
Verification of Population Protocols with
Unordered Data
Steffen van Bergerem #

Humboldt-Universität zu Berlin, Germany

Roland Guttenberg #

Technische Universität München, Germany

Sandra Kiefer #

University of Oxford, UK

Corto Mascle #

LaBRI, Université de Bordeaux, France

Nicolas Waldburger #

IRISA, Université de Rennes, France

Chana Weil-Kennedy #

IMDEA Software Institute, Madrid, Spain

Abstract
Population protocols are a well-studied model of distributed computation in which a group of
anonymous finite-state agents communicates via pairwise interactions. Together they decide whether
their initial configuration, i. e., the initial distribution of agents in the states, satisfies a property. As
an extension in order to express properties of multisets over an infinite data domain, Blondin and
Ladouceur (ICALP’23) introduced population protocols with unordered data (PPUD). In PPUD,
each agent carries a fixed data value, and the interactions between agents depend on whether their
data are equal or not. Blondin and Ladouceur also identified the interesting subclass of immediate
observation PPUD (IOPPUD), where in every transition one of the two agents remains passive and
does not move, and they characterised its expressive power.

We study the decidability and complexity of formally verifying these protocols. The main
verification problem for population protocols is well-specification, that is, checking whether the
given PPUD computes some function. We show that well-specification is undecidable in general.
By contrast, for IOPPUD, we exhibit a large yet natural class of problems, which includes well-
specification among other classic problems, and establish that these problems are in ExpSpace. We
also provide a lower complexity bound, namely coNExpTime-hardness.

2012 ACM Subject Classification Theory of computation → Verification by model checking; Theory
of computation → Distributed computing models

Keywords and phrases Population protocols, Parameterized verification, Distributed computing,
Well-specification

Digital Object Identifier 10.4230/LIPIcs.ICALP.2024.156

Category Track B: Automata, Logic, Semantics, and Theory of Programming

Related Version Full Version: https://arxiv.org/abs/2405.00921 [7]

Funding Steffen van Bergerem: This work was funded by the Deutsche Forschungsgemeinschaft
(DFG, German Research Foundation) – project number 431183758 (gefördert durch die Deutsche
Forschungsgemeinschaft (DFG) – Projektnummer 431183758).
Sandra Kiefer : This research was supported by the Glasstone Benefaction, University of Oxford
[Violette and Samuel Glasstone Research Fellowships in Science 2022] as well as Jesus College in
Oxford, UK.
Chana Weil-Kennedy: This work was supported by the grant PID2022-138072OB-I00, funded by
MCIN, FEDER, UE and partially supported by PRODIGY Project (TED2021-132464B-I00) funded
by MCIN and the European Union NextGeneration.

EA
T

C
S

© Steffen van Bergerem, Roland Guttenberg, Sandra Kiefer, Corto Mascle,
Nicolas Waldburger, and Chana Weil-Kennedy;
licensed under Creative Commons License CC-BY 4.0

51st International Colloquium on Automata, Languages, and Programming (ICALP 2024).
Editors: Karl Bringmann, Martin Grohe, Gabriele Puppis, and Ola Svensson;
Article No. 156; pp. 156:1–156:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:steffen.van.bergerem@informatik.hu-berlin.de
https://orcid.org/0000-0002-5212-8992
mailto:guttenbe@in.tum.de
https://orcid.org/0000-0001-6140-6707
mailto:sandra.kiefer@cs.ox.ac.uk
https://orcid.org/0000-0003-4614-9444
mailto:corto.mascle@labri.fr
mailto:nicolas.waldburger@irisa.fr
https://orcid.org/0009-0002-7664-5828
mailto:chana.weilkennedy@imdea.org
https://orcid.org/0000-0002-1351-8824
https://doi.org/10.4230/LIPIcs.ICALP.2024.156
https://arxiv.org/abs/2405.00921
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


156:2 Verification of Population Protocols with Unordered Data

Acknowledgements This project started at and has benefitted substantially from the research camp
Autobóz 2023 in Kassel, Germany. We would like to thank the host, sponsors, and organisers of the
research camp for bringing us together.

1 Introduction

Population protocols (PP) model distributed computation and have received a lot of at-
tention [1, 2, 9, 12, 14, 18] since their introduction in 2004 [3]. In a PP, a collection of
indistinguishable mobile agents with constant-size memory communicate via pairwise interac-
tions. When two agents meet, they exchange information about their states and update their
states accordingly. The agents collectively compute whether their input configuration, i. e.,
the initial distribution of agents in each state, satisfies a certain predicate. For a PP to com-
pute a predicate, the protocol must be well-specified, i. e., for every initial configuration, all
fair runs starting in this configuration must converge to the same answer. It was shown that
PP compute exactly the predicates of Presburger arithmetic [4]. Moreover, well-specification
is known to be decidable but as hard as the reachability problem for Petri nets [17]. Note
that deciding well-specification is a problem that concerns parameterised verification in the
sense of [8, 15], i. e., one must decide that something holds with respect to every value of
the parameter. Here the parameter is the number of agents that are present – the PP must
converge to one answer for every initial configuration, no matter the number of agents.

Population protocols with unordered data (PPUD) were introduced by Blondin and
Ladouceur as a means to compute predicates over arbitrarily large domains [10]. In this
setting, each agent holds a read-only datum from an infinite set D. When interacting, agents
may check (dis)equality of their data. While PP can compute properties like “there are
more than 5 agents in state q1”, PPUD can express, e. g., “there are more than 2 data with
5 agents each in state q1”. In [10], the authors construct a PPUD computing the absolute
majority predicate, i. e., whether a datum is held by more than half of the agents. They also
characterise the expressive power of immediate observation PPUD (IOPPUD), a subclass of
interest in which interactions are restricted to observations. That is, in every interaction, one
of the two agents is passive and does not change its state. The decidability and complexity of
the main verification question for PPUD, namely well-specification, is left open in Blondin’s
and Ladouceur’s article [10]. It is the subject of this paper.

Contributions. We start by showing that well-specification is undecidable for PPUD. This
follows from a reduction from 2-counter machines; in fact, the presence of data allows
us to encode zero-tests. Contrasting this, we show that deciding well-specification is in
ExpSpace for IOPPUD. To this end, we define generalised reachability expressions (GRE)
and establish that, for IOPPUD, deciding whether the set of configurations that satisfy
a given GRE is empty is in ExpSpace. This decidability result is powerful; indeed, this
emptiness problem subsumes classic verification problems like reachability and coverability,
as well as parameterised verification problems such as well-specification and correctness,
where the latter asks whether a given protocol computes a given predicate. Lastly, we exhibit
a coNExpTime lower bound for deciding emptiness of GRE for IOPPUD.

Related work. For a recent survey of the research on verification of PP (without data),
see [16]. In particular, the well-specification problem for PP is known to be decidable, but as
hard as Petri net reachability [17] and therefore Ackermann-complete [13,24,25]. In their
seminal paper on the computational power of PP, Angluin, Aspnes, Eisenstat, and Ruppert



S. van Bergerem et al. 156:3

also introduced five subclasses of PP that model one-way communication [4]. One of these is
immediate observation population protocols (IOPP), which correspond to IOPPUD without
data. The complexity of well-specification for all five subclasses is determined in [18]. In
particular, the paper shows that well-specification for IOPP is PSpace-complete. IOPP
were modelled by immediate observation Petri nets, where classic parameterised problems
can be decided in polynomial space. The notion of generalised reachability expression was
first phrased in this setting, and one of the consequences is that the emptiness problem of
GRE for IOPP is PSpace-complete [29]. Our result shows that adding data to the model as
in [9] (and extending GRE naturally) pushes the emptiness problem between coNExpTime
and ExpSpace.

While the introduction of data in the PP model happened recently [10], a similar approach
has been studied in the related model of Petri nets, under the name of data nets. In this
setting, the classic problem of coverability (or control-state reachability) is decidable but
non-primitive recursive [23] and in fact Fωω -complete [27]. While PPUD can be encoded
into data nets, our results show that the problems that we study cannot be reduced to
coverability. Another related model is formed by broadcast networks of register automata
(BNRA) [20], an extension of reconfigurable broadcast networks (RBN) with data. RBN
subsume IOPP [6], and consequently BNRA subsume IOPPUD. However, the complexity
of coverability in BNRA is known to be Fωω -complete, hence non-primitive recursive, and
more complex problems quickly become undecidable [20]. These hardness results contrast
with the ExpSpace membership.

Organisation. In Section 2, we introduce the models of PPUD and IOPPUD, the notion of
GRE, and we state our main results. We prove undecidability of well-specification for PPUD
in Section 3. The next sections are dedicated to the study of IOPPUD. In Section 4, we
establish bounds on the number of observed agents. In Section 5, we introduce the technical
notions of boxes and containers and use the bounds from the previous section to translate
GRE into containers. We present the complexity bounds for emptiness of GRE in Section 6.

2 Population Protocols and Main Results

We use the notation [m,n] := {ℓ ∈ N | m ≤ ℓ ≤ n} for m,n ∈ N and [m,+∞) := {ℓ ∈ N |
m ≤ ℓ} .

2.1 Population Protocols with Unordered Data
We fix an infinite data domain D, an infinite set of agents A, and a function dat : A → D
such that dat−1(d) is infinite for all d ∈ D. For d ∈ D, a d-agent is an agent a ∈ A with
dat(a) = d.

▶ Definition 1. A population protocol with unordered data (PPUD) is a tuple (Q,∆, I, O)
where Q is a finite set of states, ∆ ⊆ Q2 × {=, ̸=} ×Q2 the set of transitions, I ⊆ Q the set
of initial states, and O : Q → {⊤,⊥} the output function.

The size of a PPUD P, written |P|, is its number of states. We fix a PPUD (Q,∆, I, O).
A configuration is a function γ : A → Q ∪ {∗} such that γ(a) ∈ Q only holds for finitely

many agents a ∈ A (the agents appearing in γ). We denote by Γ the set of all configurations,
and by Γinit := {γ ∈ Γ | ∀a ∈ A, γ(a) /∈ Q \ I} the set of initial configurations. Given γ ∈ Γ
and d ∈ D, we let γ#

d : Q → N be the function that maps each state q to the number of
d-agents in q in γ.

ICALP 2024



156:4 Verification of Population Protocols with Unordered Data

Given γ, γ′ ∈ Γ, we write γ → γ′, and call it a step from γ to γ′, when there are states
q1, q2, q3, q4 ∈ Q and two distinct agents a1, a2 ∈ A such that ((q1, q2), ▷◁, (q3, q4)) ∈ ∆,
γ(a1) = q1, γ(a2) = q2, γ′(a1) = q3, γ′(a2) = q4, γ(a) = γ′(a) for all a ∈ A \ {a1, a2}, and,
additionally, if ▷◁ is an equality (resp. disequality), then dat(a1) = dat(a2) (resp. dat(a1) ̸=
dat(a2)). A run ρ is a (finite or infinite) sequence of consecutive steps ρ : γ1 → γ2 → γ3 →
. . . . We write ρ : γ ∗−→ γ′ to denote that ρ is a finite run from γ to γ′, and simply γ ∗−→ γ′ to
denote the existence of such a run. For every γ ∈ Γ, let Post∗(γ) := {γ′ ∈ Γ | γ ∗−→ γ′} and
Pre∗(γ) := {γ′ ∈ Γ | γ′ ∗−→ γ}. A run ρ covers a state q ∈ Q if there is a configuration γ in ρ

such that γ(a) = q for some agent a.
In accordance with [3] and [10], we consider a run γ1 → γ2 → . . . fair if it is infinite1 and

for every configuration γ with
∣∣{i ∈ N | γi

∗−→ γ}
∣∣ = ∞, it holds that

∣∣{i ∈ N | γi = γ}
∣∣ = ∞.

That is, every infinitely often reachable configuration also occurs infinitely often along the run.
For b ∈ {⊤,⊥}, a b-consensus is a configuration γ in which, for all agents a ∈ A appearing
in γ, it holds that O(γ(a)) = b. A fair run ρ : γ1 → γ2 → · · · stabilises to b ∈ {⊤,⊥} if there
is an n ∈ N such that for every i ≥ n, γi is a b-consensus. A protocol is well-specified if, for
every initial configuration γ0 ∈ Γinit, there is b ∈ {⊤,⊥} such that all fair runs starting in γ0
stabilise to b. The well-specification problem for PPUD asks, given a PPUD P, whether P
is well-specified. Given a PPUD P and a function Π: Γinit → {⊤,⊥}, P computes Π if, for
every γ0 ∈ Γinit, every fair run of P starting in γ0 stabilises to Π(γ0).

▶ Example 2. Consider the following PPUD P. Its set of states is Q = {ℓ0, ℓ1, f0, f1, dead},
with I = {ℓ1}, O(ℓ0) = O(f0) = ⊤, O(ℓ1) = O(f1) = O(dead) = ⊥ and its transitions are:

∀b, b′ ∈ {0, 1}, (ℓb, ℓb′) 7→ (ℓb⊕b′ , fb⊕b′) ∀b, b′ ∈ {0, 1}, (ℓb, fb′) 7→ (ℓb, fb)
∀q, q′ ∈ Q, (q, q′) 7→= (dead, dead) ∀q ∈ Q, (q, dead) 7→ (dead, dead)

where 7→= denotes that the data of the agents must be equal, 7→ without subscript means
no condition on data (or equivalently, the transition exists both for equality and disequality),
and ⊕ denotes the XOR operator. P is well-specified and computes the function Π that is
equal to ⊤ whenever there is an even number of appearing data and they all have exactly
one corresponding agent. To see this, if there are two agents of equal datum, then all fair
runs eventually have all agents on dead and stabilise to ⊥. Otherwise, there will eventually
be a single agent in {ℓ0, ℓ1}, and it will be on ℓb if and only if the number of agents has
parity b, in which case all other agents will eventually go to fb and the run stabilises to ⊥ if
b = 1 (odd number of agents) and to ⊤ if b = 0 (even number of agents).

A more interesting but also more complex example is the majority protocol described
in [10, Section 3]; it computes whether a datum has the absolute majority, i. e., strictly more
agents than all other data combined.

Well-specification is the fundamental verification problem for population protocols. How-
ever, as we will see in Section 3, this problem is undecidable for PPUD.

▶ Theorem 3. The well-specification problem for PPUD is undecidable.

This motivates the study of the restricted class of immediate observation PPUD.

1 One often considers that a finite run γf
∗−→ γℓ is fair when there is no γ such that γℓ → γ. In the

following, we rule out this possibility by implicitly assuming that, for all q1, q2 ∈ Q and ▷◁ ∈ {=, ̸=}, it
holds that ((q1, q2), ▷◁, (q1, q2)) ∈ ∆, and ignoring the trivial cases of runs with at most one agent.



S. van Bergerem et al. 156:5

2.2 Immediate Observation Protocols
Immediate observation protocols [4] are a restriction of population protocols where, when
two agents interact, one of the two agents does not change its state. The restriction of the
model with data to immediate observation was first considered in [10].

▶ Definition 4. An immediate observation population protocol with unordered data (or
IOPPUD) is a PPUD P = (Q,∆, I, O) where every transition δ ∈ ∆ is of the form (q1, q2, ▷◁

, q1, q3), with q1, q2, q3 ∈ Q and ▷◁ ∈ {=, ̸=}, i. e., the first agent does not change its state.

For IOPPUD, we denote a transition (q1, q2, ▷◁, q1, q3) by q2
▷◁q1−−→ q3. If we have a step

γ → γ′ with transition q2
▷◁q1−−→ q3 that involves agents a, ao ∈ A where a is the agent moving

from q2 to q3 and ao is the agent in q1, we denote it by γ
▷◁ao−−−→aγ

′. We say that agent a
observes agent ao, and call ao the observed agent. Intuitively, a “observes” ao and reacts,
whereas ao may not even know it has been observed.

▶ Example 5. Consider the following IOPPUD P = (Q,∆, I, O), with Q := {q0, q1, q2, q3},
I := {q0, q1}, O(q3) = ⊤, O(q) = ⊥ for all q ̸= q3, and transitions in ∆ as follows:

q0
=q1−−→ q2 q1

=q0−−→ q2 q2
̸=q2−−→ q3 ∀q ∈ {q1, q2},∀ ▷◁ ∈ {=, ̸=}, q ▷◁q3−−→ q3

This protocol is well-specified: from γ0 ∈ Γinit, all fair runs stabilise to ⊤ if two data have
agents on both q0 and q1, and all fair runs stabilise to ⊥ otherwise. Indeed, if there is a
datum with agents on both q0 and q1, by fairness eventually an agent with this datum is sent
to q2; if there are two such data, then eventually some agent covers q3, and then all agents
are sent to q3 and the run stabilises to ⊤. Conversely, if it is not the case, then q3 cannot be
covered and all fair runs stabilise to ⊥.

Let ρ : γstart
∗−→ γend be a run. Agent ao is internally observed (resp. externally observed)

in ρ if ρ contains a step of the form γ1
=ao−−→aγ2 (resp. γ1

̸=ao−−→aγ2); it is observed if one of
the two cases holds. Similarly, a datum d is observed in ρ if an agent a with dat(a) = d is
observed in ρ; we define similarly a datum being internally or externally observed.

While the set of functions that can be computed by PPUD remains an open question,
it is known that IOPPUD exactly compute interval predicates [10], defined as follows.
Let S be a finite set. A simple interval predicate over S is a formula ψ of the form
∃̇d1, . . . , dm,

∧
q∈S

∧m
j=1 #(q, dj) ∈ [Aq,j , Bq,j ] where, for all q ∈ S and j ∈ [1,m], we have

Aq,j ∈ N and Bq,j ∈ N ∪ {+∞}. The dotted quantifiers quantify over pairwise distinct data.
Formally, given a protocol P with set of states Q such that S ⊆ Q and given γ ∈ Γ, the
predicate ψ is satisfied by γ if there exist pairwise distinct data d1, . . . , dm ∈ D such that for
all q ∈ S and j ∈ [1,m], it holds that γ#

dj
(q) ∈ [Aq,j , Bq,j ] (resp. γ#

dj
(q) ∈ [Aq,j , Bq,j) in the

case that Bq,j = +∞). An interval predicate over S is a Boolean combination φ of simple
interval predicates over S; we define that φ is satisfied by a configuration γ if the simple
interval predicates satisfied by γ satisfy the Boolean combination.

▶ Theorem 6 ( [10], Theorem 18 and Corollary 29). Given a finite set I, the functions
computed by IOPPUD with set of initial states2 I are exactly the interval predicates over I.

▶ Example 7. The protocol described in Example 2 and the majority protocol of [10, Section 3]
cannot be turned into immediate observation protocols, as they compute functions that cannot
be expressed as interval predicates. The immediate observation protocol from Example 5
computes the following interval predicate, which is actually a simple interval predicate:

∃̇d1, d2, (#(q0, d1) ≥ 1) ∧ (#(q1, d1) ≥ 1) ∧ (#(q0, d2) ≥ 1) ∧ (#(q1, d2) ≥ 1).

2 This does not limit the number of states of said protocols, as their set of states Q may be larger than I.

ICALP 2024



156:6 Verification of Population Protocols with Unordered Data

Given a simple interval predicate ψ = ∃̇d1, . . . , dm,
∧

q∈I

∧m
j=1 #(q, dj) ∈ [Aq,j , Bq,j ], we

define its width as m, its height h as the maximum of all finite Aq,j and Bq,j , and its size as
|I| ·m · log(h). We also define the width (resp. height) of an interval predicate as the maximum
of the widths (resp. heights) of its simple interval predicates, and its size, measuring the
space taken by its encoding, as the sum of their sizes plus its number of Boolean operators.

▶ Remark 8. In [10], predicates refer to an input alphabet Σ, which is converted into initial
states using an input mapping. For convenience, we have not included the input alphabet in
our model, which is why we arbitrarily fix a set of initial states I in Theorem 6.

2.3 Generalised Reachability Expressions
We define a general class of specifications, called generalised reachability expressions, which
are formulas constructed using interval predicates as atoms and using union, complement,
Post∗, and Pre∗ as operators. This concept is inspired by [29, Section 2.4], although our
choice of atoms is more general and adapted to the data setting.

▶ Definition 9. Let P = (Q,∆, I, O) be a protocol.
Generalised Reachability Expressions (GRE) over P are produced by the grammar

E ::= φ | E ∪ E | E | Post∗(E) | Pre∗(E),

where φ ranges over interval predicates over Q.
Given a GRE E, we define the set of configurations defined by E, denoted JEKP , as

the set containing all configurations of P that satisfy the formula, where the predicates are
interpreted as above and the other operators are interpreted naturally (the overline denotes
set complementation). This set is denoted JEK when P is clear from context.

The length |E| of a GRE E is its number of operators. Letting φ1, . . . , φk be the interval
predicates used as atoms in E, the norm ||E|| of E is the maximum of the heights and widths
of the φi. Its size is the sum of the sizes of the φi plus |E|. The emptiness problem for GRE
asks, given as input a protocol P and a GRE E over P , whether JEKP = ∅. We will show in
Section 6 that, for IOPPUD, this problem is decidable.

▶ Theorem 10. The emptiness problem for GRE over IOPPUD is in ExpSpace.

We now argue that this decidability result is powerful, as it implies decidability of
many classic problems on IOPPUD. We start with well-specification. We use the nota-
tion ∀̇d, φ as a short form for ¬∃̇d,¬φ. Given a PPUD P and b ∈ {⊤,⊥}, let Outb :=
∀̇d,

∧
q /∈O−1({b}) #(q, d) = 0 be the GRE for b-consensus configurations; moreover, let

Stableb := Pre∗(Outb) be the GRE for stable b-consensus, i. e., configurations from which all
runs lead to a b-consensus.

▶ Proposition 11. Let P be a PPUD, Ews := Γinit∩Pre∗(Pre∗(Stable⊤))∩Pre∗(Pre∗(Stable⊥)).
P is well-specified if and only if JEwsKP = ∅.

Proof. First, Γinit = J∀̇d,
∧

q /∈I #(q, d) = 0K and Ews is indeed a GRE over P. For every
γ ∈ Γ, Post∗(γ) is finite as all configurations reachable from γ have the same number of
agents. Therefore, a fair run ρ that visits Pre∗(S) infinitely often for S ⊆ Γ must visit S
infinitely often. Let γ0 ∈ Γinit and b ∈ {⊤,⊥}; it suffices to prove that there is a fair run
from γ0 that does not stabilise to b if and only if γ0 ∈ JPre∗(Pre∗(Stableb))K. If, from γ0, one
can reach γ /∈ JPre∗(Stableb)K, then one can build a fair run from γ0 that first goes to γ, and



S. van Bergerem et al. 156:7

then forever performs arbitrary steps in a fair way; since γ /∈ JPre∗(Stableb)K, it will stay
in JPre∗(Outb)K, so by fairness it visits JOutbK infinitely often and does not stabilise to b.
Conversely, if there is a fair run that does not stabilise to b, then it never visits JStablebK, hence
by fairness it eventually stops visiting JPre∗(Stableb)K; this proves that it visits a configuration
γ ∈ JPre∗(Stableb)K, and γ is reachable from γ0 hence γ0 ∈ JPre∗(Pre∗(Stableb))K. ◀

Many other problems can be expressed as emptiness problems for GRE; we list a few.
The correctness problem for IOPPUD asks, given an IOPPUD P = (Q, I,O,∆) and an
interval predicate φ over I, whether P computes φ. This can be equivalently phrased as
Jφ−1(b) ∩ Pre∗(Pre∗(Stableb))K = ∅ for all b ∈ {⊤,⊥}, where φ−1(b) is the set of initial
configurations that φ maps to b. Note that the previous expression is a GRE because, in
Definition 9, we chose as atoms interval predicates such as φ.
The set-reachability problem (called cube-reachability in [5]) asks, given two sets of
configurations S1,S2, whether S2 is reachable from S1; this typically expresses safety
problems where S2 represents “bad configurations” that must not be reached. If S1 = JE1K
and S2 = JE2K, then this amounts to checking whether JE1 ∩ Pre∗(E2)K is empty.
The home-space problem asks, given a protocol P and a set of configurations H, whether
H can be reached from every configuration reachable from an initial configuration. If H
can be expressed as a GRE E, then it suffices to check whether JPost∗(Γinit)K ⊆ JPre∗(E)K.
This problem has been studied in Petri nets [22], but also in probabilistic settings, for
example in [11] for asynchronous shared-memory systems; indeed, in systems with uniform
probabilistic schedulers where Post∗(γ0) is finite for every initial configuration γ0, this
problem is equivalent to asking whether the probability of reaching H is equal to 1.

Theorem 10 entails that, for IOPPUD, all these problems are decidable and in ExpSpace.

3 Undecidability of Verification of Population Protocols with
Unordered Data

In this section, we establish that the most fundamental verification problem for PPUD, i. e.,
the well-specification problem, is already undecidable.

▶ Theorem 3. The well-specification problem for PPUD is undecidable.

We proceed by reduction from the halting problem for 2-counter machines with zero-tests,
a famously undecidable problem [26]. Here, we give a proof sketch. The detailed reduction
can be found in [7], which is the full version of this paper.

We fix a 2-counter machine and build a protocol P which is not well-specified if and only
if the counter machine halts. A 2-counter machine performs increments, decrements and
zero-tests on two counters. The main difficulty are the zero-tests. Let us first recall how
increments and decrements are simulated in many prior undecidability results for population
protocols and Petri nets [21, 27]. The protocol has a control part QCM := {qi | i ∈ [1, n]}
where a single instruction agent evolves; this part has one state per instruction of the machine.
Increments and decrements are simulated as follows: The instruction agent interacts with
states of {R} ∪ {x, y}, where R is a reservoir state and x and y are states in which the
number of agents represents the value of the counters. For example an increment on counter
x moves one agent from the reservoir R to x and advances the instruction agent to the next
instruction. The reservoir is hence implicitly assumed to start with arbitrarily many agents.

The main difficulty is that one does not want to take the = 0 branch of a zero-test when
the value of the counter is non-zero. Actually, similar to [21, 27], we will not prevent the
existence of such runs. Instead, our protocol will have “violating” runs which take the wrong

ICALP 2024



156:8 Verification of Population Protocols with Unordered Data

qℓ

qℓ+1

dec(x)

x̄

x

R

(a) Gadget for performing dec(x). Agents of the
blue dashed edges must have the same datum.

qℓ

qk

x=0

U

x̄

R

(b) Gadget for x=0 branch of “if x=0 then goto k”.
The same agent takes the two blue dashed edges and
the same agent takes the orange dotted edges.

Figure 1 For simplicity, we use Petri net notation: circles are states, rectangles are Petri net
transitions. To encode this into our protocols, we split each transition into pairwise interactions.

branch of a zero-test, but our well-specification check will consider only violation-free runs.
The correctness of the reduction is then established in two steps: The CM halts if and only if
some violation-free run to the halting state exists, and this is true if and only if our protocol
is not well-specified. We establish the connection between non-well-specification and the
existence of a violation-free run in our protocol.

In the first place, we guarantee that every initial configuration of our protocol has a
fair run stabilising to ⊥, so that P is not well-specified if and only if there exists a fair
run which does not stabilise to ⊥3. Second, we introduce violation detection, a mechanism
which guarantees that fair runs which contain a violation stabilise to ⊥, hence preserving
well-specification. To do so, we add a sink state q⊥, which has output ⊥ and is attracting,
i. e., all other states have a transition to q⊥ available when observing that q⊥ is non-empty.
Violation detection then entails adding transitions into q⊥ that will be available infinitely
often if the run (or its initial configuration) contained a violation. By fairness, any run
containing a violation will then eventually put an agent into q⊥, and hence, because q⊥ is
attracting, the run ends in a deadlock with all agents in q⊥. In particular, any fair run
containing a violation will output ⊥ as claimed. There are two types of violation detection.

First, we want to only mark those runs as violation-free that start in initial configurations
where U ∈ Q has at most one agent of each datum. To do so, we make agents remember
whether their initial state was U or not (by encoding it into the state space), and, from
every state, we add a transition to q⊥ such that this transition is enabled when an agent
who started in U observes another agent of same datum that also started in U .

Second, we want to detect violations which consist in falsely simulating a zero-test, as
discussed above. Here our technique shares some similarities with [27]. Let c ∈ {x, y} be a
counter; for every zero-test of the counter machine, we add two types of transitions to the
protocol. The first type simulates the c ̸= 0 branch and can be taken by the instruction
agent upon interacting with some agent on state c; by contrast, the c = 0 branch can always
be taken. However, if it was taken with c ̸= 0, then violation detection will eventually detect
this. For this mechanism, we introduce a counter control state c̄ ∈ Q. At any point in time,
c̄ contains one agent, similar to the instruction agent. The crux of our violation detection is
that only agents which share the datum with the agent in c̄ will be allowed to move in and
out of state c, as illustrated in Figure 1a.

The = 0 branch of a zero-test is depicted in Figure 1b. It replaces the agent on c̄ with an
agent with fresh datum from state U . Thus, when the c = 0 branch is taken, any remaining
agent in c is stuck in c as it will never again share datum with the agent in c̄. Violation
detection then sends an agent in c to q⊥ upon observing an agent in c̄ with different datum.

3 This can be done with the addition of a fresh state that is the only initial state and that has internal
transitions to all former initial states and an internal transition to a sink state that has output ⊥.



S. van Bergerem et al. 156:9

Now that we have violation detection in place, it only remains to explain the connection
to halting. The halting instruction qn in QCM is the only state with output ⊤. Hence, any
run not outputting ⊥ must contain an agent in the halting instruction at some point, and be
violation-free by the above. That is, the counter machine reached the halting state without
violations. Conversely, if the machine halts, one can build a finite run that puts an agent
into the halting state without any violation occurring. The corresponding configuration is
then a deadlock, and hence the extension to an infinite run (by staying there forever) is a fair
run not outputting ⊥. This proves that well-specification is undecidable for PPUD, which
motivates restricting ourselves to immediate observation PPUD.

4 An Analysis of Immediate Observation Protocols with Data

To obtain our complexity bounds on the emptiness problem for GRE, we first show some
transformations on runs that allow us to bound the number of observed agents. All runs
that we consider in this section are finite, and we therefore write them as γ1 → · · · → γm or
γstart

∗−→ γend. In the rest of this section, we fix an IOPPUD P = (Q,∆, I, O).
We introduce some notation for agents in runs. Let ρ : γ1

∗−→ γm and d ∈ D. We let Aρ

be the set of agents appearing in ρ, and set Ad
ρ := {a ∈ Aρ | dat(a) = d}. We let Ad

ρ,o be the
set of agents with datum d that are observed in ρ, i. e., the ao ∈ Ad

ρ such that there exists
a step γ

▷◁ao−−−→aγ
′ in ρ. For all q1, qm ∈ Q, we let Ad

ρ,q1,qm
be the set of agents with datum

d that start in q1 and end in qm, i. e., the a ∈ Ad
ρ such that γ1(a) = q1 and γm(a) = qm.

Moreover, we let Dρ := {d ∈ D | Ad
ρ ̸= ∅} be the set of data appearing in ρ. We may omit ρ

in the subscript if the run is clear from the context.

4.1 Bounds on the Number of Observed Agents per Datum
Let ρ : γ1 → · · · → γm be a run. For i ∈ [1,m], we call γi → γi+1 the i-th step in ρ. Let
ρ[→ i] (resp. ρ[i →]) denote the prefix of ρ ending on its i-th configuration (resp. the suffix
of ρ starting on its i-th configuration). Let a, b ∈ Aρ. Agent a is active in the i-th step if
γi

▷◁ao−−−→aγi+1 for some agent ao. Otherwise, a is idle in that step. We say b copies a in ρ if
after every step γi

▷◁ao−−−→aγi+1 in ρ via some transition t, there is a step γi+1
▷◁ao−−−→bγi+2 via t

and, additionally, b is idle in every step not immediately following an active step of a.
The following lemma allows us to add agents to a run that copy an agent of the same

datum.

▶ Lemma 12 (Agents copycat). Let ρ : γstart
∗−→ γend be a run. Let a ∈ Aρ and ã ∈ A \ Aρ

with dat(a) = dat(ã). Then there exist configurations γ̃start, γ̃end and a run ρ̃ : γ̃start
∗−→ γ̃end

such that:
(i) Aρ̃ = Aρ ⊎ {ã}, and for all a′ ∈ Aρ, γ̃start(a′) = γstart(a′) and γ̃end(a′) = γend(a′);
(ii) γ̃start(ã) = γstart(a) and γ̃end(ã) = γend(a);
(iii) ã is not observed in ρ̃.

Proof. We let γ̃start be such that γ̃start(ã) = γstart(a) and γ̃start(a′) = γstart(a′) for all
a′ ̸= ã. We construct ρ̃ by going through ρ step by step, making ã copy a: whenever ρ takes
a step ▷◁ao−−−→a, then we take this step followed by step ▷◁ao−−−→ã to ρ̃. We can do so because
dat(ã) = dat(a) and because agent ao ̸= a has not moved and thus can be observed again.
These are the only steps where ã is involved, hence it is never observed. ◀

The following result shows that, given a run ρ, we can construct a new run with a small
subset of the agents of Aρ such that, for all d ∈ D and all states q1 and q2, if there is a
d-agent starting in q1 and ending in q2 in ρ, then this is also true in the new run. We refer
to [7] for proof details.

ICALP 2024



156:10 Verification of Population Protocols with Unordered Data

q2

q1 a
b c

d
e a

b c

d
e a

b c
d

e

a
b c

d

e

a

b

c
d

e

a

b

c
d

e a
b c

d
e

a d
a

b
e

b=

̸=

̸=

̸=

̸=

=

Figure 2 An example of a run with six steps on a protocol with two states q1, q2. a, b, c, d, e denote
agents; a, b, c have the same datum and d, e have the same datum. Dashed lines are observations.

▶ Lemma 13 (Agents core). Let ρ : γstart
∗−→ γend be a run. Then there exist configurations

γ′
start, γ′

end and a run ρ′ : γ′
start

∗−→ γ′
end with Aρ′ ⊆ Aρ such that:

(i) for all a ∈ Aρ′ , γ′
start(a) = γstart(a) and γ′

end(a) = γend(a);
(ii) for all d ∈ D and qs, qe ∈ Q, if Ad

ρ,qs,qe
̸= ∅, then Ad

ρ′,qs,qe
̸= ∅;

(iii) for all d ∈ D, we have |Ad
ρ′ | ≤ |Q|3.

Proof sketch. We adapt the bunch argument from the case of IO protocols without data [19].
Suppose there is d ∈ D and qs, qe ∈ Q such that |Ad

ρ,qs,qe
| > |Q|. Let R be the set of states

visited by agents of Ad
ρ,qs,qe

in ρ. Notice that |R| ≤ |Q|. We define a family (aq)q∈R of
pairwise distinct agents such that reducing Ad

ρ,qs,qe
in ρ to (aq)q∈R still yields a valid run.

We iterate through R as follows. Let q ∈ R and let f be the first moment q is reached in
ρ, i. e., the minimal index such that there exists an a ∈ Ad

ρ,qs,qe
with γf (a) = q. Let ℓ be the

last moment q is occupied in ρ, i. e., the maximal index such that there exists an a ∈ Ad
ρ,qs,qe

with γℓ(a) = q. Let αq be the agent in Ad
ρ,qs,qe

that reaches q first, i. e., γf (αq) = q, and let
βq be the agent in Ad

ρ,qs,qe
that leaves q last, i. e., γl(βq) = q. Note that these agents do not

have to be distinct. We pick a fresh agent aq /∈ Aρ with dat(aq) = d and modify ρ as follows.
We let aq copy αq in ρ[→ f ], then aq stays idle until βq leaves q (for the last time) and then
aq copies βq in ρ[ℓ →]. We do this for every q ∈ R.

Then, for every step in which an ao in Ad
ρ,qs,qe

is observed in state q, let aq be observed
instead, i. e., replace steps ▷◁ao−−−→a with ▷◁aq−−−→a. Finally, remove all the agents of Ad

ρ,qs,qe

from the run, and identify (or substitute) each aq with a distinct agent in Ad
ρ,qs,qe

, so that
(aq)q∈R ⊆ Ad

ρ,qs,qe
. We do this for every d ∈ D and qs, qe ∈ Q such that |Ad

ρ,qs,qe
| > |Q|. ◀

▶ Example 14. Consider the run ρ depicted in Figure 2. Applying Lemma 13 on ρ yields a
new run ρ′ with 4 agents instead of 5. Indeed, let d denote the datum of a, b and c; we have
|Ad

ρ,q1,q1
| = |{a, b, c}| = 3 whereas |Q| = 2. In ρ, agents a and b successively go from q1 to

q2 and back to q1. In ρ′, these two agents are replaced by a single agent (named b again)
who goes to q2 on the first step and only leaves q2 on the last step. In ρ′, the new agent b is
observed by d in the second step, and by e in the penultimate step.

4.2 Bounds on the Number of Observed Data
Given a run and a datum d appearing in it, we define the trace of d in ρ as the function
trd

ρ : Q2 → N such that for all q1, q2 ∈ Q, it holds that trd
ρ(q1, q2) = |Ad

ρ,q1,q2
|. For each pair

of states q1, q2, the trace counts the number of d-agents starting in q1 and ending in q2. For
example, the trace of the run ρ of Example 14, with d the datum of agents a, b and c, is such
that trd

ρ(q1, q1) = 3 and trd
ρ(q, q′) = 0 for all (q, q′) ̸= (q1, q1). The trace is the information

we need to copy data: if there is a datum d with trace tr in a run, then we can add data to
the run that mimic d and have the same trace. The following lemma echoes Lemma 12.



S. van Bergerem et al. 156:11

▶ Lemma 15 (Data copycat). Let ρ : γstart
∗−→ γend be a run. Let d ∈ Dρ and d̃ ∈ D \ Dρ.

Then there exist configurations γ̃start, γ̃end and a run ρ̃ : γ̃start
∗−→ γ̃end such that:

(i) Aρ̃ = Aρ ⊎ Ad̃
ρ̃, and for all a ∈ Aρ, γ̃init(a) = γinit(a) and γ̃end(a) = γend(a),

(ii) trd̃
ρ̃ = trd

ρ and trd′

ρ̃ = trd′

ρ for all d′ ̸= d̃,
(iii) d̃ is not externally observed in ρ̃.

Proof. For all qs, qe ∈ Q and all a ∈ Ad
qs,qe

, we add an agent ã with datum d̃ in qs at the
start. We do this in a way similar to Lemma 12: after every step ̸=ao−−→a in ρ, we insert a
step ̸=ao−−→ã, and after every step =ao−−→a in ρ, we insert a step =ão−−→ã. We thus maintain the
fact that each added agent ã is in the same state as its counterpart a. In particular, they are
in the same state at the end of the run. This yields a run ρ̃ with trd̃

ρ̃ = trd
ρ, and such that

for all d′ ̸= d̃, trd′

ρ̃ = trd′

ρ . Since d̃ /∈ Dρ, it is not externally observed in ρ̃. ◀

Like we showed for the agents, we show that we can reduce the number of data in a run.
We lift the proof strategy of Lemma 13 from agents to data, exploiting the sets of data with
equal traces. We refer to [7] for proof details.

▶ Lemma 16 (Data core). Let ρ : γstart
∗−→ γend be a run and let K be a number such that

there are at most K agents of each datum in ρ. Then there exist configurations γ′
start, γ′

end,
a run ρ′ : γ′

start
∗−→ γ′

end, and a subset of data Dρ′ ⊆ Dρ such that:
(i) for all d ∈ Dρ′ and all agents a of datum d, γstart(a) = γ′

start(a) and γend(a) = γ′
end(a),

(ii) for all d ∈ Dρ, there exists d′ ∈ Dρ′ such that trd′

ρ′ = trd
ρ,

(iii) |Dρ′ | ≤ (K + 1)|Q|3+|Q|2 .

Proof sketch. We define the notion of split trace. The split trace of a datum d at the i-th
configuration of a run ρ maps every triple of states (q1, q2, q3) to the number of d-agents that
are in q1 at the start of ρ, then in q2 in the i-th configuration, and finally in q3 at the end.
Since there are at most K agents per datum, there are at most (K + 1)|Q2| possible traces
and M = (K + 1)|Q3| possible split traces.

For every trace tr, if there are more than M data that have trace tr in ρ, we apply a
similar argument to Lemma 13: we select one datum for each possible split trace, and use it
to cover all external observations of agents whose datum matches that split trace. We remove
the other data, and show that this is still a valid run. The bound on the total number of
data comes from the number of traces and split traces. ◀

▶ Corollary 17. For every run ρ : γstart
∗−→ γend, there exists a run ρ̃ : γstart

∗−→ γend such
that for all d ∈ D, it holds that |Ad

ρ̃,o| ≤ |Q|3 and that agents of at most (|Q|3 + 1)|Q|3+|Q|2

different data are externally observed.

Proof. We first apply Lemma 13 to ρ to obtain ρ(1) : γ(1)
start

∗−→ γ
(1)
end over the same data

such that for all d ∈ D, it holds that |Ad
ρ(1) | ≤ |Q|3. Then we apply Lemma 16 to obtain

ρ(2) : γ(2)
start

∗−→ γ
(2)
end with at most (|Q|3 +1)|Q|3+|Q|2 data. By Lemma 13-(i) and Lemma 16-(i),

the remaining agents have the same initial and final states in ρ and ρ(2). It remains to put
back the agents and data we removed, without increasing the number of externally observed
data or observed agents per datum.

By Lemma 16-(ii), every trace of a datum in ρ(1) appears as the trace of a datum in ρ(2).
Thus, it is possible to re-add data of Dρ(1) to Dρ(2) using repeated applications of Lemma 15.
By Lemma 15-(iii), this does not add any external observation. So we obtain a run ρ̃(1) from

ICALP 2024



156:12 Verification of Population Protocols with Unordered Data

γ
(1)
start to γ(1)

end such that at most (|Q|3 +1)|Q|3+|Q|2 data are externally observed by Lemma 15-
(iii). Recall that there are at most |Q|3 agents per datum in γ

(1)
start by Lemma 13-(iii); in

particular there are at most |Q|3 observed agents per datum in ρ̃(1).
By Lemma 13-(ii), for each datum d and states qs, qe, if there is a d-agent a such that

γstart(a) = qs and γend(a) = qe then there is an agent a′ such that γ(1)
start(a′) = qs and

γ
(1)
end(a′) = qe in ρ. Therefore, due to Lemma 13-(ii), we can apply Lemma 12 repeatedly to

add back the missing agents in ρ̃(1) and obtain a run ρ̃ from γstart to γend. By Lemma 12-(iii),
this does not add any observation. As a result, we obtain a run from γstart to γend in which
at most (|Q|3 + 1)|Q|3+|Q|2 data are externally observed and for all datum d, at most |Q|3
d-agents are observed. ◀

5 From Expressions to Containers

In this section, we define the technical notions of boxes and containers, which are meant to
represent sets of configurations defined by counting agents and data up to some thresholds.
In Proposition 21, we will prove that the set of configurations defined by a generalised
reachability expression E can be described as a union of containers whose thresholds are
exponential in the length of E and polynomial in its norm. To do so, we will leverage the
bounds on the number of observed agents from Section 4 to bound the description of the
GRE Post∗(F ) with respect to the one of GRE F . The key result of Proposition 21 will be
used in Section 6 to obtain the decidability of the emptiness problem for GRE.

5.1 Equivalence of Predicates and Containers
In this subsection, we fix an IOPPUD P = (Q,∆, I, O).

Let n,M ∈ N. An n-box is a vector b : Q → [0, n]. Given a configuration γ and a
datum d ∈ D, we define the n-box of d in γ as ⌈γ, d⌉n : Q → [0, n] such that for all q ∈ Q,
⌈γ, d⌉n(q) = min{n, γ#

d (q)}; in words, the n-box of d truncates the number of agents of d if
it exceeds n. We write Boxesn for the set of all n-boxes. We define the equivalence relation
≡ n over Γ × D by (γ1, d1) ≡n (γ2, d2) whenever ⌈γ1, d1⌉n = ⌈γ2, d2⌉n. An equivalence class
of ≡ n is a set of the form {(γ, d) ∈ Γ × D | ⌈γ, d⌉n = b} for b ∈ Boxesn; we represent such
an equivalence class for ≡ n by the associated n-box b.

To lift this concept to data, we count the number of data with the same n-box up to bound
M . The (n,M)-container of a configuration γ is the function ⌈γ⌉n,M : Boxesn → [0,M ]
such that ⌈γ⌉n,M (b) = min

{
M,

∣∣{d ∈ D | ⌈γ, d⌉n = b}
∣∣} for all b ∈ Boxesn. We define

the equivalence relation ≡ n,M over Γ by γ1 ≡n,M γ2 whenever ⌈γ1⌉n,M = ⌈γ2⌉n,M . An
equivalence relation for ≡ n,M is the preimage of some (n,M)-container by the previously
described function; we represent such an equivalence class by the associated (n,M)-container.
Figure 3 illustrates the function mapping a given configuration to its container.

In all the following, we use the terms n-boxes and (n,M)-containers to designate
both the vectors and the equivalence classes of ≡ n and ≡ n,M that they represent. For
instance, we write union of n-boxes for the union of the corresponding equivalence classes
of ≡ n.

The partition of Γ into (n,M)-containers becomes finer as n and M grow.

▶ Lemma 18. Let n1, n2,M1,M2 ∈ N. If n1 ≤ n2 and M1 ≤ M2, then every (n1,M1)-
container is a union of (n2,M2)-containers.



S. van Bergerem et al. 156:13

q0

q1

q2

q3

q4

configuration

container

M = 2

q0 • •
q1 • • • • •
q2 •
q3 • •
q4 • • • •

q0 • •
q1 • • • •
q2 •
q3 • •
q4 • • • • • •

q0 • •
q1 • • • • •
q2 •
q3 • •
q4 • • • • •

q0 • •
q1 •
q2 • • • • • •
q3 •
q4 •

q0 • • • • •
q1 •
q2 • •
q3 • • •
q4

n = 4 boxes

Figure 3 How a configuration is mapped to a (4, 2)-container. Here, the protocol has five states
q0, . . . , q4. Five distinct data appear in the configuration, and they are represented using symbols.

Algorithmically, we represent an n-box as a list of appearing states with associated
numbers from [1, n] encoded in binary. Similarly, we represent an (n,M)-container as a list
of appearing n-boxes with associated numbers from [1,M ] encoded in binary.

In fact, interval predicates exactly describe finite unions of containers.

▶ Proposition 19. The sets of configurations defined by interval predicates of height at most
n and width at most M are exactly the sets formed by unions of (n,M)-containers.

Proof sketch. For the translation from predicates to containers, consider a simple interval
predicate ∃̇d1, . . . , dM ,

∧
q∈Q

∧M
j=1 #(q, dj) ∈ [Aq,j , Bq,j ] of height n. This predicate cannot

distinguish data mapped to the same n-box, hence cannot distinguish configurations in the
same equivalence class for ≡ n,M , i. e., (n,M)-containers. The same directly extends to
interval predicates.

For the other direction, we prove that a given (n,M)-container can be expressed as an
interval predicate of height at most n and width at most M . To do so, given a box b ∈ Boxesn

and m ≤ M , we define the simple interval predicate φb,≥m expressing that at least m data
are mapped to box b. Formally, φb,≥m := ∃̇d1, . . . , dm,

∧
q∈Q

∧m
j=1 #(q, dj) ∈ [Aq, Bq], where,

for all q ∈ Q, Aq := b(q), Bq := b(q) if b(q) < n and Bq := +∞ if b(q) = n. This predicate
has height at most n and width at most M . A Boolean combination of such predicates allows
us to express an (n,M)-container. We refer to [7] for a detailed proof. ◀

We therefore have two equivalent representations. Both are useful: interval predicates
allow us to express properties more naturally, but containers are more convenient for the
proofs in the remainder of this section. While they are equally expressive, each can be much
more succinct than the other, as stated below. We refer to [7] for details.
▶ Remark 20. Containers can be exponentially more succinct than interval predicates, while
interval predicates can be doubly exponentially more succinct than unions of containers.

ICALP 2024



156:14 Verification of Population Protocols with Unordered Data

5.2 A Translation from Expressions to Containers
Based on the translation from interval predicates to containers from Proposition 19, we can
now show that for all generalised reachability expressions E over an IOPPUD P, the set
JEKP is a union of (n,M)-containers with n and M bounded in terms of E and P.

▶ Proposition 21. There is a polynomial function poly : N → N such that for all IOPPUD P
and GRE E, the set JEKP is a union of

(
||E|| ·

(
poly(|P|)

)|E|
, ||E||poly(|P|)·|E|2

)
-containers.

The detailed proof of Proposition 21 can be found in [7]. We show the result by structural
induction on E. The base case, when E is an interval predicate, is provided by Proposition 19.
For the induction step, handling Boolean operators is straightforward; the difficulty lies
in operators Pre∗ and Post∗. This is handled by the following lemma, which relies on the
bounds from Section 4.

Equivalence classes for fixed values of n and M do not behave well with respect to the
reachability relation, in the sense that it can happen that γstart

∗−→ γend and γstart ≡n,M χstart,
but there is no χend ≡n,M γend such that χstart

∗−→ χend. However, this will hold if we
take some margin on the equivalence relation of configurations at the start; the following
two functions express this margin. For all n,M ∈ N, let f(n) := (n + |P|3) · |P| and
g(n,M) :=

(
M + (|P|3 + 1)|P|3+|P|2)

(n+ 1)|P|.
The following lemma states that, if a set of configurations C cannot distinguish ≡

n,M -equivalent configurations, then Pre∗(C) cannot distinguish ≡ f(n),g(n,M)-equivalent
configurations. In other words, if C is a union of ≡ n,M -equivalence classes, (i. e., of
(n,M)-containers), then Pre∗(C) is a union of ≡ f(n),g(n,M)-equivalence classes.

▶ Lemma 22. For all n,M ∈ N and all configurations γstart, γend, χstart ∈ Γ, if there is a
run ρ : γstart

∗−→ γend and γstart ≡ f(n),g(n,M)χstart, then there is a configuration χend ∈ Γ
with γend ≡ n,Mχend and a run π : χstart

∗−→ χend.

Proof sketch. We first apply Corollary 17 to ρ, so that we can assume that ρ has a limited
number of externally observed data and of observed agents per datum.

In this proof sketch, we first handle the case with only one datum. Then, we explain how
to generalise this. We refer to [7] for proof details.

Suppose that all agents in γstart and χstart share a single datum d, and suppose
(γstart, d) ≡ f(n)(χstart, d). Let Aγ and Aχ be the agents in γstart and χstart, respectively.
For all q, q′ ∈ Q, we set Aq→

γ := {a ∈ Aγ | γstart(a) = q}, Aq→
χ := {a ∈ Aχ | χstart(a) = q},

A→q′

γ := {a ∈ Aγ | γend(a) = q′}, and Aq→q′

γ := Aq→
γ ∩ A→q′

γ .
Our aim is to assign to each agent in χstart an agent in γstart to mimic. To do so, we

construct a mapping ν : Aχ → Aγ such that
(A) for all a ∈ Aχ, we have χstart(a) = γstart

(
ν(a)

)
,

(B) for all a′ ∈ Aγ observed in ρ, we have ν−1(a′) ̸= ∅, and
(C) for all q′ ∈ Q, we have |ν−1(A→q′

γ,d )| = |A→q′

γ,d |, or |ν−1(A→q′

γ,d )| ≥ n and |A→q′

γ,d | ≥ n.

We build ν separately on each set Aq→
χ by defining, for each q ∈ Q, a mapping νq : Aq→

χ →
Aq→

γ . Let q ∈ Q. As (χstart, d) ≡f(n) (γstart, d), either |Aq→
γ | = |Aq→

χ |, or both |Aq→
γ | and

|Aq→
χ | are at least f(n). If |Aq→

γ | = |Aq→
χ |, we let νq form a bijection between Aq→

χ and
Aq→

γ . Consider now the second case, where |Aq→
γ | and |Aq→

χ | are at least f(n). We aim
at selecting, for every q′ ∈ Q, a set Aq→q′ ⊆ Aq→q′

γ of agents that must be copied in π. If
|Aq→q′

γ | ≤ n, then we let Aq→q′ := Aq→q′

γ . Otherwise, we first put in Aq→q′ all agents in
Aq→q′

γ that are observed in ρ, at most |P|3 in total by Corollary 17. If |Aq→q′ | < n, we add



S. van Bergerem et al. 156:15

arbitrary agents from Aq→q′

γ to Aq→q′ until |Aq→q′ | ≥ n. Either way, we have selected Aq→q′

of size at most |P|3 + n for each q′, hence at most f(n) agents in total. For every q′, we have
|Aq→q′ | ≤ |Aq→q′

γ |, and either |Aq→q′ | = |Aq→q′

γ | or the two sets have size more than n.
We now build νq such that its image over Aq→

χ is
⋃

q′∈Q Aq→q′ . We build this in two
steps. First, we assign to each

⋃
q′∈Q Aq→q′ one antecedent by νq in Aq→

χ . This is possible
because |

⋃
q′∈Q Aq→q′ | ≤ f(n) ≤ |Aq→

χ |. We then identify some q′′ such that |Aq→q′′ | > n

and map all remaining agents of Aq→
χ to an arbitrary agent in Aq→q′′ . Such a q′′ exists

because |Aq→
γ | ≥ f(n) ≥ n · |P|, so there is a q′ such that |Aq→q′

γ | ≥ n, and hence |Aq→q′ | ≥ n

by construction.
This concludes the construction of ν. It remains to prove that ν fulfils Items A–C. Items A

and B are immediate from the definition. We prove Item C. Let q′ ∈ Q. We distinguish two
cases:

if |Aq→q′

γ | < n for all q ∈ Q, then for all q, we have |ν−1(Aq→q′

γ )| = |ν−1(Aq→q′)| =
|Aq→q′ | = |Aq→q′

γ |, so |ν−1(A→q′

γ )| = |A→q′

γ |;
if |Aq→q′

γ | ≥ n for some q ∈ Q, then |Aq→q′ | ≥ n, so |ν−1(Aq→q′

γ )| ≥ n, and thus both
|ν−1(A→q′

γ )| and |A→q′

γ | are at least n.

We construct a run π from χstart by copying ρ as follows. For each step of ρ where an
agent a performs some transition t, we make |ν−1(a)| steps in π so that all agents in ν−1(a)
perform transition t one by one. If a observed some agent a′, there is a′′ in π that can be
observed because ν−1(a′) ̸= ∅: we made sure to map an agent to each observed agent in ρ.

For the general case with more data, we similarly construct two mappings µ and ν. First
we define µ, which maps each datum d of χstart to one of γstart such that (γstart, µ(d)) ≡
f(n)(χstart, d). Then, for each datum d, ν maps each agent a with datum d of χstart to one

with datum µ(d) of γstart.
Once µ and ν are defined, we build a run from χstart to a configuration χend in which each

agent a mimics the behaviour of ν(a) in ρ. We make sure that agents (resp. data) observed
in ρ have agents (resp. data) mapped to them, so that we can take the same transitions in ρ
and π. The construction of ν ensures that, for all data d, we have (γend, µ(d)) ≡ f(n)(χend, d).
The construction of µ ensures that γend ≡ f(n),g(n,M)χend. ◀

6 Decidability and Complexity Bounds

6.1 Decidability in Exponential Space
In this section, we use the results on GRE from Section 5 to provide an ExpSpace upper
bound for the emptiness problem for GRE. In the following, we assume that the representation
of a GRE E takes |E| + log(||E||) space.

We first prove that we can decide membership of a configuration (encoded in a naive
way) in a GRE in PSpace. A configuration is represented data-explicitly if it is represented
as a list of vectors of NQ, one vector for each datum. The size of this representation is
k · |P| · log(m) where k is the number of data and m is the number of agents appearing in γ.

▶ Proposition 23. The following problem is decidable in PSpace: given a PPUD P, a GRE
E, and a configuration γ described data-explicitly, decide if γ ∈ JEKP .

We refer to the full version [7] for the proof. It uses a relatively straightforward induction
on E to show that this problem can be decided in polynomial space using a recursive algorithm
(with a polynomial whose degree does not depend on E). For the case where E = Post∗(F ),
we rely on the fact that the numbers of agents and data remain the same throughout a run;

ICALP 2024



156:16 Verification of Population Protocols with Unordered Data

we therefore can guess the configuration γ′ such that γ′ ∈ JF KP (which can be checked with
a recursive call) and γ

∗−→ γ′ (which can be checked by exploration of the graph containing
configurations with as many agents and data as γ). The case E = Pre∗(F ) is similar.

Proposition 23 allows us to check if a given configuration of a PPUD is in the set
described by a GRE4. In the case of IOPPUD, Proposition 21 allows us to search for a
witness configuration within some bounded set, yielding decidability.

▶ Theorem 10. The emptiness problem for GRE over IOPPUD is in ExpSpace.

Proof. Suppose JEKP is not empty. By Proposition 21, it contains an (n,M)-container
cont with n := ||E|| · poly(|P|)|E| and M := ||E||poly(|P|)·|E|2 . We construct a configuration
γ ∈ cont as follows. For each n-box b, we select cont(b) many data such that over all n-boxes,
the selected data are pairwise distinct. Then, for each n-box b, each state q ∈ Q of P, and
each datum db selected for b, we put b(q) many agents with datum db in q. Note that the
configuration γ is in cont, and the number of agents it contains it at most n · |P|· |Boxesn| ·M .
We have |Boxesn| = (n + 1)|P| = ||E|| · poly(|P|)|E||P|. We assumed at the beginning of
Section 6 that the encoding of E uses memory |E| + log(||E||). As a result, n, M , |P| and
|Boxesn| are all at most exponential in the size of the input. Therefore, if JEKP is not empty,
then it contains a configuration with at most exponentially many agents. We can guess the
data-explicit description of such a configuration in non-deterministic exponential space, and
then check that the guessed configuration is in JEKP in exponential space by Proposition 23
(we apply the PSpace algorithm on an exponential input). As a result, deciding emptiness
of JEKP is in NExpSpace, which is identical with ExpSpace. ◀

6.2 A Lower Complexity Bound
We now provide the following lower complexity bound.

▶ Theorem 24. The emptiness problem for GRE over IOPPUD is coNExpTime-hard.

Proof sketch. We proceed by reduction from the problem of tiling an exponentially large
grid, a NExpTime-complete problem [28], to the complement of the emptiness problem for
GRE. We refer to [7] for proof details.

A tiling instance is a tuple (2n, C, T ), with n ≥ 1, C a finite set of colours with special
colour white, and T = {t1, . . . , tm} ⊆ C4 a finite set of tiles. We can view a tile as a square
whose four edges are coloured. The tiling problem asks whether there is a tiling, that is, a
mapping τ : [0, 2n−1] × [0, 2n−1] → T such that the colours of neighbouring tiles match and
the borders of the grid are white.

Given a tiling instance (2n, C, T ), we build an instance (P, E) of the emptiness problem
for GRE. In P , witness tilings can be encoded in the configurations, and we construct (P, E)
such that JEK contains exactly the configurations that correspond to a correctly encoded
witness tiling. More precisely, γ ∈ JEK when:
(Cond1) for all (i, j) ∈ [0, 2n − 1]2, some datum encodes coordinates (i, j) and a tile type;
(Cond2) for all (i, j) ∈ [0, 2n − 1]2, there is at most one datum encoding (i, j);
(Cond3) the mapping [0, 2n − 1]2 → C defined by the data is a tiling.

The GRE E will be of the form of a conjunction, i. e., a list of constraints that the
configuration must satisfy. Our first constraint is Pre∗(Pres(q⊥)) where q⊥ is a special error
state and Pres(q) is the GRE expressing that some agent is in q. This forbids, in JEK,
configurations from which q⊥ can be covered.

4 This implies that the emptiness problem for GRE over PPUD, while undecidable due to Theorem 3, is
semi-decidable: one can simply enumerate all configurations and test membership for each of them.



S. van Bergerem et al. 156:17

Horizontal coordinate

h1(0) h1(1)

...
hn(0) hn(1)

bit 1

bit n

Tiling gadget Duplication gadget
Horizontal verifier

Synchronization gadget
Vertical coordinate

v1(0) v1(1)

...
vn(0) vn(1)

bit 1

bit n

Tile type choice

t1 . . . tm

Da Dbsink

qdup

Two agents
test whether

their data
are dinstinct and
encode the same

coordinates

q≥3

q≥2

q≥1

q≥1, = q≥1, ̸=

q≥2, = q≥2, ̸=

S(h)

T
(h)
1

T
(h)
2

. . .

T (h)
m

F (h)

first
sync. test

t1,
=

t2, =

t
m

, =

second
sync. test

q
(h)
i

colour � white
x, y � 0

q
(h)
f

T � Ti

where T
(h)
i

populated

if x=2n−1
and y=2n−1

if x<2n−1
and y<2n−1,

check that
left(T )=colour

if x=2n−1
and y<2n−1

check that
left(T )=colour

and right(T )=white

check that
right(T )=white

colour � white
x � 0

y � y + 1
colour � right(T )

x � x + 1

Figure 4 Partial depiction of the protocol constructed in Theorem 24.

(Cond1) is obtained using the tiling gadget in Figure 4. States t1, . . . , tm represent the
available tiles of T , and coordinate states allow for a binary representation of the horizontal
and vertical coordinates of a square in the grid. For a datum d, the agents of datum d in
the coordinate states encode the position of the square corresponding to d, and an agent
of datum d in state ti indicates that the square in the grid corresponding to d should be
coloured according to tile ti. Configurations in JEK are not allowed to have two agents of
same datum playing the same role; otherwise, one of them may observe the other and go to
q⊥. In particular, each datum has at most 2n+ 1 agents in the tiling gadget.

To obtain (Cond2), we use a duplication gadget, partially represented in Figure 4. We
enforce that any configuration in JEK has one agent of each datum in Da, one in Db and
none in the rest of the duplication gadget. The blue part implements a test (depicted
in [7, Figure 5b]) where two agents of distinct data, one from Da and one from Db, may
test that their data encode the same coordinates; if this is the case, they may go to qdup.
If there are more than two agents in the blue part, this test is not reliable but q≥3 can be
covered. (Cond2) can therefore be achieved by enforcing that configurations in JEK are not
in Pre∗(Pres(qdup) ∩ Pre∗(Pres(q≥3))).

Finally, we explain how (Cond3) is achieved; we describe only how the horizontal (left-
right) borders are verified. We use a gadget, named horizontal verifier in Figure 4. In
this gadget, a single agent, called verifier, is in charge of verifying that colours of left-right
borders match. The verifier uses 2n auxiliary agents to encode two variables x, y ∈ [0, 2n − 1]
in binary. Again, transitions to q⊥ detect when two agents play the same role, so that
there is only one verifier and so that variables x and y can be implemented faithfully. The
initialisation x = y = 0 is enforced as a constraint in E. We now sketch how the verifier
reads the encoded tiling; to do that, it must synchronise with the datum encoding (x, y).

This is done using the synchronisation gadget of Figure 4. In JEK, all agents in the
synchronisation gadget are in S(h). Moreover, we add a constraint in E so that γ ∈ JEK
requires that there is a run from γ where all agents in the synchronisation gadget end in

ICALP 2024



156:18 Verification of Population Protocols with Unordered Data

F (h) and where the verifier ends in q(h)
f . The synchronisation tests guarantee that, whenever

there is an agent in T
(h)
i , this agent’s datum encodes square (i, j) where i is equal to the

current value of x and j is equal to the current value of y. The synchronisation is challenging
to design because the values of x and y may change throughout a run and only one bit can
be tested at a time. However, as proved in [7, Lemma 37], this can be achieved by having a
first synchronisation test that checks equality of bits from most to least significant, and a
second test that checks equality from least to most significant. ◀

6.3 Discussion on Complexity Gaps

We now discuss some complexity gaps left open by this paper. First, there remains a com-
plexity gap for the emptiness problem for GRE, which is known to be between coNExpTime
(Theorem 24) and ExpSpace (Theorem 10). Closing the gap appears challenging. On one
hand, if the problem is below ExpSpace, then this probably requires developing new tech-
niques. On the other hand, proving ExpSpace-hardness does not seem easy. In particular,
the synchronisation techniques from Theorem 24 assumes that each datum synchronises only
once with the verifier. This synchronisation technique would not suitable for, e. g., multiple
interactions between the head and the cells of a Turing machine.

Another, arguably more important open question is the exact complexity of well-
specification, which is only known to be between PSpace (model without data, [19]) and
ExpSpace (Theorem 10). On the one hand, it is unclear whether relevant configurations
can be stored in polynomial space.

▷ Claim 25. The number of data that need to be considered for well-specification may be
exponential.

The claim is formalised and proven in [7]. As a consequence, proving that the problem is in
PSpace cannot be achieved with a procedure that explicitly stores configurations. On the
other hand, in order to build a reduction from the tiling problem as in Theorem 24, we need
a new idea to enforce that at most one datum encodes each tile. In Theorem 24, we had
states qdup and q≥3 and duplication meant being able to cover qdup and, at the same, forbid
that q≥3 can ever be covered in the future. We do not know how to encode this constraint
when working with an instance of well-specification.

7 Conclusion

We have studied the verification of population protocols with unordered data [10], an extension
of population protocols where agents carry data from an infinite unordered set. We first
proved that the well-specification problem is undecidable (Theorem 3), which then led us to
consider the restriction to protocols with immediate observation. This subclass was defined
in [10], where the authors proved that these protocols compute exactly the interval predicates.
We defined a general class of problems on this model, which consists in deciding the existence
of a configuration satisfying a so-called generalised reachability expression; this class of
problems subsumes many classic problems, one of which is well-specification. Despite its
generality, we showed the problem to be decidable in exponential space (Theorem 10); we also
provided a coNExpTime lower bound. A remaining open question is the exact complexity
of well-specification for immediate observation population protocols with unordered data,
which is located between PSpace (model without data, [19]) and ExpSpace (Theorem 10).



S. van Bergerem et al. 156:19

References
1 Dan Alistarh, James Aspnes, David Eisenstat, Rati Gelashvili, and Ronald L. Rivest. Time-

space trade-offs in population protocols. In 28th Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2017, pages 2560–2579, 2017. doi:10.1137/1.9781611974782.169.

2 Dan Alistarh and Rati Gelashvili. Recent algorithmic advances in population protocols.
SIGACT News, 49(3):63–73, 2018. doi:10.1145/3289137.3289150.

3 Dana Angluin, James Aspnes, Zoë Diamadi, Michael J. Fischer, and René Peralta. Computation
in networks of passively mobile finite-state sensors. In 33rd Annual ACM Symposium on
Principles of Distributed Computing, PODC 2004, pages 290–299. ACM, 2004. doi:10.1145/
1011767.1011810.

4 Dana Angluin, James Aspnes, David Eisenstat, and Eric Ruppert. The computational
power of population protocols. Distributed Comput., 20(4):279–304, 2007. doi:10.1007/
S00446-007-0040-2.

5 A. R. Balasubramanian, Lucie Guillou, and Chana Weil-Kennedy. Parameterized analysis
of reconfigurable broadcast networks. In Foundations of Software Science and Computation
Structures - 25th International Conference, FoSSaCS 2022, pages 61–80, 2022. doi:10.1007/
978-3-030-99253-8_4.

6 A. R. Balasubramanian and Chana Weil-Kennedy. Reconfigurable broadcast networks and
asynchronous shared-memory systems are equivalent. In 12th International Symposium on
Games, Automata, Logics, and Formal Verification, GandALF 2021, pages 18–34, 2021.
doi:10.4204/EPTCS.346.2.

7 Steffen van Bergerem, Roland Guttenberg, Sandra Kiefer, Corto Mascle, Nicolas Waldburger,
and Chana Weil-Kennedy. Verification of population protocols with unordered data. CoRR,
abs/2405.00921, 2024. arXiv:2405.00921.

8 Roderick Bloem, Swen Jacobs, Ayrat Khalimov, Igor Konnov, Sasha Rubin, Helmut
Veith, and Josef Widder. Decidability of Parameterized Verification. Synthesis Lectures
on Distributed Computing Theory. Morgan & Claypool Publishers, 2015. doi:10.2200/
S00658ED1V01Y201508DCT013.

9 Michael Blondin, Javier Esparza, Stefan Jaax, and Philipp J. Meyer. Towards efficient
verification of population protocols. Formal Methods Syst. Des., 57(3):305–342, 2021. doi:
10.1007/S10703-021-00367-3.

10 Michael Blondin and François Ladouceur. Population protocols with unordered data. In 50th
International Colloquium on Automata, Languages, and Programming, ICALP 2023, pages
115:1–115:20, 2023. doi:10.4230/LIPICS.ICALP.2023.115.

11 Patricia Bouyer, Nicolas Markey, Mickael Randour, Arnaud Sangnier, and Daniel Stan.
Reachability in networks of register protocols under stochastic schedulers. In 43rd International
Colloquium on Automata, Languages, and Programming, ICALP 2016, pages 106:1–106:14,
2016. doi:10.4230/LIPICS.ICALP.2016.106.

12 Philipp Czerner, Roland Guttenberg, Martin Helfrich, and Javier Esparza. Fast and succinct
population protocols for Presburger arithmetic. J. Comput. Syst. Sci., 140:103481, 2024.
doi:10.1016/J.JCSS.2023.103481.

13 Wojciech Czerwinski and Lukasz Orlikowski. Reachability in vector addition systems is
Ackermann-complete. In 62nd IEEE Annual Symposium on Foundations of Computer Science,
FOCS 2021, pages 1229–1240, 2021. doi:10.1109/FOCS52979.2021.00120.

14 Robert Elsässer and Tomasz Radzik. Recent results in population protocols for exact majority
and leader election. Bull. EATCS, 126, 2018. URL: http://bulletin.eatcs.org/index.php/
beatcs/article/view/549/546.

15 Javier Esparza. Keeping a crowd safe: On the complexity of parameterized verification (invited
talk). In 31st International Symposium on Theoretical Aspects of Computer Science (STACS
2014), STACS 2014, March 5-8, 2014, Lyon, France, pages 1–10, 2014. doi:10.4230/LIPICS.
STACS.2014.1.

ICALP 2024

https://doi.org/10.1137/1.9781611974782.169
https://doi.org/10.1145/3289137.3289150
https://doi.org/10.1145/1011767.1011810
https://doi.org/10.1145/1011767.1011810
https://doi.org/10.1007/S00446-007-0040-2
https://doi.org/10.1007/S00446-007-0040-2
https://doi.org/10.1007/978-3-030-99253-8_4
https://doi.org/10.1007/978-3-030-99253-8_4
https://doi.org/10.4204/EPTCS.346.2
https://arxiv.org/abs/2405.00921
https://doi.org/10.2200/S00658ED1V01Y201508DCT013
https://doi.org/10.2200/S00658ED1V01Y201508DCT013
https://doi.org/10.1007/S10703-021-00367-3
https://doi.org/10.1007/S10703-021-00367-3
https://doi.org/10.4230/LIPICS.ICALP.2023.115
https://doi.org/10.4230/LIPICS.ICALP.2016.106
https://doi.org/10.1016/J.JCSS.2023.103481
https://doi.org/10.1109/FOCS52979.2021.00120
http://bulletin.eatcs.org/index.php/beatcs/article/view/549/546
http://bulletin.eatcs.org/index.php/beatcs/article/view/549/546
https://doi.org/10.4230/LIPICS.STACS.2014.1
https://doi.org/10.4230/LIPICS.STACS.2014.1


156:20 Verification of Population Protocols with Unordered Data

16 Javier Esparza. Population protocols: Beyond runtime analysis. In Reachability Problems - 15th
International Conference, RP 2021, pages 28–51, 2021. doi:10.1007/978-3-030-89716-1_3.

17 Javier Esparza, Pierre Ganty, Jérôme Leroux, and Rupak Majumdar. Verification of population
protocols. Acta Informatica, 54(2):191–215, 2017. doi:10.1007/S00236-016-0272-3.

18 Javier Esparza, Stefan Jaax, Mikhail A. Raskin, and Chana Weil-Kennedy. The complexity
of verifying population protocols. Distributed Comput., 34(2):133–177, 2021. doi:10.1007/
S00446-021-00390-X.

19 Javier Esparza, Mikhail A. Raskin, and Chana Weil-Kennedy. Parameterized analysis of
immediate observation Petri nets. In Application and Theory of Petri Nets and Concurrency
- 40th International Conference, PETRI NETS 2019, pages 365–385, 2019. doi:10.1007/
978-3-030-21571-2_20.

20 Lucie Guillou, Corto Mascle, and Nicolas Waldburger. Parameterized broadcast networks with
registers: from NP to the frontiers of decidability. In Foundations of Software Science and
Computation Structures - 27th International Conference, FoSSaCS 2024, pages 250–270, 2024.
doi:10.1007/978-3-031-57231-9_12.

21 Petr Jancar. Undecidability of bisimilarity for Petri nets and some related problems. Theor.
Comput. Sci., 148(2):281–301, 1995. doi:10.1016/0304-3975(95)00037-W.

22 Petr Jancar and Jérôme Leroux. The semilinear home-space problem is Ackermann-complete
for Petri nets. In 34th International Conference on Concurrency Theory, CONCUR 2023,
pages 36:1–36:17, 2023. doi:10.4230/LIPICS.CONCUR.2023.36.

23 Ranko Lazic, Thomas Christopher Newcomb, Joël Ouaknine, A. W. Roscoe, and James Worrell.
Nets with tokens which carry data. In 28th International Conference on Applications and
Theory of Petri Nets and Other Models of Concurrency, ICATPN 2007, pages 301–320, 2007.
doi:10.1007/978-3-540-73094-1_19.

24 Jérôme Leroux. The reachability problem for Petri nets is not primitive recursive. In 62nd
IEEE Annual Symposium on Foundations of Computer Science, FOCS 2021, pages 1241–1252,
2021. doi:10.1109/FOCS52979.2021.00121.

25 Jérôme Leroux and Sylvain Schmitz. Reachability in vector addition systems is primitive-
recursive in fixed dimension. In 34th Annual ACM/IEEE Symposium on Logic in Computer
Science, LICS 2019, pages 1–13, 2019. doi:10.1109/LICS.2019.8785796.

26 Marvin L. Minsky. Computation: Finite and Infinite Machines. Prentice-Hall, Inc., 1967.
27 Fernando Rosa-Velardo and David de Frutos-Escrig. Decidability and complexity of Petri nets

with unordered data. Theor. Comput. Sci., 412(34):4439–4451, 2011. doi:10.1016/J.TCS.
2011.05.007.

28 François Schwarzentruber. The complexity of tiling problems. CoRR, abs/1907.00102, 2019.
arXiv:1907.00102.

29 Chana Weil-Kennedy. Observation Petri Nets. PhD thesis, Technical Univer-
sity of Munich, Germany, 2023. URL: https://nbn-resolving.org/urn:nbn:de:bvb:
91-diss-20230320-1691161-1-3.

https://doi.org/10.1007/978-3-030-89716-1_3
https://doi.org/10.1007/S00236-016-0272-3
https://doi.org/10.1007/S00446-021-00390-X
https://doi.org/10.1007/S00446-021-00390-X
https://doi.org/10.1007/978-3-030-21571-2_20
https://doi.org/10.1007/978-3-030-21571-2_20
https://doi.org/10.1007/978-3-031-57231-9_12
https://doi.org/10.1016/0304-3975(95)00037-W
https://doi.org/10.4230/LIPICS.CONCUR.2023.36
https://doi.org/10.1007/978-3-540-73094-1_19
https://doi.org/10.1109/FOCS52979.2021.00121
https://doi.org/10.1109/LICS.2019.8785796
https://doi.org/10.1016/J.TCS.2011.05.007
https://doi.org/10.1016/J.TCS.2011.05.007
https://arxiv.org/abs/1907.00102
https://nbn-resolving.org/urn:nbn:de:bvb:91-diss-20230320-1691161-1-3
https://nbn-resolving.org/urn:nbn:de:bvb:91-diss-20230320-1691161-1-3

	1 Introduction
	2 Population Protocols and Main Results
	2.1 Population Protocols with Unordered Data
	2.2 Immediate Observation Protocols
	2.3 Generalised Reachability Expressions

	3 Undecidability of Verification of Population Protocols with Unordered Data
	4 An Analysis of Immediate Observation Protocols with Data
	4.1 Bounds on the Number of Observed Agents per Datum
	4.2 Bounds on the Number of Observed Data

	5 From Expressions to Containers
	5.1 Equivalence of Predicates and Containers
	5.2 A Translation from Expressions to Containers

	6 Decidability and Complexity Bounds
	6.1 Decidability in Exponential Space
	6.2 A Lower Complexity Bound
	6.3 Discussion on Complexity Gaps

	7 Conclusion

