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Abstract
GCk is a logic introduced by Scheidt and Schweikardt (2023) to express properties of hypergraphs. It
is similar to first-order logic with counting quantifiers (C) adapted to the hypergraph setting. It has
distinct sets of variables for vertices and for hyperedges and requires vertex variables to be guarded
by hyperedge variables on every quantification.

We prove that two hypergraphs G, H satisfy the same sentences in the logic GCk with guard depth
at most k if, and only if, they are homomorphism indistinguishable over the class of hypergraphs of
strict hypertree depth at most k. This lifts the analogous result for tree depth ≤ k and sentences
of first-order logic with counting quantifiers of quantifier rank at most k due to Grohe (2020)
from graphs to hypergraphs. The guard depth of a formula is the quantifier rank with respect to
hyperedge variables, and strict hypertree depth is a restriction of hypertree depth as defined by
Adler, Gavenčiak and Klimošová (2012). To justify this restriction, we show that for every H, the
strict hypertree depth of H is at most 1 larger than its hypertree depth, and we give additional
evidence that strict hypertree depth can be viewed as a reasonable generalisation of tree depth for
hypergraphs.
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1 Introduction

The (k-dimensional) Weisfeiler-Leman algorithm describes a technique to classify the vertices
(or k-tuples) of a graph, by iteratively computing a colouring (i.e., a classification) of the
vertices (or k-tuples), which gets refined each iteration until it stabilises. While it can
be used as a way to (imperfectly) test graphs for isomorphism, it has found many other –
seemingly very different – uses, e.g. reducing the cost of solving linear programs [14], as
graph kernels [29] or even as an architecture for graph neural networks [30, 22, 13, 12]. For
a more in-depth overview on the expressive power of the Weisfeiler-Leman algorithm itself,
consult [17] as a starting point. The success of the Weisfeiler-Leman algorithm can in part
be explained by its simplicity, but also by the fact that it appears to capture the structure of
a graph really well. This can be explained by its connection to first-order logic with counting
quantifiers and to homomorphism counts over graphs of bounded tree width. A classical
result due to Cai, Fürer and Immerman [5] and Immerman and Lander [16] says that two
graphs are indistinguishable by the k-dimensional Weisfeiler-Leman algorithm if, and only
if, they satisfy the same sentences of first-order logic with counting quantifiers (C) and k+1
variables (Ck+1).
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Dvořák [9] and Dell, Grohe, Rattan [8] related the Weisfeiler-Leman algorithm to homo-
morphism counts over graphs of bounded tree width (this was subsequently generalised to
relational structures of bounded tree width by Butti and Dalmau [3]). They showed that
two graphs are homomorphism indistinguishable over the class TWk of graphs of tree width
at most k if, and only if, they are indistinguishable by the k-dimensional Weisfeiler-Leman
algorithm. Here, two graphs G and H are homomorphism indistinguishable over a class C of
graphs, if the number of homomorphisms from F into G equals the number of homomorphisms
from F into H for all F ∈ C. Dvořák used the previously mentioned connection to Ck+1 and
an inductive characterisation of the graphs of bounded tree width to prove this result, while
Dell et al. used elaborate algebraic techniques on vectors containing homomorphism counts.

In recent years, a whole theory has emerged around homomorphism indistinguishability.
There are characterisations of homomorphism indistinguishability for classes of graphs other
than TWk (cf. [7, 10, 21, 25]), among which we would like to emphasise the following: A
classical result by Lovász [18], stating that two graphs are isomorphic if, and only if, they
are homomorphism indistinguishable over all graphs; a well-received result by Mančinska
and Roberson [20], stating that two graphs are homomorphism indistinguishable over the
class of planar graphs if, and only if, they are quantum isomorphic; and, of importance for
this paper, Grohe [11] showed that two graphs are homomorphism indistinguishable over
the graphs of tree depth at most m if, and only if, they satisfy the same sentences of C with
quantifier rank at most m (Cm). There is also work concerned with a more fundamental
analysis of homomorphism counting from restricted classes (cf. [2, 15, 23, 24, 28]).

Some real-world problems can be represented by hypergraphs in a much more natural
way than by graphs. The great track record of the Weisfeiler-Leman method poses the
question, whether a similar algorithm exists that works on hypergraphs. A direct application
of the Weisfeiler-Leman algorithm on the incidence structure of a hypergraph is sometimes
used. But Böker noted in [4], that this approach does not capture the hypergraph structure
well, since the algorithm will mix up hyperedges and vertices. Thus, a proper variant of the
Weisfeiler-Leman algorithm that works on hypergraphs is, to the best of our knowledge, still
missing. We believe that establishing results analogous to the ones mentioned so far can give
valuable insight on how the algorithm should operate on hypergraphs. A first step from this
angle is a result by Scheidt and Schweikardt [27], who lift Dvořák’s result to hypergraphs by
proving the following: two hypergraphs G, H are homomorphism indistinguishable over the
class GHWk of hypergraphs of generalised hypertree width at most k if, and only if, they
satisfy the same sentences of the logic GCk. GCk is a novel logic introduced in [27]. It has
distinct variables for vertices and for hyperedges and counting quantifiers for both variable
types. The main feature of GCk is that it bounds the number of variables for hyperedges
by k, and it requires that vertex variables are “guarded by” (i.e., contained in) hyperedge
variables on every quantification.

Contributions. As the main contribution of this work, we show that two hypergraphs
satisfy the same sentences of the logic GCk with guard depth at most k if, and only if,
they are homomorphism indistinguishable over the class of hypergraphs of strict hypertree
depth at most k (Theorem 6.1). The guard depth is the quantifier depth of the hyperedge
variables. This theorem follows from an inductive characterisation of the class of hypergraphs
of strict hypertree depth ≤ k, combined with the main technical lemmas of Scheidt and
Schweikardt [27]. We believe that this inductive characterisation is interesting on its own,
since the same technique combined with the core lemmata in Dvořák’s work [9] can be
used to give a concise proof of the analogous result on graphs due to Grohe [11], which was



B. Scheidt 152:3

independently recognised and shown by Fluck et al. [10] recently. Strict hypertree depth is a
mild restriction of hypertree depth as defined by Adler, Gavenčiak and Klimošová [1]. This
(as it turns out only slight) deviation from hypertree depth is surprising at first. Because of
the properties and relations between strict hypertree depth and hypertree depth we acquire in
this paper, we claim that strict hypertree depth can be viewed as a reasonable generalisation
of tree depth for hypergraphs too. In particular, we show that the strict hypertree depth
of a hypergraph is at most 1 larger than its hypertree depth (Theorem 2.5). Moreover, we
show that the distinguishing power of homomorphism counts from hypergraphs of hypertree
depth at most k is different from the distinguishing power of homomorphism counts from
their respective incidence graphs (Theorem 2.9). Compared to other hypergraph parameters,
this is very unexpected.

Organisation. The remainder of the paper is organised as follows. Section 2 is dedicated
to the introduction of the necessary notation and definitions. In particular, we introduce
incidence graphs as representations of hypergraphs that will be used throughout the paper,
following Böker [4] and Scheidt and Schweikardt [27]. The notions of (strict) hypertree depth
are introduced in Section 2.1, followed by Section 2.2 where we handle the differences between
homomorphisms between hypergraphs and homomorphisms between incidence graphs. In
Section 3 we introduce k-labeled incidence graphs that were the principle tool used in [27] to
achieve their result. We utilise them in Section 4 to give an inductive characterisation of
the hypergraphs of strict hypertree depth at most k (Theorem 4.1). Section 5 is devoted to
the logic GCk. In Section 6 we combine the results from Section 4 and Section 2.2 with the
results from [27] to obtain Theorem 6.1. Section 7 concludes the paper with a summary of
the results obtained in this paper, as well as an outlook on further research directions.

2 Preliminaries

Since we heavily rely on the work by Scheidt and Schweikardt [27], we will keep our notation
close to theirs. We denote the set of natural numbers including 0 by N, the set of positive
natural numbers by N≥1, and we write [n] to denote the set {1, 2, . . . , n}. To denote
isomorphism of two objects, we use ∼=. A tuple is denoted using a bar, e.g. a. For a given
ℓ-tuple a, we use ai to denote the i-th element of a, i.e., a = (a1, a2, . . . , aℓ). For any set S,
let P(S) be the set of subsets of S and let Pk(S) be the subsets of cardinality exactly k. If
S is a set of sets, let

⋃
S =

⋃
s∈S s.

For a finite set S of cardinality ℓ ∈ N, a total order < on S and any number d ∈ N,
we say that ⟨id+1, id+2 . . . , id+ℓ⟩ is the <-enumeration of S, if id+1 < id+2 < · · · < id+ℓ

and {id+1, . . . , id+ℓ} = S. If the order < is clear from the context, we simply say that
⟨id+1, id+2 . . . , id+ℓ⟩ is the enumeration of S. Note that we usually let d = 0, i.e., we usually
write ⟨i1, . . . , iℓ⟩. Furthermore, the enumeration ⟨id+1, id+2 . . . , id+ℓ⟩ of S is empty if, and
only if, S is empty.

We denote a partial function f from A to B by f : A ⇀ B, and we let dom(f) := {a ∈ A :
f(a) is defined} and img(f) := {b ∈ B : ex. a ∈ A s.t. f(a) = b}. We say that two functions
f and g are compatible, if f(x) = g(x) for all x ∈ dom(f) ∩ dom(g). We identify a (partial)
function f with the set {(x, f(x)) : x ∈ dom(f)} whenever we are using set notation on
functions. For example, we write f ⊆ g to indicate dom(f) ⊆ dom(g) and f(x) = g(x) for all
x ∈ dom(f). In particular, by f ∪g we denote the function h with dom(h) = dom(f)∪dom(g)
and h(x) = f(x) for all x ∈ dom(f) and h(x) = g(x) for all x ∈ dom(g) \ dom(f). Note
that f has precedence over g, but this only matters if f and g are not compatible. For a
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(partial) function f and a set S ⊆ dom(f) we write f(S) to denote {f(x) : x ∈ S}, and we
call the function g ⊆ f with dom(g) := S the restriction of f to S. Finally, we define partial
functions inline like this: {a → 3, b → 2, c → 5}. In particular, the empty set ∅ denotes a
partial function with empty domain.

Graphs, Trees and Forests. An (undirected) graph is a tuple G = (V (G), E(G)), where
V (G) is a finite set and E(G) ⊆ P2(V (G)). For a set S ⊆ V (G), G[S] denotes the subgraph
induced by S, i.e., V (G[S]) := S and E(G[S]) := E(G) ∩ P2(S). A connected component of a
graph is a maximal induced subgraph that is connected. A tree is a connected acyclic graph
and a forest is a graph were each connected component is a tree. A rooted tree T is a tree
with some distinguished node that we call its root, which we denote by ωT . A rooted forest
F is the disjoint union of a collection of rooted trees. It therefore has a set of roots denoted
by ΩF . We may omit the index if it is clear from the context. Note that a rooted tree is also
a rooted forest and that every node n in a rooted forest is contained in a unique connected
component which is a tree that we call the tree for n and whose root is the root for n.

For a rooted forest F we let ≤F be the induced partial order on the nodes, i.e., the roots
are the minimal elements and s ≤F t if s is on the unique path from t to its root in Ω. By
P(s, t) we denote the set of nodes on the path from s to t (including s and t). In particular,
if no path from s to t exists, P(s, t) = ∅. By P(s) we denote the set of nodes on the path
from s to the root for s and by ∧(s, t) we denote the unique element, if it exists, where the
paths P(s), P(t) join, i.e., ∧(s, t) := max≤F

(P(s) ∩ P(t)). Notice that ∧(s, t) is undefined iff
s and t are not in the same tree, and that ∧(s, t) = s, iff s ≤F t (and conversely, ∧(s, t) = t

iff t ≤F s).
The subtree Tt induced by t ∈ V (F ) is the tree F [V ] with root t and V := {s ∈ V (T ) :

t ≤F s}. The level of a node s ∈ V (F ) is defined as the number of elements on the path
from s to its root, i.e., level(s) := | P(s)|. The height of a rooted tree T is the maximal level,
i.e., height(T ) := max{level(t) : t ∈ V (T )} and the height of a node t ∈ V (T ) is the height
of its induced subtree Tt, i.e., height(t) := height(Tt).

Hyper- and Incidence Graphs. A hypergraph is a tuple H = (V,E, β), where V and E are
disjoint finite sets and β is a total function from E to P(V ) with V =

⋃
e∈E β(e). We call

the elements of V vertices and the elements of E hyperedges and for every e ∈ E, we call
β(e) its contents. We denote V by V (H), E by E(H) and β by βH, though we may omit the
index if there is no ambiguity. Notice that, in general, multiple hyperedges with the same
content and hyperedges without content are allowed. We call H simple if β is injective.

An incidence graph is a tuple I = (R,B,E) consisting of two disjoint finite sets R and
B of red and blue vertices and a relation E ⊆ B × R. We denote R by R(I), B by B(I)
and E by E(I). For every e ∈ B(I), we let β(e) := {v ∈ R(I) : (e, v) ∈ E(I)}. Notice
that β is equivalent in its function to the map β for a hypergraph, hence we denote them
similarly. We only consider incidence graphs where for every v ∈ R(I) there is an e ∈ B(I)
such that (e, v) ∈ E(I). It is easy to see that we can assign an incidence graph to every
hypergraph and the other way around: For every hypergraph H we let IH := (V (H), E(H), E)
where E := {(e, v) : e ∈ E(H), v ∈ β(e)}. Conversely, for every incidence graph I we let
HI := (R(I),B(I), β) where β(e) := {v ∈ R(I) : (e, v) ∈ E(I)} for all e ∈ B(I).

For every set S ⊆ E(H) we define the induced subhypergraph H[S] as (V ′, S, β′
H) where

V ′ :=
⋃

e∈S β(e) and β′
H is the restriction of βH to S. We say that a hypergraph is connected

if its incidence graph is connected. An induced subhypergraph is a connected component, if
its corresponding incidence graph is a connected component.
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Figure 1 Examples for hypergraphs and their corresponding incidence graphs.

By Pn we denote the path of n hyperedges, where each hyperedge contains 2 vertices.
I.e., we let V (Pn) = [n+1], E(Pn) = {ei : i ∈ [n]} and β(ei) = {i, i+1} for all i ∈ [n]. We
may use different names for the vertices if it is convenient.

▶ Example 2.1. The hypergraph H illustrated in Figure 1a is defined as V (H) = {u, v, w, x,
y, z, t}, E(H) = {e, f, g, h} and βH = {e → {u, v, x}, f → {v, w, z}, g → {u,w, y}, h →
{t, x, y, z}}. Its incidence graph IH, depicted in Figure 1b, is defined by R(IH) = V (H),
B(IH) = E(H) and E(IH) = {(e, u), (e, v), (e, x), (f, v), (f, w), (f, z), (g, u), (g, w), (g, y),
(h, t), (h, x), (h, y), (h, z)}.

The hypergraph G depicted in Figure 1c is defined as V (G) = {a, b, c}, E(G) = {i, j, k, ℓ}
and βG := {i → {a, b}, j → {b, c}, k → {a, c}, ℓ → {a, b, c}}. Its incidence graph IG , depicted
in Figure 1d, is defined as R(IG) = V (G), B(IG) = E(G) and E(IG) = {(i, a), (i, b), (j, b), (j, c),
(k, a), (k, c), (ℓ, a), (ℓ, b), (ℓ, c)}.

2.1 Hypertree Depth
The following definition of elimination forest and hypertree depth is due to Adler, Gavenčiak
and Klimošová [1], though they refer to elimination forests as “decomposition forests”. We
call them elimination forests, since this reflects their conceptual similarity to elimination
forests for graphs and avoids confusion with hypertree decompositions. Further, we define
this notion in terms of incidence graphs, because we mainly work on those. Do notice however,
that this definition easily translates to hypergraphs and that it is equivalent to the one given
by Adler, Gavenčiak and Klimošová.

▶ Definition 2.2 (Hypertree Depth and Elimination Forests, [1]). Let I be an incidence graph.
An elimination forest (F,Γ) for I consists of a forest F and a mapping Γ: V (F ) → B(I) such
that conditions 1–3 hold. We write Γ̂(t) as shorthand for β(Γ(t)).
1. Completeness for vertices: For every red vertex v ∈ R(I), there is a t ∈ V (F ) such that

v ∈ Γ̂(t).
2. Hyperedge-Containment: For every blue vertex e ∈ B(I) there are nodes s, t ∈ V (F ) such

that s ≤F t and β(e) ⊆
⋃

Γ̂(P(s, t)).
3. Shared heritage: For all s, t ∈ V (F ), if Γ̂(s) ∩ Γ̂(t) ̸= ∅, then ∧(s, t) is defined and

Γ̂(s) ∩ Γ̂(t) ⊆
⋃

Γ̂(P(∧(s, t))).

The intuition behind condition 3 is that hyperedges can only share the vertices contained
in their common ancestors in the elimination forest. The height of an elimination forest (F,Γ)
is simply the height of F . The hypertree depth of I is defined as the minimal height over all
elimination forests for I, and we denote it by hd(I). Analogously, we let hd(H) := hd(IH) for
all hypergraphs. We write IHDk to denote the class of incidence graphs of hypertree depth
at most k and HDk to denote the corresponding class of hypergraphs. ⌟

ICALP 2024
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{u, v, x}

{t, x, y, z}ω:

{v, w, z} {u,w, y}

(a) A (strict) EF for H.

{a, b, c}ω:

(b) An EF for G.

{b, c}

{a, b, c}ω:

{a, b} {a, c}

(c) A strict EF for G.

{8, 9}
ω:

{4, 5}

{2, 3}

{6, 7}

{1, 2}

{3, 4}

{5, 6}

{7, 8}

{12, 13}

{10, 11}

{14, 15}

{9, 10}{11, 12}

{13, 14}{15, 16}

(d) A (strict) elimination forest for P15.

Figure 2 Elimination forests for various (hyper)graphs.

We call an elimination forest (F,Γ) strict if Γ is bijective. It is easy to see that the first
and second condition are trivially satisfied when Γ is bijective, thus we can redefine the
notion of strict elimination forest in a more succinct manner.

▶ Definition 2.3 (Strict Elimination Forest). Let I be an incidence graph. A strict elimination
forest (F,Γ) for I consists of a forest F and a bijective function Γ: V (F ) → B(I) satisfying
condition 3 of Definition 2.2. The strict hypertree depth of I, denoted by shd(I), is defined as
the minimal height over all strict elimination forests for I. Again, we let shd(H) := shd(IH)
for every hypergraph H. We write ISHDk to denote the class of incidence graphs of strict
hypertree depth at most k and SHDk to denote the corresponding class of hypergraphs. ⌟

▶ Example 2.4. Consider the hypergraphs G and H as well as their incidence graphs IG ,
IH from Example 2.1 (see Figure 1). Let (F1,Γ1) be defined as follows. F1 is a tree defined
by V (F1) = {t1, t2, t3, t4} and E(F2) := {{t1, t2}, {t1, t3}, {t1, t4}} with root t1. Γ1 is a map
defined as {t1 → h, t2 → e, t3 → f, t4 → g}. (F1,Γ1) is an elimination forest of height 2
for IH. It is depicted in Figure 2a, where we labeled the node ti with Γ̂1(ti). Notice, that
(F1,Γ1) is strict.

Analogously, we depicted two elimination forests for IG of height 1 and 2 in Figures 2b
and 2c. Notice how the elimination forest depicted in Figure 2b, witnessing hd(G) = 1, is
not strict. It is easy to see that shd(G) ≥ 2 since a bijective map implies that there are as
many nodes in the forest as there are edges. Thus, Figure 2c witnesses that shd(G) = 2.

Finally, Figure 2d depicts a (strict) elimination forest for P15 witnessing shd(P15) ≤ 4.
Recall that P15 is defined by V (P15) = [16] and E(P15) = {{i, i+1} : i ∈ [15]}. ⌟

One can show that the strict hypertree depth of a hypergraph is at most its hypertree
depth increased by one. The main idea is that we can turn every elimination forest into a
strict one, if we add a leaf for every hyperedge that is currently not being mapped to below
the path that contains it according to condition 2 in Definition 2.2. The proof can be found
in the full version.

▶ Theorem 2.5. For all hypergraphs H, hd(H) ≤ shd(H) ≤ hd(H)+1.

Finally, it is easy to see that, due to condition 3 (shared heritage), every elimination
forest of a connected incidence graph is also an elimination tree.

▶ Lemma 2.6. Let I be a connected incidence graph. For every elimination forest (F,Γ) of
I, F is a tree.
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2.2 Homomorphisms
While hypergraphs and incidence graphs are conceptually close, their “natural” notions of
homomorphisms are not the same. Since our interest lies in hypergraphs, but we are mainly
working on incidence graphs in this paper, we have to relate these notions. Following Scheidt
and Schweikardt, we use the same definitions as Böker [4].

A homomorphism from a hypergraph H into another hypergraph G is a pair of func-
tions (hV : V (H) → V (G), hE : E(H) → E(G)) such that for every e ∈ E(H) the equality
hV (β(e)) = β(hE(e)) holds.

A homomorphism from an incidence graph I into another incidence graph J is a pair of
mappings (hV : R(I) → R(J), hE : B(I) → B(J)) such that (hE(e), hV (v)) ∈ E(J) holds for
every edge (e, v) ∈ E(I). This is equivalent to the requirement hV (β(e)) ⊆ β(hE(e)). Thus,
the equality that we require for a hypergraph homomorphism is relaxed to an inclusion for
incidence graphs.

Let A, B and C be two hypergraphs and a class of hypergraphs or two incidence graphs
and a class of incidence graphs. We denote the number of homomorphisms from A to B by
hom(A,B), and we let Hom(C, A) be the “vector” that has a row for every F ∈ C containing
hom(F,A). We say that A and B are homomorphism indistinguishable over C (A ≡C B), if
Hom(C, A) = Hom(C, B), i.e., if hom(F,A) = hom(F,B) for all F ∈ C.

The following crucial theorem relates homomorphism indistinguishability over a class
of hypergraphs to homomorphism indistinguishability over the corresponding class CI of
incidence graphs. As noted in [27], this theorem is implicit in [4], consult Appendix A of the
full version of [27] for details.

▶ Theorem 2.7 ([4, 27]). Let C be a class of hypergraphs and let CI be its corresponding class
of incidence graphs. If C is closed under pumping and local merging, then Hom(C,G) =
Hom(C,H) if, and only if, Hom(CI, IG) = Hom(CI, IH) for all hypergraphs G and H.

C is closed under pumping, if H ′ ∈ C for every H ∈ C, where H ′ is created from H by
inserting a new vertex into one arbitrary hyperedge of H; and closed under local merging, if
H ′ ∈ C for every H ∈ C, where H ′ is created from H by choosing an arbitrary hyperedge e
and then merging two vertices u, v that are both contained in e.

It is easy to see that SHDk is closed under both pumping and local merging, whereas
HDk is only closed under local merging.

▶ Proposition 2.8. Let k ∈ N≥1. The class SHDk is closed under pumping and local merging,
the class HDk is closed under local merging but not under pumping.

The following theorem shows that homomorphism indistinguishability over HDk is not
equal to homomorphism indistinguishability over SHDk. Because SHDk ⊆ HDk, counting
homomorphisms from HDk is more powerful in the sense that it distinguishes more hyper-
graphs. But we also show that it is unequal to homomorphism indistinguishability over IHDk,
which is unexpected. Since this prohibits us from relating HDk to any fragment of GC, it is
conceivable that this could pose a problem in other scenarios too. Thus, we argue that the
notion of strict hypertree depth can be viewed as a reasonable generalisation of tree depth,
especially when we recall that HDk−1 ⊆ SHDk ⊆ HDk.

▶ Theorem 2.9. For every k ∈ N≥1 there exist pairs of hypergraphs (Gk,Hk) and (G′
k,H′

k),
such that:
1. Hom(SHDk,Gk) = Hom(SHDk,Hk), but Hom(HDk,Gk) ̸= Hom(HDk,Hk);
2. Hom(HDk,G′

k) = Hom(HDk,H′
k), but Hom(IHDk, IG′

k
) ̸= Hom(IHDk, IH′

k
).

ICALP 2024
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(c) G′
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1.

Figure 3 (G1, H1), (G′
1, H′

1) witness Theorem 2.9 for k = 1. Circles denote singleton hyperedges.

For k = 1 this is easy to see: A connected hypergraph has strict hypertree depth 1 iff
it consists of a single hyperedge, whereas a connected hypergraph has hypertree depth 1 if
one hyperedge contains all vertices. It is therefore not hard to see that the statement of the
theorem holds for k = 1 using the hypergraphs depicted in Figure 3. For k ≥ 2 a similar idea
for the construction of (Gk,Hk) and (G′

k,H′
k) works, but we had to defer the details to the

full version due to space constraints.

3 k-Labeled Incidence Graphs

Our goal is to give an inductive characterisation of the incidence graphs of strict hypertree
depth at most k (and thus also of hypergraphs of strict hypertree depth at most k). The
concepts presented in this section were first defined in [27], and we adopt their notation
and phrasing for the most part. Note that the k-labeled incidence graphs defined here are
inspired by the concept of k-labeled graphs as they are used in [6, 9, 10, 19] and elsewhere.
In particular, k-labeled graphs are the main tool used by Dvořák [9] to prove his result.
In principle, a k-labeled incidence graph is an incidence graphs that has labels attached to
some of its red and blue vertices. We have an unbounded number of red labels that can be
attached to red vertices (though the number of labels actually used must always be finite),
but we only have k labels that we can attach to blue vertices. We are allowed to attach
multiple labels to the same vertex, but we are not required to use all of them. Every red
label has an assigned “guard”, which is a blue vertex with a label on it. In practice, we will
require every red labeled vertex to be a neighbour of its guard (i.e., we want it to have a
real guard, as defined in the next paragraph), though it makes the proofs easier if we do not
enforce this in the definition itself. This idea is formalised as follows.

A k-labeled incidence graph is a tuple L = (I, r, b, g), where I is an incidence graph,
r : N≥1 ⇀ R(I), b : [k] ⇀ B(I) and g : N≥1 ⇀ [k] are partial mappings such that dom(r) is
finite and dom(g) = dom(r). We use IL, rL, . . . to denote the components of L. But to keep
the indices from getting overly complicated, we may write I ′, r′, . . . and Ii, ri, . . . instead of
IL′ , rL′ and ILi

, rLi
, . . . , respectively. If it is clear from the context, we may omit the index

altogether and simply write I, r, b, g.
We say that L has real guards (w.r.t. g), if for every i ∈ dom(r) we have g(i) ∈ dom(b)

and (b(g(i)), r(i)) ∈ E(I). A k-labeled incidence graph L is label-free if rL = bL = gL = ∅.
We call I the skeleton of L. Next, we define some operations on k-labeled incidence graphs.

For any set Xr ⊆ N≥1 of finite size ℓ and any tuple v = (v1, v2, . . . , vℓ) ∈ R(IL)n we
write L[Xr→v] to denote a copy of L where we modified r such that r(ij) = vj for all j in
the enumeration ⟨i1, . . . , iℓ⟩ of Xr, i.e., we introduce, and change the placement of, some
red labels. Similarly, for any Xb = {i1, . . . , iℓ} ⊆ [k] and any e = (e1, e2, . . . , eℓ) ∈ B(IL)ℓ we
write L⟨Xb→e⟩ to denote a copy of L where we modified b accordingly. We write L[Xr→•]
(L⟨Xb→•⟩) to denote a copy of L where we removed the red (blue) labels in Xr (Xb). Note,
that we remove just the labels and not the vertices that carry them.
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(a) The 3-labeled
incidence graph L1.
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(b) The 3-labeled
incidence graph L2.
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(c) An example of
glueing: (L1 · L2).
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(d) An example of apply-
ing a transition: L1[⇝f ].

Figure 4 3-labeled incidence graphs and operations on them. Labels are encoded as exponents
and the guard function is encoded using thicker edges between the red vertex and its guard.

Intuitively, the “product” (L1 · L2) or glueing of two k-labeled incidence graphs L1, L2
is the k-labeled incidence graph L that is created by first taking the disjoint union of L1
and L2, followed by repeatedly merging pairs of red (blue) vertices, that carry a shared red
(blue) label. By merging we mean that we replace these vertices by a single fresh vertex,
which inherits their neighbourhoods and labels. We apply this procedure until there are no
more such pairs. The guard function of (L1 · L2) is simply gL1 ∪ gL2 , i.e., in theory, gL1 has
precedence over gL2 . In practice, we will require that gL1 and gL2 are compatible, which
means the precedence of gL1 will be irrelevant. Note that the order in which we merge vertices
does not matter, and that if a vertex carries two or more labels, all vertices carrying any
one of these labels will be replaced by a single fresh vertex that carries all those labels and
inherits all neighbourhoods. Finally, for i ∈ [2] we define mappings succR

Li
: R(ILi) → R(IL)

and succB
Li

: B(ILi
) → B(IL) such that succR

Li
(v) is the red vertex of IL that corresponds to

v ∈ R(Ii), and succB
Li

(e) is the blue vertex of IL that corresponds to e ∈ B(Ii).

▶ Example 3.1. Consider the k-labeled incidence graphs L1, L2 according to Figures 4a
and 4b. In particular, we have

i 1 2 3 5
r1(i) u w v w

r2(i) u – v w

i 1 2 3
b1(i) f g h

b2(i) f g h

and
i 1 2 3 5

g1(i) 2 1 1 1
g2(i) 2 – 1 1

.

The product (L1 · L2) is depicted in Figure 4c.

So far, we should not be allowed to remove a blue label from a vertex, if it serves as the
guard of a red label. But sometimes we want to transition from one (real) guard assignment
to another (real) guard assignment. I.e., we want to remove blue labels even if they still guard
some red labels, because we guarantee that we introduce new guards for these labels right
away. We formalise this operation as a special partial function, that assigns new guards to
existing red labels: We call f : N≥1 ⇀ [k] a transition for L (for g), if ∅ ̸= dom(f) ⊆ dom(g)
and for all i ∈ dom(g) we have that if g(i) ∈ img(f), then i ∈ dom(f). This means that if f
reassigns the blue label guarding the red label i, then f provides a new guard for i. Applying a
transition, denoted by L[⇝f ], means modifying a copy of L as follows: we want to insert fresh
vertices with these blue labels, thus we must first remove all blue labels, that are currently
in use, i.e., we must first remove the labels in the set Xb := img(f) ∩ dom(bL) ∩ img(gL)
from b. Notice that we have to intersect with dom(bL) since we do not require L to have
real guards. After removing the labels in Xb, we insert |Xb| new blue vertices into IL, each
carrying one of the blue labels in Xb, and introduce an edge between b(f(i)) and r(i) for all
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i ∈ dom(f). Finally, we redefine the guard function as f ∪ gL. Note that this procedure can
be easily expressed as the product (Mf ·L⟨Xb→•⟩) for a suitably defined k-labeled incidence
graph Mf .

▶ Example 3.2. Consider the k-labeled incidence graph L1 from Example 3.1 and Figure 4a.
The partial function f = {1 → 2, 3 → 2} is a transition for L1. The result L1[⇝f ] of the
application of f on L1 is depicted in Figure 4d.

We define the class GLIik of k-labeled incidence graphs that can be constructed in a way
that at most i blue labels are removed “in series”.

▶ Definition 3.3. For k ∈ N≥1 and i ∈ N we define the set GLIik inductively as follows.
Base case. L ∈ GLI0k for all k-labeled incidence graphs L with dom(r) = R(I), dom(b) = B(I)

and real guards.
For all i ∈ N, if L ∈ GLIik, then L ∈ GLIi+1

k .
Glueing. Let L1 ∈ GLIi1

k , L2 ∈ GLIi2
k have compatible guard functions and L = (L1 · L2).

Then, L ∈ GLIik where i := max{i1, i2}.
Transitioning. Let L ∈ GLIik, let f be a transition for L and L′ = L1[⇝f ].

Then, L′ ∈ GLIi
′

k where i′ := i+ | img(f) ∩ img(bL) ∩ img(gL)|.
Label-Removal. Let L ∈ GLIik.

(a) For Xr ⊆ dom(r), L[Xr→•] ∈ GLIik.
(b) For Xb ⊆ dom(b) \ img(g), L⟨Xb→•⟩ ∈ GLIi

′

k where i′ := i+ |Xb|.
Finally, we let GLIk := GLIkk for every k ∈ N. ⌟

4 Characterising Hypergraphs of Strict Hypertree Depth at most k

In this section we prove that the inductively defined class GLIk corresponds precisely to the
class ISHDk.

▶ Theorem 4.1. An incidence graph J has strict hypertree depth at most k if, and only if,
there exists a label-free L ∈ GLIk such that IL

∼= J .

In the following, we first show how to construct an incidence graph of strict hypertree
depth at most k as the skeleton of a label-free k-labeled incidence graph in GLIk (Lemma 4.2).
Then we show that every label-free L ∈ GLIk has strict hypertree depth at most k (Lemma 4.3).
Theorem 4.1 follows directly from the combination of these two Lemmata.

For the rest of this section, let J ∈ ISHDk and let (T,Γ) be a strict elimination forest
of height ≤ k for J . We can w.l.o.g. assume that J is connected and that T is a tree
(Lemma 2.6). Let R(J) = {v1, v2, . . . , vm} where m ≥ 1.

(T,Γ) will help us decide when to remove (i.e., eliminate) which label from which blue
vertex in the following sense. The core idea is to start with a trivial k-labeled incidence
graph for every path from a leaf to the root in the elimination tree. Then we walk bottom-up
along these paths and whenever several paths join in a node, we apply red and blue vertex
removals in a suitable way on their k-labeled incidence graphs, such that afterwards we
can glue them together and receive a k-labeled incidence graph that is isomorphic to the
incidence graph induced by the union of said paths.

For this we need the following notions: For a node n in a tree T , the subtree with stem
induced by n is the tree Ṫn induced on T by the set P(n) ∪ {t ∈ V (T ) : n ≤T t}. Recall
that P(n) is the set of nodes on the path from n to the root ω (including n and ω), and
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notice that the subtree with stem induced by the root is T , i.e., Tω = T , and for every
leaf n it is the path from the root ω to n. For every node n ∈ V (T ) we define the set
labels(n) := {i ∈ [m] : vi ∈ Γ̂(n)}. To avoid an overload of notation, we will write labels(N)
to denote the set

⋃
n∈N labels(n) and write J [Ṫn] to abbreviate J [Γ̂(V (Ṫn))]. With these

notions, we can prove the following lemma via induction.

▶ Lemma 4.2. For every n ∈ V (T ) of level d where ⟨t1, . . . , td⟩ is a ≤T -enumeration of P(n)
(i.e., in particular t1 = ω, td = n), there exists an Ln ∈ GLIk−d

k of the form (I, r, b, g) such
that
(A) dom(b) = [d] and dom(r) = labels(P(n));
(B) g(i) := min{j ∈ [d] : vi ∈ Γ̂(tj)} for every i ∈ dom(g);
(C) There exists an isomorphism (πR, πB) between I and J [Ṫn] such that

(i) πR(r(i)) = vi for all i ∈ dom(r), and
(ii) πB(b(j)) = Γ(tj) for all j ∈ dom(b).

Notice that, in particular, this lemma states J ∼= ILω
for the root ω of T . But Lω

is not label-free, since dom(bLω ) = {1} and dom(rLω ) = labels(P(ω)) = labels(ω). But,
the lemma also states that Lω ∈ GLIk−1

k , since level(ω) = 1. Thus, J ∼= IL′ for L′ =
Lω[labels(ω)→•]⟨{1}→•⟩, and in particular, L′ ∈ GLIkk is label-free. Thus, this lemma shows
the forward direction of Theorem 4.1.

The following lemma can be shown by induction. On a high level, the idea of the proof is
to only modify the elimination forest, if blue labels are removed. At that point, we prepend
a chain of new nodes to the root(s) of the elimination forest. If we take the product of two
k-labeled incidence graphs, we take the union of the forests, and if we remove red labels, we
do not alter the forest at all.

▶ Lemma 4.3. For every L ∈ GLIdk of the form (I, r, b, g) there is a tuple (F,Γ), where
F is a forest of height ≤ d and Γ is a bijective function from V (F ) to B(I) \ img(b)
satisfying condition A. We write Γ̂(t) as a shorthand for β(Γ(t)) and Γ̃(t) as a shorthand
for Γ̂(t) \ img(r).
(A) For all s, t ∈ V (F ), and all v ∈ Γ̃(s) ∩ Γ̃(t) ̸= ∅ it holds that:

v ∈ β(b(j)) for a j ∈ dom(b) or ∧(s, t) is defined and v ∈
⋃

Γ̃(P(∧(s, t))).

Notice that, if L ∈ GLIdk is label-free, this guarantees a strict elimination forest (F,Γ) of
height d for IL. This shows the backward direction of Theorem 4.1.

5 The Logic GCk

This section introduces the logic GCk as defined in [27] and its restricted fragment GCk,
consisting of all formulas of guard depth at most k. Let k be a positive natural number, that
is fixed for this section.

Variables. GCk uses two different kinds of variables: VARv := {v1, v2, v3 . . . } to address
vertices and VARe := {e1, e2, . . . , ek} to address hyperedges. Notice that the number of
variables for hyperedges is bounded by k, but unbounded for vertices. We say that a tuple
of the form v = (vi1 , . . . , viℓ

) ∈ VARℓ
v or e = (ei1 , . . . , eiℓ

) ∈ VARℓ
e is a v- or e-tuple, if

i1 < i2 < · · · < iℓ. We let vars(v) := {vi1 , . . . , viℓ
} and vars(e) := {ei1 , . . . , eiℓ

} respectively.
We call {i1, . . . , iℓ} the index set of v and e, respectively.
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Logical Guards. The key idea behind GCk is that on quantification, vertex variables must
be guarded by hyperedge variables. This is formalised by a partial function g : N≥1 ⇀ [k] with
finite domain (similar to the guard function of a k-labeled incidence graph, cf. Section 3) and
its corresponding logical guard ∆g :=

∧
i∈dom(g) E(eg(i), vi). For the special partial function

g with empty domain, we let ∆g := ⊤, which is a special formula that always evaluates to
true.

▶ Definition 5.1. The logic GCk is inductively defined along with the free vertex variables,
the free hyperedge variables and the guard depth, as formalised by the functions

freev : GCk → P(VARv) , freee : GCk → P(VARe) , and gd: GCk → N.

Atomic Formulas. For all i, i′ ∈ N≥1 and all j, j′ ∈ [k] the following formulas are in GCk:
φ = vi =vi′ with freev(φ) := {vi, vi′} and freee(φ) := ∅;
φ = ej =ej′ with freev(φ) := ∅ and freee(φ) := {ej , ej′};
φ = E(ej , vi) with freev(φ) := {vi} and freee(φ) := {ej}.

In all the above cases, gd(φ) := 0.

Inductive Rules. Let χ, ψ be formulas of GCk. The following formulas are in GCk.
φ = ¬χ with freev(φ) := freev(χ) and freee(φ) := freee(χ),

and gd(φ) := gd(χ);
φ = (χ ∧ ψ) with freev(φ) := freev(χ)∪freev(ψ) and freee(φ) := freee(χ)∪freee(ψ),

and gd(φ) := max{ gd(χ), gd(ψ) }.
Note that by the rules defined so far, gd(∆g) = 0 for all logical guards ∆g.

We say that g : N≥1 ⇀ [k] is a guard function for φ if dom(g) = {i : vi ∈ freev(φ)}.
Let n ∈ N≥1, let g be a guard function for ψ and χ = (∆g ∧ ψ). The following
formulas are in GCk for every v-tuple v with vars(v) ⊆ freev(χ) and every e-tuple e with
vars(e) ⊆ freee(χ):

φ = ∃≥nv . χ with freev(φ) := freev(χ) \ vars(v) and freee(φ) := freee(χ),
and gd(φ) := gd(χ);

φ = ∃≥ne . χ with freev(φ) := freev(χ) and freee(φ) := freee(χ) \ vars(e),
and gd(φ) := gd(χ) + | vars(e)|. ⌟

For convenience, we let free(φ) := freev(φ) ∪ freee(φ) for all φ ∈ GCk. Formulas of
GCk are evaluated over a hypergraph H via interpretations I = (IH, νv, νe) that consist of
H’s incidence graph IH and assignments νv : VARv → R(IH) and νe : VARe → B(IH). The
semantics of GCk are as expected and a definition can be found in Section 6 of the full version
of [27], thus we do not give one here. A sentence is a formula φ ∈ GCk that has neither
free vertex, nor free hyperedge variables, i.e., free(φ) = ∅. By GCk

d we denote the fragment
{φ ∈ GCk : gd(φ) ≤ d}, and we let GCk := GCk

k. We write G ≡L H to denote that G and H
satisfy the same sentences in the fragment L ⊆ GCk.

For simplicity, we omit logical guards if they are empty or equal to the formula they are
guarding. I.e., we may abbreviate subformulas of the form (⊤ ∧ φ) or (φ ∧ φ) as φ. We
may also omit parentheses in the usual way. We write ∃=n(x) . (∆ ∧ φ) as shorthand for
∃≥n(x) . (∆ ∧φ)∧¬∃≥n+1(x) . (∆ ∧φ). Clearly, these shorthands change neither the semantics,
nor the free variables, nor the guard depth of a formula.
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▶ Example 5.2. The sentence φG := ψ1 ∧ ψ2 ∧ ψ3 describes G from Example 2.1 up to
isomorphism, where

χn :=
∧

1≤i<j≤n ¬vi =vj ∧ ¬∃≥1(vn+1) .
(
E(e, vn+1) ∧

∧
i∈[n] ¬vn+1 = vi

)
,

ψ1 := ∃=4(e) . e=e ,

ψ2 := ∃=1(e) . ∃≥1(v1, v2, v3) .
(∧

i∈[3] E(e, vi) ∧ χ3 ∧
∧

i∈[3] ∃=3(e) . E(e, vi)
)
,

ψ3 := ∃=3(e) . ∃≥1(v1, v2) .
(∧

i∈[2] E(e, vi) ∧ χ2 ∧
∧

i∈[3] ∃=3(e) . E(e, vi)
)
.

It is easily verified that φG ∈ GC1
2. χn is a helper formula, describing that there are

precisely n vertices v1, . . . , vn in the hyperedge e. ψ1 describes that there are precisely four
hyperedges, ψ2 describes that precisely one hyperedge contains precisely three vertices, each
being contained in precisely 3 hyperedges. Finally, ψ3 describes that there are exactly 3
hyperedges containing precisely 2 vertices, each being contained in precisely 3 hyperedges. It
is not hard to see that, in total, this describes G up to isomorphism.

Scheidt and Schweikardt [27] prove their result only for the following restricted variant of
GCk, called RGCk. They mention in the conclusion, that RGCk and GCk are equivalent and
show in the full version of the paper (Theorem 7.2) how a formula in GCk can be translated
into one in RGCk. We still need RGCk since it is used in the formulation and the proof of
the two core lemmata of [27] that we want to borrow.
▶ Definition 5.3 ([27]). The restriction RGCk is inductively defined as follows:
Atomic Formulas. (∆g ∧ φ) is in RGCk for all atomic formulas φ ∈ GCk and all guard

functions for φ, i.e., all g : N≥1 ⇀ [k] with dom(g) = {i : vi ∈ freev(φ)}.
Inductive Rules.

For every formula (∆g ∧ φ) ∈ RGCk, the formula (∆g ∧ ¬φ) is also in RGCk.
For i ∈ [2] and formulas (∆gi

∧ ψi) ∈ RGCk, the formula (∆(g1∪g2) ∧ (ψ1 ∧ ψ2)) is in
RGCk, if g1 and g2 are compatible.

Let n ∈ N≥1, (∆g ∧ φ) ∈ RGCk.
For every v-tuple v with vars(v) ⊆ freev(φ) and index set S, the formula (∆g̃ ∧ χ) is
in RGCk, where

χ := ∃≥nv . (∆g ∧ φ) and g̃ is the restriction of g to dom(g) \ S.

For every e-tuple e with vars(e) ⊆ freee(∆g ∧ φ) and index set S, the formula

(∆g̃ ∧ ∃≥ne . (∆g ∧ φ))

is in RGCk, if dom(g̃) = dom(g) and all i ∈ dom(g) satisfy

g̃(i) = g(i) or g̃(i) ∈ S or g̃(i) ̸∈ img(g). (1)

Intuitively, formulas in RGCk always carry the information, which hyperedge variable currently
guards which vertex variable and the logical guards are in a certain sense “consistent” (1)
along the syntax tree. ⌟

A simple inspection of the inductive proof for Theorem 7.2 in the full version of [27] shows
that the guard depth is unaffected by the translation, thus it gives us the following refined
result.
▶ Lemma 5.4. For every formula φ ∈ GCk and every guard function g for φ, there exists a
formula (∆g ∧ φg) ∈ RGCk such that
1. (∆g ∧ φ) ≡ (∆g ∧ φg),
2. free(φ) = free(φg), and gd(φ) = gd(φg).
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6 Main Result

We are now ready to plug everything together, which yields our main result.

▶ Theorem 6.1. Let G and H be hypergraphs and let k ∈ N≥1.

G ≡GCk
H ⇐⇒ Hom(ISHDk, IG) = Hom(ISHDk, IH)

⇐⇒ Hom(SHDk,G) = Hom(SHDk,H).

We use the fact that the proofs for the core Lemmata 8.1 and 8.2 in the work by Scheidt
and Schweikardt [27] actually give us the following refined results. This is easy to see on
inspection of the original proofs (consult Appendix E in the full version of [27]), since there
is a one-to-one correspondence between the blue label i and the hyperedge variable ei in the
proofs for both lemmas: whenever a blue label i is removed, the corresponding variable ei is
quantified and vice-versa.

For a k-labeled incidence graph L of the form (I, r, b, g), we let IL := (I, νv, νe) be defined
by νv(vi) := r(i) for all i ∈ dom(r) and νe(ej) := b(j) for all j ∈ dom(b).

▶ Lemma 6.2 (implicit in [27]). Let L = (I, r, b, g) ∈ GLIik. For every m ∈ N there
is a formula φL,m with (∆g ∧ φL,m) ∈ RGCk, freev(∆g ∧ φL,m) = {vi : i ∈ dom(r)},
freee(∆g ∧ φL,m) = {ej : j ∈ dom(b)}, and gd(φL,m) ≤ i, such that for every k-labeled
incidence graph L′ with dom(bL′) ⊇ dom(b), dom(rL′) ⊇ dom(r), and with real guards w.r.t.
g we have: IL′ |= ∆g, and hom(L,L′) = m ⇐⇒ IL′ |= φL,m.

▶ Lemma 6.3 (implicit in [27]). Let χ := (∆g ∧ ψ) ∈ RGCk with gd(χ) = ℓ and let m, d ∈ N
with m ≥ 1. There exists a linear combination Q :=

∑
i∈[q] αiLi, and sets drQ = {i : vi ∈

freev(χ)} and dbQ = {i : ei ∈ freee(χ)}, where for all i ∈ [q]:

αi ∈ R, Li ∈ GLIℓk, gi = g, dom(bi) = dbQ, and dom(ri) = drQ;

such that for all k-labeled incidence graphs L′ with |B(I ′)| = m, max{|β(e)| : e ∈ B(I ′)} ≤ d

and dom(b′) ⊇ dbQ, dom(r′) ⊇ drQ, g′ ⊇ g, and with real guards w.r.t. g we have: IL′ |= ∆g,
and∑

i∈[q]

αi · hom(Li, L
′) =

{
1, if IL′ |= χ

0, if IL′ ̸|= χ.

The proof of Theorem 6.1 works the same way as the one for Theorem 6.1 in [27, Section
8]: the second biimplication is provided by Theorem 2.7 and Proposition 2.8. The first
biimplication is shown via contraposition, where the contraposition of the forward direction
uses Lemma 6.2 and the one for the backward direction uses Lemma 6.3.

Proof of Theorem 6.1. Let I = IG and J = IH. If |B(I)| ≠ |B(J)| then hom(I ′, I) ̸=
hom(I ′, J) for the incidence graph I ′ ∈ ISHD1 that consists of a single blue vertex and no
red vertices. Similarly, I and J are distinguished by a suitable GC1-sentence of the form
∃≥ne . (e=e). If |B(I)| = |B(J)|, consider their corresponding label-free k-labeled incidence
graphs LI = (I,∅,∅,∅) and LJ = (J,∅,∅,∅).

Assume there is an I ′ ∈ ISHDk such that hom(I ′, I) = m1 ̸= m2 = hom(I ′, J). According
to Theorem 4.1, there is a label-free L ∈ GLIk such that I ′ ∼= IL, which means hom(L,LI) =
m1 ̸= m2 = hom(L,LJ). By Lemma 6.2 there exists a formula (⊤ ∧ φL,m1) ∈ RGCk with
gd(φL,m1) ≤ k such that ILI

|= (⊤ ∧ φL,m1) and ILJ
̸|= (⊤ ∧ φL,m1). Hence, ILI

|= φL,m1

and ILJ
̸|= φL,m1 , and since φL,m1 ∈ GCk, G ̸≡GCk

H.
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Assume there is a sentence φ ∈ GCk with gd(φ) = k such that ILI
|= φ and ILJ

̸|= φ. By
Lemma 5.4 there exists a formula (⊤ ∧ ψ) ∈ RGCk with gd(ψ) = k such that ILI

|= (⊤ ∧ ψ)
and ILJ

̸|= (⊤ ∧ ψ). Let m := |B(I)| = |B(J)| be the number of hyperedges and let n ∈ N
such that |β(e)| ≤ n for all e ∈ B(I) and all e ∈ B(J). According to Lemma 6.3 there
exists a linear combination Q =

∑
i∈[q] αiLi such that

∑
i∈[q] αi · hom(Li, LI) = 1 and∑

i∈[q] αi · hom(Li, LJ ) = 0 and Li ∈ GLIkk for all i ∈ [q]. This means there must be an i ∈ [q]
such that αi · hom(Li, LI) ̸= αi · hom(Li, LJ), which means hom(Li, LI) ̸= hom(Li, LJ).
Since drQ = dbQ = ∅, Li is label-free. According to Theorem 4.1, there exists an I ′ ∈ ISHDk

such that I ′ ∼= ILi . Thus, hom(I ′, I) ̸= hom(I ′, J), i.e., Hom(ISHDk, I) ̸= Hom(ISHDk, J).
This finishes the proof for the first “iff”. The second is provided by the combination of

Theorem 2.7 and Proposition 2.8. ◀

7 Final Remarks

This paper solves one of the open questions of Scheidt and Schweikardt [27], who lift
a result by Dvořák [9] from graphs to hypergraphs. Dvořák shows that homomorphism
indistinguishability over the graphs of tree width at most k is equivalent to indistinguishability
over first-order logic with counting quantifiers (C) and k+1 variables (Ck+1). Scheidt
and Schweikardt show that homomorphism indistinguishability over the class GHWk of
hypergraphs of generalised hypertree width at most k is equivalent to indistinguishability
over the logic GC with k guards (GCk). Grohe [11] gave a result complementing Dvořák’s:
C with quantifier depth at most m (Cm) matches homomorphism indistinguishability over
graphs of tree depth at most m. An obvious expectation was that the distinguishing power
of GCm would match homomorphism indistinguishability over the class HDm of hypergraphs
of hypertree depth at most m as it is defined by Adler et al. [1]. However, this expectation
did not manifest in this exact way. Instead, we proved that the distinguishing power of GCm

matches homomorphism indistinguishability over hypergraphs of strict hypertree depth at
most m, which is a (mild) restriction of hypertree depth. Combining Theorem 6.1 with the
main result of [27] yields the following combined result.

▶ Theorem 7.1. For all hypergraphs G and H, the following equivalences hold:

G ≡GCk
H ⇐⇒ G ≡SHDk

H ⇐⇒ IG ≡ISHDk
IH and

G ≡GCk H ⇐⇒ G ≡GHWk
H ⇐⇒ IG ≡IGHWk

IH.

We took this unexpected mismatch between GCk and HDk as an opportunity to investigate
the relationship between HDk and SHDk. In Theorem 2.5 we showed that the strict hypertree
depth of a hypergraph is at most 1 larger than its hypertree depth.

▶ Theorem 2.5. For all hypergraphs H, hd(H) ≤ shd(H) ≤ hd(H)+1.

To show that homomorphism counts from the class SHDk are just as expressive as
homomorphism counts from the class ISHDk, which was necessary to prove Theorem 6.1,
we used an implicit result by Böker [4], who gives a sufficient set of properties for a class
C of hypergraphs, such that homomorphism indistinguishability over C is the same as
homomorphism indistinguishability over the corresponding class CI of incidence graphs. Since
HDk does not have these properties, Böker’s result cannot be applied with respect to HDk

and IHDk. In fact, we showed in Theorem 2.9 that homomorphism indistinguishability over
HDk is not the same as homomorphism indistinguishability over IHDk and furthermore, that
it is also not the same as homomorphism indistinguishability over SHDk.

ICALP 2024
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▶ Theorem 2.9. For every k ∈ N≥1 there exist pairs of hypergraphs (Gk,Hk) and (G′
k,H′

k),
such that:
1. Hom(SHDk,Gk) = Hom(SHDk,Hk), but Hom(HDk,Gk) ̸= Hom(HDk,Hk);
2. Hom(HDk,G′

k) = Hom(HDk,H′
k), but Hom(IHDk, IG′

k
) ̸= Hom(IHDk, IH′

k
).

Further Research. It would be very interesting to see if the result by Böker (Theorem 2.7)
is tight in the sense that closure under pumping and local merging are sufficient and required
properties. I.e., whether for every class C that misses one of these properties, homomorphism
counts over C differ from homomorphism counts over the corresponding class CI of incidence
graphs in their distinguishing power.

As mentioned in the introduction, this work can be seen as one more step in the search
of a “proper” lifting of the k-dimensional Weisfeiler-Leman algorithm to hypergraphs. Given
the relationship between Weisfeiler-Leman, C and homomorphism indistinguishability on
graphs [5, 7, 8, 9, 10, 11], we believe that the proper lifting should admit a similar relationship
to the corresponding hypergraph parameters. Hence, we believe that the distinguishing power
of such an algorithm should match homomorphism indistinguishability over the class GHWk

of hypergraphs of generalised hypertree width at most k and thus also indistinguishability
by the logic GCk. Since we believe that GCk is the natural lifting of Ck in this setting, this
paper adds to this picture: The k-dimensional Weisfeiler-Leman algorithm restricted to
m iterations should have the same distinguishing power as the intersection of the classes
GHWk ∩ SHDm. Hence, the mismatch we uncovered in this work might propagate to the
Weisfeiler-Leman algorithm.
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