Regular Expressions with Backreferences and Lookaheads Capture NLOG

Yuya Uezato
CyberAgent, Inc., Tokyo, Japan
National Institute of Informatics, Tokyo, Japan

Abstract

Backreferences and lookaheads are vital features to make classical regular expressions (REGEX) practical. Although these features have been widely used, understanding of the unrestricted combination of them has been limited. Practically, most likely, no implementation fully supports them. Theoretically, while some studies have addressed these features separately, few have dared to combine them. Those few studies showed that the amalgamation of these features significantly enhances the expressiveness of REGEX. However, no acceptable expressivity bound for REWBLk – REGEX with backreferences and lookaheads – has been established. We elucidate this by establishing that REWBLk coincides with NLOG, the class of languages accepted by log-space nondeterministic Turing machines (NTMs). In translating REWBLk to log-space NTMs, negative lookaheads are the most challenging part since it essentially requires complementing log-space NTMs in nondeterministic log-space. To address this problem, we revisit Immerman–Szelepcsényi theorem. In addition, we employ log-space nested-oracles NTMs to naturally handle nested lookaheads of REWBLk. Utilizing such oracle machines, we also present the new result that the membership problem of REWBLk is PSPACE-complete.

1 Introduction

Backreferences and lookaheads are practical extensions for classical regular expressions (REGEX). REGEX with backreferences – REWB – can represent the non context-free language $L = \{ w\#w : w \in \{a, b\}^* \}$ with the REWB expression $E = ((a + b)^*)_x \# \backslash x$. Roughly telling about this expression, we save a substring matched with $(a + b)^*$ into the variable x, and later, we refer back to the matched string using $\backslash x$; therefore, E represents L. REWB is a classical calculus [2], and there are some results:

1. Schmid showed that REWB, the class of languages accepted by REWB, is contained in NLOG, the class of languages accepted by log-space nondeterministic Turing machines (NTMs) [23, Lemma 18].
2. Recently, Nogami and Terauchi showed that REWB is contained in the class of indexed languages, IL (an extension of context-free languages [1]) [20].
3. The membership problem of REWB – for an input REWB expression E and an input word w, deciding if E accepts w – is NP-complete [2].
On REGEX with lookaheads, there are two kinds of lookaheads. A positive lookahead \(?E\) checks if the rest of the input can be matched by \(E\) without consuming the input. A negative lookahead \(!E\) checks if the rest of the input cannot be matched by \(E\) without consuming the input. For example, the expression \(?E\)F+!E\(G\) runs an expression \(F\) if \(E\) goes well with the rest of the input and runs an expression \(G\) otherwise. Thus, it can be read as if \(E\) then \(F\) else \(G\) and is helpful in writing practical applications. Although lookaheads are useful, they do not alter the REGEX expressiveness. This fact immediately follows from the result of alternating Turing machines that the language class of alternating finite automata corresponds to that of usual finite automata \([6]\).

Now, it is a natural question: How expressive are \(\text{REWBLk}\) with lookaheads?

The class \(\text{REWBLk}\) with lookaheads – \(\text{REWBLk}\) – was studied by Chida and Terauchi \([7, 8]\). They have shown (a) \(\text{REWBLk}\), the class of languages accepted by \(\text{REWBLk}\), is closed under intersection and complement (it is immediately shown using lookaheads); (b) \(\text{REWBLk}\) is a proper subclass of \(\text{REWBLk}(+)\) – \(\text{REWBLk}\) with positive lookaheads – and \(\text{REWBLk}(-)\) – \(\text{REWBLk}\) with negative lookaheads; (c) the language emptiness problem of \(\text{REWBLk}(-)\) is undecidable. They also developed a new class of automata called \(\text{positive lookaheads memory automata (PLMFA)}\) and proved that \(\text{REWBLk}(+)\) equals PLMFA.

However, the following two key questions remain unresolved:

1. Which known language classes are related to \(\text{REWBLk}\)?
2. What is the computational complexity of the membership problem of \(\text{REWBLk}\) – a problem deciding if \(E\) accepts \(w\) for an input expression \(E\) and an input string \(w\)?

We solve these questions by presenting the following tight results:

(I) \(\text{REWBLk} = \text{NLOG}\). Besides, \(\text{REWBLk}\) already contains a NLOG-complete language.

(II) The membership problem of \(\text{REWBLk}\) is PSPACE-complete.

Together with existing results, our results are summarized in the following table:

<table>
<thead>
<tr>
<th>Language Class</th>
<th>Membership Problem</th>
</tr>
</thead>
<tbody>
<tr>
<td>REGEX + lookaheads</td>
<td>= Regular ([6])</td>
</tr>
<tr>
<td>(\text{REWBLk})</td>
<td>(\subseteq\ \text{IL}) ([20]), incomparable to CFL ([4, 5]), (\subseteq\ \text{NLOG}) ([23]), (\ni) NLOG-c language (I)</td>
</tr>
</tbody>
</table>

where NLOG-c is short for NLOG-complete, and the same applies to the others.

1.1 Difficulty in Translating \(\text{REWBLk}\) to Log-space NTMs

To investigate a hard part of translation from \(\text{REWBLk}\) to log-space NTMs, let us consider the following language, which is a well-known NLOG-complete language:

\[
L_{\text{reach}} = \{s \# x_1 \rightarrow y_1 \# \cdots \# x_n \rightarrow y_n \# t : s, t, x_i, y_i \in V^*, \text{and there is a path from } s \text{ to } t\}
\]

where the part \(\# x_1 \rightarrow y_1 \# \cdots \# x_n \rightarrow y_n \#\) means the directed graph with direct edges \(x_1 \rightarrow y_1, x_2 \rightarrow y_2, \text{ and so on.}\) The following \(\text{REWBLk}\) expression \(E_{\text{reach}}\) recognizes \(L_{\text{reach}}\):

\[
E_{\text{reach}} = (V^*)_{\text{Cur}} \# (\Sigma^* \# \text{Cur} \rightarrow (V^*)_{\text{Cur}} \#)^* \Sigma^* \# \text{Cur}
\]

where \(\Sigma = V \cup \{\#, \rightarrow\}\). It first captures \(s\) into the variable \(\text{Cur}\) and walks on graphs while repeatedly evaluating the part \(?(\cdots)\). Each evaluation makes a nondeterministic one-step move on the graph. The part \(\Sigma^* \# \text{Cur}\) checks if we reach the goal \(t\).
It is not difficult to structurally translate E_{reach} to a log-space NTM M such that $L(M) = L(E_{\text{reach}})$. Now, using M, let us translate the if-then-else expression $?E_{\text{reach}}^F + !E_{\text{reach}}^G$ for some expressions F and G to a log-space NTM N. Let w be an input word $s\#\text{edges}\#t$. For the part $?E_{\text{reach}}^F$, we run M in N; if M accepts w, we proceed to simulate F.

However, for the other part $!E_{\text{reach}}^G$, we encounter problems:

(A) We need to check if all possible walks of M starting from s do not reach t.

(B) Walking paths starting from s and aiming for t become infinitely long, and thus there are infinitely many walks (branching) to be checked.

Therefore, we cannot run M directly in N to handle the negative lookahead $!E_{\text{reach}}$.

Our Idea: Immerman–Szelepcsényi Theorem & Log-space Nested-Oracles NTMs

To address the above problems, we leverage Immerman–Szelepcsényi theorem [16, 27]. This theorem states that the class NLOG is closed under complement; i.e., there exists a log-space NTM M such that $L(M) = \Sigma^* \setminus L(M)$. Therefore, in our machine N, we run M for the part $!E_{\text{reach}}^G$: If M eventually accepts w, then we proceed to simulate G.

On the other hand, REWBLk permits nested lookaheads, such as $?\cdots!(\cdots)?\cdots!\cdots?$.

To handle them naturally, we employ log-space NTMs with nested oracles [16, 25, 19]. These machines can easily simulate REWBLk and are translated to log-space NTMs by Immerman–Szelepcsényi theorem; thus, $\text{REWBLk} = \text{NLOG}$ holds. Moreover, oracle machines are crucial to showing that the membership problem of REWBLk is PSPACE-complete. To this end, we also give the new result that the membership problem of such machines is in PSPACE.

Structure of Paper

The rest of the paper is structured as follows. Section 2 discusses related work. Section 3 reviews REWBLk and demonstrates that REWBL already contains an NLOG-complete language. Section 4 illustrates the expressiveness of REWBLk: (1) $\text{NLOG} \subseteq \text{REWBLk}$; (2) the membership problem of REWBLk is PSPACE-hard; (3) $\text{REWBL}(+)$ and $\text{REWBL}(-)$ represent languages $\not\in \text{IL}$; and (4) the emptiness problems of $\text{REWBL}(+)$ and $\text{REWBL}(-)$ are undecidable even if $\Sigma = \{a\}$. Section 5 reviews log-space nested-oracles NTMs and their language class ($= \text{NLOG}$), and shows our new result: their membership problem is in PSPACE. Section 6 establishes $\text{REWBLk} \subseteq \text{NLOG}$ and that the membership problem of REWBLk is in PSPACE. Section 7 concludes this paper by giving open problems.

2 Related Work

As discussed in the Introduction, Chida and Terauchi have formalized REWBLk and its semantics [7, 8]. To our knowledge, their study is the first theoretical exploration into the simultaneous treatment of backreferences and lookaheads. Surprisingly, there has been no prior theoretical research on the topic despite their longstanding and widespread use. They introduced PLMFA (positive lookahead MFA) by expanding MFA (memory finite automata), which Schmid presented for studying REWBL in [24]. One of their main results is the equivalence of PLMFA to $\text{REWBL}(+)$, established through translations between PLMFA and REWBLk. Nevertheless, they did not address: (i) a relationship between REWBLk and existing known language classes; (ii) the complexity of the membership problem of REWBLk. In contrast, we show that REWBLk captures NLOG and the membership problem of REWBLk is PSPACE-complete.
As highlighted in the Introduction, for REWB, Schmid showed $\text{REW} \subseteq \text{NLOG}$ [23], and Nogami and Terauchi showed $\text{REW} \subseteq \text{IL}$ [20]. Schmid also introduced MFA and showed that MFA corresponds to REWB [24]. About the relationship between NLOG and IL, it is worth noting that:

- NLOG $\not\subseteq$ IL. It is shown as follows. The language $L_{2^2} = \{a^{2^n} : n \in \mathbb{N}\}$ clearly belongs to NLOG. However, $L_{2^2} \notin$ IL by pumping lemmas for indexed languages [14, 11].

- IL $\not\subseteq$ NLOG unless NLOG = NP. It is shown as follows. IL can represent the language L_{3SAT}, whose words are true 3-CNF formulas [22]. However, $L_{3SAT} \not\subseteq$ NLOG unless NLOG = NP.

In the present paper, we take their result further and show that $\text{REWBL}_k = \text{NLOG}$ and that REWB already contains an NLOG-complete language.

We also refer to modern REGEX engines that (partially) support both backreferences and lookaheads. Several programming languages (for example, Perl, Python, PHP, Ruby, and JavaScript) and .NET framework support these features. However, their support is limited in both syntax and semantics. First, expressions like $(x) x$ and $(x + x) x$ are rejected by most implementations because the variable x appears more than once in single captures. Next, in most implementations, the expression $F = (\epsilon + ?((\lambda x) x) ?((\lambda x) x))^* x$, which represents $\{\epsilon, a, a^2, \ldots\}$, does not match with a^2 and a^3, so on. It is due to conservative loop-detecting semantics. Such a semantics is standardized in ECMAScript [9]. This semantics works for F as follows. First, it unfolds the Kleene-* of $(\lambda x) x$ as $(\epsilon + ?((\lambda x) x)^*).$ Next, it enters the underline part and updates the variable x without consuming any input characters. Then, it tries to evaluate $(\lambda x)^*$ again at the same input position. At this point, many REGEX engines think that we enter an infinite loop and so stop unfolding the Kleene-*.

Consequently, F only matches with ϵ (without loop unfolding) and a (with a single loop unfolding).

We can rephrase this situation as follows: (1) the amalgamation of lookaheads with variables induces side effects without consuming any characters; (2) however, the loop-detecting semantics overlooks such side effects and changes behaviors from the naive semantics. On the other hand, such conservative semantics work well for REGEX, REGEX with lookaheads, and REWB since they do not induce such side effects.

This paper presents a translation between REWBLks and log-space NTMs, enabling the development of REGEX engines that fully support backreferences and lookaheads. Notably, such engines run in polynomial time (for a fixed expression) since NLOG \subseteq P.

3 Preliminaries: REWBLk

We review the syntax and semantics of REWBLk [7, 8] step-by-step below.

3.1 Regular Expressions with Backreferences and Lookaheads

We first give the syntax of REWBLk over an alphabet Σ and variables V:

$$E ::= \sigma | \epsilon | E + E | EE | E^* \mid (E)_v \mid \lambda v \mid \epsilon(E) \mid !(E)$$

where $\sigma \in \Sigma$ and $v \in V$ is a variable. The first line defines classical regular expressions, REGEX. We consider the following subclasses in this paper: REWB (REGEX with captures and backreferences), $\text{REW}^+ (\text{REW} \text{with positive lookaheads } ?(E))$, $\text{REW}^- (\text{REW} \text{with negative lookaheads } !(E))$.

Semantics of REGEX

We first give a semantics for REGEX. To accommodate variables and lookaheads, configurations for REGEX are 4-tuples \((E, w, p, \Lambda)\) where
- \(E\) is an expression to be executed;
- \(w\) is an input string and will not change throughout computation;
- \(p\) is a 0-origin position on \(w\) \((0 \leq p \leq |w|)\). We write \(w[p]\) for the symbol on the position \(p\). It should be noted that \(p = |w|\) is allowed to represent that we consume all the input.
- \(\Lambda : V \rightarrow \Sigma^*\) is an assignment from variables \(V\) to substrings of \(w\).

We write \(C\) for the set of configurations. To denote all the results obtained by computing, we use a semantic function \([\cdot] : C \rightarrow P(\mathbb{N} \times (\mathbb{V} \rightarrow \Sigma^*))\) where \(P(X)\) is the power set of \(X\). On \([E, w, p, \Lambda] = \{(p_1, \Lambda_1), \ldots, (p_n, \Lambda_n)\}\), each pair \((p_i, \Lambda_i)\) means that, after executing \(E\) on \(w\) from \(p\) under \(\Lambda\), we move to the position \(p_i\) and obtain an assignment \(\Lambda_i\). On the basis of this idea, we define a semantics for each rule of the REGEX part:

\[
[E_1 + E_2, w, p, \Lambda] = [E_1, w, p, \Lambda] \cup [E_2, w, p, \Lambda],
\]
\[
[E_1 E_2, w, p, \Lambda] = \bigcup_{(p', \Lambda') \in [E_1, w, p, \Lambda]} [E_2, w, p', \Lambda'],
\]
\[
[E^*, w, p, \Lambda] = \bigcup_{i=0}^\infty [E^i, w, p, \Lambda]\
\text{where } E^0 = \epsilon, E^{i+1} = EE \cdots E.
\]

We note that our semantic function \([E, w, p, \Lambda]\) is inductively defined on the lexicographic ordering over the star height of \(E\) and the expression size of \(E\). The start height and expression size of REWBLk is defined in the usual way.

We also note that each \([E, w, p, \Lambda]\) forms a finite set because the value of each variable \(x\) must be a substring of \(w\), and also \(p\) is bounded as \(0 \leq p \leq |w|\).

Semantics of REWBL

A capture expression \((E)_x\) attempts to match the input string with \(E\). If it succeeds, the matched substring is stored in the variable \(x\).

\[
[E_x, w, p, \Lambda] = \{ \langle p', \Lambda' \mid x \mapsto w[p..q] \rangle : (p', \Lambda') \in [E, w, p, \Lambda]\} \]

where \(w[p..q]\) is the string \(w[p] w[p+1] \cdots w[q-1]\).

A backreference \(\backslash x\) refers to the substring stored previously by evaluating some \((E)_x\).

\[
[\backslash x, w, p, \Lambda] = [\Lambda(x), w, p, \Lambda].
\]

Semantics of Lookaheads

Positive lookaheads \(?E\) run \(E\) from the current input without consuming any input. Although the change in head position is undone after running \(E\), the modification to variables in \(E\) is not. So, we can also call it destructive lookahead.

\[
[?E, w, p, \Lambda] = \{ (p, \Lambda') : (p', \Lambda') \in [E, w, p, \Lambda]\}.
\]
Negative lookaheads $!(E)$ also run E without consuming any input. If E does not match anything, we invoke a continuation. Compared with positive lookaheads $?((E)$, both the previous head position and the previous values of variables are recovered.

$$ \llbracket!(E), w, p, \Lambda\rrbracket = \begin{cases} \{\langle p, \Lambda\rangle\} & \text{if } \llbracket(E), w, p, \Lambda\rrbracket = \emptyset, \\ \emptyset & \text{otherwise.} \end{cases} $$

Readers may wonder why positive lookaheads modify variables while negative ones do not. This asymmetry arises because, in negative lookaheads, all computations uniformly fail, leaving no suitable configuration for altering variables. On the other hand, using the non-destructive property of the negative lookaheads, we can also define non-destructive positive lookaheads by $!(!(E))$. This expression executes E from the current position without any variable modifications.

Remark: Special character $\$$. Using a negative lookahead, we define $\$ = $!(\Sigma)$ to check the end of the input. $\$ is one of the most important applications of negative lookaheads.

▶ **Definition 1.** The language of a REWBLk E, $L(E)$, is defined as follows:

$$ L(E) = \{w \in \Sigma^* : \langle p, \Lambda\rangle \in \llbracket(E, w, 0, \iota)\rrbracket, p = |w|\} \quad \text{where } \forall x \in \mathcal{V}. \iota(x) = \epsilon. $$

We can also consider another definition using $\gamma(x) = \perp$ instead of ι, where γ indicates that all variables are initially undefined. Although some real-world regular expression engines adopt that definition, we adopt the above ι-definition since it is tedious to initialize all variables x using $(\epsilon)_x$. The results discussed in this paper will not change regardless of which one is used. There is another formalization that excludes labels that appear multiple times in a single group, for instance $(\chi \chi)$. We discuss such a restriction, which we call reference restriction, in the immediately following section.

3.2 Reference Restriction and Normalization

Our formalization of REWBLk allows that variable references appear inside their definitions; for example, we allow expressions like $(\chi \chi)_x$. On the other hand, many studies on REWB do not allow them; i.e., expressions like $(\chi \chi)_x$ are prohibited [5, 23, 10, 20].

To the best of the author’s knowledge, it remains unclear whether the restriction alters the expressive power of REWB. However, on REWBLk, the restriction does not change the language class of REWBLk. Here, we formalize the restriction and then present our normalization, which converts REWBLk expressions to language-equivalent restricted forms.

We use the function VAR that receives an expressions E and returns the set of all the backreference variables inside E. For example,

$$ \text{VAR}(\chi \chi) = \{x\}, \text{VAR}(\chi \chi y) = \{x, y\}, \text{VAR}(abc?(\chi w(\chi)z)_y) = \{w, x\}. $$

It can be easily defined inductively on the expression size of E.

We also define a restriction, reference restriction. An REWBLk expression E satisfies the reference restriction condition if, for all the capture subexpressions $(F)_x$ of E, $x \notin \text{VAR}(F)$ holds. For example, the expression $abc?(\chi w(\chi)z)_y$ satisfies the condition. On the other hand, the expressions $(\chi \chi)_x$ and $abc?(\chi w(\chi)z)_y$ do not.

▶ **Theorem 2.** For any REWBLk expression E, there is an expression E' that satisfies the reference restriction condition and $L(E) = L(E')$.
Proof. It suffices to perform variable renaming like alpha-conversion in lambda calculus to remove patterns \((\cdots x \cdots)_x\). Formally, we apply the following renaming function \(R\) from the innermost of \(E\) to the outermost:

\[
R(E) = \begin{cases}
?((F')_y)(_)_x & \text{where } y \text{ is a fresh variable} \\
F & \text{otherwise.}
\end{cases}
\]

The expression \(?((F')_y)(_)_x\) is equivalent to \((F')_x\) because it first stores the result of running \(F'\) to a fresh variable \(y\) and then puts it to the original variable \(x\). Thus, the innermost-to-outermost applying \(R\) changes expressions to ones, which satisfy the restriction condition, without change their languages.

For example, an expression \((aa)_x(_)_x\) is translated to \((aa)_x(?((_)_y)(_)_y)\) by introducing a variable \(y\). Another expression \((a)_x(b)_y(?((_)_z)(_)_z)\) is first translated to \((a)_x(b)_y(?((_)_z)(_)_z)\) by introducing \(\alpha\). Then, introducing \(\beta\), it is translated to \((a)_x(b)_y(?((_)_z)(_)_z)\) (\(\beta\)).

We will use this theorem in Section 6 to translate \(REWBL_k\) to nested-oracles machines.

3.3 NLOG-Complete Language Accepted by \(REWBL_k\)

Hartmanis and Mahaney proposed a decision problem called \(TAGAP\), which is the topological sorted version of the reachability problem of directed acyclic graphs (DAG) [13]. Let us consider a word \(w = r x_1 \rightarrow y_1^\rightarrow x_2 \rightarrow y_2^\rightarrow \cdots x_n \rightarrow y_n^\right\downarrow\), which represents a DAG. We call \(w\) topologically sorted if: for all pairs of \(a \rightarrow b\) and \(b \rightarrow c\) of \(w\), \(a \rightarrow b\) appears before \(b \rightarrow c\) in \(w\).

The following example represents a DAG and one of its topologically sorted representation:

\[
\begin{array}{cccc}
s & a & b & c \\
\end{array}
\]

\[
\begin{array}{cccc}
t & a & d & e \\
\end{array}
\]

We define the language for \(TAGAP\) as follows:

\[
L_{TAGAP} = \{s \# R \# t : R \text{ is a topologically sorted repr. of } G, t \text{ is reachable from } s \text{ in } G\}.
\]

Hartmanis and Mahaney showed that this language is \(NLOG\)-complete [13, Theorem 3]. Since we only consider the topologically sorted representation, there is no longer a need to explore the entire input many times. In the above example, we can reach \(t\) from \(s\) by nondeterministically finding edges \(s \rightarrow a, a \rightarrow d,\) and \(d \rightarrow t\) in this order by one-way scanning. Indeed, we can show the following theorem.

- **Theorem 3.** \(L_{TAGAP} \in REWB\).

Proof. The following expression \(E_{TAGAP}\) clearly recognizes \(L_{TAGAP}\):

\[
E_{TAGAP} = (V^*)_\text{Cur} \# (\Sigma^* \cap \text{\textsf{Cur}} \rightarrow (V^*)_\text{Cur} \cdot \Sigma^* \# \text{\textsf{Cur}},
\]

where \(V\) is an alphabet for vertices.

4 Expressiveness of \(REWBL_k\)

In this section, we present some theorems about the expressiveness of \(REWBL_k\).
4.1 Unary Non-Indexed Language

We consider the single exponential numerical language \(L_{1exp} = \{a^{2^k} : k \in \mathbb{N}\} \) over the unary alphabet \(\Sigma = \{a\} \). The language \(L_{1exp} \) is represented by the \(\text{REWBLk} \) expression \(E_{1exp} = (\text{?}(a)_x \text{ (?}(\text{\backslash}x\text{?}_y)_x)^* \text{?}_x \).

Furthermore, we can represent the doubly exponential language \(L_{2exp} = \{a^{2^{2^k}} : k \in \mathbb{N}\} \) by the following \(\text{REWBLk} \) expression \(E_{2exp} \):

\[
E(\alpha, \beta) = (\text{?}(\text{\backslash}\alpha_\alpha)_\alpha (\text{\backslash}\beta\beta)_\beta)^*; \quad \text{(it adds \(a \) to \(\alpha \) and doubles \(\beta \))}
\]
\[
E_{2exp} = (\text{?}(a)_m E(n, m) \text{ ?}(a)_x E(y, x) \text{ ?}(a^* ?(\text{\backslash}m\text{?}_x) ?(\text{\backslash}y\text{?}_x)) \text{ ?}_x).
\]

It searches the numbers \(n, m, x, y \) that satisfy \(2^n = m, 2^y = x \), and \(m = y \); so, \(x = 2^{2^n} \). While unfolding the Kleene-* of \(E(n, m) \) and \(E(y, x) \), \(2^n = m \) and \(2^y = x \) hold. The part \(?(a^* ?(\text{\backslash}m\text{?}_x) ?(\text{\backslash}y\text{?}_x)) \) checks if \(m = y \) by utilizing the negative lookahead expression \(\$ = !\!\!(a) \).

We emphasize the known result \(L_{2exp} \notin \text{IL} \), which is shown by the pumping or shrinking lemma for indexed languages \([14, 11] \). Since we can carry out a similar construction of \(E_{2exp} \) in \(\text{REWBL} (+) \) and \(\text{REWBL} (-) \), we have the following result.

\textbf{Theorem 4.} \(\text{REWBL} (+) \) and \(\text{REWBL} (-) \) can represent unary non-indexed languages.

\textbf{Proof (Sketch).} Due to the page limitation, we provide a proof sketch for the \(\text{REWBL} (-) \) part and put the complete proof in the Appendix of the long version. Let us consider the following \(\text{REWBLk} \) expression:

\[
E'(\alpha, \beta) = ((\text{\backslash}\alpha_\alpha)_a (\text{\backslash}\beta\beta)_a)^*; \\
E'_{2exp} = (a)_m E'(n, m) (a)_x E'(y, x) !(\text{\backslash}m\text{?}_x) !(\text{\backslash}y\text{?}_x) a^*.
\]

While the expression \(E'_{2exp} \) resembles \(E_{2exp} \), it lacks positive lookaheads. Let us explain \(E'_{2exp} \) step-by-step:

1. The expressions \((a)_m \) and \((a)_x \) initialize \(m \) and \(x \) by \(a \) as with \(E_{2exp} \).
2. The subexpression \(E'(n, m) \) repeatedly expands variables \(n \) and \(m \) as with \(E_{2exp} \). So, executing \(E'(n, m) \) actually consumes inputs as follows without positive lookaheads:

\[
a^1_n a^{2^1}_m a^{2^2}_n a^{2^2}_m a^{2^3}_n a^{2^3}_m \cdots a^1_n a^{2^2}_m \cdots
\]

3. The same holds for the expression \(E'(y, x) \).

The part \(!(\text{\backslash}m\text{?}_x) \) is a non-destructive positive lookahead by \(\text{\backslash}m\text{?}_x \) that is simulated by double negative lookaheads; therefore, the part \(!(\text{\backslash}y\text{?}_x) \) \(!(\text{\backslash}y\text{?}_x) \) requires \(m = y \). If we pass the assertion, we consume the rest input by \(a^* \). By replacing positive lookaheads with actual consuming, the language \(L(E'_{2exp}) \) grows faster (the notion fast growth is formalized in the Appendix) than \(L_{2exp} \). This property implies that \(L(E'_{2exp}) \) is not an indexed language.

It states that, even if restricted to unary languages, positive or negative lookaheads make \(\text{REWBL} \) expressive and incomparable to \(\text{IL} \). We can also show the undecidability of the emptiness problem, which is checking if \(L(E) = \emptyset \) for a given expression \(E \), of \(\text{REWBL} (+) \) and \(\text{REWBL} (-) \) over \(\Sigma = \{a\} \).

\textbf{Theorem 5.} The emptiness problems of \(\text{REWBL} (+) \) over a unary alphabet and \(\text{REWBL} (-) \) over a unary alphabet are undecidable.

The two undecidability results can be shown by translating the Post Correspondence Problem to the emptiness problems. Due to the page limitation, we put the proof of Theorem 5 in the Appendix of the long version.
4.2 Simulating Two-Way Multihead Automata by REWBLk

We show that REWBLk can simulate two-way multihead automata, which are a classical extension of automata and capture NLOG [12].

Simulating Two-Way One-Head Automata

We start from two-way one-head automata. Let $A = (Q, q_{\text{init}}, q_{\text{acc}}, \Sigma, \Delta)$ be a two-way automata where $Q = \{q_0, q_1, \ldots, q_{|Q|-1}\}$ is a finite set of states, $q_{\text{init}} \in Q$ is the initial state, $q_{\text{acc}} \in Q$ is the accepting state, Σ is an input alphabet, and Δ is a set of transition rules. Each transition rule is of the form $p \xrightarrow{\tau/\theta} q$ where $p, q \in Q$, $\tau \in (\Sigma \cup \{\vdash, \dashv\})$, and $\theta \in \{-1, 0, 1\}$.

We formalize the above intuition as the following simulation:

1. A denotes a two-way multihead automata.
2. Δ is a set of transition rules. Each rule is of the form (p, q, τ, θ).
3. Σ is an input alphabet.
4. $|Q|$ is the number of states.
5. $|\Sigma|$ is the size of the alphabet.
6. $|w|$ is the length of the input string w.
7. q_i is the state at position i.

To represent all states, we need $E = \{0, 1, \ldots, |Q|-1\}$.

The component θ indicates a head moving direction: (1) if $\theta = -1$ (resp. $\theta = 1$), we move the scanning head left (resp. right); (2) if $\theta = 0$, we do not move the scanning head.

For an input $w \in \Sigma^*$, we run A on the extended string $\vdash \vdash w \vdash$, which are surrounded by the left and right end markers. A configuration of A for $\vdash \vdash w \vdash$ is a tuple (q, i) where $q \in Q$ and $0 \leq i < 2 + |w|$, and thus the current scanning symbol is $(\vdash \vdash w \vdash)[i]$.

A transition rule $\delta = p \xrightarrow{\tau/\theta} q \in \Delta$ gives a labelled transition relation δ as follows:

- $(p, i) \xrightarrow{\delta} (q, i + \theta)$ if $(\vdash \vdash w \vdash)[i] = \tau$ and $0 \leq i + \theta < |w| + 2$

The word w is accepted by A if the initial configuration $(q_{\text{init}}, 0)$, reading \vdash, has a computation path to a configuration with the accepting state q_{acc}. We now define the language of A as follows:

$$L(A) = \{w : (q_{\text{init}}, 0) \xrightarrow{\delta_1} (q_1, i_1) \xrightarrow{\delta_2} \cdots \xrightarrow{\delta_n} (q_{\text{acc}}, i_n)\}.$$

To simulate A by REWBLk, we use some variables $L, R, S \in \Sigma^*$. Intuitively, each variable means the following:

- If $L = \vdash$ (resp. $R = \vdash$), A is located on the left (resp. right) part of the string.
- Otherwise, $\exists \sigma \in \Sigma, w = L \sigma R$. So, L (resp. R) means the left (resp. right) part of w.
- The length of S denotes the index i of the current state q_i of A.

We formalize the above intuition as the following simulation \sim between (q, i) and (L, R, S):

1. $(q_j, 0) \sim (\varepsilon, w, S)$ if $|S| = j$.
2. $(q_j, |w| + 1) \sim (w, \varepsilon, S)$ if $|S| = j$.
3. $(q_j, i) \sim (L, R, S)$ if $1 \leq i \leq |w|$, $\exists \sigma. w = L \sigma R$, $|L| = i - 1$, and $|S| = j$.

To represent all states, we need $|w| \geq |Q| - 1$. So, we mainly consider to represent $L(A) \setminus L'$ where $L' = \{w \in L(A) : |w| < |Q| - 1\}$. For instance, our simulation proceeds as follows:

1. $\vdash a b \vdash \sim (L = \varepsilon, R = ab, S = \varepsilon)$, (if $R = \vdash$, then $L = \varepsilon$ and A is on the left)
2. $\vdash a b \vdash \sim (L = \varepsilon, R = b, S = a)$, (move right from (1))
3. $\vdash a b \vdash \sim (L = a, R = \varepsilon, S = a)$, (move right from (2))
4. $\vdash a b \vdash \sim (L = ab, R = \varepsilon, S = a)$, (if $L = \vdash$, then $R = \varepsilon$ and A is on the left)
5. $\vdash a b \vdash \sim (L = a, R = \varepsilon, S = ab)$, (move left from (4) and change q_1 to q_2)
6. $\vdash a b \vdash \sim (L = \varepsilon, R = b, S = ab)$.

As initialization, we use the expression $E_{\text{init}} = (\epsilon)_L \vdash (\Sigma^*)_R \vdash (\epsilon)_S$, which sets $L = S = \varepsilon$ and $R = \vdash$ for the input w. To move the head right, we use the following expression:

$$E_{\vdash 1} = ?((\Lambda \Sigma)_L \Sigma (\Sigma^*)_R \Sigma) + ?((\Lambda \Sigma)_L (\varepsilon)_R \Sigma).$$
Regular Expressions with Backreferences and Lookaheads Capture NLOG

The part $?((\Sigma^*)_L \Sigma (\Sigma^*)_R \Sigma)$ first attempts to expand L toward the right and then updates R. Similarly, we define the expression E_{-1} to move the head left as follows:

$$E_{-1} = ?((\Sigma^*)_L \Sigma (\Sigma \setminus R)_R \Sigma) + ?((\epsilon)_L (\Sigma \setminus R)_R \Sigma).$$

To check if the current scanning symbol is \cdot, \cdot, or $\sigma \in \Sigma$, we use the following expressions:

$$E_{-1} = ?(\Sigma L \Sigma), \quad E_{-1} = ?(\Sigma \setminus R \Sigma), \quad E_{-1} = ?(\Sigma \setminus R \Sigma).$$

To change the current state is q_i, we use the expression $E_{q_i} = ?((\Sigma^*)_L (\Sigma \setminus S) \Sigma (\Sigma^*)_S \Sigma)$. To change the current state is q_i to q_j, we use the expression $E_{i \rightarrow j} = E_{q_i} ?((\Sigma^*)_S \Sigma (\Sigma^*)_S \Sigma)$. For a given two-way one-head automata A, there is an expression E_A with 3 variables (L, R, and S) such that $L(E_A) = L(A)$. Especially, the expression uses negative lookaheads only in the form of Σ.

Simulating Two-Way Multihead Automata

We extend the above argument to two-way multihead automata M [12, 15]. Compared to two-way one-head automata A, M has multiple-heads on input strings. We write K for the number of heads. The difference between A and M are the following:

- Each configuration of M is a tuple $(q, i_1, i_2, \ldots, i_K)$ where q is the current state and i_j is the j-th head position.
- Each transition rule is $p \overset{(\tau_1, \ldots, \tau_K)/(\theta_1, \ldots, \theta_K)}{\Rightarrow} q$ where $p, q \in Q$, $\tau_j \in \Sigma \cup \{-, \cdot\}$ is used for inspecting the scanned symbol by j-th head, and θ_j denotes the head moving direction for the j-th head.

We define a transition relation \Rightarrow in the same way as for A. Let $\delta = p \overset{(\tau_1, \ldots, \tau_K)/(\theta_1, \ldots, \theta_K)}{\Rightarrow} q$ be a rule and $C = (p, i_1, i_2, \ldots, i_K)$ be a valid configuration. If $\forall 1 \leq j \leq K, (\cdot w^{-\cdot})[i_j] = \tau_j$, then we have $C \overset{\delta}{\Rightarrow} (q, i_1 + \theta_1, i_2 + \theta_2, \ldots, i_K + \theta_K)$. We define the language as follows:

$$L(M) = \{ w : (q_{init}, 0, 0, \ldots, 0) \overset{\delta_1}{\Rightarrow} \overset{\delta_2}{\Rightarrow} \ldots \overset{\delta_S}{\Rightarrow} (q_{acc}, i_1, i_2, \ldots, i_K) \}.$$

We can show the following lemma by simply extending our above construction for two-way one-head automata.

- **Lemma 6.** For a given two-way K-head automata M, we have an expression E_M with $3K$ variables such that $L(E_M) = L(M)$. E_M uses negative lookaheads only in the form of Σ.

Proof. As with the two-way one-head automata, for each i-th head, we prepare variables L_i, R_i, and S_i. For each i-th head, by using the variables for i, we give expressions E_i where $\pi \in \{+, -1, \cdot, \cdot\}$. Employing the same E_i and $E_{i \rightarrow j}$, we can give $E(\delta)$ for each transition rule δ of M and so E_M.}

It is well-known that the class of languages accepted by two-way multihead automata corresponds to NLOG [12]; so, we have the following theorem.

- **Theorem 8.** NLOG \subseteq REWBLk.
4.3 Encoding Quantified Boolean Formula Problem

We translate the \textsc{Pspace}-complete problem \textbf{QBF}, checking if a quantified boolean formula (QBF) is true, into the membership problem of \textsc{rewblk}. We only consider QBFs in CNF since QBF restricted to CNF remains \textsc{Pspace}-complete \cite{3}. For instance, let us consider the following QBF \(Q\) and translate it to the equivalent one \(Q'\) by replacing \(\forall\) with \(\exists\):

\[Q : \forall a. \exists b. \forall c. \exists d. (a \lor b \lor c) \land (b \lor c \lor d) \Rightarrow Q' : \neg \exists a. (\neg \exists b. (\neg \exists c. (\neg ((a \lor b \lor c) \land (b \lor c \lor d))))). \]

In order to check if \(Q\) is true, we first structurally translate \(Q'\) into the following \(E_Q'\):

\[E(v) = ((T)_{v}(F)^{\pi} + (T)^{\pi}(F)_{v}) \quad \text{where } v \text{ is a propositional variable,} \]
\[E_Q' = !((E(a) \lor (E(b) \lor (E(c) \land (E(d) \lor (a \lor b \lor c) \land (b \lor c \lor d))))), \]

where we replace \(\neg\) with \(!\), \(\exists\) with \((E(x), x \lor \bot, \pi \lor \bot, \land \lor \lor\), and \(\lor\) with \(+\).

We then check \(w = T F T F T F T F T F T F T T T T\in L(E_Q)\). We explain the string \(w\) using the annotated version \(T_1F_2T_3F_4T_5F_6T_7F_8T_9\): (1) the first two characters \(T_1F_2\) makes the two cases where \((a = T, \pi = F)\) or \((a = F, \pi = T)\); (2) similarly, \(T_3F_4\) (resp. \(T_5F_6\) and \(T_7F_8\)) works for \(b\) and \(\pi\) (resp. \(c, \pi\) and \(d, \pi\)) (3) by \(T_9\), we check if the expression \((a \lor b \lor c)\) holds (in the negative context); (4) by \(T_{10}\), we also check if \((b \lor c \lor d)\) holds. Thus, \(Q\) is true iff \(w \in L(E_Q)\).

On the basis of the above translation using \(E(v)\), we can translate every CNF-QBF \(Q\) to the corresponding expression \(E_Q\) and give the membership problem \(T F T F\ldots T F T T\ldots T \in L(E_Q)\) in polynomial time for the size of \(Q\). It implies the following result.

\textbf{Theorem 9.} The membership problem of \textsc{rewblk} is \textsc{pspace}-hard.

5 Log-space Nested-Oracles Nondeterministic Turing Machines

As we have stated in the Introduction, we utilize log-space nested-oracles NTMs. We will translate \textsc{rewblk} to them in the next section.

We first review log-space NTMs. Here we especially consider \(c\)-bounded \(k\)-working-tapes log-space NTM \(M = (k, c, Q, q_{\text{init}}, Q_F, \Sigma, \Gamma, \square, \Delta)\). Each component of \(M\) means:

- \(k\) is the number of working tapes \(T_1, T_2, \ldots, T_k\).
- \(c\) is used to bound the size of working tapes. It will be defined precisely below.
- \(Q\) is a finite set of states, \(q_{\text{init}}\) is the initial state, and \(Q_F \subseteq Q\) is a set of accepting states.
- \(\Sigma\) is an input alphabet.
- \(\Gamma\) is a working tape alphabet. \(\square \in \Gamma\) is the blank symbol for working tapes.
- \(\Delta\) is a set of transition rules. Each rule is either \(p \xrightarrow{\tau|\theta} q\) or \(p \xrightarrow{\kappa \rightarrow \kappa'} q\) where \(p, q \in Q, \tau \in \Sigma \cup \{\epsilon, \bot, \lnot\}, \kappa, \kappa' \in \Gamma \cup \{\bot, \lnot\}\), and \(\theta \in \{-1, +1, 0\}\).

Let \(\uparrow w \downarrow (w \in \Sigma^*)\) be a string surrounded by the left and right end markers. Valid configurations of \(M\) for \(\uparrow w \downarrow\) are tuples \((q, i, (T_1, i_1), \ldots, (T_k, i_k))\) where \(q \in Q\) is the current state, \(i \in \mathbb{N}\) (0 \(\leq i < |w| + 2\)) is the current head position on \(\uparrow w \downarrow\).

- \(T_x \in (\uparrow \Gamma C \downarrow -i)\) where \(C = c \cdot \lceil |w| \rceil\) is the \(x\)-th working tape surrounded by the end markers. \(\lceil \cdot \rceil\) is the ceiling function to integers; for example, \(\lceil \log 3 \rceil = |1.584\ldots| = 2\).

\textbf{Remark:} The tape capacity \(C\) is determined by the parameter \(c\) and the input \(w\).

- \(i_x\) is the \(x\)-th tape head position on \(T_x\) (0 \(\leq i_x < C + 2\)).
We write \(\text{Valid}_M(w) \) (or, simply \(\text{Valid}(w) \)) for the set of valid configurations for the input \(w \). It is clear that \(|\text{Valid}(w)| = |Q| \times (|w|+2) \times (|\Gamma|^C \times (C+2))^k \) where \(C = c \cdot \log |w| \).

For an input string \(w \), we write \(\mathcal{I}(w) \) to denote the initial configuration on \(w \ colonization.

\[\mathcal{I}(w) = \langle q_{\text{init}}, 0, (\vdash \square^C \ldots 0), \ldots, (\vdash \square^C \ldots 0) \rangle \text{ where } C = c \cdot \log |w| . \]

Let \(\xi = \langle q, i, (T_1,i_1), \ldots, (T_k,i_k) \rangle \) be a valid configuration on \(w \ colonization. For each transition rule \(\delta \), we define a labelled transition relation \(\xrightarrow{\delta} \) on valid configurations as follows:

\[
\begin{align*}
\delta = p \xrightarrow{\theta} q & \quad (\vdash w \vdash) i = \tau (\text{if } \tau \neq \epsilon) \\
\xi \xrightarrow{\delta} (q', i + \theta, (T_1,i_1), \ldots, (T_k,i_k)) & \quad \delta = p \xrightarrow{\kappa \star \theta} q \quad \kappa = T_z[i_x]
\end{align*}
\]

where \(T_z[i_x] := \kappa' \) is the new working tape obtained by writing \(\kappa' \) to the position \(i_x \).

We also simply write \(\xi \Rightarrow \xi' \) if there is a transition rule \(\delta \in \Delta \) such that \(\xi \xrightarrow{\delta} \xi' \).

We write \(\text{NLOG}(c,k) \) for the set of \(c \)-bounded \(k \) working-tape log-space NTMs. If \(c \) and \(k \) is not important, by abusing notation, we simply write \(\text{NLOG} \). For \(M \in \text{NLOG} \) and an input string \(w \), we write \(M(w, \xi) \) to denote the set of valid and acceptable configurations that are reachable from a valid configuration \(\xi \) on \(w \ colonization:

\[
M(w, \xi) = \{ \xi' : \xi \Rightarrow^* \xi', \xi' = \langle \text{q}_{\text{acc}}, i, T \rangle, \text{q}_{\text{acc}} \in Q_F \},
\]

where \(T = (T_1,i_1) \ldots (T_k,i_k) \) is a sequence of pairs of a working tape and an index. Now the language \(L(M) \) is defined as:

\[
L(M) = \{ w : M(w, \mathcal{I}(w)) \neq \emptyset \}.
\]

Here we state a useful proposition, which will be used below sometimes.

Proposition 10. Let \(M \in \text{NLOG}(c,k) \). For any input \(w \), to represent a single valid configuration or store \(|\text{Valid}(w)| \), we need an extra \(O(c \cdot k) \)-bounded working tape.

Proof. Since \(|\text{Valid}(w)| = |Q| \times (|w|+2) \times (|\Gamma|^C \times (C+2))^k \) where \(C = c \cdot \log |w| \), \log \(|\text{Valid}(w)| = (k \cdot C) \log |\Gamma| + \cdots = O(k \cdot c) \cdot \log |w| \). So, we need an \(O(c \cdot k) \)-bounded tape. \(\square \)

On log-space NTMs, we can solve the problem-(B) in Section 1.1.

Proposition 11. Let \(M \in \text{NLOG}(c,k) \). There exists \(N \in \text{NLOG}(O(c \cdot k), k+1) \) such that \(L(M) = L(N) \) and, for any input \(w \), all computations of \(N \) starting from \(w \) eventually halt.

Proof. The number of reachable configurations is bounded by \(B = |\text{Valid}_M(w)| \). So, we can safely ignore all paths \(P \) whose length \(> B \) without changing the accepting language. To check if the current path length \(> B \), we need an \(O(c \cdot k) \)-bounded tape by Proposition 10. \(\square \)

We note that properties, like Proposition 11, are insufficient to show that a language class is closed under complement. Thus, the problem-(A) in Section 1.1 is essentially hard; indeed, it is the interesting part of Immerman–Szelepcsényi theorem [16, 27]. In the following subsection, we revisit their theorem along with introducing log-space nested-oracles NTM.

\[1\] For example, we can translate any nondeterministic pushdown automata to real-time ones, which do not have \(\epsilon \)-transitions. However, the class of context free languages is not closed under complement.
5.1 Augmenting NTM with Nested Oracles

We extend log-space NTM with finitely nested oracles (or subroutines) to naturally handle nested lookaheads of REWBLK. Similar to our definition of log-space NTMs, we consider c-bounded k-tapes log-space nested oracles NTMs.

To allow nested oracle calling, we inductively define our machines. First, as the base case, we write $\text{OLOG}^0(c,k) = \text{NLOG}(c,k)$ to denote machines without oracles. Next, as the induction step, we define $\text{OLOG}^{x+1}(c,k)$ using $\text{OLOG}^x(c,k)$ as follows:

= Each $M \in \text{OLOG}^{x+1}(c,k)$ is a tuple $(k,c,Q,q_{\text{init}},Q_F,\Sigma,\Gamma,\square,\Delta)$.

= There are new transition rules, oracle transition rules, of the form $p \xrightarrow{\varepsilon_N} q$ and $p \xrightarrow{\notin_N} q$
where $N \in \text{OLOG}^y(c,k)$ and $y \leq x$. Their semantics will be defined immediately later.

We write $\text{OLOG}^{c}(c,k)$ for $\bigcup_{x=0}^{\infty} \text{OLOG}^x(c,k)$. If c and k are not important, we simply write as OLOG^c and OLOG^2. To denote the nesting level of machines $M \in \text{OLOG}^c(c,k)$, we inductively define the function depth as follows:

$$\text{depth}(M) = \begin{cases} 0 & \text{if } M \in \text{OLOG}^0(c,k), \\ 1 + \max \{\text{depth}(N) : p \xrightarrow{\varepsilon_N} q, \ x \xrightarrow{\notin_N} y \in \Delta(M)\} & \text{otherwise.} \end{cases}$$

Now, we define the semantics of oracle transition rules as follows:

$$p \xrightarrow{\varepsilon_N} q \quad N(w,(q_{\text{init}},i,T)) \supseteq \langle r,j,U \rangle$$

$$\xrightarrow{\notin_N} q \quad (p,i,T) \Rightarrow \langle q,i,U \rangle$$

where q_{init}^N is the initial state of N, T and U is a sequence of pairs of a working tape and an index $(T_1,i_1) \ldots (T_k,i_k)$, and the function

$$N(w,\xi) = \{\xi' : \xi \xrightarrow{\varepsilon} \xi', \xi' = \langle q,i,T \rangle, q \in Q_F(N)\}$$

is defined inductively on the depth of machines.

The semantics of $p \xrightarrow{\varepsilon_N} q$ means that: (1) if p calls an oracle (subroutine) N for $+w+$ with the current position i and the current working tapes T as its initial working tapes; and (2) if N accepts w, then we enter a state q with the original position i and working tapes U of N’s accepting configuration. The semantics of $p \xrightarrow{\notin_N} q$ means that, if N does not accept w, we enter a state q with the original position and working tapes T.

Example 12. Using log-space nested-oracles NTMs, we simulate the following REWBLK:

$$E_{\text{reach}} = (V^*_{\text{CUR}} \# (\Sigma^* \# \text{\textbackslash CUR} \to (V^*_{\text{CUR}} \#)))^* \Sigma^* \# \text{\textbackslash CUR}.$$

For the sake of simplicity, we assume that $V = \{\ast\}$ is a unary alphabet. The subexpression $(\Sigma^* \# \text{\textbackslash CUR} \to (V^*_{\text{CUR}} \#))$ is simulated by the following log-space NTM $M \in \text{NLOG}$:

```
Σ
# q_{\text{init}}
→ q_1
Checking if the substring from the current head position equals to CUR
→ q_2
q_3
Store the number of consecutive *'s to CUR
→ q_4
# q_{\text{acc}}
```

2 For simplicity, our oracle formalization differs from traditional treatments [17, 21, 26, 3] in some points: (1) we omit the use of oracle tapes, and (2) we allow inheriting configurations from called oracles. Despite these differences, our definition is adequate for Theorem 13 and for REWBLK in Section 6.
Using M, we give the following machine $N \in \text{OLOG}^1$, clearly accepting $L(E_{\text{reach}})$:

![Diagram of OLOG machine]

where edges labelled with “nop”, $\xrightarrow{\text{nop}}$, mean transitions that only change states and do not depend scanning symbol. It just a syntax sugar because we can define $p \xrightarrow{\epsilon} q$ by $p \xrightarrow{0} q$.

Example 13. We can also accept the language of non-reachability problems:

$$L_{\text{non-reach}} = \{s \# x_1 \to y_1 \# \cdots \# x_n \to y_n \# t : \text{there is no path from } s \text{ to } t\}.$$ To recognize this language, we use the following $M_{\text{non-reach}} \in \text{OLOG}^2$:

![Diagram of OLOG machine]

where $N'' \in \text{NLOG}$ recognizes the language defined by $V^* \# (V^* \to V^* \#)^* V^*$.

5.2 Collapsing OLOG$^\omega$ by Immerman–Szelepcsényi Theorem

Thanks to Proposition 11, we can give a decision procedure to check $w \in L(M_{\text{non-reach}})$ for our above examples. However, it is not clear that $\text{OLOG}^2 = \text{NLOG}$ and more generally $\text{OLOG}^\omega = \text{NLOG}$. For example, is there a log-space NTM N that recognizes $L_{\text{non-reach}}$?

Fortunately, the class NLOG is closed under complement, $\text{NLOG} = \text{co-NLOG}$. This result is known as Immerman–Szelepcsényi theorem [16, 27]. We employ their proof to collapse OLOG^x for some x to log-space NTMs $\text{OLOG}^0 = \text{NLOG}$.

Lemma 14. Let $M \in \text{NLOG}(c, k)$. There is a machine $\overline{M} \in \text{NLOG}(O(c \cdot k), k + \partial)$ where $L(\overline{M}) = \Sigma^* \setminus L(M)$ and ∂ is independent of M, c, and k.

Proof. We review Immerman’s original construction in [16]. For the reader who would like to know more detailed explanation about his construction, we recommend some literature [26]. His construction consists of the following two parts:

- Let START be a configuration of M. First, we compute the number C, the total number of configurations reachable from START.
- Next, using C, we check if there is a path from START to an acceptable configuration.

The first part is accomplished by the following pseudocode [16, Lemma 2].

```
global w; // input string

// For configurations x and x', we check if x ⇒ x'
def one_step_M(x, x'):
  foreach δ ∈ Δ(M): // Δ(M) is the set of transition rules of M
    if x δ x': return True;
  return False;

// calculate the total number of configurations reachable from START
def counting_M(START):
  cur ← 1; // the number of reachable configurations within ≤ dist steps
```
for \(\text{dist} \leftarrow 0, \text{next} \leftarrow 0; \text{dist} < |\text{Valid}_M(w)|; \text{dist} \leftarrow 1, \text{cur} \leftarrow \text{next}, \text{next} \leftarrow 0):$

foreach \(x \in \text{Valid}_M(w) \):
 \(\text{count} \leftarrow 0; \text{found}_x \leftarrow \text{false}; \)

foreach \(y \in \text{Valid}_M(w) \):
 \(z \leftarrow \text{START}; // \text{search a path from START to y} \)
 for \((i \leftarrow 0; z \neq y \land i < \text{dist}; i \leftarrow +1) \):
 \(z' \leftarrow \text{Nondeterministically generated configuration}; \)
 if one-step\((z, z') \): \(z \leftarrow z' \);
 else: break;

 if \(z = y \):
 \(\text{count} \leftarrow +1; \)
 if one-step\((y, x) \): \{ \(\text{next} \leftarrow +1; \text{found}_x \leftarrow \text{true}; \text{break} \); \}
 if \(\neg \text{found}_x \land \text{count} \neq \text{cur} \): Halt and reject;

return \(\text{cur} \);

These functions require extra working tapes at least for variables of \(\delta, \text{cur}, \text{dist}, \text{next}, x, \text{count}, y, i, z, \) and \(z' \). By Proposition 10, for each variable, we need an \(O(c \cdot k) \)-bound working tape.

The second part is accomplished by the following pseudocode [16, Lemma 1].

// Judge whether an acceptable configuration can be reached from START.
// If so, it returns such a configuration \(y \) by SOME\((y) \).
// Otherwise, we return the nothing by NONE.

def judge_M(START):
 \(C \leftarrow \text{counting}_M(\text{START}); \)
 \(\text{count} \leftarrow 0; \)
 foreach \(x \in \text{Valid}_M(w) \):
 \(y \leftarrow \text{START}; \)
 for \((i \leftarrow 0; i \leq C; i \leftarrow +1) \):
 \(y' \leftarrow \text{Nondeterministically generated configuration}; \)
 if one-step\((y, y') \):
 \(y \leftarrow y' \);
 if \(y \) is an accepting configuration: return SOME\((y) \);
 if \(y = x \): \{ \(\text{count} \leftarrow +1; \text{break} \); \}
 else: break;

 if \(\text{count} = C \): return NONE;
 else: Halt and reject;

This function also requires extra \(O(c \cdot k) \)-bound working tapes.

Now we can build \(M \in \text{NLOG}(O(c \cdot k), k + \delta) \) as a log-space NTM that simulates the function \(\text{judge} \) and then accepts inputs if \(\text{judge}_M(\text{START}) \) is \text{NONE}. ◀

Repeatedly applying Immerman’s construction collapses nested oracle machines to machines without oracles [16, Corollary 2].

\[\text{Theorem 15.} \] Let \(M \in OLOG^n(c,k) \) be a log-space \(n \)-nested-oracles NTM. There exists a log-space NTM \(N \in \text{NLOG}(O(c \cdot k^n), O(k \cdot n)) \) such that \(L(M) = L(N) \).

Proof. We eliminate oracle transitions from the innermost to the outermost for \(M \) as follows. We replace \(p \xrightarrow{N} q \) with \(N \in OLOG^0 \) with multiple transition rules that perform: (1) save the head position \(H \) to an extra tape; (2) run \(N \); (3) if we reach an accepting configuration
155:16 Regular Expressions with Backreferences and Lookaheads Capture NLOG

\[\langle q_f, \mathcal{T} \rangle \), then we continue \(\langle q, H, \mathcal{T} \rangle \). Similarly, we replace \(p \xrightarrow{q^N} q \) with \(N \in \text{OLOG}^0 \) with multiple transition rules using \(\mathcal{N} \) obtained by Immerman’s construction. We emphasize that each generation of \(\mathcal{N} \) increases \(c \) and \(k \) in the order of the statement of Lemma 14.

\[\text{Definition 16 (Membership problem of \text{OLOG}^\omega). The membership problem of \text{OLOG}^\omega} \]

\[\text{is a decision problem of the following form:} \]

\[\text{Inputs Binary encoded integers} \ c \ \text{and} \ k. \ A \text{machine} \ M \in \text{OLOG}^\omega(c, k). \ A \text{word} \ w \in \Sigma^*. \]

\[\text{Output If} \ w \in \mathcal{L}(M), \text{return Yes. Otherwise, No.} \]

To show that the problem belongs to \(\text{PSPACE} \), we would like to employ Theorem 15. However, it is not feasible because the theorem gives a log-space \(O(c \cdot k|M|) \)-bounded tapes machine \(N \) in general; i.e., \(N \) demands \(O(c \cdot k|M|) \cdot \log |w| \) space. Thus, we cannot simulate \(N \) in polynomial size in \(c, k, |M|, \) and \(|w| \). To address this problem, we adopt Immerman’s construction for \(\text{OLOG}^\omega \) in an interpreter style.

\[\text{Theorem 17 (Membership problem of \text{OLOG}^\omega belongs to \text{PSPACE}). Let} \ w \ \text{be an input word and} \ M \in \text{OLOG}^\omega(c, k) \ \text{be an input machine where} \ c \ \text{and} \ k \ \text{are binary encoded. We can decide if} \ w \in \mathcal{L}(M) \ \text{in polynomial space in} \ c, k, |w|, \ \text{and} \ |M|. \]

\[\text{Proof. First, we extend the function one-step for oracle transitions as follows:} \]

```python
def one-step_{M_i}(x, x'):
    // return True if x \Rightarrow x'. Otherwise, False.
    foreach \( \delta \in \Delta(M_i) \):
        if \( \delta \) is a non-oracle transition \( k \ x \Rightarrow x' \): return True;
        else:
            // \( \delta \) is an oracle transition
            \( \langle p, i, \mathcal{T} \rangle \leftarrow x \); // extract state, position, and tape contents from x
            if \( \delta = p \xrightarrow{q} q \) :
                match judge_{N}(\langle q^N_{\text{init}}, i, \mathcal{T} \rangle); // pattern matching
                case SOME(\langle p', i', \mathcal{U} \rangle) \Rightarrow return (x' =? \langle q, i, \mathcal{U} \rangle);
                case NONE \Rightarrow return False;
            if \( \delta = p \xrightarrow{q} q \) :
                match judge_{N}(\langle q^N_{\text{init}}, i, \mathcal{T} \rangle);
                case SOME(\langle p', i', \mathcal{U} \rangle) \Rightarrow return False;
                case NONE \Rightarrow return (x' =? \langle q, i, \mathcal{T} \rangle);
            return False;
```

Next, we generate the codes of \(\text{one-step}_{M_i}, \text{counting}_{M_i}, \) and \(\text{judge}_{M_i} \) for all oracle machines \(M_i \) that appears in \(M \). Such generation is carried out in polynomial-time for \(|M| \). The total size of generated code is also polynomial in \(|M| \).

We can also provide an interpreter for the generated code in polynomial time for \(|M| \). While this interpreter needs a call stack for function calls, its depth is bounded by \(\text{depth}(M) \leq |M| \). Additionally, the size of each stack frame is bounded by \(O((c \cdot k) \log |w|) \) by Proposition 10. From the above argument, we can check \(w \in \mathcal{L}(M) \) using (nondeterministic) polynomial space with respect to \(c, k, |w|, \) and \(|M| \).

We will use this theorem to show that the membership problem of \text{REWBLK} \ belongs to \text{PSPACE} \ in the following section. To this end, we put remarks about this theorem.
Remark (Drop k from Theorem 17). We can decide $w \in \Gamma L(M)$ in polynomial space for c, $|w|$, and $|M|$. Compared with Theorem 17, this refined version does not depend on k. This is because $k \leq |M|$ holds, even when k is binary encoded.

Of course, to establish this property, we assume a natural restriction that all tapes T_1, \ldots, T_k are used in some transition rules. Indeed, if $M \in OLOG^w(c, k)$ has a working tape T_i with $1 \leq i \leq k$ that is not engaged by M, a better parameter k' (where $k' < k$) should be employed, ensuring $M \in OLOG^w(c, k')$. Given such constraints, $|M| \geq k \cdot \log(k) \geq k$ since k tapes necessitate $\log(k)$-space for tape identification.

Remark (Cannot drop c from Theorem 17). On the other hand, we cannot drop c from Theorem 17. Namely, we cannot decide $w \in \Gamma L(M)$ in polynomial space for $|w|$ and $|M|$ because c is not bounded by $\text{Poly}(|M|)$ in general. (Please recall that $k \leq |M|$.) It can be understood from the following argument, which establishes $c = \Omega(2^{|M|})$. Let us consider a machine M that runs as follows:

1. First, M fills a tape T_1 with N 1’s by using states q_1, q_2, \ldots, q_N.
2. Next, M interprets T_1 as a binary number t_1 and fills a tape T_2 with t_1 1’s.
3. Finally, M writes the contents of T_2 N times to T_3.
4. For example, if $N = 3$, then M makes $T_1 = 111$ and then makes $T_2 = 1111111 = 12^3 - 1$ and then $T_3 = 3T_2 = 3^1(2^3 - 1) = 3^1(2^N - 1)$.

The size of M satisfies $|M| = O((\log N)N)$ since it contains binary-encoded N states; thus, the length of T_3, $|T_3|$, satisfies $|T_3| = \Omega(2^{|M|})$. By appending the content of T_3 onto another tape $\log |w|$ times (where w is the input word), we establish that $c = \Omega(2^{|M|})$.

However, fortunately we can assume $c = 1$ when simulating REWBL_k by $OLOG^w$ as we will see below. It is crucial for showing that the membership problem of REWBL_k belongs to PSPACE.

6 From REWBL_k to Log-space NTM via $OLOG^w$

We finally show $\text{REWBL}_k \subseteq \text{NLOG}$ by translating REWBL_ks to $OLOG^w$.

Theorem 18. Given a REWBL_k expression E, we can translate it to $M \in OLOG^w(1, O(|E|))$ in polynomial time in the size of $|E|$ where $L(E) = L(M)$.

Proof. We inductively translate a REWBL_k expression E to an $OLOG^w T(E)$ such that $w \in L(E)$ if and only if $T(E)$ successfully runs through w when started with w instead of $\bot w$.

As we will see below, the generated $T(E)$ has a unique source state s, which does not have incoming edges, and a unique sink state t, which does not have outgoing edges. Please recall that E accepts an input w if it consumes all the input, i.e., if we have $\langle p, \Lambda \rangle \in [\{E, w, 0, t\}]$ with $p = |w|$. To build our M, we add two transition rules to $T(E)$ to treat the end markers \bot and \dagger as follows:

$$M = \begin{array}{c}
\begin{array}{c}
\text{i} \\
\text{+1} \\
\text{0}
\end{array} & \begin{array}{c}
\text{o} \\
\text{T(E)} \\
\text{-1}
\end{array} & \begin{array}{c}
\text{f}
\end{array}
\end{array}$$

where i and f are initial and accepting states of M.

```
Translating REGEX Part

First, we give a translation for the REGEX as follows:

\[
\begin{align*}
\sigma & \mapsto 0, \\
\epsilon & \mapsto \emptyset, \\
E_1E_2 & \mapsto E_1\check{E}_1 + E_2\check{E}_2,
\end{align*}
\]

where the edges labelled with “nop” are the same ones used in Example 12, which just change states. This translation is identical to the McNaughton–Yamada–Thompson algorithm, which is well-known and found in textbooks of automata theory.

Translating Backreference and Capturing Expressions

Using Theorem 2, we can assume that every variable \( x \) does not appear inside an expression capturing \( x \); i.e., we avoid patterns such that \( (\cdots x \cdots)_x \). The following translation heavily depends on the theorem.

We now focus on the part \( (E)_x \) of REWB:

\[
(E)_x \mapsto \begin{cases} 
\text{save the current head position} & \text{in binary form to the tape} \ T_{x_1} \\
\text{in binary form to the tape} \ T_{x_r}
\end{cases}
\]

In order to keep the start position of the variable \( x \), we first copy the current head position to the special working tape \( T_{x_1} \) in binary form. Then, we execute the expression \( E \) by running from the state \( s \) to \( t \). Finally, we record the new head position into the working tape \( T_{x_r} \).

Now, \( w[x_1 \ldots x_r] = w[x_1]w[x_1 + 1] \ldots w[x_r - 1] \) is a substring matched with the expression \( E \) where \( x_1 \) and \( x_r \) are the numbers corresponding to the contents of \( T_{x_1} \) and \( T_{x_r} \).

Next, we focus on the part \( \backslash x \) of REWB:

\[
\backslash x \mapsto \begin{cases} 
\text{check if the current head starts with the substring of} \ w[x_1 \ldots x_r] & \text{in binary form} 
\end{cases}
\]

As we have seen above, the substring \( w[x_1 \ldots x_r] \) denotes the value of the variable \( x \). This checking task is accomplished using an extra tape \( T_{\text{imp}} \) without changing \( T_{x_1} \) and \( T_{x_r} \).

Remark: Why do we need Theorem 2. Let us consider an expression \( E = (a)_x (\backslash x \backslash x)_x \) and run it for an input string \( a \). We underline \( a \notin L(E) \). By interpreting \( (a)_x \), we set the position 0 to \( T_{x_1} \) and 1 to \( T_{x_r} \). On the translation of \( (\backslash x \backslash x)_x \), we first save the current head position 1 to the tape \( T_{x_1} \) and then proceed to the part \( \backslash x \backslash x \). It should be noted that, at this point, \( T_{x_1} \) denotes 1; so, we cannot correctly recover the captured content by \( (a)_x \). When meeting \( \backslash x \), we check if the substring between \( T_{x_1}(=1) \) and \( T_{x_r}(=1) \) starts from the current head position. Since the substring is the empty string \( \epsilon \), we go through the part \( \backslash x \backslash x \) and accepts \( a \) incorrectly.

To prevent us from this situation, we use Theorem 2. It rewrites \( E \) to \( (a)_x ?((\backslash x \backslash x)_y)(\\gamma)_y \), and the rewritten expression is safely interpreted thanks to the variable \( y \).
Translating Positive and Negative Lookaheads

For our construction, we need that lookahead are augmented with a continuation $K$, for instance $?E)K$ and $!E)K$. If a given expression does not satisfy this property, we add the expression $\epsilon$, which always succeeds. For example, $(E_1E_2!(|E_3|))^*E_4 \Leftrightarrow (E_1E_2!(|E_3|))^*E_4$. Now, we can easily translate $?E)K$ and $!E)K$ using oracle transition rules as follows:

$$
\begin{align*}
\text{For } T(E) \in E \text{ such that } E \in \text{REWBL}_k, \\
\text{we have that } \text{REWBL}_k \subseteq \text{NLOG}.
\end{align*}
$$

By the semantics of our nested oracle machines, it is clear that $L(E) = L(M)$.

As corollaries of Theorem 18, we have the following main results.

**Corollary 19.** REWBLk = NLOG.

**Proof.** We already have NLOG $\subseteq$ REWBLk by Theorem 8. It is an immediate result from Theorem 15 and 18 that REWBLk $\subseteq$ NLOG.

**Corollary 20.** The membership problem of REWBLk is PSPACE-complete.

**Proof.** By Theorem 9, the membership problem of REWBLk is PSPACE-hard.

The result that the problem belongs to PSPACE is shown as follows. Let $E$ be an input REWBL expression and $w$ be an input string. By Theorem 17, we translate $M \in OLOG^4(1, O(|E|))$ such that $L(E) = L(M)$. This translation is carried out in polynomial time in $|E|$; so, $|M| = Poly(|E|)$. By Theorem 17 and its remarks, we can check if $w \in \epsilon L(M)$ in polynomial space in $|w|$ and $|M|$. This also derives that we can check if $w \in \epsilon L(E)$ in polynomial space in $|w|$ and $|E|$.

7 Future Work and Conclusion

We have shown that the language class REWBLk – regular expressions plus backreferences and lookaheads (without any restrictions) – captures the class NLOG. Our result closes the expressiveness about REWBLk. Furthermore, we have shown that the membership problem of REWBLk is PSPACE-complete. On the other hand, it remains unclear whether REWB(+) and REWB(−) are proper subclasses of REWBLk. For example, we conjecture that REWB(+) cannot recognize the language $L_{\text{prime}} = \{a^n : n \text{ is a prime number}\}$. It is known that the language can be represented by REWB(−). Also, we conjecture that some NLOG-languages cannot be recognized by REWB(−).

References


---

$^3$ REWB(−) recognizes $L_{\text{prime}}$ as follows: (1) we define $E_{\text{composite}} = (a^a a^+) \cup w^* \cup w^*$, which recognizes composite numbers; (2) then, we define $E_{\text{non-prime}} = a^+ + E_{\text{composite}}$, which recognizes non-prime numbers; (3) finally, we define $E_{\text{prime}} = !E_{\text{non-prime}} a^*$ $\mathcal{F}$. Readers interested in conducting a prime test with $E_{\text{prime}}$ can try the following expression in C#:

```
\(((\langle a \rangle) \cup (\langle (\langle a \rangle) (aa+) \rangle) \cup (\langle a \rangle) (aa+) \cup (\langle a \rangle) (a^+))) \cup \langle a \rangle (a^+)^* \rangle . \langle a \rangle (a^+)^* \rangle .
```
Regular Expressions with Backreferences and Lookaheads Capture NLOG