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Abstract
The infinite-domain CSP dichotomy conjecture extends the finite-domain CSP dichotomy theorem to
reducts of finitely bounded homogeneous structures. Every countable finitely bounded homogeneous
structure is uniquely described by a universal first-order sentence up to isomorphism, and every
reduct of such a structure by a sentence of the logic SNP. By Fraïssé’s Theorem, testing the existence
of a finitely bounded homogeneous structure for a given universal first-order sentence is equivalent to
testing the amalgamation property for the class of its finite models. The present paper motivates a
complexity-theoretic view on the classification problem for finitely bounded homogeneous structures.
We show that this meta-problem is EXPSPACE-hard or PSPACE-hard, depending on whether the
input is specified by a universal sentence or a set of forbidden substructures. By relaxing the input to
SNP sentences and the question to the existence of a structure with a finitely bounded homogeneous
expansion, we obtain a different meta-problem, closely related to the question of homogenizability.
We show that this second meta-problem is already undecidable, even if the input SNP sentence
comes from the Datalog fragment and uses at most binary relation symbols. As a byproduct of our
proof, we also get the undecidability of some other properties for Datalog programs, e.g., whether
they can be rewritten in the logic MMSNP, whether they solve some finite-domain CSP, or whether
they define a structure with a homogeneous Ramsey expansion in a finite relational signature.
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1 Introduction

Strict NP (SNP) is an expressive fragment of existential second-order logic and thus, by
Fagin’s Theorem, of the complexity class NP. If one only considers structures over a finite
relational signature, then SNP can be obtained from the universal fragment of first-order
logic simply by allowing existential quantification over relation symbols at the beginning
of the quantifier prefix. In particular, universal first-order formulas themselves are SNP
formulas. Despite the name, SNP already has the full power of NP, in the sense that every
problem in NP is equivalent to a problem in SNP under polynomial-time reductions [30]. In
addition, this logic class has many connections to Constraint Satisfaction Problems (CSPs),
which we use as the primary source of motivation for the present article. The CSP of a
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relational structure B, denoted by CSP(B), is (the membership problem for) the class of all
finite structures which homomorphically map to B. Every computational decision problem is
polynomial-time equivalent to a CSP [12]. Many practically relevant problems like Boolean
satisfiability or graph colorability can even be formulated as a finite-domain CSP, i.e., where
the template B can be chosen finite. The basic link from SNP to CSP is that every sentence
of the monotone fragment of this logic defines a finite disjoint union of CSPs of (possibly
infinite) relational structures [8]. There are, however, some more nuanced connections, such
as the one that led to the formulation of the Feder-Vardi conjecture, now known as the finite-
domain CSP dichotomy theorem [52]. In their seminal work [30], Feder and Vardi showed
that the Monotone Monadic fragment of SNP (MMSNP) exhibits a dichotomy between P
and NP-completeness if and only if the seemingly less complicated class of all finite-domain
CSPs exhibits such a dichotomy,1 they also conjectured the latter to be true. The logic class
MMSNP contains all finite-domain CSPs, and many other interesting combinatorial problems,
e.g., the problem of deciding whether the vertices of a given graph can be 2-coloured without
obtaining any monochromatic triangle [42]. The Feder-Vardi conjecture was confirmed in
2017 independently by Bulatov and Zhuk [23, 51].

There is a yet unconfirmed generalization of the Feder-Vardi conjecture, to CSPs of reducts
of finitely bounded homogeneous structures, formulated by Bodirsky and Pinsker in 2011 [18].
Here we refer to it as the Bodirsky-Pinsker conjecture. A structure is finitely bounded if it
has a finite relational signature and the class of all finite structures embeddable into it is
definable by a universal first-order sentence, and homogeneous if every isomorphism between
two of its finite substructures extends to an automorphism. Reducts of such structures are
obtained simply by removing some of the original relations. A prototypical example of a
structure that satisfies both finite boundedness and homogeneity is (Q;<), the set of rational
numbers equipped with the usual countable dense linear order without endpoints. It is a
folklore fact that the class of reducts of finitely bounded homogeneous structures is closed
under taking expansions of structures by first-order definable relations [8]. Roughly said, the
condition imposed on the structures within the scope of the Bodirsky-Pinsker conjecture
ensures that the CSP is in NP and that its template enjoys some of the universal-algebraic
properties that have played an essential role in the proofs of the Feder-Vardi conjecture [6].
At the same time, it covers CSP-reformulations of many natural problems in qualitative
reasoning, as well as all problems definable in MMSNP.

Every countable finitely bounded homogeneous structure is uniquely described by a
universal first-order sentence up to isomorphism, and every reduct of such a structure by
a sentence of the logic SNP. The CSPs of both kinds of structures are always definable in
the monotone fragment of SNP. By Fraïssé’s theorem, asking whether a given universal
first-order sentence describes a finitely bounded homogeneous structure is equivalent to
asking whether the class of its finite models has the Amalgamation Property (AP). This
question has been considered many times in the context of the Lachlan-Cherlin classification
programme for homogeneous structures [3, 36, 26], and is known to be decidable in the
case of binary signatures [38, 15]. It also appears as an open problem in Bodirsky’s book
on infinite-domain constraint satisfaction [8]. Whether a given SNP sentence describes a
reduct of a finitely bounded homogeneous structure is a different question, closely related to
homogenizability [2, 4, 28, 35]. To the best of our knowledge, neither of the two questions
is known to be decidable in general. Hence, it is unclear which CSPs actually fall within

1 The correspondence between MMSNP and finite-domain CSP was initially only achieved up to randomized
reductions, but it was later derandomized by Kun [37].
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the scope of the Bodirsky-Pinsker conjecture. Besides CSPs, they are also relevant to other
areas of theoretical computer science such as verification of database-driven systems [21] or
description logics with concrete domains [39, 5]. Below, we state the two questions explicitly.

1. The amalgamation meta-problem. Given a universal sentence Φ over a finite relational
signature, does there exist a finitely bounded homogeneous structure B such that the
finite models of Φ are precisely the finite substructures of B up to isomorphism?

2. The homogenizability meta-problem. Given an SNP sentence Φ over a finite
relational signature, does there exist a reduct B of a finitely bounded homogeneous
structure such that the finite models of Φ are precisely the finite substructures of B up
to isomorphism?

Contributions. In the present paper, we prove the intractability of the two meta-problems.
More specifically, we show that the amalgamation meta-problem is EXPSPACE-hard (The-
orem 6) or PSPACE-hard (Theorem 7), depending on the encoding of the input, and that the
homogenizability meta-problem is undecidable (Theorem 13). Theorem 6 and Theorem 7
are proved in Section 3.1 by taking a proof-theoretic perspective on the AP for classes
defined by universal Horn sentences. We show that, for some of these classes, the failures
of the AP are in a 1:1 correspondence with the rejecting runs of certain Datalog programs
verifying instances of the rectangle tiling problem. Here, by Datalog we mean the monotone
Horn fragment of SNP. Theorem 13 is proved in Section 4, by analyzing model-theoretic
properties of a very natural encoding of context-free grammars into Datalog sentences. As a
byproduct of the proof, we also get the undecidability of some other properties for Datalog
programs, e.g., whether they can be rewritten in the logic MMSNP, whether they solve
some finite-domain CSP, or whether they define a structure with a homogeneous Ramsey
expansion in a finite relational signature.

It is known that, from every finite structure A over a finite relational signature one can
construct in polynomial time a finite structure B over a finite binary relational signature
such that CSP(A) and CSP(B) are polynomial-time equivalent [24, 30]. By our results,
such a reduction is unlikely to exist for universal sentences representing finitely bounded
homogeneous structures, unless it avoids the amalgamation meta-problem. The reason is
that, for binary relational signatures, the amalgamation meta-problem can be decided in
coNEXPTIME (Proposition 3). Our results provide evidence for the need for a fundamentally
new language-independent approach to the Bodirsky-Pinsker conjecture. First steps in
this direction were taken in the recent works of Mottet and Pinsker [44] and Bodirsky and
Bodor [9], but they do not fully address the issues stemming from the two meta-problems. We
elaborate on this claim below. To keep our results as general as possible, we formulate them
for some reasonable promise relaxations of the two meta-problems, i.e., where a subclass and
a superclass of the positive instances are being separated from each other with the promise
that the input never belongs to the complement of the subclass within the superclass.

The subtleties of the Bodirsky-Pinsker conjecture. In 2016, Bodirsky and Mottet presented
an elegant tool for lifting tractability from finite-domain constraint satisfaction to the
infinite [17], hereby establishing the first general link between the Feder-Vardi and the
Bodirsky-Pinsker conjecture. Since then, their method has been used numerous times to
prove new or reprove old complexity classification results for infinite-domain CSPs. One
prominent such example is the universal-algebraic proof of the complexity dichotomy for
MMSNP [16]. Conveniently enough, every MMSNP sentence defines a finite union of CSPs
of structures within the scope of the Bodirky-Pinsker conjecture, so the two meta-problems
were not relevant in this context. There is a prospect that the methods from [17] will also
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prove useful in proving a dichotomy for the even more general logic class Guarded Monotone
SNP (GMSNP) introduced in [7]. Also GMSNP enjoys the above mentioned property of
MMSNP [15], and hence avoids the two meta-problems.

However, outside of GMSNP there exists a regime where the methods from [17] definitely
fall short, and where the two meta-problems become relevant. Consider for instance the
dichotomy for temporal CSPs, i.e., for CSPs of structures with domain Q and whose relations
are definable by a Boolean combination of formulas of the form (x = y) or (x < y), obtained
by Bodirsky and Kára in 2010 [14]. At the present time, these problems are already very well
understood; tractable temporal CSPs can always be solved by an algorithm that repeatedly
searches for a set of potential minimal elements among the input variables, where each
instance of the search is performed using an oracle for a tractable finite-domain CSP. The
latter is generally determined by the shape of the Boolean combinations. E.g., in the case of
CSP(Q; {(x, y, z) ∈ Q3 | (x = y < z) ∨ (y = z < x) ∨ (z = x < y)}), solving the finite-domain
CSP in question amounts to solving linear equations modulo 2 [14, 19]. It is known that the
tractability results from [14] cannot be obtained using the reduction from [17].

In 2022, Mottet and Pinsker introduced the machinery of smooth approximations [44],
which vastly generalizes the methods in [17]. The last section of their paper is devoted to
temporal CSPs, and the authors manage to reprove a significant part of the dichotomy on
just a few pages. They achieve this by applying some of their general results to first-order
expansions of (Q;<) and obtaining either NP-hardness for the CSP, or one of the two types of
symmetry that played a fundamental role in the original proof from [14]. This symmetry can
then be used to prove correctness of the reduction to a finite-domain CSP described above,
but only under an explicit usage of the homogeneity of (Q;<) (see Proposition 3.1 in [19]
and the last section of [44]). In contrast to the methods in [17] which only use homogeneity
as a blackbox, this approach can be described as language-dependent.

A similar situation occurs in the case of phylogeny CSPs [13], which capture decision
problems concerning the existence of a binary tree satisfying certain constraints imposed
on its leaves. Tractable phylogeny CSPs are strikingly similar to tractable temporal CSPs;
they can always be solved by an algorithm that repeatedly searches for a subdivision of the
input variables into two parts, representing the two different branches below the root of a
binary tree, where each instance of this search is performed using an oracle for a tractable
finite-domain CSP. However, for tractable phylogeny CSPs, already the homogeneity of the
infinite-domain CSP template is both sufficient and necessary for proving the correctness of
the reduction to the finite-domain CSP (Theorem 6.13 and Lemma 6.12 in [13]). We can
therefore speak of a case of extreme language-dependency. Temporal and phylogeny CSPs
are special cases of CSPs of structures obtainable from the universal homogeneous binary
tree [10] by specifying relations using first-order formulas. Achieving a complexity dichotomy
in this context will require a non-trivial combination of the methods from [14] and [13].

An optimal way of approaching the conjecture would be gaining a very good understanding
of the class of reducts of finitely bounded homogeneous structures, e.g., through some sort
of a classification. However, it is unclear how realistic this prospect is as model-theoretic
properties often tend to be undecidable [25]. We remark that homogeneity is a vital part of
the Bodirsky-Pinsker conjecture; this assumption can be weakened or strengthened but not
dropped entirely, as otherwise we get a class that provably does not have a dichotomy [30, 8].

2 Preliminaries

Relational structures. The set {1, . . . , n} is denoted by [n], and we use the bar notation
t̄ for tuples. A (relational) signature τ is a set of relation symbols, each R ∈ τ with an
associated natural number called arity. We say that τ is binary if it consists of symbols of
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arity ≤ 2. A (relational) τ -structure A consists of a set A (the domain) together with the
relations RA ⊆ Ak for each R ∈ τ with arity k. An expansion of A is a σ-structure B with
A = B such that τ ⊆ σ, RB = RA for each relation symbol R ∈ τ . Conversely, we call A a
reduct of B. The union of two τ -structures A and B is the τ -structure A ∪ B with domain
A ∪B and relations of the form RA∪B := RA ∪RB for every R ∈ τ .

A homomorphism h : A → B for τ -structures A,B is a mapping h : A → B that preserves
each relation of A, i.e., if t̄ ∈ RA for some k-ary relation symbol R ∈ τ , then h(t̄) ∈ RB. We
write A → B if A maps homomorphically to B. The Constraint Satisfaction Problem (CSP)
of A, denoted by CSP(A), is defined as the class of all finite structures which homomorphically
map to A. An embedding is a homomorphism h : A → B that additionally satisfies the
following condition: for every k-ary relation symbol R ∈ τ and t̄ ∈ Ak we have h(t̄) ∈ RB

only if t̄ ∈ RA. We write A ↪→ B if A embeds to B. The age of A, denoted by age(A), is
the class of all finite structures which embed to A. A substructure of A is a structure B

over B ⊆ A such that the inclusion map i : B → A is an embedding. An isomorphism is a
surjective embedding. Two structures A and B are isomorphic if there exists an isomorphism
from A to B. An automorphism is an isomorphism from A to A. The orbit of a tuple t̄ ∈ Ak

in A is the set {g(t̄) | g is an automorphism of A}. A countable structure A is ω-categorical
if, for every k ≥ 1, there are only finitely many orbits of k-tuples in A.

First-order logic. We assume that the reader is familiar with classical first-order logic as well
as with basic preservation properties of first-order formulas, e.g., that every first-order formula
ϕ is preserved by isomorphisms; by embeddings if ϕ is existential, and by homomorphisms
if ϕ is existential positive. For a first-order sentence Φ, we denote the class of all its finite
models by fm(Φ). We say that a first-order formula is k-ary if it has k free variables. For
a first-order formula ϕ, we use the notation ϕ(x̄) to indicate that the free variables of ϕ
are among x̄. This does not mean that the truth value of ϕ depends on each entry in x̄.
We assume that equality = as well as the nullary predicate symbol ⊥ for falsity are always
available when building first-order formulas. Thus, atomic τ -formulas, or τ -atoms for short,
over a relational signature τ are of the form ⊥, (x = y), and R(x̄) for some R ∈ τ . We say
that a formula is equality-free if it does not contain any occurrence of the default equality
predicate. If ϕ is a disjunction of possibly negated τ -atoms, then we define the Gaifman
graph of ϕ as the undirected graph whose vertex set consists of all free variables of ϕ and
where two distinct variables x, y form an edge if and only if they appear jointly in a negative
atom of ϕ. Let Φ be a universal τ -sentence in prenex normal form whose quantifier-free part
ϕ is in CNF. We call Φ Horn if every clause of ϕ is Horn, i.e., contains at most one positive
disjunct. We call Φ complete if the Gaifman graph of each clause of ϕ is complete. It is a
folklore fact that, if Φ is complete, then fm(Φ) is preserved by unions.

SNP and its fragments. An SNP τ -sentence is a second-order sentence Φ of the form
∃X1, . . . , Xn∀x̄. ϕ where ϕ is a quantifier-free formula in CNF over τ ∪ {X1, . . . , Xn}. We
call Φ monadic if Xi is unary for every i ∈ [n]; monotone if ϕ does not contain any positive
τ -atoms (in particular no positive equality atoms); and guarded if, for every positive atom
β there exists a negative atom α containing all variables of β. Note that all notions from
the previous paragraph easily transfer to SNP sentences viewed as universal sentences in an
extended signature. The monadic monotone and the guarded monotone fragments of SNP
are denoted by MMSNP and GMSNP, respectively. The monotone Horn fragment of SNP is
commonly known as the logic programming language Datalog. When we say that a Datalog
program Φ solves the CSP of a structure B, we simply mean that fm(Φ) = CSP(B).

ICALP 2024
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Homogeneity, homogenizability, and finite boundedness. A countable structure S is
homogeneous if every isomorphism between two finite substructures of S extends to an
automorphism of S. Clearly, every homogeneous structure in a finite relational signature is
ω-categorical, and so are the reducts of such structures. Homogeneous structures arise as
limit objects of well-behaved classes of finite structures in the sense of Theorem 1.

Let K be a class of finite structures in a finite relational signature τ closed under
isomorphisms and substructures. We say that K has the amalgamation property (AP) if, for
all B1,B2 ∈ K whose substructures on B1 ∩ B2 are identical, there exists C ∈ K together
with embeddings f1 : B1 ↪→ C and f2 : B2 ↪→ C such that f1|B1∩B2 = f2|B1∩B2 . We refer to
C as an amalgam of B1 and B2 in K. Note that, for a class closed under isomorphisms and
substructures, the AP is implied by the property of being closed under unions B1 ∪ B2, also
called free amalgams.

▶ Theorem 1 (Fraïssé). For a class K of finite structures in a finite relational signature τ ,
the following are equivalent:

K is the age of an up to isomorphism unique countable homogeneous τ -structure;
K is closed under isomorphisms, substructures, and has the AP.

As already mentioned in the introduction, the structure (Q;<) is homogeneous because
every local isomorphism can be extended to an automorphism using a piecewise affine
transformation. Its age is the class of all finite strict linear orders.

A countable structure S is homogenizable if it is a reduct of a homogeneous structure H

over a finite relational signature such that S and H have the same sets of automorphisms [28].
Whenever this happens, by the theorem of Ryll-Nardzewski, all relations of H are first-
order definable in S [33]. One might say that S already has all the relations necessary
for homogeneity but they perhaps do not all have names. A prototypical example of this
phenomenon is the universal “homogeneous” binary tree, which is homogenizable but not
homogeneous, see, e.g., Proposition 3.2 in [10]. We call a class K of finite structures in a
finite relational signature τ homogenizable if it forms the age of a homogenizable structure.

For a class N of finite structures in a finite relational signature τ , the class Forbe(N )
consists of all finite τ -structures which do not embed any member of N . Following the
terminology in [40], we say that a class K of finite structures in a finite relational signature is
finitely bounded if there exists a finite N such that K = Forbe(N ). We refer to N as a set of
bounds for K, and define the size of N as the sum of the cardinalities of the domain and the
relations of all structures in N . A structure S is finitely bounded if its age is finitely bounded.
We say that a class K is finitely bounded homogenizable if it forms the age of a reduct R

of a finitely bounded homogeneous structure H such that R and H have the same sets of
automorphisms. Sufficient conditions for finitely bounded homogenizability were provided by
Hubička and Nešetřil [34], generalizing previous work of Cherlin, Shelah, and Shi [27].

3 The Amalgamation Meta-Problem

By Theorem 1, every homogeneous structure is uniquely described by its age (up to isomorph-
ism). Consequently, every finitely bounded homogeneous structure is uniquely described by
a finite set of bounds. It is known that the question whether Forbe(N ) has the AP for a
given finite set of bounds N can be tested algorithmically in the case where the signature
is binary [38]. This decidability result is based on the following observation. A one-point
amalgamation diagram is an input B1,B2 to the AP where |B1 \B2| = |B2 \B1| = 1.
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▶ Proposition 2 ([38]). A class of finite relational τ -structures that is closed under iso-
morphisms and substructures has the AP if and only if it has the AP restricted to one-point
amalgamation diagrams.

As a consequence of Proposition 2, if τ is binary and Forbe(N ) does not have the AP, then
the size of a smallest counterexample to the AP is polynomial in the size of N [15]. Such a
counterexample can be non-deterministically guessed and verified using a coNP-oracle, which
places the problem at the second level of the polynomial hierarchy (Theorem 15 in [5]).

There is a second, arguably more practical, equivalent definition of finite boundedness.
Namely, a class K of finite structures in a finite relational signature is finitely bounded if
and only if there exists a universal sentence Φ such that K = fm(Φ). Using this definition,
it is easy to see that (Q;<) is finitely bounded because its age, the class of all finite strict
linear orders, admits a finite universal axiomatization (irreflexivity, transitivity, and totality).
From a complexity-theoretical perspective, the two definitions are equivalent only up to a
single-exponential blow-up in one direction. Given a finite set of bounds N , we can obtain
a universal sentence Φ of size polynomial in the size of N satisfying fm(Φ) = Forbe(N ) by
describing each structure in N up to isomorphism using a quantifier-free formula. However,
given a universal sentence Φ, it can be the case that a smallest N satisfying fm(Φ) = Forbe(N )
is of size single-exponential in the size of Φ. The reason is that obtaining N from Φ is
comparable to rewriting Φ in DNF. Consequently, the algorithm from [15] only gives us a
relatively weak upper bound for the case where the inputs are specified by universal sentences.

▶ Proposition 3. Let Φ be a universal sentence over a finite binary relational signature τ .
If fm(Φ) does not have the AP, then the size of a smallest counterexample to the AP is at
most single-exponential in the size of Φ. Consequently, the question whether fm(Φ) has the
AP is decidable in coNEXPTIME.

The upper bound provided by Proposition 3 is not unreasonable since a smallest counter-
example to the AP might be of size exponential in the size of the input sentence even if the
signature is binary. This is demonstrated in Example 4.

▶ Example 4. Let τ be the signature consisting of the unary symbols {L,R} ∪ {Xi | i ∈ [n]}
and the binary symbols {E} ∪ {Yi | i ∈ [n]} for some n ∈ N. Consider the universal sentence

Φ := ∀x, y1, y2

(
L(y1) ∧R(y2) ∧E(x, y1) ∧E(x, y2) ∧

( ∧
i∈[n]

Yi(y1, y2) ⇔ Xi(x)
)

⇒ ⊥
)
.

Our first claim is that fm(Φ) does not have the AP. We define the one-point amalgamation
diagram B1,B2 ∈ fm(Φ) as follows. The domains are Bi := {bi} ∪ {bS | S ⊆ [n]}, i ∈ {1, 2},
and the relations are given by the following conjunction of atomic formulas:

L(b1) ∧R(b2) ∧
∧

S⊆[n]
E(bS , b1) ∧ E(bS , b2) ∧

∧
i∈S

Xi(bS).

We have that B1 and B2 satisfy Φ because RB1 = ∅ and LB2 = ∅. Clearly, no amalgam for
B1 and B2 can be obtained by identifying b1 and b2 because LB1 = {b1} and RB2 = {b2}.
The free amalgam B1∪B2 does not satisfy Φ because of the assignment y1 := b1, y2 := b2, and
x := b∅. But since we can assign x := bS for any S ⊆ [n], also no amalgam satisfying Φ can
be obtained by adding the pair (b1, b2) to any subset of the relations Y B1∪B2

1 , . . . , Y B1∪B2
n

of the free amalgam. We conclude that fm(Φ) does not have the AP.
Our second claim is that every one-point amalgamation diagram B1,B2 ∈ fm(Φ) satisfying

|B1 ∩B2| < 2n has an amalgam in fm(Φ). Let b1 and b2 be the unique elements contained
in B1 \B2 and B2 \B1, respectively. If B1 ∪ B2 |= Φ, then we are done because B1 ∪ B2 is

ICALP 2024
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an amalgam for B1 and B2. So suppose that B1 ∪ B2 |̸= Φ. Consider any evaluation of the
quantifier-free part of Φ witnessing the fact that B1 ∪B2 |̸= Φ. Since b1 and b2 do not appear
together in any relation of B1 ∪ B2 and B1,B2 |= Φ, by the shape of Φ, it must be the case
that x is assigned some element b ∈ B1 ∩B2, y1 is assigned b1, and y2 is assigned b2 (or vice
versa). Since |B1 ∩B2| < 2n, there must exist S ⊆ [n] such that, for every b ∈ B1 ∩B2, it is
not the case that b ∈ XB1∪B2

i if and only if i ∈ S. Consequently, we can obtain an amalgam
C ∈ fm(Φ) for B1 and B2 by adding the pairs (b1, b2) and (b2, b1) to Y B1∪B2

i for every i ∈ S.
We conclude that a smallest counterexample to the AP for fm(Φ) is of size > 2n.

Very little progress has been done on signatures containing symbols of arities larger than
2. In particular, it is not even known whether the AP is decidable for finitely bounded
classes in general. The scenario where this is not the case is not unrealistic since the closely
related joint embedding property (JEP) is undecidable already for finitely bounded classes
of graphs [22]. The JEP determines whether a finitely bounded class forms the age of any
structure, without the requirement of homogeneity [33]. Note that the undecidability of
the JEP does not necessarily have any consequences for the Bodirsky-Pinsker conjecture,
similarly as it did not have any for the Feder-Vardi conjecture.

If the AP turns out to be undecidable as well (for finitely bounded classes), then the
Bodirsky-Pinsker conjecture addresses a class of structures with an undecidable membership
problem, at least under the currently best known input to the meta-problem. It seems that,
to some extent, the decidability issue can be ignored by only using homogeneity as a blackbox.
This was demonstrated in the recent work [45] on the complexity of CSPs of homogeneous
uniform hypergraphs, whose classification remains an open problem [3]. We remark that the
complexity of the amalgamation meta-problem is already open in the following case, where
we can only prove PSPACE-hardness.

▶ Theorem 5. Given a universal Horn sentence Φ over a finite relational signature that is
binary except for one ternary symbol, the question whether fm(Φ) has the AP is PSPACE-hard.

The next theorem states that testing the AP becomes properly harder than in the binary
case if we do not impose any restrictions on the input (unless coNEXPTIME = EXPSPACE).
The fact that this is also true for the strong version of the AP might be of independent
interest to model-theorists. The strong version of the AP is when C ∈ K and fi : Bi ↪→ C

for i ∈ {1, 2} can always be chosen so that f1(B1) ∩ f2(B2) = f1(B1 ∩ B2). Note that the
theorem is formulated as a statement of the form “the question whether X or not even Y is
hard.” This is a compact way for writing that both X and Y (and every property in between)
are hard, the formulation tacitly assumes that the inputs never satisfy “Y and not X.”

▶ Theorem 6. Given a universal sentence Φ over a finite signature, the question whether
fm(Φ) has the strong AP or not even the AP is EXPSPACE-hard.

Theorem 7 is a variant of Theorem 6 in the setting where the input is specified by
a set of bounds instead of a universal sentence. This setting can be compared to the
situation where, in Theorem 6, the quantifier-free part of Φ is required to be in DNF. As a
consequence, we cannot profit from succinctness of general universal sentences, which leads
to a weaker PSPACE lower bound on the complexity. On the other hand, it turns out that
PSPACE-hardness is witnessed even by instances whose domain size remains constant.

▶ Theorem 7. Given a finite set N of finite structures over a finite signature, the question
whether Forbe(N ) has the strong AP or not even the AP is PSPACE-hard. The statement is
true even when the domain size for the structures in N is bounded by a constant.
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3.1 Proofs of Theorem 6 and Theorem 7
Our proofs of Theorem 6 and Theorem 7 are based on the fact that, if Φ is a universal Horn
sentence such that fm(Φ) does not have the AP, then every counterexample to the AP has
the form of a particular Horn clause which can be derived from Φ in a syntactical manner.
By padding each Horn clause in Φ with auxiliary negative atoms and hereby increasing its
“degree of completeness,” we gain some control over the form of the counterexamples to the
AP. When this is performed in a careful and systematic way, the counterexamples to the AP
can be brought into a 1:1 correspondence with the rejecting runs of certain Datalog programs.
In our case, such programs verify the validity of tilings w.r.t. given input parameters to a
bounded tiling problem. This is the main technical contribution of the present article.

▶ Definition 8. Let Φ be an equality-free universal Horn sentence over a relational signature
τ . Additionally, let ϕ(x̄) and ψ(x̄, ȳ) be equality-free conjunctions of atomic τ -formulas. We
write ψ(x̄, ȳ) ≤Φ ϕ(x̄) if, for every atomic τ -formula χ(x̄) other than equality,

Φ |= ∀x̄, ȳ
(
ψ(x̄, ȳ) ⇒ χ(x̄)

)
implies Φ |= ∀x̄

(
ϕ(x̄) ⇒ χ(x̄)

)
.

In the next lemma, we reformulate the (strong) AP using Definition 8.

▶ Lemma 9. Let Φ be an equality-free universal Horn sentence over a relational signature τ .
Then the following are equivalent:
1. fm(Φ) has the strong AP.
2. fm(Φ) has the AP.
3. If ϕ(x̄), ϕ1(x̄, y1), and ϕ2(x̄, y2) are equality-free conjunctions of atomic formulas, where

y1 and y2 are distinct variables not contained in x̄, such that, for both i ∈ {1, 2}, every
atom in ϕi(x̄, yi) contains the variable yi and ϕ(x̄) ∧ ϕi(x̄, yi) ≤Φ ϕ(x̄), then

ϕ(x̄) ∧ ϕ1(x̄, y1) ∧ ϕ2(x̄, y2) ≤Φ ϕ(x̄) ∧ ϕ1(x̄, y1).

Let Φ be an equality-free universal Horn sentence and ψ a Horn clause over a relational
signature τ . An SLD-derivation of ψ from Φ is a finite sequence of Horn clauses ψ0, . . . , ψs = ψ

such that ψ0 is a conjunct in Φ and, for every i ∈ [s], there exists a Horn clause ϕi which
is, up to renaming of variables, a conjunct in Φ, and such that ψi is obtained from ψi−1 by
replacing a negative atom of ψi−1 that appears positively in ϕi with all negative atoms of ϕi.
We say that ψi is a resolvent of ψi−1 and ϕi. We call ψ a weakening of a clause ψ′ if ψ′ can
be obtained from ψ by removing any amount of atoms. In particular, ψ is a weakening of
itself. There exists an SLD-deduction of ψ from Φ, written as Φ ⊢ ψ, if ψ is a tautology or a
weakening of a Horn clause ψ′ that has an SLD-derivation from Φ. The following theorem
presents a fundamental property of equality-free universal Horn sentences.

▶ Theorem 10 (Theorem 7.10 in [46]). Let Φ be an equality-free universal Horn sentence and
ψ an equality-free Horn clause, both in a fixed signature τ . Then Φ |= ψ if and only if Φ ⊢ ψ.

Our hardness proofs are by polynomial-time reductions from the complements of two
well-known bounded versions of the tiling problem. Consider the signature σ consisting of
the two binary symbols Ph, Pv, as well as the four unary symbols Pℓ, Pr, Pt, Pb. For natural
numbers m,n ≥ 1, the σ-structure Rm,n has the domain [m] × [n] and the relations

P
Rm,n

h := {((i, j), (i+ 1, j)) | i ∈ [n− 1], j ∈ [m]},
PRm,n

v := {((i, j), (i, j + 1)) | i ∈ [n], j ∈ [m− 1]},

P
Rm,n

ℓ := [m] × {1}, PRm,n
r := [m] × {n},

P
Rm,n

b := {1} × [n], PRm,n

t := {m} × [n].

ICALP 2024
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The rectangle tiling problem asks whether, given a natural number n and a finite σ-structure T,
there exists a natural number m such that Rm,n → T. Note that this is just a reformulation
of the usual statement using the language of homomorphisms.2 In contrast to the better-
known NP-complete square tiling problem, one dimension of the tiling grid is not part of
the input and is existentially quantified instead. As a result, the problem becomes PSPACE-
complete [50].3 One can further increase the complexity by allowing a succinct encoding of
the space bound. The input remains the same but now we ask for a a rectangle tiling with
2n columns. Analogously to the natural complete problems based on Turing machines, this
yields a decision problem that is complete for the complexity class EXPSPACE [48].

Inputs specified by universal sentences. Theorem 6 is proved by polynomial-time reduction
from the complement of the exponential rectangle tiling problem. From every input, we
construct a universal sentence Φ of polynomial size such that fm(Φ) has the AP if and only if
there exists no exponential rectangle tiling satisfying the given parameters. The sentence Φ
is almost Horn but disjunctions of non-negated atoms are used in premises of implications to
represent exponentially many Horn clauses in a universal sentence of polynomial size. In the
text that follows, we allow ourselves to still call such sentences Horn. Our encoding is very
compact; each row, i.e., an ordered sequence of 2n-many tiles, is represented using a constant
amount of variables. This is achieved by storing the information about each individual row
in binary using (n+ 1)-ary atoms whose entries always contain at most three variables. We
refer to the variables representing rows of the tiling as path nodes. In order to check the tiling
from bottom to top, i.e., parse a chain of path nodes, we require each pair of subsequent path
nodes to be verified by a set of 2n-many verifier nodes. This process ensures the vertical
consistency of the tiling as well as the presence of 2n-many tiles in every row. The precise
number of verifier nodes is achieved using combinations of n pairs of unary atoms.

To control the occurrence of amalgamation failures, we first introduce a binary symbol
E and two unary symbols L,R. Atoms with these symbols serve no other purpose than to
ensure that almost each conjunct in Φ is complete, i.e., defines a class of structures that is
preserved by taking unions and hence has the AP. More concretely, the premise of almost
every Horn clause in Φ has a subformula of the form

L(y1) ∧R(y2) ∧
∧

i∈[k]
E(y1, xi) ∧ E(y2, xi) ∧

∧
j∈[k]

E(xi, xj)

making the Horn clause almost complete, with the exception of one potentially missing edge
in the Gaifman graph between y1 and y2. Our intention is to make this missing edge the only
place at which potential faulty one-point amalgamation diagrams can be built (see Figure 1).
The sentence Φ is defined as Φ1 ∧ Φ2, where the two parts are described below.

The first part Φ1 does not yet explain how our reduction works, but ensures that it
does not fall apart, e.g., due to ill-behaved identifications of variables. For every α ∈ T ,
the signature τ contains an (n + 1)-ary symbol Tα. The first n arguments in a Tα-atom
serve as binary counters, and the last argument carries a given path node p. Suppose that
the variables 0 and 1 represent the bits 0 and 1, respectively. Then each atomic formula
Tα(c1, . . . , cn, p) with c1, . . . , cn ∈ {0,1} represents the situation in which a tile α is present
in the p-th row and in the

(
1 +

∑
k∈[n](ck = 1) · 2n−k

)
-th column. First, we want to ensure

the horizontal consistency of the tiling. To this end, for every pair (α, β) ∈ T 2 \ PT
h , we

2 For comparison, see, e.g., Section 4 in [32].
3 In [50], the rectangle tiling problem is called the corridor tiling problem.
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include in Φ1 a complete Horn sentence without positive atoms ensuring that two horizontally
adjacent positions in the p-th row cannot be tiled with α and β. Here, we encode the
successor relation w.r.t. binary addition using a combination of equalities: (cn+1, . . . , c2n) is
the successor of (c1, . . . , cn) if and only if there exists j ∈ [n] such that ci = ci+n ∈ {0,1}
for every i ∈ [j − 1], cj = 0 and cn+j = 1, and ci = 1 and ci+n = 0 for every i ∈ [n] \ [j].
This encoding only makes sense if 0 and 1 truly represent the bits 0 and 1, so we introduce
a simple mechanism (in terms of a Horn sentence) for distinguishing between the variables 0
and 1. Next, we want to ensure that every position in the p-th row is occupied by at most
one tile. To this end, for every (α, β) ∈ T 2 with α ̸= β, we include

∀p,0,1, c1, . . . , cn

(
Tα(c1, . . . , cn, p) ∧ Tβ(c1, . . . , cn, p) ∧

∧
i∈[n]

(ci = 0 ∨ ci = 1) ⇒ ⊥
)

as a conjunct in Φ1. Finally, we want to ensure that each verifier node v represents at most
one number from [2n]. For every i ∈ [n], τ contains two unary symbols 0i and 1i which
will be used to encode numbers in binary. We include ∀v

( ∨
i∈[n] 0i(v) ∧ 1i(v) ⇒ ⊥

)
as the

last conjunct in Φ1. Now the idea is that the combinations of atomic formulas 0i(v) and
1i(v) at a verifier node v will be compared with the combinations of 0 and 1 in atomic
formulas Tα(c1, . . . , cn, p). The Horn sentences in the second part of Φ will be formulated so
that verifying the presence of all 2n atoms of the form Tα(c1, . . . , cn, p1) at a path node p1
using verifier nodes v1, . . . , v2n is the only possible way to progress to a next path node p2.
Consequently, we do not need to add an explicit requirement for rows, represented by path
nodes, to be completely tiled from left to right. For the same reason, we also do not need to
add an explicit requirement for verifier nodes to represent at least one number from [2n].

We now proceed with the sentence Φ2, which explains how the parsing of a tiling actually
works. The parsing of a tiling starts from a path node p representing a row whose leftmost
position contains a tile that can be present in the bottom left corner of a tiling grid. This
must be confirmed by a verifier node, in which case a 6-ary Qb-atom is derived, representing
the fact that the leftmost column of the p-th row has been checked. To this end, we include
in Φ2 suitable Horn sentences for every α ∈ PT

ℓ ∩PT
b . These sentences form the non-complete

part of Φ; we intentionally leave a missing edge between y1 and y2 in the Gaifman graph to
enable the formation of potential AP-counterexamples. Moreover, the variables y1 and y2
appear in the 1st and the 2nd entry of the derived atom, respectively, and this invariant is
maintained throughout the whole construction of Φ2.

Using 2n-many verifier nodes and propagation of Qb-atoms, the whole bottom row is
checked for the presence of tiles. Their horizontal consistency already follows from the
conditions imposed on path nodes by Φ2 and needs not to be checked during this step. To
this end, we include in Φ2 suitable Horn sentences for every α ∈ PT

b . After the p-th row has
been checked by a 2n-th verifier node, we mark p with a Q-atom indicating that the parsing
can progress to a successor path node. To this end, we include in Φ2 suitable Horn sentences
for every α ∈ PT

b ∩ PT
r . The successor relation for path nodes is represented by the binary

symbol S, and the certificate of vertical verification for pairs (p1, p2) of successive path nodes
is represented by the 7-ary symbol Qv. For every (α, β) ∈ PT

v ∩ (PT
ℓ )2, we include in Φ2

a Horn sentence verifying the vertical consistency of the leftmost positions in the rows p1
and p2 and deriving the first Qv-atom containing p1 and p2, but only if there is a Q-atom
containing p1. Next, for every (α, β) ∈ PT

v , we include in Φ2 a Horn sentence verifying the
vertical consistency for the intermediate positions by deriving further Qv-atoms containing
p1 and p2. And finally, for every (α, β) ∈ PT

v ∩ (PT
r )2, we include in Φ2 a Horn sentence

verifying the vertical consistency of the leftmost positions in the rows p1 and p2 and deriving
the first Q-atom containing p2 only. The top row is verified using a 6-ary symbol Qt similarly
as the bottom row; however, the verification of the rightmost position in the top row results
in the derivation of ⊥.
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Figure 1 An illustration of an AP-counterexample representing a verification of a valid tiling of
an exponential rectangle with m rows and 2n columns.

Proof of Theorem 6. We first argue that Φ is equivalent to a particular Horn sentence, to
which we can apply Lemma 9. By construction, the quantifier-free part of each conjunct
in Φ has the form of an implication where the premise possibly also contains instances of
disjunction, which are not allowed in Horn clauses, but no instances of negation. Therefore,
it can be rewritten as a conjunction of Horn clauses by converting the premise into positive
DNF and then considering each disjunct as a separate premise. As a result, the size of
the sentence increases exponentially, but this does not matter for the purpose of the proof.
Subsequently, all equality atoms can be eliminated by replacing each variable ci with either
0 or 1. We denote the resulting Horn sentence by Φ and the two parts stemming from Φ1
and Φ2 by Φ1 and Φ2, respectively.

“⇒” Suppose that there exists a tiling f : Rm,2n → T. Guided by f , we define a one-point
amalgamation diagram B1,B2 ∈ fm(Φ) which has no amalgam in fm(Φ) (see Figure 1).
The domains are Bi := {yi, p1, . . . , pm, v1, . . . , v2n ,0,1} for i ∈ {1, 2}, and the relations are
given by the following conjunctions of atomic formulas. We require Tα(c1, . . . , cn, pj) for
c1, . . . , cn ∈ {0,1} if and only if f(1 +

∑
k∈[n](ck = 1) · 2n−k, j) = i. Next, we require all

of the L, R, and E-atoms necessary for enabling the Horn clauses in B1 ∪ B2. Finally,
we require

∧
i∈[m−1] S(pi, pi+1) to define a successor chain through path nodes, and 0i(vj)

or 1i(vj) if and only if j = 1 +
∑

k∈[n] λk · 2n−k for λ1, . . . , λn ∈ {0, 1} and λi = 0 or
λi = 1, respectively. Clearly, the tiling atoms are placed correctly and the verifier nodes
correctly represent values in [2n]. Since RB1 = ∅ and LB2 = ∅, we have B1,B2 |= Φ2. Since
f is horizontally consistent, we have B1,B2 |= Φ1, i.e., B1,B2 ∈ fm(Φ). But since f is
also vertically consistent and Φ2 is a universal Horn sentence, we have C |̸= Φ2 for every
τ -structure C with a homomorphism from B1 ∪ B2. Hence, fm(Φ) does not have the AP.

“⇐” Suppose that fm(Φ) does not have the AP. Then there exists a counterexample to
item (3) in Lemma 9, i.e., there exists a Horn clause ψ of the form ϕ(x̄)∧ϕ1(x̄, y1)∧ϕ2(x̄, y2) ⇒
χ, where ϕ, ϕ1, and ϕ2 satisfy the prerequisites of item (3) in Lemma 9 and χ(x̄, y1) is an
atomic τ -formula other than equality, such that

Φ |= ∀x̄, y1, y2
(
ϕ ∧ ϕ1 ∧ ϕ2 ⇒ χ

)
, (1)

Φ |̸= ∀x̄, y1
(
ϕ ∧ ϕ1 ⇒ χ

)
. (2)

We choose ψ minimal with respect to the number of its atomic subformulas. By Theorem 10,
ψ has an SLD-deduction from Φ. Note that, by (2), χ(x̄, y1) cannot be a subformula of
ϕ(x̄) ∧ ϕ1(x̄, y1). Also, χ(x̄, y1) cannot be a subformula of ϕ2(x̄, y2) because every atom in
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ϕ2(x̄, y2) contains the variable y2 which does not appear in χ(x̄, y1). Hence, χ(x̄, y1) is not a
subformula of ϕ(x̄) ∧ ϕ1(x̄, y1) ∧ ϕ2(x̄, y2), i.e., ψ is not a tautology. Consequently, ψ is a
weakening of a Horn clause ψ′ which has an SLD-derivation ψ′

0, . . . , ψ
′
s = ψ′ from Φ. Recall

that every atom from ψ′ appears in ψ.

▷ Claim 11. Φ2 ⊢ ψ′.

Proof. We start by showing that ψ′
0 is a conjunct of Φ2. Suppose, on the contrary, that ψ′

0
is a conjunct of Φ1. Then ψ′ does not contain any positive atom because, by construction,
Horn sentences in Φ1 do not contain any positive atoms. By construction, in Φ there is no
Horn clause containing a positive atom that occurs negatively in a Horn clause from Φ1, i.e.,
it is impossible to take resolvents of ψ′

0 and Horn clauses from Φ. It follows that s = 0. Also,
every Horn clause from Φ1 is complete. Since there is no edge between y1 and y2 in the
Gaifman graph of ψ, and, for i ∈ {1, 2}, each atom in ϕi contains the variable yi, either ϕ1 or
ϕ2 must be empty. Since ψ′ does not contain any positive atom and ϕ(x̄) ∧ ϕi(x̄, yi) ≤Φ ϕ(x̄)
for both i ∈ {1, 2}, we get a contradiction to (2). Thus, ψ′

0 must be a conjunct of Φ2. Since
no Horn clause in Φ1 contains a positive atom, no Horn clause from Φ1 can be used as a
resolvent. We conclude that ψ′ has an SLD-derivation from Φ2. ◁

▷ Claim 12. ψ′ contains no positive atoms, and no atoms with a symbol from {Qb, Qv, Qt, Q}.

Proof. By the construction of Φ2, for every i ∈ [s], if ψ′
i−1 contains variables z1, z2 such that

every atomic subformula with a symbol from {Qb, Qv, Qt, Q}
contains z1 in its 1st and z2 in its 2nd argument, respectively, (3)

then this is also the case for ψ′
i, for the same variables z1, z2 up to renaming. Since every

possible choice of ψ′
0 from Φ2 initially satisfies (3), it follows via induction that (3) holds for

ψ′ = ψ′
s for some variables z1, z2. Next, we show that {z1, z2} = {y1, y2} holds for the pair

z1, z2 satisfying (3) for ψ′. Suppose, on the contrary, that both z1 and z2 are among x̄, y1 or
x̄, y2. By construction, the only Horn clauses in Φ2 that are not complete have the property
that the incompleteness is only due to one missing edge in the Gaifman graph between two
distinguished variables satisfying (3). Therefore, for every i ∈ [s], ψ′

i is a resolvent of ψ′
i−1

and a Horn clause from Φ2 which is almost complete except possibly for one missing edge
in the Gaifman graph between a pair of variables which must be substituted for the pair
(z1, z2) satisfying (3) for ψ′

i−1. Since the variables y1 and y2 do not appear together in any
atom in ψ′ and {z1, z2} ≠ {y1, y2}, they also do not appear together in any atom during the
SLD-derivation. Then it follows from the fact that ϕ, ϕ1, and ϕ2 satisfy the prerequisites of
item (3) in Lemma 9 that we already have Φ2 ⊢ ∀x̄, y1

(
ϕ ∧ ϕ1 ⇒ χ

)
, a contradiction to (2).

Since {z1, z2} = {y1, y2} holds for the pair z1, z2 satisfying (3) for ψ′, ψ′ cannot contain any
negative atoms with a symbol from {Qb, Qv, Qt, Q}. Suppose that the conclusion of ψ′

0 is not
⊥. Then, by construction, ψ′ contains a positive atom with a symbol from {Qb, Qv, Qt, Q}.
But then, since z1, z2 with {z1, z2} = {y1, y2} satisfy (3) for ψ′, the said positive atom in ψ′

contains both variables y1 and y2. This leads to a contradiction to (1) where we assume that
the positive atom in ψ may may only contain variables from x̄, y1. Thus the conclusion of ψ′

0
is ⊥, which means that χ equals ⊥ due to the minimality assumption. ◁

It remains to show that the existence of such ψ′ implies the existence of a tiling f : Rm,2n →
T. By the first and the second claim, the conclusion of ψ′

0 is ⊥. Since ψ′ does not contain any
atoms with a symbol from {Qb, Qv, Qt, Q}, the last such atom must have been eliminated
from ψ′

s−1 by taking a resolvent with one of the incomplete Horn clauses in Φ2. By the
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construction of Φ2, to obtain ψ′ through an SLD-derivation ψ′
0, . . . , ψ

′
s = ψ′ from Φ2, all Horn

clauses introduced in the definition of Φ2 must have been used in the intended order. Recall
that we have replaced each variable ci in Φ2 with either 0 or 1 while rewriting Φ2 as an Horn
sentence. Every Horn clause from Φ2 has the property that every positive atomic subformula
has a symbol from {Qb, Qv, Qt, Q} and contains all variables that appear in a negative atomic
subformula, with the following two exceptions. First, verifier nodes are not carried over in
any atoms because their only contribution is the encoding of a unique number. Second, after
a pair of successive rows has been checked by deriving a Qv-atom containing a 2n-th verifier
node, the variable representing the lower row is not carried over in any atom because it is
no longer needed. Since ϕ, ϕ1, and ϕ2 satisfy the prerequisites of item (3) in Lemma 9, no
ill-behaved variable identifications might have occurred during the SLD-derivation above as
otherwise, we would have Φ1 |= ∀x̄, y1

(
ϕ ∧ ϕ1 ⇒ χ

)
, a contradiction to (2). Consequently,

the SLD-derivation must have the full intended length (2n + 1) ·m for some m ≥ 1, because
every intermediate stage starts and ends with verifier nodes encoding the numbers 2n and 1,
respectively, and one can only progress in steps which decrement the encoded number by
one. Clearly, the SLD-derivation witnesses the existence of f : Rm,2n → T. ◀

Inputs specified by sets of bounds. We continue with the proof of Theorem 7. This time,
we reduce from the complement of the basic rectangle tiling problem. The proof strategy is
similar. In particular, we include in τ the two auxiliary unary symbols L,R and the binary
auxiliary symbol E. However, the encoding of the tiles is different. We include in τ a symbol
I of arity ⌈log2 |T | ·n⌉ + 1. The first ⌈log2 |T | ·n⌉ entries serve as binary counters to represent
the pairs (i, α) ∈ [n] × T in binary, and the last entry carries a path node representing a row
of the tiling grid. Each pair (i, α) ∈ [n] × T is to be interpreted as the fact that the i-th
column in the row represented by a particular path node contains the tile α. The reason for
this choice of encoding is that we aim to construct a universal sentence Φ which is equivalent
to a set of forbidden substructures N of size polynomial in |T | · n. To achieve this, we use a
constant number of symbols whose arity is logarithmic in the size of the input.

Suppose that 0 and 1 are two variables representing the bits 0 and 1, respectively. For
each pair (i, α) ∈ [n] ×T , the ternary formula TILEi,α(0,1, p) is the I-atom whose last entry
contains the variable p and the first ⌈log2 |T | · n⌉ entries contain the variables 0 and 1 in the
unique way that represents the number i · α in binary when read from left to right. Note
that the number of such formulas is polynomial in the size of the input to the tiling problem.
In contrast to the proof of Theorem 6, it is not necessary to introduce any verifier nodes as
the number of columns in the tiling grid is polynomial in the size of the input. The sentence
Φ is defined similarly as in the proof of Theorem 6, so we only provide a general overview
and highlight the main differences. We want each row to be horizontally consistent. For all
i ∈ [n− 1] and (α, β) ∈ T 2 \ PT

h , we include the following sentence as a conjunct in Φ1:

∀p,0,1
(
ψ(0,1) ∧ TILEi,α(0,1, p) ∧ TILEi+1,β(0,1, p) ⇒ ⊥

)
,

where ψ(0,1) represents a simple mechanism for distinguishing between 0 and 1. We also
want each position in a given row to be occupied by at most one tile. For all i ∈ [n], α, β ∈ T ,
we include the following sentence as a conjunct in Φ1:

∀p,0,1
(
TILEi,α(0,1, p) ∧ TILEi,β(0,1, p) ⇒ ⊥

)
.

As in the proof of Theorem 7, we do not need to include an explicit condition stating that
each row must be completely tiled from left to right. For the purpose of verifying the validity
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of a tiling, we include in τ a 5-ary symbol Q, a (⌈log2 |T | · n⌉ + 4)-ary symbol Qv, and two
(⌈log2 |T | · n⌉ + 3)-ary symbols Qb, Qt. For each pair (i, α) ∈ [n] × T , the formulas

BOTi,α(0,1, p, y1, y2), TOPi,α(0,1, p, y1, y2), and VERTi,α(0,1, p1, p2, y1, y2)

are defined analogously to TILEi,α(0,1, p) but using the Qb, Qt and Qv-atoms instead. We
use them to verify the bottom row, top row, and the vertical consistency of a given tiling. In
contrast to TILEi,α, the parameter α is not important in BOTi,α, TOPi,α, and VERTi,α.

We now explain how to convert Φ into a set of forbidden substructures. Let N be the
class of all τ -structures with the domain [i] for some i ∈ [6] that do not satisfy Φ. Since Φ
only uses six variables, we have fm(Φ) = Forbe(N ). It remains to show that there exists
a polynomial that bounds the size of N . Since there is a constant number of domains of
structures in N and their sizes are also constant, it is enough to show that there exists a
polynomial that bounds the number of structures in N . The only non-constant parameters
in the construction are the four symbols I,Qb, Qt, and Qv whose arity grows logarithmically
with |T | · n. Thus, there exists a constant c such that the number of structures in N is
bounded by c ·

(
2⌈log2 |T |·n⌉)4 ≤ c ·(2 · |T | ·n)4. The rest is analogous to the proof of Theorem 6.

4 The Homogenizability Meta-Problem

Every reduct R of a finitely bounded homogeneous structure H is uniquely described by an
SNP sentence, which can be obtained from a universal sentence for age(H) by existentially
quantifying all the surplus predicates upfront. This is (arguably) the most natural represent-
ation for such structures. The homogenizability meta-problem asks whether a given SNP
τ -sentence Φ is logically equivalent to an SNP τ -sentence Ψ = ∃Y1, . . . , Ym∀ȳ. ψ such that
fm(∀ȳ. ψ) has the AP in the signature τ ∪ {Y1, . . . , Ym}. We are additionally interested in
the refinement of the question where we require the homogeneous structure from Theorem 1
associated to fm(∀ȳ. ψ) to have the same set of automorphisms as its reduct to the original
signature τ . This amounts to asking whether fm(Φ) is finitely bounded homogenizable.

MMSNP was presented in [30] as a large subclass of SNP which has a dichotomy between
P and NP-completeness if and only if the class of all finite-domain CSPs has one. The latter
has been confirmed, and the dichotomy for MMSNP has received a new universal-algebraic
proof within the programme attacking the Bodirsky-Pinsker conjecture [16]. The new proof
relies on the observation that every MMSNP sentence Φ is equivalent to a finite disjunction
Φ1 ∨ · · · ∨ Φn of MMSNP sentences such that, for every i ∈ [n], there exists a reduct Ri

of a finitely bounded homogeneous structure Hi such that fm(Φi) = CSP(Ri).4 Moreover,
the structure H can be chosen so that its age has the Ramsey property, which plays an
essential role in an argument in [16] showing that the authors correctly identified all of the
tractable cases. The exact definition of this property is not essential to the present article
and is therefore omitted. GMSNP was first introduced in [41] in its seemingly weaker form
MMSNP2, as a generalization of MMSNP where “monadic” second-order variables may also
range over atomic formulas. It was later shown that relaxing the above requirement for
monotone SNP to guardedness does not result in a more expressive logic [7]. There is a
prospect that GMSNP will also have dichotomy between P and NP-completeness since it
enjoys similar model-theoretic properties as MMSNP [15].

Theorem 13 is the most general version of our undecidability result. It applies not only to
the original formulation of the homogenizability meta-problem, but also to its generalization
to ω-categorical structures. The second item of the theorem might give the impression that

4 This observation was first made in the the proof of Theorem 7 in [11].
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one cannot effectively distinguish between CSPs of reducts of finitely bounded structures
and CSPs of reducts of finitely bounded homogeneous structures. Recall that the former
class does not have a dichotomy [30, 8]. However, as indicated by the formulation of the
second item, all CSPs of reducts of finitely bounded homogeneous structures in the proof
of Theorem 13 are in fact finite-domain CSPs, for which there is a dichotomy. Therefore,
Theorem 13 merely shows that SNP sentences are an exceptionally bad choice of an input to
the question, albeit one that is often used [4, 43].

▶ Theorem 13. For a given a Datalog sentence Φ using at most binary relation symbols, it
is undecidable whether:
1. Φ is logically equivalent to a monadic Datalog sentence,

or Φ is not even logically equivalent to any GMSNP sentence;
2. Φ simultaneously satisfies the following three conditions:

fm(Φ) is the CSP of a finite structure,
fm(Φ) is a finitely bounded homogenizable class,
fm(Φ) is the age of a reduct of a finitely bounded homogeneous Ramsey structure,

or fm(Φ) is not even the CSP or the age of any ω-categorical structure.

The following corollary extracts the statement originally announced in the introduction.

▶ Corollary 14. It is undecidable whether a given SNP sentence defines the age of a reduct
of a finitely bounded homogeneous structure. The statement is true even if the SNP sentence
comes from the Datalog fragment and uses at most binary relation symbols.

4.1 A proof of Theorem 13
As usual, the Kleene plus and the Kleene star of a finite set of symbols Σ, denoted by Σ+

and Σ∗, are the sets of all finite words over Σ of lengths ≥ 1 and ≥ 0, respectively.
A context-free grammar (CFG) is a 4-tuple G= (N,Σ, P, S) where N is a finite set of

non-terminal symbols, Σ is a finite set of terminal symbols, P is a finite set of production
rules of the form A → w where A ∈ N and w ∈ (N ∪ Σ)+, S ∈ N is the start symbol. For
u, v ∈ (N ∪ Σ)+ we write u →G v if there are x, y ∈ (N ∪ Σ)+ and (A → w) ∈ P such that
u = xAy and v = xwy. The language of G is L(G) := {w ∈ Σ+ | S →∗

G w}, where →∗
G

denotes the transitive closure of →G. Note that with this definition the empty word ϵ can
never be an element of L(G); some authors use a modified definition that also allows rules
that derive ϵ, but for our purposes the difference is not essential. A context-free grammar
is called (left-)regular if its production rules are always of the form A → a or A → Ba for
non-terminal symbols A,B and a terminal symbol a. For a finite set Σ, we call a set L ⊆ Σ+

regular if it is the language of a regular grammar with terminal symbols Σ.

▶ Example 15. Consider the CFG Gwith a single terminal symbol a, non-terminal symbols
S,A,B,C, and production rules S → a, S → aa, S → aaa, S → Aa, A → Ba, B → Ca,
C → Ca, and C → a. Clearly, G is not regular. However, L(G) = {a}+ is regular.

Let G = (N,Σ, P, S) be a CFG. The signature τΣ consists of the unary symbols I, T
and the binary symbols Ra for every a ∈ Σ, and the signature τN consists of a binary
symbol Ra for every element a ∈ N . For a1 . . . an ∈ Σ+, we set ϕa1...an

(x1, . . . , xn+1) :=∧
i∈[n] Rai

(xi, xi+1). Let ΦG be the universal Horn sentence over the signature τΣ ∪ τN whose
quantifier-free part contains, for every (A,w) ∈ P , the Horn clause ϕw(x1, . . . , x|w|+1) ⇒
RA(x1, x|w|+1), and additionally the Horn clause I(x1) ∧RS(x1, x2) ∧ T (x2) ⇒ ⊥. Then ΦG

is the Datalog sentence obtained from ΦG by existentially quantifying all symbols from τN
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upfront. This encoding of CFGs into Datalog programs is standard (Exercise 12.26 in [1]),
and the correspondence provided by the next lemma can be shown via a straightforward
induction. For a proof, we refer the reader to [20].

▶ Lemma 16. For a τΣ-structure A, we have A |= ΦG if and only if, for every w ∈ L(G),

A |= ∀x1, . . . , x|w|+1
(
I(x1) ∧ ϕw(x1, . . . , x|w|+1) ∧ T (x|w|+1) ⇒ ⊥

)
.

The following lemma is proved by establishing a connection between the well-known
Myhill-Nerode correspondence and ω-categoricity, under the addition of several auxiliary
results from [29, 15].

▶ Lemma 17. Let G be a context-free grammar. Then the following are equivalent:
1. L(G) is regular.
2. ΦG is equivalent to a monadic Datalog sentence.
3. ΦG is equivalent to a GMSNP sentence.
4. fm(ΦG) is the CSP of a finite structure.
5. fm(ΦG) is the CSP of an ω-categorical structure.
6. fm(ΦG) is the age of a reduct of a finitely bounded homogeneous Ramsey structure.
7. fm(ΦG) is the age of an ω-categorical structure.
8. fm(ΦG) is finitely bounded homogenizable.

Proof of Theorem 13. It is well-known that the questions whether L(G) is regular for a
given context-free grammar G is undecidable, see, e.g., Theorem 6.6.6 in [49]. Hence, all
eight equivalent conditions in Lemma 17 are undecidable for G. ◀

5 Open Questions

We proved the EXPSPACE-hardness of the amalgamation meta-problem. However, our
methods rely heavily on the following three facts. First, symbols of arity > 2 allow us to
simulate a restricted form of Datalog computation within one-point amalgamation diagrams.
Second, Boolean combinations of atoms enable succinct representations of the Datalog rules.
And third, symbols of unbounded arity enable storing exponential amount of information
on a constant number of variables. We do not know how to extend our hardness result
beyond EXPSPACE. In particular, it does not seem to be possible to reduce from any of the
standard undecidable problems, which can be done for the closely related joint embedding
property [22, 20]. Intuitively, the reason is that every representation of a run of a Turing
machine in a finitely bounded class requires some sort of a successor predicate (see, e.g., [31]),
and the successor predicate is never definable in any ω-categorical structure [8].

Open question: Is the amalgamation meta-problem decidable in EXPSPACE?
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