithm [16]. In fact,
tractable PCSPs corresponding to promise systems of equations over monoids are finitely
tractable in the sense of [13, 1]. In the special case of promise systems of equations over groups,
the affine integer programming (AIP) algorithm [13, 5] suffices, rather than BLP ` AIP.
However, AIP is provably not enough to solve promise equations over general monoids.

As our final contribution, in Section 6 we show that our dichotomy for systems of equations
over monoids cannot be easily extended to semigroups, as this would imply a dichotomy for
all PCSPs. We do so by showing that every PCSP is polynomial-time equivalent to a PCSP
capturing systems of equations over semigroups, a phenomenon observed for CSPs in [35].

A. Larrauri and S. Živný 146:3

Related work

PCSPs are a qualitative approximation of CSPs; the goal is still to satisfy all constraints,
but in a weaker form. A recent related line of work includes the series [7, 8, 9]. A traditional
approach to approximation is quantitative: maximising the number of satisfied constraints.
Regarding approximation of equations, Håstad showed that, for any Abelian group G and
any ε ą 0, it is NP-hard to find a solution satisfying 1{|G| ` ε constraints [31] even if 1 ´ ε

constraints can be satisfied. Hence, the random assignment, which satisfies 1{|G| constraints,
is optimal! Håstad’s result has been extended to non-Abelian groups in [25, 7]. Systems
of equations have been studied, e.g., over semigroups in [46], over monoids and semigroups
in [35], and over arbitrary finite algebras in [39, 37, 12, 42].
The full version of this paper [40] contains all details and proofs.

2 Preliminaries

We denote by rks the set t1, 2, . . . , ku. We write idX for the identity map on a set X. We
use the lowercase boldface font for tuples; e.g., we write b for a tuple pb1, . . . , bnq. We say
that a function f extends another function g if dompgq Ď dompfq, and f |dompgq “ g.

Algebraic structures

A semigroup S is a set equipped with an associative binary operation, for which we use
multiplicative notation. Two elements a, b P S commute if ab “ ba. An Abelian semigroup
is a semigroup in which every two elements commute. A semigroup homomorphism from a
semigroup S1 to a semigroup S2 is a map φ : S1 Ñ S2 satisfying φps ¨S1 tq “ φpsq ¨S2 φptq.2
Given two elements s, t P S we write s Ď t if s can be expressed as a product of elements
in S including t. Note that Ď constitutes a preorder over any semigroup. We define the
equivalence relation „ by s „ t whenever s Ď t and t Ď s.

A monoid is a semigroup containing an identity element for its binary operation, denoted
by e. A monoid homomorphism from a monoid M1 to a monoid M2 is a map φ : M1 Ñ M2
satisfying φpx ¨M1 yq “ φpxq ¨M2 φpyq and φpeM1 q “ eM2 . We say that φ is Abelian if its
image Impφq is an Abelian monoid. A group is a monoid in which each element has an
inverse. A group homomorphism from a group G1 to a group G2 is a map φ : G1 Ñ G2
satisfying φpx ¨G1 yq “ φpxq ¨G2 φpyq (which implies that also the inverses and the identity
element are preserved).

Given a semigroup S, a subset G Ď S is called a subgroup if G equipped with S’s binary
operation is a group, meaning that there is a distinguished element eG P G satisfying that
(1) eG ¨M g “ g ¨M eG “ g for each g P G, and (2) for each element g P G there exists h P G

satisfying g ¨M h “ h ¨M g “ eG. We say that S is a union of subgroups if every element s P S

belongs to a subgroup of S. We call an element s of S regular if s2t “ s and ts “ st for
some t in S.3 Intuitively, t acts as some type of inverse of s. It is known that s belongs to a
subgroup of S if and only if s is regular [33, Theorem 2.2.5].

We use the standard product (and also the power) of a semigroup (monoid, group), where
the operation is defined componentwise. We use the symbol ĺ for a substructure; e.g., if S
is a semigroup then we write T ĺ S to indicate that T is a subsemigroup of S (and similarly
for monoids and groups).

Unless stated explicitly otherwise, all semigroups, monoids, and groups in this paper are
finite.

2 I.e., the multiplication on the LHS is in S1, whereas the multiplication on the RHS is in S2.
3 The usual definition of a regular element in a semigroup just requires that sts “ s for some t [33].

ICALP 2024

146:4 Solving Promise Equations over Groups and Monoids

Relational structures

A relational signature σ consists of a finite set of relation symbols R, each with a finite
arity arpRq P N. A relational structure A over the signature σ, or a σ-structure, consists
of a finite set A and a relation RA Ď Ak of arity k “ arpRq for every R P σ. Let A and
B be two σ-structures. A map h : A Ñ B is called a homomorphism from A to B if h
preserves all relations in A; i.e., if, for every R P σ, hpxq P RB whenever x P RA, where h
is applied componentwise. We denote the existence of a homomorphism from A to B by
writing A Ñ B. A template is a pair pA,Bq of relational structures such that A Ñ B.

A k-ary polymorphism of a template pA,Bq over signature σ is a map p : Ak Ñ B that
preserves all relations RA from A in the following sense: For any arpRq ˆ k matrix whose
columns belong to RA, applying p row-wise results in a tuple that belongs to RB . We denote
by PolpA,Bq the set of all polymorphisms of pA,Bq.4

Minions

A minion M consists of a set Mpnq for each positive number n, and a map πM : Mpnq Ñ

Mpmq for each map π : n Ñ m satisfying (1) idM
rns “ idMpnq for every n ą 0, and (2)

πM ˝ τM “ pπ ˝ τqM for every pair of suitable maps π, τ . When the minion is clear from the
context, we write ppπq for πMppq. Elements p P Mpnq are called n-ary, and whenever ppπq “ q

we say that q is a minor of p. A minion homomorphism ξ : M Ñ N is a map from a minion
M to another minion N that preserves arities and minor operations. I.e., ξpppπqq “ pξppqqpπq

for every minor ppπq.
Given a template pA,Bq, its set of polymorphisms PolpA,Bq can be equipped with

a minion structure in a natural way. That is, n-ary elements of PolpA,Bq are just n-
ary polymorphisms p : An Ñ B. Additionally, given some n-ary polymorphism p, and
some map π : rns Ñ rms, the minor ppπq is the polymorphism q : Am Ñ B given by
pa1, . . . , amq ÞÑ ppb1, . . . , bnq, where bi “ aπpiq for each i P rns.

Given a minion M, we define two special types of elements. An element p P Mp2k ` 1q is
called alternating if ppπq “ p for any permutation π : r2m ` 1s Ñ r2m ` 1s that preserves
parity, and ppπ1q “ ppπ2q, where for each i “ 1, 2 the map πi is given by 1 ÞÑ i, 2 ÞÑ i and
j ÞÑ j for all j ą 2. An element p P Mp2k ` 1q is called 2-block-symmetric if the set r2k ` 1s

can be partitioned into two blocks of size k ` 1 and k in such a way that ppπq “ p for any
map π : r2m` 1s Ñ r2m` 1s that preserves each block.

Constraint satisfaction

Let pA,Bq be a template with common signature σ. The promise constraint satisfaction
problem (PCSP) with template pA,Bq is the following computational problem, denoted by
PCSPpA,Bq. Given a σ-structure X, output Yes if X Ñ A and output No if X Ñ B.
This is the decision version. In the search version, one is given a σ-structure X with the
promise that X Ñ A; the goal is to find a homomorphism from X to B (which necessarily
exists, as X Ñ A and A Ñ B, and homomorphisms compose). It is known that the decision
version polynomial-time reduces to the search version (but it is not known whether the two
variants are polynomial-time equivalent) [5]. In our results, the positive (tractability) results
are for the search version, whereas the hardness (intractability) results are for the decision
version. We denote by CSPpAq the problem PCSPpA,Aq; this is the standard (non-promise)
constraint satisfaction problem (CSP). For CSPs, the decision version and the search version
are polynomial-time equivalent [18].

4 Equivalently, p is a polymorphism of pA, Bq if p is a homomorphism from the k-th power of A to B.

A. Larrauri and S. Živný 146:5

We need two existing algorithms for PCSPs, namely the AIP algorithm [5] and the
strictly more powerful BLP ` AIP algorithm [16]. Their power is captured by the following
results.

▶ Theorem 1 ([5]). Let pA,Bq be a template. Then PCSPpA,Bq is solved by AIP if and
only if PolpA,Bq contains alternating maps of all odd arities.

▶ Theorem 2 ([16]). Let pA,Bq be a template. Then PCSPpA,Bq is solved by BLP ` AIP
if and only if PolpA,Bq contains 2-block-symmetric maps of all odd arities.

3 Overview of Results

Promise equations over monoids and groups

Our first and main result is a dichotomy theorem for solving promise equations over finite
monoids and thus also, as a special case, over finite groups. We first define equations in the
standard, non-promise setting as it is useful for mentioning previous work and for our own
proofs.

An equation over a semigroup S is an expression of the form x1 . . . xn “ y1 . . . ym, where
each xi, yi is either a variable or some element from S, referred to as a constant. A system
of equations over S is just a set of equations. A solution to such a system is an assignment
of elements of S to the variables of the system that makes all equations hold. Equations and
systems of equations are defined similarly for monoids and groups. The only difference is
that for groups we allow “inverted variables” x´1 in the equations, which are interpreted as
inverses of the elements assigned to x.

In the context of CSPs, it is common to consider only restricted “types” of equations that
can then express all other equations. The following definition captures systems of equations
where each equation is either of the form x1x2 “ x3, for three variables, or x “ c, fixing a
variable to a constant. It is well known that restricting to systems of equations of this kind
is without loss of generality [40].

▶ Definition 3. Let S be a semigroup and T ĺ S a subsemigroup. The relational structure
EqnpS, T q has universe S, and the following relations:

A ternary relation Rˆ “ tps1, s2, s3q P S3 | s1s2 “ s3u, and
a singleton unary relation Rt “ ttu for each t P T .

This template captures systems of equations of the kind described above when we allow
only constants in a subsemigroup T of the ambient semigroup S. Similarly, we define the
templates EqnpM,Nq, EqnpG,Hq in the same way when M is a monoid and N ĺ M a
submonoid, and when G is a group and H ĺ G is a subgroup. Observe that the definition of
subgroup is more restrictive than the one of submonoid and this in turn is more restrictive than
the notion of subsemigroup. We abuse the notation and write EqnpS, T q for CSPpEqnpS, T qq.

Previous works focused on problems EqnpG,Gq and EqnpM,Mq. Given a group G, it is
known that EqnpG,Gq is solvable in polynomial time (by AIP) if G is Abelian, and NP-hard
otherwise [29]. Similarly, when M is a monoid, EqnpM,Mq is solvable in polynomial time if
M is Abelian and it is the union of its subgroups, and NP-hard otherwise [35].

We now define promise equations.

▶ Definition 4. Let S1, S2 be semigroups, and let φ be a semigroup homomorphism with
dompφq ĺ S1 and Impφq ĺ S2. The promise system of equations over semigroups problem
PEqnpS1, S2, φq is the PCSPpA,Bq, where A “ S1, B “ S2, and the relations are defined
as follows:

ICALP 2024

146:6 Solving Promise Equations over Groups and Monoids

A ternary relation RA
ˆ “ tps1, s2, s3q P S3

1 | s1s2 “ s3u, and RB
ˆ “ tps1, s2, s3q P S3

2 |

s1s2 “ s3u.
For each t P dompφq, a unary relation given by RA

t “ ttu, and RB
t “ tφptqu.

For this template to be well defined there should be a homomorphism from A to B, which is
equivalent to the existence of a semigroup homomorphism ψ : S1 Ñ S2 that extends φ.

Analogously, we also define the promise system of equations over monoids problem and
the promise system of equations over groups problem by replacing semigroup-related notions
with monoid-related notions and group-related notions respectively. Observe that the problem
EqnpS, T q described before corresponds precisely to PEqnpS, S, idT q.

We can now state our main result.

▶ Theorem 5 (Main). PEqnpM1,M2, φq is solvable in polynomial time by BLP ` AIP if
there is an Abelian homomorphism ψ : M1 Ñ M2 extending φ and Impψq is a union of
subgroups. Otherwise, PEqnpM1,M2, φq is NP-hard.

For the special case of groups, we get a simpler tractability criterion and a simpler algorithm.

▶ Corollary 6. PEqnpG1, G2, φq is solvable in polynomial time via AIP if there is an Abelian
homomorphism ψ : G1 Ñ G2 extending φ. Otherwise, PEqnpG1, G2, φq is NP-hard.

As easy corollaries, Theorem 5 applies in the special case of non-promise setting.

▶ Corollary 7. Given two monoids N ĺ M , EqnpM,Nq is solvable in polynomial time by
BLP ` AIP if there is an Abelian endomorphism of M extending idN whose image is a
union of subgroups, and is NP-hard otherwise.

▶ Corollary 8. Given two groups H ĺ G, EqnpG,Hq is solvable in polynomial time by AIP
if there is an Abelian endomorphism of G that extends idH , and is NP-hard otherwise.

▶ Example 9. Let G be the dihedral group on four elements, and H be the symmetric group
on four elements. Observe that G can be seen as a subgroup of H in a natural way: H
consists of all permutations on four elements, while G contains only those that are symmetries
of the square. The group G is generated by the right 90-degree rotation r and an arbitrary
reflection f that leaves no element fixed. We consider two group homomorphisms φ1, φ2
with dompφiq ĺ G and Impφiq ĺ H. The domain of both homomorphism is the subgroup
te, r, r2, r3u ĺ G. Then, φ1 is given by r ÞÑ r2, and φ2 is given by r ÞÑ r. The following hold:

PEqnpG,H,φ1q is tractable, and solvable via AIP. However both EqnpG, dompφ1qq and
EqnpH, Impφ1qq are NP-hard.
PEqnpG,H,φ2q is NP-hard.

To see the first item, observe that the group homomorphism ψ : G Ñ H given by r ÞÑ r2 and
f ÞÑ f is Abelian (its image is isomorphic to the direct product Z2 ˆ Z2) and extends φ1.
Hardness of EqnpG,dompφ1qq is a consequence of the fact that the commutator subgroup of G
is te, r, r2, r3u ľ dompφ1q, so dompφ1q is included in the kernel of any Abelian endomorphism
of G. Similarly, hardness of EqnpH, Impφ1qq follows from the fact that the commutator
subgroup of H is the alternating group on four elements, and has Impφ1q as a subgroup.

The second item can be proved by observing that the only normal subgroup of G that
does not intersect dompφ2q is the trivial subgroup, so any homomorphism ψ : G Ñ H that
extends φ2 needs to be injective, and thus non-Abelian.

We say that PCSPpA,Bq is finitely tractable if there is C such that A Ñ C Ñ B and
CSPpCq is solvable in polynomial time. The tractable cases in Theorem 5 are in fact finitely
tractable; for details, cf. [40].

A. Larrauri and S. Živný 146:7

The power of BLP ` AIP is necessary in Theorem 5 in the sense that AIP does not
suffice for all monoids, even for (non-promise) CSPs, unlike in the case of groups. Indeed,
adding a fresh element to a group that serves as the monoid identity fools AIP; for details,
cf. [40].

Promise equations over semigroups

As our next result, we prove that every PCSP is polynomial-time equivalent to a problem of
the form PEqnpS1, S2, φq over some semigroups S1, S2. Hence, extending our classification
of promise equations beyond monoids is difficult in the sense that understanding the compu-
tational complexity of promise equations over semigroups is as hard as classifying all PCSPs.
This result is analogous to the one known in the non-promise setting obtained in [35], whose
proof we closely follow. One difficulty in lifting the result from [35] is the lack of constants
in the promise setting. The details can be found in Section 6.

▶ Theorem 10. Let pA,Bq be a template. Then there are semigroups S1, S2 and a semigroup
homomorphism φ with dompφq ĺ S1 and Impφq ĺ S2 such that PCSPpA,Bq is polynomial-
time equivalent to PEqnpS1, S2, φq.

Monoidal minions

As our third result, we investigate minions based on monoids. For PCSPs whose polymorphism
minions are homomorphically equivalent to such minions, we establish a dichotomy. This is
a building block in the proof of our main result, but may be interesting in its own right. In
this direction, we show that for each monoidal minion M, there are PCSP templates whose
polymorphism minions are isomorphic to M. For a finite set rns, a tuple paiqiPrns P Mn is
called commutative if each pair of its elements commute.

▶ Definition 11. Given an element a P M the monoidal minion MM,a is the one where for
each n P N the elements b P MM,apnq are commutative tuples b P Mn with

ś

iPrns bi “ a,
and where for each m ą 0 and each π : rns Ñ rms the minor bpπq is the tuple c P Mm given
by cj “

ś

iPπ´1pjq bi, and the empty product equals the identity element e.

▶ Theorem 12. Let M be a finite monoid and let a P M . Consider a template pA,Bq with
PolpA,Bq homomorphically equivalent to MM,a. If a is regular in M then PCSPpA,Bq is
solvable in polynomial time by BLP ` AIP. Otherwise, PCSPpA,Bq is NP-complete.

Next, we show that there are templates whose polymorphism minions are of the considered
type (up to isomorphism).

▶ Theorem 13. Let M be a monoid, and a P M an arbitrary element. Then the tem-
plate pA,Bq described below satisfies that PolpA,Bq » MM,a.5 The signature σ of A and
B contains three relation symbols: a ternary symbol R, and two unary ones C0, C1. We
define A “ t0, 1u, RA “ tp1, 0, 0q, p0, 1, 0q, p0, 0, 1qu, CA

0 “ t0u and CA
1 “ t1u. The uni-

verse B of B is MM,ap2q. We define RB as the set of triples in pMM,ap2qq
3 of the form

ppc1, c2c3q, pc2, c1c3q, pc3, c1c2qq, where c1, c2, c3 P M commute pairwise, and c1c2c3 “ a. Fi-
nally, the unary relations CB

0 and CB
1 are the singleton sets containing the tuples pe, aq and

pa, eq respectively.6

5 We use » to denote the isomorphism relation, i.e., the existence of a bijection between the minions that
preserves arities and minor operations.

6 The map f : A Ñ B given by 0 ÞÑ pe, aq and 1 ÞÑ pa, eq is a homomorphism from A to B. The structure
A corresponds to the “1-in-3” template, where both constants are added, and B is the so-called “free
structure” [5] of MM,a generated by A.

ICALP 2024

146:8 Solving Promise Equations over Groups and Monoids

Finally, we remark that monoidal minions are natural objects of study, as they include
other relevant previously studied minions.

▶ Remark 14. Consider the Abelian monoid M “ t0, 1, ϵu, whose multiplicative identity
is 0, and where 1 ¨ 1 “ 1 ¨ ϵ “ ϵ ¨ ϵ “ ϵ. The elements of MM,1 are tuples with all zero
entries except for a single 1 entry. Hence MM,1, corresponds to the so-called trivial minion
T consisting of all projections (also known as dictators) on a two-element set. This minion
represents the hardness boundary for CSPs, in the sense that a CSP is NP-hard if and only
if its polymorphism minion maps homomorphically to T [18, 47].

Another example of a monoidal minion is the one capturing the power of arc consistency
from [24]. In fact, every linear minion (in the sense of [23]) is a union of monoidal minions.7

If we allow infinite monoids to be considered, then monoidal minions include important
minions that capture solvability via relevant algorithms. Consider the monoid M “ tpr, zq P

QˆZ | r P r0, 1s, and r “ 0 implies z “ 0u, where the binary operation is given by coordinate-
wise addition, and the identity is p0, 0q. Then MM,p1,1q is precisely the minion MBLP`AIP
described in [16], which expresses the power of BLP ` AIP. Similarly, the minions described
in [5] to capture the power of BLP and AIP are monoidal minions as well.

4 Monoidal Minions: Proof of Theorem 12

Tractability. We use the characterisation of the power of BLP ` AIP from Theorem 2
for the tractability part of Theorem 12. Observe that if there is a minion homomorphism
ξ : MM,a Ñ PolpA,Bq and p P MM,a is a p2k ` 1q-ary 2-block-symmetric element, then
so is ξppq. Hence, showing that MM,a has 2-block-symmetric elements of all arities proves
that PCSPpA,Bq is solvable in polynomial time via BLP ` AIP. Let b P M witness that
a is regular. For each k ą 0 consider the p2k ` 1q-ary element of MM,a consisting of k ` 1
consecutive a’s followed by k consecutive b’s. To see that this this is indeed an element of
MM,a we need to check that ak`1bk “ a. This follows from the assumption that b witnesses
that a is regular and using ak`1bk “ apbaqk. This tuple is 2-block-symmetric, with the blocks
corresponding to a and b (of sizes k and k ` 1, respectively).

Intractability. We prove the intractability part of Theorem 12 (as well as other hardness
results later in this paper) using the following result.

▶ Theorem 15 ([5]). Let M “ PolpA,Bq, and let K,L ą 0 be any fixed integers. Suppose
that M satisfies the following condition:

M “
Ť

ℓPrLs Mℓ, and for each ℓ P rLs there is a map p ÞÑ Iℓppq that sends each p P Mℓ

to a set of its coordinates Iℓppq of size at most K. Furthermore, suppose that for each
ℓ P rLs and for each minor ppπq “ q where p, q P Mℓ it holds that πpIℓppqq

Ş

Iℓpqq ‰ H.
Then PCSPpA,Bq is NP-complete.

Given a template pA,Bq, if there is a minion homomorphism ξ : PolpA,Bq Ñ MM,a

and MM,a satisfies the condition in the previous theorem, so does PolpA,Bq. Indeed, if
MM,a “

Ť

ℓPrLs Mℓ, then we can write PolpA,Bq “
Ť

ℓPrLs ξ
´1pMℓq. Additionally, if the map

Iℓ witnesses the condition in the theorem for Mℓ, then the map I 1
ℓ given by p ÞÑ Iℓpξppqq

witnesses the same condition for ξ´1pMℓq. Hence, we show the hardness part of Theorem 12
by proving that MM,a satisfies the assumptions in Theorem 15 when a P M is not regular.

7 We thank Lorenzo Ciardo for this observation.

A. Larrauri and S. Živný 146:9

For a monoid M , we define a refinement ĎA of the preorder Ď introduced in Section 2.
In detail, we write a ĎA b for a, b P M if there is a third element c P M that commutes with
b such that bc “ a. We put a „A b when both a ĎA b and b ĎA a hold, and a ĹA b when
a ĎA b holds but b ĎA a does not. We use the following simple observation.

▶ Observation 16. Let M be a monoid and a, b, c P M be three elements that commute
pairwise. Suppose that abc ĹA ab. Then ac ĹA a.

Proof. We prove the contrapositive. Suppose that a ĎA ac. That is, there is some d P M

that commutes with ac and satisfies acd “ a. We have dabc “ pdacqb “ pacdqb “ ab

abcd “ cpabdq “ ca “ ac, and thus dabc “ abcd “ ab, proving that abc ĚA ab. ◀

Assume that a is not regular. That is, that a2b ‰ a for every b P M that commutes
with a. Let b P MM,apnq for some number n ą 0. A coordinate j P rns is called relevant in
b if

ś

iPrmszj bi ĽA ś

iPrns bi. Consider the map I that assigns to each b P MM,a its set of
relevant coordinates. Claims 1 through 3 proved below establish the required assumptions
in Theorem 15 with L “ 1 and K “ |m|, thus showing NP-hardness of PCSPpA,Bq.
Claim 1: b has at most |M | relevant coordinates. Let ti1, . . . , ihu Ď rns be the set of rel-

evant coordinates of b. Given k P rhs we define

ck “
ź

jPrk´1s

bij , and dk “
ź

jPrnszti1,...,iku

bj .

The following hold: (1) a “ dkckbik , (2) bik , ck and dk commute pairwise, and (3) as ik is
a relevant coordinate, it holds that dkckbik ĹA dkck. Applying Observation 16, we obtain
that ckbik ĹA ck. Expanding the definition of ck this means that

ź

jPrks

bij ĹA
ź

jPrk´1s

bij .

This holds for all k P rhs, so in particular the products
ś

jPrks bij must be pairwise
different and the number h of relevant coordinates is at most |M |, proving the claim.

Claim 2: Minors preserve relevant coordinates. Let c “ bpπq, where π : rns Ñ rms is a
map and let i P rns be a relevant coordinate of b. We want to show that j “ πpiq is a
relevant coordinate of c. Indeed, if that was not the case we would have that

ź

kPrnszπ´1pjq

bk ĎA a.

However, i P π´1pjq, so we know that
ś

kPrnsztiu bk ĎA ś

kPrnszπ´1pjq bk. Putting this
together with the previous identity shows that

ź

kPrnszπ´1pjq

bk ĎA a,

contradicting the fact that i was a relevant coordinate of b.

Claim 3: b has at least one relevant coordinate. Suppose otherwise for the sake of contra-
diction. Then for each i P rns there is an element ci P M that commutes with a such that
aci “

ś

iPrnsztju bi. Let c “
ś

iPrns ci. Observe that c itself commutes with a. However,
one can check that that a2c “ a, contradicting our assumption that a was not regular.
Indeed,

ICALP 2024

146:10 Solving Promise Equations over Groups and Monoids

a2c “

˜

n
ź

i“1
bi

¸

pac1q

˜

n
ź

i“2
ci

¸

“

˜

n
ź

i“1
bi

¸

¨

˝

ź

iPrnszt1u

bi

˛

‚

˜

n
ź

i“2
ci

¸

“

˜

n
ź

i“2
bi

¸

pac2q

˜

n
ź

i“3
ci

¸

“

˜

n
ź

i“2
bi

¸

¨

˝

ź

iPrnszt2u

bi

˛

‚

˜

n
ź

i“3
ci

¸

“

˜

n
ź

i“3
bi

¸

pac3q

˜

n
ź

i“4
ci

¸

“

˜

n
ź

i“3
bi

¸

¨

˝

ź

iPrnszt3u

bi

˛

‚

˜

n
ź

i“4
ci

¸

“ ¨ ¨ ¨ “

˜

n
ź

i“n

bi

¸

¨

˝

ź

iPrnsztnu

bi

˛

‚“ a.

5 Equations Over Monoids and Groups: Proofs of Theorem 5 and
Corollary 6

We need a simple characterisation of the polymorphisms of promise equation templates, and
various characterisations of regularity; both are proved in [40].

▶ Lemma 17. Consider a template PEqnpZ1, Z2, φq of promise equations over semigroups/-
monoids/groups. A map p : Zn1 Ñ Z2 is a polymorphism of PEqnpZ1, Z2, φq if and only if p
is a semigroup/monoid/group homomorphism and pps, s, . . . , sq “ φpsq for all s P dompφq.

▶ Lemma 18. Let M be a monoid and s P M . Then the following are equivalent:
1. s is regular,
2. sk “ s for some k ą 1,
3. s belongs to a subgroup of M ,
4. s Ď s2.

With these two lemmas, we can now prove our main result.

▶ Theorem 5 (Main). PEqnpM1,M2, φq is solvable in polynomial time by BLP ` AIP if
there is an Abelian homomorphism ψ : M1 Ñ M2 extending φ and Impψq is a union of
subgroups. Otherwise, PEqnpM1,M2, φq is NP-hard.

Proof. We prove both implications. Suppose that such homomorphism ψ exists. As Impψq

is a union of subgroups, by Lemma 18 there is some number k ą 1 such that sk “ s for all
s P Impψq. Let n ą 0 be arbitrary. Consider the map p : M2n`1

1 Ñ M2 given by

psiqiPr2n`1s ÞÑ

¨

˝

ź

iPrn`1s

ψpsiq

˛

‚

¨

˝

ź

iPrns

ψpsi`n`1qk´2

˛

‚,

where the convention is that the zero-th power of an element equals the identity of the
monoid. We claim that p is a 2-block-symmetric polymorphism of PEqnpM1,M2, φq with
the first block consisting of the first n` 1 coordinates, and the second block consisting of
the rest. The fact that p is a 2-block-symmetric map with the blocks as claimed follows from
the fact that ψ is Abelian. To complete the argument, we show that p is a polymorphism of
PEqnpM1,M2, φq using the characterisation from Lemma 17. First, observe that the fact
that ψ is Abelian implies that p is a monoid homomorphism. Indeed,

A. Larrauri and S. Živný 146:11

pps1, . . . , s2n`1qppt1, . . . , t2n`1q

“

¨

˝

ź

iPrn`1s

ψpsiqψptiq

˛

‚

¨

˝

ź

iPrns

ψpsi`n`1qk´1ψpti`n`1qk´1

˛

‚

“ pps1t1, . . . , s2n`1t2n`1q,

so p preserves products. Now we only need to prove that pps, . . . , sq “ φpsq for all s P dompφq

in order to show that p is a polymorphism. To see that this holds, observe that

pps, . . . , sq “ ψpsqnpk´1q`1 “ ψpsq “ φpsq,

where the last equality uses the fact that ψ extends φ. This completes the proof of the first
implication via Theorem 2.

In the other direction, we show that PEqnpM1,M2, φq is NP-hard assuming there is no
Abelian homomorphism ψ : M1 Ñ M2 extending φ whose image is a union of subgroups.
Let M be the polymorphism minion of PEqnpM1,M2, φq. Given a polymorphism p P M, we
define N ppq as the submonoid tpps, . . . , sq | s P M1u ĺ M2. Observe that by assumption,
for a given polymorphism p it holds that the monoid N ppq is non-Abelian or that N ppq is
not a union of subgroups. Define Ω as the set of monoid homomorphisms ψ : M1 Ñ M2 for
which Impψq is not a union of subgroups. By Lemma 18, this happens precisely when Impψq

contains some non-regular element a P M2. Let L “ |Ω| ` 1, and let K “ maxp|M2|, |tN ĺ

M2 | N is non-Abelian u|. We use Theorem 15 with the constants L,K to show NP-hardness.
We define the following subminions of M.

MA “ tp P M, | N ppq is not Abelianu,

and given any monoid homomorphism ψ P Ω we set

Mψ “ tp P M, | pps, . . . , sq “ ψpsq for all s P M1u.

By the previous observation it holds that

M “ MA
ď

ψPΩ
Mψ.

We give selection functions I for each of these sub-minions satisfying the assumptions
of Theorem 15. Suppose that MA is not empty. Otherwise we are done defining IA. Let p
be any n-ary polymorphism in MA. Given i P rns we define N pp, iq ĺ M2 as the submonoid

tpps1, . . . , snq | si P M1, and sj “ e when j ‰ iu.

We give some facts about these submonoids.
Fact 1: The map ϕ :

ś

iPrns N pp, iq Ñ M2 given by ps1, . . . snq ÞÑ
ś

iPrns si is a monoid
homomorphism. In particular, given 1 ď i ă j ď n, any two elements t1 P N pp, iq,
t2 P N pp, jq commute.

Fact 2: If N pp, iq “ N pp, jq for some i ‰ j P rns then N pp, iq is Abelian.
Fact 3: The submonoid N ppq is contained in Impϕq, where ϕ is as defined in Fact 1. In

particular, given that N ppq is not Abelian, some N pp, iq must be non-Abelian.

Given an n-ary polymorphism p P MA, we define IAppq Ď rns as the set of coordinates i
for which N pp, iq is non-Abelian. We claim that IA satisfies the assumptions of Theorem 15.
Indeed, given some n-ary p:

ICALP 2024

146:12 Solving Promise Equations over Groups and Monoids

IAppq is non empty by Fact 3.
|IAppq| ď K. Otherwise it would be that N pp, iq “ N pp, jq for some different i, j P IAppq,
contradicting the fact that N pp, iq is non-Abelian (by Fact 2).
Suppose that p “ qpπq for some m-ary q and some π : rms Ñ rns. Let i P IAppq, then

N pp, iq Ď

$

&

%

ź

jPπ´1piq

sj | sj P N ps, jq for all j P π´1piq

,

.

-

.

As N pp, iq is non-Abelian, some submonoid N pq, jq with j P π´1piq must be non-Abelian
as well. This means that IAppq Ď πpIApqqq.

Now consider an arbitrary homomorphism ψ P Ω for which Mψ is non-empty. We define
a selection function Iψ satisfying the assumptions of Theorem 15. Let t P Impψq be a
non-regular element, and let s P M1 be such that ψpsq “ t. Let MM2,t be the monoidal
minion defined in Definition 11. Consider the map ξ : Mψ Ñ MM2,a that sends any n-ary
polymorphism p P Mψ to the tuple pr1, . . . , rnq P MM2,apnq where for each i P rns

ri “ pps1, . . . , snq, where si “ s, and sj “ e for all j ‰ i .

Observe that this is a well-defined minion homomorphism from Mψ to MM2,t. Indeed, first
observe that pr1, . . . , rnq belongs to the second minion. This holds because r1r2 . . . rn “

pps, . . . , sq “ ψpsq “ t, and for each i P rns the element ri belongs to N pp, iq, so the ri’s
commute pairwise by Fact 1 above. One can also check that ξ preserves minors.

From the proof of Theorem 12 there is some selection function I on MM2,t satisfying
the hypotheses of Theorem 15 for some constant K 1 “ |M2| ď K and L “ 1. Thus, we can
define Iψ on Mψ simply by setting Iψppq “ Ipξppqq for each polymorphism p P Mψ.

Hence, have defined selection functions IA and Iψ for each ψ P Ω that satisfy the
requirements of Theorem 15, showing that PEqnpM1,M2, φq is NP-hard. ◀

▶ Corollary 6. PEqnpG1, G2, φq is solvable in polynomial time via AIP if there is an Abelian
homomorphism ψ : G1 Ñ G2 extending φ. Otherwise, PEqnpG1, G2, φq is NP-hard.

Proof. We prove both directions. The hardness case follows from Theorem 5. Indeed,
PEqnpG1, G2, φq is a template of promise equations over monoids (where the monoids just
happen to be groups). Suppose that there is no Abelian group homomorphism ψ : G1 Ñ G2
that extends φ. Observe that a monoid homomorphism between two groups must also be
a group homomorphism, so there is no Abelian monoid homomorphism ψ : G1 Ñ G2 that
extends φ. Thus, by Theorem 5, PEqnpG1, G2, φq is NP-hard.

In the other direction, suppose that such a ψ exists. We show that PEqnpG1, G2, φq is
solved by AIP using Theorem 1. Let n be any odd arity and let p : Gn1 Ñ G2 be the map
given by ppg1, . . . , gnq ÞÑ

ś

iPrns ti, where ti “ ψpgiq for every odd i, and ti “ ψpgiq
´1 for

every even i. Then p is an alternating polymorphism of PEqnpG1, G2, φq. ◀

6 Equations over Semigroups: Proof of Theorem 10

A digraph D is a relational structure whose signature consists of a single binary relation ED.
We follow closely the ideas from [35, Theorem 7]. That result states that every CSP is

polynomial-time equivalent to a problem of the form EqnpS, Sq for some semigroup S. Their
proof uses the fact that every CSP is polynomial-time equivalent to another CSP whose
template is a digraph D with all singleton unary relations [26]. The fact that they consider
these unary relations on D yields equations in EqnpS, Sq where all constants are allowed.
For PCSPs, however, this is our starting point.

A. Larrauri and S. Živný 146:13

▶ Theorem 19 ([13]). For every template pA1,A2q there is a template pD1,D2q of digraphs
such that PCSPpA1,A2q is polynomial-time equivalent to PCSPpD1,D2q.

The fact that we lack singleton unary relations in the templates pD1,D2q is the main
obstacle for applying the techniques from [35]. We overcome this by extending our digraphs
with an additional edge joining two fresh distinguished vertices. The relational signature
σ` contains one binary relation symbol E, and two unary relation symbols P,Q. Given a
digraph D, we write D` for the σ` structure defined by D` “ D Y tp, qu, where p and q

are fresh vertices, ED`

“ ED Y tpp, qqu, PD`

“ tpu, and QD`

“ tqu.

▶ Lemma 20. Let pD1,D2q be a template of digraphs. Then PCSPpD1,D2q is polynomial-
time equivalent to PCSPpD`

1 ,D
`
2 q.

Proof. We give polynomial-time Turing reductions in both directions. First, we reduce from
PCSPpD1,D2q to PCSPpD`

1 ,D
`
2 q. We consider two cases. Suppose that ED2 is empty.

Then PCSPpD1,D2q amounts to deciding whether a given instance I has an edge or not,
which takes polynomial time. Otherwise, assume that ED2 is non-empty. Then our reduction
takes any instance I of PCSPpD1,D2q and considers it as an instance of PCSPpD`

1 ,D
`
2 q.

Clearly, if I maps homomorphically to D1 then it also maps homomorphically to D`
1 using

the same homomorphism. Otherwise, if I does not map homomorphically to D2 then it
cannot map homomorphically to D`

2 . Indeed, to see this observe that the digraph resulting
from of D`

2 (by forgetting about the P,Q relations) maps homomorphically to D2: it suffices
to send the edge pp, qq to an arbitrary edge in ED2 , which is non-empty by assumption.

Now we describe a polynomial-time reduction from PCSPpD`
1 ,D

`
2 q to PCSPpD1,D2q.

The reduction considers an instance I of PCSPpD`
1 ,D

`
2 q and checks in polynomial time

whether every connected component of I that intersects P I or QI maps homomorphically to
the edge structure W with W “ tp, qu, EW “ tpp, qqu, PW “ tpu, and QW “ tqu. If this is
not the case, I is rejected. Otherwise, we remove from I the components that intersect P I

or QI . Next, we check in polynomial time whether each remaining component of I can be
mapped homomorphically to W , and removes the ones that do. If the resulting structure I 1

is empty, then our reduction accepts I. Otherwise, observe that the resulting instance I 1

is equivalent to the original I, in the sense that I maps to D`
i if and only if I 1 does so as

well. Furthermore, observe that a homomorphism from I 1 to D`
i cannot include p and q in

its image, as there are no components in I 1 that map homomorphically to W . This means
that I 1 maps to D`

i if and only if it maps to Di. Hence, as the last step in our reduction we
simply use I 1 as an instance of PCSPpD1,D2q. ◀

A semigroup S is a right-normal band if ss “ s for all s P S and rst “ srt for all r, s, t P S.
Recall that we write s „ r if s Ď r and r Ď s hold. It is easy to see that the quotient
pS “ S{ „ inherits the semigroup structure from S. Moreover, pS is a semilattice, meaning
that it is an Abelian semigroup where every element is idempotent. Given an instance I

of EqnpS, Sq we denote by pI the corresponding instance over pS, where every constant s is
substituted by its „ class ŝ.

We need two lemmas from [35] and a simple observation.

▶ Lemma 21 ([35]). Let S be a semilattice. Then EqnpS, Sq can be solved in polynomial
time. Moreover, if an instance I has a solution, it also has a unique minimal one (with
respect to the Ď preorder) that can be obtained in polynomial time.

▶ Lemma 22 ([35]). Let S be a right-normal band. Then an instance I of EqnpS, Sq is
solvable if it has a solution satisfying fpxq P ŝx, for all x P I, where the map x ÞÑ ŝx is the
minimal solution of pI in Eqnp pS, pSq.

ICALP 2024

146:14 Solving Promise Equations over Groups and Monoids

▶ Observation 23. Let S be a right-normal band, and let s, s1, t P S be three arbitrary
elements with s „ s1. Then st “ s1t.

Proof. As s „ s1 and S is right-normal, it must hold that s “ s1r1 and s1 “ sr for some
r, r1 P S. Thus, st “ s1r1t “ srr1t, and s1t “ srt “ s1r1rt “ srr1rt “ srr1t, where the last
equality holds since S is a right-normal band. ◀

Let D be a digraph. We define a semigroup SD related to D in a similar fashion as [35].
The main difference is that we need to “plant” a special subsemigroup SW inside SD that
is used later as the set of constants in our promise equations. The semigroup S “ SD is a
right-normal band. It has the following „-classes: V L, V R, V LC, V LR, V CR, EC, 0, described
as follows. Given ˝ P tL,R,LC,LR,CRu the class V ˝ is a copy of D Y tp, qu. That is,
V ˝ “ tv˝ | v P Du Y tp˝, q˝u. The class EC is a copy of ED Y tpp, qqu, meaning that
EC “ tpu, vqC | pu, vq P EDu Y tpp, qqCu. Finally, the class 0 contains a single element 0.
By Observation 23, in a right-normal band T it must hold that st “ s1t for all s, s1, t P T

with s „ s1. Hence, given a „-class C Ď T and an element t we abuse the notation and write
Ct to denote the product of an arbitrary element from C with t. The product operation in
S is given by the following rules:

V RvL “ V LvR “V LRvR “ V LRvL “ V LvLR “ V RvLR “ vLR

V LvLC “ V LCvL “ ECvL “ ECvLC “ vLC

V RvCR “ V CRvR “ ECvR “ ECvCR “ vCR,

where v is an arbitrary element in D Y tp, qu. Additionally,

V Lpu, vqC “ V LCpu, vqC “ uLC, and V Rpu, vqC “ V CRpu, vqC “ vCR,

where pu, vq belongs to ED Y tpp, qqu. Finally, all other products not described above have 0
as their result.

We define the subsemigroup SW ĺ SD as the one containing the elements 0, pp, qqC, p˝, q˝

for ˝ P tL,R,LC,LR,CRu. Observe that for any digraph D, the quotient xSD “ SD{ „ is
isomorphic to ySW “ SW { „.

▶ Lemma 24. There is a polynomial-time algorithm Φ that takes as an input a σ`-structure
I and outputs a system of equations ΦpIq with constants in SW satisfying that for any digraph
D, I maps into D` if and only if ΦpIq has a solution over SD.

Proof. This follows the first reduction in [35, Theorem 7] while making sure that all constants
remain in SW . We construct the system ΦpIq. For every vertex v P I we include variables
vL, vR, vLR. For each ˝ P tL,R,LRu we include the constraint v˝ P V ˝, which is a shorthand
for the equations p˝v˝ “ v˝ and v˝p˝ “ p˝. We also include the equations pLRvL “ vLR and
pLRvR “ vLR. If v P P I we include all constraints v˝ “ p˝ for ˝ P tL,R,LRu. Similarly,
if v P QI , then we include the constraints of the form v˝ “ q˝. For each edge pu, vq P EI

we include a variable pu, vqC in ΦpIq, together with the constraint pu, vqC P EC, which is a
shorthand for the equations pu, vqCpp, qqC “ pp, qqC and pp, qqCpu, vqC “ pu, vqC. Finally, we
also add the equations pLCpu, vqC “ pLCuL and pCRpu, vqC “ pCRvR. The resulting system
ΦpIq satisfies the statement of the theorem. ◀

▶ Lemma 25. There is a polynomial-time algorithm Ψ that takes as an input a system of
equations X with constants in SW and produces one of the following outcomes:

(I) It outputs a σ`-structure ΨpXq that maps into D` for any digraph D if and only if
X has a solution over SD, or

(II) it rejects X and X has no solution over SD for any digraph D.

A. Larrauri and S. Živný 146:15

Proof. We describe the algorithm Ψ. This algorithm is meant to transform the system X

into a system of the form ΦpIq, for the algorithm Φ given in Lemma 24 and some σ`-structure
I. This time we follow the second reduction in [35, Theorem 7] while making sure that all
constants in X remain in SW throughout all the transformations.

Without loss of generality, we may assume that every equation in X is initially of the form
x1x2 “ x3, for some variables x1, x2, x3, or of the form x “ s, for some variable x and some
element s P SW . Consider the system xX with constants in ySW “ SW { „. By Lemma 21
we can find a minimal solution of xX in polynomial time. If such a solution does not exist,
then the system X is not satisfiable over SD for any digraph D, and the algorithm Ψ just
rejects it. Otherwise, suppose that the system xX has some minimal solution. This solution
maps each variable x P X to a „-class Cx of SW . Consider an arbitrary digraph D. Using
the observation that ySW » xSD and Lemma 22, we deduce that X has a solution over SD if
and only if it has a solution where the value of each variable x P X belongs to the class Cx.
Given a class Cx, we define the constant cx P SW as

p˝ if Cx is the class V ˝ for ˝ P tL,R,LC,LR,CRu,
pp, qqC if Cx “ EC, or
0 if Cx “ 0.

For each variable x P X we add the equations cxx “ x and xcx “ cx. These equations
are equivalent to the constraint that x P Cx (and we use x P Cx as a shorthand for those
equations), so the resulting system is satisfiable over a semigroup SD if and only if the original
one was. Additionally, once every variable x is constrained to take values inside Cx, we can
replace every equation of the form x1x2 “ x3 in X with the equation cx3x2 “ cx3x3 to yield
an equivalent system. Indeed, it must hold that cxi

xi “ xi, so the equation x1x2 “ x3 is
equivalent to cx1x1cx2x2 “ cx3x3. Not only that, but SD is a normal band and x1cx1 “ cx1 ,
so last equation is equivalent to cx1cx2x2 “ cx3x3. Finally, the classes Cx1 , Cx2 , Cx3 were
part of a solution to xX, so it must be that cx1cx2 „ cx3 , and by Observation 23 it holds that
cx1cx2x1 “ cx3x1.

Every resulting equation of the form 0x1 “ 0x2 is trivially satisfied and can be discarded.
Consider a variable x P X whose corresponding class Cx is 0. As we have removed every
equation of the form 0x1 “ 0x2, x can only appear in constraints of the form x P 0, and
x “ 0. These are trivially satisfiable by any assignment that maps x to 0, so we can remove
the variable x and all equations containing it.

We are left with a system X where each variable is bound to a class V ˝ for ˝ P

tL,R,LC,LR,CRu or EC. Consider a variable x P X bound to the class V LC. Suppose this
variable appears in some equation of the form c1x “ c1y, and consider the class C of c1. By
construction, it must be that C Ě V LC in ySW . However, we have removed all equations
containing 0, so the only possibility left is that C “ V LC. Suppose that we replace the
requirement x P V LC with x P V L and every equation of the form x “ vLC, where vLC P SW
is a constant, with x “ vL. We claim the system X remains equivalent after these changes.
Indeed, this results from the observation that V LCvL “ V LCvLC in any semigroup SD for
any vertex v P D`. By the same logic we can also replace any requirement of the kind
x P V LR or x P V CR with x P V CR.

Consider any equation of the form x “ pu, vqC for a constant pu, vqC. This equation is
equivalent to the constraints pLCx “ pLCy, pCRx “ pCRz, y “ uL and z “ vR, where y and
z are fresh variables.

Consider an equation of the form cx “ cy, where both x, y are constrained to be in c’s
„-class. pp, qqCx “ pp, qqCy, both This equation holds if and only if x “ y. Hence, we may
remove this equation and identify both variables x, y together.

ICALP 2024

146:16 Solving Promise Equations over Groups and Monoids

This far we have obtained a system X where each variable is bound to either V L, V R

or EC, and the only constants are among pL, pR, qL, qR. Identifying variables and adding
dummy variables if necessary we can assume the following hold:

For each variable x P X constrained by x P EC there is exactly one variable xL constrained
by xL P V L in an equation of the form pLCx “ pLCxL, and exactly one variable xR
constrained by xR P V R that appears in an equation of the form pCRx “ pCRxR.
There are no two variables x, y P X constrained by x, y P EC with xL “ yL and xR “ yL.
Not considering equations that are part of the constraints x P C for some „-class C, each
equation is of the form (i) pLRx “ pLRy with x P V L and y P V R, (ii) pLCx “ pLCxL or
pCRx “ pCRxR for some x P EC, or (iii) x “ p˝ or x “ q˝ for ˝ P tL,Ru.

One can see that such a system corresponds to ΦpIq for some σ`-structure I that
can be built in polynomial time. Then Ψ returns I, which satisfies our requirements
by Lemma 24. ◀

▶ Corollary 26. Let pD1,D2q be a template of digraphs. Then PCSPpD1,D2q is polynomial-
time equivalent to PEqnpSD1 , SD2 , φq, where φ “ idSW

.

Proof. We show that PEqnpSD1 , SD2 , φq is polynomial-time equivalent to PCSPpD`
1 ,D

`
2 q,

which suffices by Lemma 20. Observe that algorithm Φ given in Lemma 25 is a polynomial-
time Turing reduction from PCSPpD`

1 ,D
`
2 q to PEqnpSD1 , SD2 , φq, and algorithm Ψ, given

in Lemma 24 is a polynomial-time Turing reduction in the other direction. ◀

Corollary 26 and Theorem 19 establish Theorem 10.

References
1 Kristina Asimi and Libor Barto. Finitely tractable promise constraint satisfaction problems.

In Proc. 46th International Symposium on Mathematical Foundations of Computer Science
(MFCS’21), volume 202 of LIPIcs, pages 11:1–11:16. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik, 2021. doi:10.4230/LIPIcs.MFCS.2021.11.

2 Albert Atserias and Víctor Dalmau. Promise constraint satisfaction and width. In Proc.
2022 ACM-SIAM Symposium on Discrete Algorithms (SODA’22), pages 1129–1153, 2022.
doi:10.1137/1.9781611977073.48.

3 Per Austrin, Venkatesan Guruswami, and Johan Håstad. (2+ϵ)-Sat is NP-hard. SIAM J.
Comput., 46(5):1554–1573, 2017. doi:10.1137/15M1006507.

4 Libor Barto, Diego Battistelli, and Kevin M. Berg. Symmetric Promise Constraint Satisfaction
Problems: Beyond the Boolean Case. In Proc. 38th International Symposium on Theoretical
Aspects of Computer Science (STACS’21), volume 187 of LIPIcs, pages 10:1–10:16. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2021. doi:10.4230/LIPIcs.STACS.2021.10.

5 Libor Barto, Jakub Bulín, Andrei A. Krokhin, and Jakub Opršal. Algebraic approach to
promise constraint satisfaction. J. ACM, 68(4):28:1–28:66, 2021. doi:10.1145/3457606.

6 Libor Barto and Marcin Kozik. Combinatorial Gap Theorem and Reductions between Promise
CSPs. In Proc. 2022 ACM-SIAM Symposium on Discrete Algorithms (SODA’22), pages
1204–1220, 2022. doi:10.1137/1.9781611977073.50.

7 Amey Bhangale and Subhash Khot. Optimal Inapproximability of Satisfiable k-LIN over Non-
Abelian Groups. In Proc. 53rd Annual ACM Symposium on Theory of Computing (STOC’21),
pages 1615–1628. ACM, 2021. doi:10.1145/3406325.3451003.

8 Amey Bhangale, Subhash Khot, and Dor Minzer. On Approximability of Satisfiable k-CSPs:
II. In Proc. 55th Annual ACM Symposium on Theory of Computing (STOC’23), pages 632–642.
ACM, 2023. doi:10.1145/3564246.3585120.

https://doi.org/10.4230/LIPIcs.MFCS.2021.11
https://doi.org/10.1137/1.9781611977073.48
https://doi.org/10.1137/15M1006507
https://doi.org/10.4230/LIPIcs.STACS.2021.10
https://doi.org/10.1145/3457606
https://doi.org/10.1137/1.9781611977073.50
https://doi.org/10.1145/3406325.3451003
https://doi.org/10.1145/3564246.3585120

A. Larrauri and S. Živný 146:17

9 Amey Bhangale, Subhash Khot, and Dor Minzer. On Approximability of Satisfiable k-CSPs:
III. In Proc. 55th Annual ACM Symposium on Theory of Computing (STOC’23), pages
643–655. ACM, 2023. doi:10.1145/3564246.3585121.

10 Manuel Bodirsky. Complexity of infinite-domain constraint satisfaction, volume 52. Cambridge
University Press, 2021.

11 Manuel Bodirsky and Martin Grohe. Non-dichotomies in Constraint Satisfaction Complexity. In
Proc. 35th International Colloquium on Automata, Languages and Programming (ICALP’08),
volume 5126 of Lecture Notes in Computer Science, pages 184–196. Springer, 2008. doi:
10.1007/978-3-540-70583-3_16.

12 Manuel Bodirsky and Thomas Quinn-Gregson. Solving equation systems in ω-categorical
algebras. J. Math. Log., 21(3), 2021. doi:10.1142/S0219061321500203.

13 Joshua Brakensiek and Venkatesan Guruswami. Promise Constraint Satisfaction: Algebraic
Structure and a Symmetric Boolean Dichotomy. SIAM J. Comput., 50(6):1663–1700, 2021.
doi:10.1137/19M128212X.

14 Joshua Brakensiek, Venkatesan Guruswami, and Sai Sandeep. Conditional Dichotomy of
Boolean Ordered Promise CSPs. TheoretiCS, 2, 2023. doi:10.46298/theoretics.23.2.

15 Joshua Brakensiek, Venkatesan Guruswami, and Sai Sandeep. SDPs and robust satisfiability
of promise CSP. In Proc. 55th Annual ACM Symposium on Theory of Computing (STOC’23),
pages 609–622. ACM, 2023. doi:10.1145/3564246.3585180.

16 Joshua Brakensiek, Venkatesan Guruswami, Marcin Wrochna, and Stanislav Živný. The
power of the combined basic LP and affine relaxation for promise CSPs. SIAM J. Comput.,
49:1232–1248, 2020. doi:10.1137/20M1312745.

17 Alex Brandts and Stanislav Živný. Beyond PCSP(1-in-3,NAE). Information and Computation,
2022. doi:10.1016/j.ic.2022.104954.

18 Andrei Bulatov, Peter Jeavons, and Andrei Krokhin. Classifying the complexity of con-
straints using finite algebras. SIAM J. Comput., 34(3):720–742, 2005. doi:10.1137/
S0097539700376676.

19 Andrei A. Bulatov. Complexity of conservative constraint satisfaction problems. ACM Trans.
Comput. Log., 12(4):24:1–24:66, 2011. doi:10.1145/1970398.1970400.

20 Andrei A. Bulatov. A dichotomy theorem for nonuniform CSPs. In Proc. 58th Annual
IEEE Symposium on Foundations of Computer Science (FOCS’17), pages 319–330, 2017.
doi:10.1109/FOCS.2017.37.

21 Lorenzo Ciardo and Stanislav Živný. Approximate graph colouring and the hollow shadow.
In Proc. 55th Annual ACM Symposium on Theory of Computing (STOC’23), pages 623–631.
ACM, 2023. doi:10.1145/3564246.3585112.

22 Lorenzo Ciardo and Stanislav Živný. CLAP: A new algorithm for promise CSPs. SIAM J.
Comput., 52(1):1–37, 2023. doi:10.1137/22M1476435.

23 Lorenzo Ciardo and Stanislav Živný. Hierarchies of minion tests for PCSPs through tensors.
In Proc. 2023 ACM-SIAM Symposium on Discrete Algorithms (SODA’23), pages 568–580,
2023. doi:10.1137/1.9781611977554.ch25.

24 Victor Dalmau and Jakub Opršal. Local consistency as a reduction between constraint
satisfaction problems. CoRR, 2023. arXiv:2301.05084.

25 Lars Engebretsen, Jonas Holmerin, and Alexander Russell. Inapproximability results for
equations over finite groups. Theor. Comput. Sci., 312(1):17–45, 2004. doi:10.1016/
S0304-3975(03)00401-8.

26 Tomás Feder and Moshe Y. Vardi. The computational structure of monotone monadic SNP
and constraint satisfaction: A study through Datalog and group theory. SIAM J. Comput.,
28(1):57–104, 1998. doi:10.1137/S0097539794266766.

27 Miron Ficak, Marcin Kozik, Miroslav Olšák, and Szymon Stankiewicz. Dichotomy for Sym-
metric Boolean PCSPs. In Proc. 46th International Colloquium on Automata, Languages, and
Programming (ICALP’19), volume 132, pages 57:1–57:12. Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, 2019. doi:10.4230/LIPIcs.ICALP.2019.57.

ICALP 2024

https://doi.org/10.1145/3564246.3585121
https://doi.org/10.1007/978-3-540-70583-3_16
https://doi.org/10.1007/978-3-540-70583-3_16
https://doi.org/10.1142/S0219061321500203
https://doi.org/10.1137/19M128212X
https://doi.org/10.46298/theoretics.23.2
https://doi.org/10.1145/3564246.3585180
https://doi.org/10.1137/20M1312745
https://doi.org/10.1016/j.ic.2022.104954
https://doi.org/10.1137/S0097539700376676
https://doi.org/10.1137/S0097539700376676
https://doi.org/10.1145/1970398.1970400
https://doi.org/10.1109/FOCS.2017.37
https://doi.org/10.1145/3564246.3585112
https://doi.org/10.1137/22M1476435
https://doi.org/10.1137/1.9781611977554.ch25
https://arxiv.org/abs/2301.05084
https://doi.org/10.1016/S0304-3975(03)00401-8
https://doi.org/10.1016/S0304-3975(03)00401-8
https://doi.org/10.1137/S0097539794266766
https://doi.org/10.4230/LIPIcs.ICALP.2019.57

146:18 Solving Promise Equations over Groups and Monoids

28 M. R. Garey and David S. Johnson. The complexity of near-optimal graph coloring. J. ACM,
23(1):43–49, 1976. doi:10.1145/321921.321926.

29 Mikael Goldmann and Alexander Russell. The complexity of solving equations over finite
groups. Inf. Comput., 178(1):253–262, 2002. doi:10.1006/INCO.2002.3173.

30 Martin Grohe. The complexity of homomorphism and constraint satisfaction problems seen
from the other side. J. ACM, 54(1):1–24, 2007. doi:10.1145/1206035.1206036.

31 Johan Håstad. Some optimal inapproximability results. J. ACM, 48(4):798–859, 2001.
doi:10.1145/502090.502098.

32 Pavol Hell and Jaroslav Nešetřil. On the complexity of H-coloring. J. Comb. Theory, Ser. B,
48(1):92–110, 1990. doi:10.1016/0095-8956(90)90132-J.

33 John M Howie. Fundamentals of semigroup theory. Oxford University Press, 1995.
34 Peter G. Jeavons, David A. Cohen, and Marc Gyssens. Closure properties of constraints. J.

ACM, 44(4):527–548, 1997. doi:10.1145/263867.263489.
35 Ondřej Klíma, Pascal Tesson, and Denis Thérien. Dichotomies in the complexity of solving

systems of equations over finite semigroups. Theory Comput. Syst., 40(3):263–297, 2007.
doi:10.1007/S00224-005-1279-2.

36 Phokion G. Kolaitis and Moshe Y. Vardi. Conjunctive-query containment and constraint
satisfaction. J. Comput. Syst. Sci., 61(2):302–332, 2000. doi:10.1006/jcss.2000.1713.

37 Michael Kompatscher. The equation solvability problem over supernilpotent algebras with
Mal’cev term. International Journal of Algebra and Computation, 28(06):1005–1015, 2018.
doi:10.1142/S0218196718500443.

38 Andrei Krokhin, Jakub Opršal, Marcin Wrochna, and Stanislav Živný. Topology and adjunction
in promise constraint satisfaction. SIAM J. Comput., 52(1):37–79, 2023. doi:10.1137/
20M1378223.

39 Benoît Larose and László Zádori. Taylor terms, constraint satisfaction and the complexity
of polynomial equations over finite algebras. Int. J. Algebra Comput., 16(3):563–582, 2006.
doi:10.1142/S0218196706003116.

40 Alberto Larrauri and Stanislav Živný. Solving promise equations over monoids and groups.
CoRR, 2024. arXiv:2402.08434.

41 Dániel Marx. Tractable hypergraph properties for constraint satisfaction and conjunctive
queries. J. ACM, 60(6), 2013. Article No. 42. doi:10.1145/2535926.

42 Peter Mayr. On the complexity dichotomy for the satisfiability of systems of term equations
over finite algebras. In Proc. 48th International Symposium on Mathematical Foundations of
Computer Science (MFCS’23), volume 272 of LIPIcs, pages 66:1–66:12. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2023. doi:10.4230/LIPICS.MFCS.2023.66.

43 Tamio-Vesa Nakajima and Stanislav Živný. Linearly ordered colourings of hypergraphs. ACM
Trans. Comput. Theory, 13(3–4), 2022. doi:10.1145/3570909.

44 Tamio-Vesa Nakajima and Stanislav Zivný. Boolean symmetric vs. functional PCSP dichotomy.
In Proc. 38th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS’23), 2023.
doi:10.1109/LICS56636.2023.10175746.

45 Thomas Schaefer. The complexity of satisfiability problems. In Proc. 10th Annual ACM
Symposium on the Theory of Computing (STOC’78), pages 216–226, 1978. doi:10.1145/
800133.804350.

46 Steve Seif and Csaba Szabó. Algebra complexity problems involving graph homomorphism,
semigroups and the constraint satisfaction problem. J. Complex., 19(2):153–160, 2003. doi:
10.1016/S0885-064X(02)00027-4.

47 Dmitriy Zhuk. A proof of the CSP dichotomy conjecture. J. ACM, 67(5):30:1–30:78, 2020.
doi:10.1145/3402029.

https://doi.org/10.1145/321921.321926
https://doi.org/10.1006/INCO.2002.3173
https://doi.org/10.1145/1206035.1206036
https://doi.org/10.1145/502090.502098
https://doi.org/10.1016/0095-8956(90)90132-J
https://doi.org/10.1145/263867.263489
https://doi.org/10.1007/S00224-005-1279-2
https://doi.org/10.1006/jcss.2000.1713
https://doi.org/10.1142/S0218196718500443
https://doi.org/10.1137/20M1378223
https://doi.org/10.1137/20M1378223
https://doi.org/10.1142/S0218196706003116
https://arxiv.org/abs/2402.08434
https://doi.org/10.1145/2535926
https://doi.org/10.4230/LIPICS.MFCS.2023.66
https://doi.org/10.1145/3570909
https://doi.org/10.1109/LICS56636.2023.10175746
https://doi.org/10.1145/800133.804350
https://doi.org/10.1145/800133.804350
https://doi.org/10.1016/S0885-064X(02)00027-4
https://doi.org/10.1016/S0885-064X(02)00027-4
https://doi.org/10.1145/3402029

	1 Introduction
	2 Preliminaries
	3 Overview of Results
	4 Monoidal Minions: Proof of Theorem 12
	5 Equations Over Monoids and Groups: Proofs of Theorem 5 and Corollary 6
	6 Equations over Semigroups: Proof of Theorem 10

