
NP-Hardness of Testing Equivalence to Sparse
Polynomials and to Constant-Support Polynomials
Omkar Baraskar #

University of Waterloo, Canada

Agrim Dewan #

Indian Institute of Science, Bengaluru, India

Chandan Saha #

Indian Institute of Science, Bengaluru, India

Pulkit Sinha #

University of Waterloo, Canada

Abstract
An s-sparse polynomial has at most s monomials with nonzero coefficients. The Equivalence Testing
problem for sparse polynomials (ETsparse) asks to decide if a given polynomial f is equivalent
to (i.e., in the orbit of) some s-sparse polynomial. In other words, given f ∈ F[x] and s ∈ N,
ETsparse asks to check if there exist A ∈ GL(|x|,F) and b ∈ F|x| such that f(Ax + b) is s-sparse.
We show that ETsparse is NP-hard over any field F, if f is given in the sparse representation, i.e.,
as a list of nonzero coefficients and exponent vectors. This answers a question posed by Gupta,
Saha and Thankey (SODA 2023) and also, more explicitly, by Baraskar, Dewan and Saha (STACS
2024). The result implies that the Minimum Circuit Size Problem (MCSP) is NP-hard for a dense
subclass of depth-3 arithmetic circuits if the input is given in sparse representation. We also show
that approximating the smallest s0 such that a given s-sparse polynomial f is in the orbit of some
s0-sparse polynomial to within a factor of s 1

3 −ϵ is NP-hard for any ϵ > 0; observe that s-factor
approximation is trivial as the input is s-sparse. Finally, we show that for any constant σ ≥ 6,
checking if a polynomial (given in sparse representation) is in the orbit of some support-σ polynomial
is NP-hard. Support of a polynomial f is the maximum number of variables present in any monomial
of f . These results are obtained via direct reductions from the 3-SAT problem.

2012 ACM Subject Classification Theory of computation → Algebraic complexity theory

Keywords and phrases Equivalence testing, MCSP, sparse polynomials, 3SAT

Digital Object Identifier 10.4230/LIPIcs.ICALP.2024.16

Category Track A: Algorithms, Complexity and Games

Related Version Full Version: https://eccc.weizmann.ac.il/report/2024/104

Funding Chandan Saha: Partially supported by a MATRICS grant of the Science and Engineering
Research Board, DST, India.
Pulkit Sinha: Partially supported by a Mike and Ophelia Lazardis Fellowship, and partially supported
by NSERC Canada.

Acknowledgements We thank the anonymous reviewers for their detailed and constructive feedback,
which has helped us improve the presentation of this work. In particular, we thank one of the
reviewers for pointing out some inaccuracies in the original proofs of Lemmas 50 and 51; simpler
proofs for both lemmas came up in the process of fixing these inaccuracies.

1 Introduction

The Polynomial Equivalence (PE) problem asks to decide if two polynomials, given as lists
of coefficients, are equivalent. Polynomials f, g ∈ F[x] are equivalent, denoted as f ∼ g, if
there is an A ∈ GL(|x|,F) and a b ∈ F|x| such that f = g(Ax + b). Equivalent polynomials

EA
T

C
S

© Omkar Baraskar, Agrim Dewan, Chandan Saha, and Pulkit Sinha;
licensed under Creative Commons License CC-BY 4.0

51st International Colloquium on Automata, Languages, and Programming (ICALP 2024).
Editors: Karl Bringmann, Martin Grohe, Gabriele Puppis, and Ola Svensson;
Article No. 16; pp. 16:1–16:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:obaraska@uwaterloo.ca
mailto:agrimdewan@iisc.ac.in
mailto:chandan@iisc.ac.in
mailto:psinha@uwaterloo.ca
https://doi.org/10.4230/LIPIcs.ICALP.2024.16
https://eccc.weizmann.ac.il/report/2024/104
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

16:2 NP-Hardness of Testing Equivalence to Sparse Polynomials

represent the same function up to a change of the coordinate system.1 The PE problem is
thus regarded as the algebraic analog of the graph isomorphism (GI) problem. PE is at least
as hard as GI [2, 36], but we do not know if it is much harder than GI. There is, in fact, a
cryptographic authentication scheme based on the presumed average-case hardness of PE
[46]. Is PE NP-hard? Over finite fields, PE is not NP-hard unless the polynomial hierarchy
collapses [51, 55]. In contrast, PE is not even known to be decidable over Q. With the aim of
gaining more insight into the complexity of testing polynomial equivalence, a natural variant
of PE has been studied in the literature. This variant is known as equivalence testing.

In the following discussion, whenever we write “circuit(s)” and “formula(s)”, we mean
arithmetic circuit(s) and arithmetic formula(s), respectively, unless mentioned otherwise.2

Equivalence testing. Equivalence testing (ET) comes in two flavors – ET for polynomial
families and ET for circuit classes. ET for a polynomial family F is defined as follows: given
a single polynomial f , check if it is equivalent to some g ∈ F . This variant of PE was
introduced in [37, 36], wherein randomized polynomial-time ET algorithms were provided
for the permanent, determinant, and elementary and power symmetric polynomial families.
Subsequently, efficient ET algorithms were given for various other important polynomial
families, such as the iterated matrix multiplication (IMM) family [39] (see the Related Works
section in the full version). These algorithms are efficient even if f is provided as a circuit or
a black-box.3 ET for a circuit class C (a.k.a testing equivalence to C) is defined similarly:
given a polynomial f , decide if it is equivalent to some polynomial g that is computable by a
circuit in C. Recently, efficient ET algorithms have been given for read-once formulas [24]
and a special subclass of sparse polynomials, namely t-design polynomials for constant t [8].
Sparse polynomials are depth-2 circuits.4 It is natural to ask whether or not ET can be
solved efficiently for general sparse polynomials. This question was posed in [24] and also,
more explicitly, in [8].

Before proceeding to discuss ET for sparse polynomials, we point out a subtle difference
between ET for polynomial families and that for circuit classes. The polynomial families for
which ET has been studied so far are such that if f is equivalent to some g in the family, then
g is unique and it can be readily identified from f . For example, if f is equivalent to some
determinant polynomial5, then we know which one simply from the number of variables of f .
Moreover, polynomials in most of these families admit well-known polynomial-size circuits.
So, a circuit for g can be derived once it is identified. Thus, if f is also given as a circuit,
then ET for such a family reduces to PE with the input polynomials given as circuits. Over
finite fields, this version of PE is in AM ∩ coAM and hence unlikely to be NP-hard. On the
other hand, in the case of ET for a circuit class, if f is equivalent to some circuit C in the
class, then C need not be unique, and further, C may not be easily deducible from f . This
leaves us with the prospect of proving that ET is hard for some natural circuit class. Do
sparse polynomials form such a class?

1 Over R, an invertible map x 7→ Ax + b is simply a combination of rotation, reflection, scaling, and
translation.

2 An arithmetic circuit is like a Boolean circuit but with AND and OR replaced by × and + gates, and
with edges labelled by F-elements. It computes a polynomial over F. A formula is a circuit whose
underlying graph is a tree.

3 Black-box access to f means oracle access to f , we get f(a) from a query point a in unit time. It is as
if f is given as a “hidden” circuit, and the only operation we are allowed is to evaluate the circuit at
chosen points.

4 We assume that a depth-2 circuit has a + gate on top and a bottom layer of × gates. If the top gate is
a × gate, then ET can be solved efficiently using polynomial factorization algorithms [35].

5 The n2-variate determinant polynomial is the determinant of the matrix (xi,j)i,j∈[n] of formal variables.

O. Baraskar, A. Dewan, C. Saha, and P. Sinha 16:3

ET for sparse polynomials. An n-variate, degree-d polynomial is s-sparse if it has at most
s monomials with nonzero coefficients. An s-sparse polynomial is computable by a depth-2
circuit having top fan-in s. Sparse polynomials have been extensively studied in algebraic
complexity, particularly with regard to identity testing [41, 43], interpolation [10, 21, 41, 12],
and factorization [56, 11] (see the tutorial [49] and the references therein for more algorithms
involving sparse polynomials). ET provides yet another avenue to understand these “basic”
polynomials better. ET for sparse polynomials asks to check if a given polynomial is sparse
in some coordinate system. More formally, given a polynomial f as an arithmetic circuit
and an s ∈ N, decide if there is an s-sparse polynomial g such that f ∼ g. This problem was
studied in [20] over Q, wherein an exponential in n4 time algorithm was provided. There has
not been any significant progress on this problem since that work. The lack of improvements
in the complexity for over three decades makes one wonder:

Is ET for sparse polynomials NP-hard?

In this work, we answer this question in the affirmative over any field (see the first part
of Theorem 2) even if the input f is provided as a depth-2 circuit. The result answers the
question posed in [24, 8]. To our knowledge, the theorem gives the first example of a natural
circuit class for which ET is provably hard.

Although ET for sparse polynomials (ETsparse) is a fairly natural problem, there is a
deeper reason to study ETsparse originating from the expressive power of affine projections of
sparse polynomials and the Minimum Circuit Size Problem (MCSP) for depth-3 circuits. We
discuss this reason below to motivate ETsparse when the input is a homogeneous polynomial.

1.1 ETsparse and MCSP for depth-3 circuits

First, we need a few definitions: A polynomial g is an affine projection of f if g = f(Ax + b)
for some A ∈ F|x|×|x| and b ∈ F|x|. If b = 0, we say g is a linear projection of f ; additionally,
if A ∈ GL(|x|), we say g is in the orbit of f , denoted as orb(f). Depth-3 circuits form a
highly expressive class [23, 54]. A depth-3 (ΣΠΣ) circuit is a circuit with a + gate on top, a
middle layer of × gates, and a bottom layer of + gates. A depth-3 circuit with a top fan-in of
s is an affine projection of an s-sparse polynomial. Thus, the problem of deciding if a given
f is an affine projection of an s-sparse polynomial is closely related to MCSP for depth-3
circuits. We say “closely related to” instead of “the same as” because the size of a depth-3
circuit is determined by not only its top fan-in but also its formal degree.

MCSP. The complexity of MCSP for Boolean circuits has baffled researchers for over six
decades. MCSP for a Boolean circuit class C (C-MCSP) takes input the truth table of an
n-variate Boolean function f and a parameter s ∈ N and asks to check if f is computable by
a circuit in C of size at most s. There are intriguing connections between MCSP and several
other areas such as cryptography [34, 3], learning theory [14], average-case complexity [27],
and proof complexity [47]. Whether or not MCSP for general Boolean circuits is NP-hard is a
long-standing open question. It is known that MCSP is NP-hard for DNF [44, 4] and DNF ◦
XOR formulas [29]. But no NP-hardness result is known (under deterministic polynomial-time
reductions) for more general circuit models such as AC0 circuits.6 This is not too surprising

6 However, strong hardness results are known for several powerful circuit models under randomized or
quasi-polynomial time or subexponential time reductions [30, 32, 31, 28].

ICALP 2024

16:4 NP-Hardness of Testing Equivalence to Sparse Polynomials

as [34] showed that NP-hardness of C-MCSP under natural7 deterministic polynomial-time
reductions implies a 2Ω(n) lower bound for C, unless NP ⊆ SUBEXP. Unfortunately, such
strong lower bounds are not known even for depth-3 Boolean circuits. However, a 2Ω(n) lower
bound is known for XOR ◦ AND ◦ XOR formulas [48], which are depth-3 arithmetic circuits
over F2 and are like DNF ◦ XOR formulas but with the top OR gate replaced by an XOR
gate. In fact, a 2Ω(n) lower bound is known for depth-3 arithmetic circuits over any fixed
finite field [22]. This raises hope that we will be able to prove the hardness of MCSP for
depth-3 arithmetic circuits over finite fields. But how is the input given in the case of MCSP
for arithmetic circuits? And what about depth-3 circuits over fields of characteristic 0?

MCSP for arithmetic circuits: Input representation and model of computation. In
the Boolean setting of MCSP, one of the main reasons to assume the input to be a truth
table is that the assumption puts MCSP in NP. Analogously, in the algebraic setting, we
could assume that the polynomial is given in the dense representation as a list of

(
n+d

n

)
coefficients. But observe that even if the input is given as an arithmetic circuit, MCSP
is in the complexity class MA over finite fields. This is because verifying if two circuits
compute the same polynomial is the polynomial identity testing problem, which admits
a randomized polynomial-time algorithm [16, 57, 52]. Furthermore, class MA equals NP,
assuming a widely believed circuit lower bound [33]. A succinct input representation also
opens up the possibility of proving NP-hardness of MCSP for models, such as depth-3 circuits
over fields of characteristic 0, for which strong exponential lower bounds are unknown (the
MCSP hardness to lower bound implication in [34] needs the input in the dense format). The
current best lower bound for depth-3 circuits over fields of characteristic 0 is quasi-polynomial
in n [42, 5].

It is, therefore, reasonable to assume that the input polynomial is given succinctly as a
circuit which should only facilitate our efforts in proving NP-hardness of MCSP for arithmetic
circuit classes. For example, there is an instance in the Boolean setting wherein succinct
representation of the input helped prove NP-hardness of MCSP long before such a hardness
result was shown with respect to the dense representation – it is the case of the partial MCSP
problem [25, 28]. In this work, we assume that the input is given as a depth-2 circuit, i.e., as a
list of nonzero coefficients, and exponent vectors in unary – this is the sparse representation.8

A few remarks are in order concerning the model of computation. Over finite fields, we
assume the Turing machine model. However, over arbitrary fields of characteristic 0, it is
natural to consider an arithmetic model of computation (similar to the Blum-Shub-Smale
machine model [13]) that allows us to store a field element in unit space and perform an
arithmetic operation in unit time. Over Q, it is not clear if MCSP for arithmetic circuits is
even decidable in the Turing machine model. But, if we confine our search to size-s circuits
whose field constants are sO(1) bit rational numbers, then we can work with the Turing
machine model.

MCSP for homogeneous depth-3 circuits. The size of a ΣΠΣ circuit is primarily determined
by its formal degree and its top fan-in, whereas the size of a homogeneous depth-3 (hom-ΣΠΣ)
circuit is mainly decided by its top fan-in (the formal degree of a ΣΠΣ circuit is the maximum

7 i.e., the size of the output of the reduction and the output parameter s depend only on the size of the
input instance. Almost all reductions that show NP-hardness of problems are natural.

8 Sparse representations of polynomials are also used in computer algebra systems wherein the exponent
vector is given in binary. As the degree is nO(1) in this work (except on one occasion; see the remark
following Theorem 16), whether the exponent vector is given in unary or binary makes little difference.

O. Baraskar, A. Dewan, C. Saha, and P. Sinha 16:5

fan-in of the middle layer of × gates). MCSP for ΣΠΣ circuits can be defined as follows:
given f and D, s ∈ N, decide if there is a ΣΠΣ circuit with formal degree bounded by D and
top fan-in bounded by s that computes f . Similarly, MCSP for hom-ΣΠΣ circuits is defined
as: given a homogeneous f and s ∈ N, check if there is a hom-ΣΠΣ circuit with top fan-in at
most s that computes f . In order to prove NP-hardness of ΣΠΣ-MCSP, it is necessary to
prove NP-hardness of hom-ΣΠΣ-MCSP. The reason is: a polynomial f(x1, x2, . . . , xn) has
a ΣΠΣ circuit with formal degree bounded by D and top fan-in bounded by s if and only
if the homogeneous polynomial zDf(x1z

−1, x2z
−1, . . . , xnz

−1) has a hom-ΣΠΣ circuit with
top fan-in bounded by s. Moreover, if the reduction in a hypothetical proof of NP-hardness
of hom-ΣΠΣ-MCSP has a certain simple feature, then it would imply NP-hardness of ΣΠΣ-
MCSP (see the second remark following Proposition 39). Hence, it is natural to study the
hardness of hom-ΣΠΣ-MCSP first.

NP-hardness of MCSP is known for two interesting subclasses of hom-ΣΠΣ circuits,
namely depth-3 powering circuits [53] and set-multilinear ΣΠΣ circuits [26]; the top fan-in’s
of circuits in these two classes correspond to Waring rank and tensor rank, respectively.
Perhaps an appealing evidence in favor of NP-hardness of hom-ΣΠΣ-MCSP is a proof of
NP-hardness of MCSP for a “dense” subclass of hom-ΣΠΣ circuits. Intuitively, C is a dense
subclass of hom-ΣΠΣ circuits if every hom-ΣΠΣ circuit can be approximated “infinitesimally
closely” by circuits in C.9 Unfortunately, depth-3 powering circuits and set-multilinear ΣΠΣ
circuits are not dense inside hom-ΣΠΣ circuits.10 On the other hand, orbits of homogeneous
sparse polynomials form a dense subclass of hom-ΣΠΣ circuits.11 It is natural to ask:

Is MCSP for orbits of homogeneous sparse polynomials NP-hard?

MCSP for orbits of homogeneous sparse polynomials is exactly the ETsparse problem on
inputs that are homogeneous polynomials. The second part of Theorem 2 answers the
question positively over fields of characteristic 0.

Approximating the sparse-orbit complexity. Call the smallest s0 such that f is in the
orbit of an s0-sparse polynomial, the sparse-orbit complexity of f . Theorem 2 shows that
sparse-orbit complexity is hard to compute in the worst case.

Is sparse-orbit complexity easy to approximate?

In Theorem 8, we show that it is NP-hard to approximate the sparse-orbit complexity of a
given s-sparse polynomial (homogeneous or not) to within a s 1

3 −ϵ factor for any ϵ ∈ (0, 1/3).
For s-sparse inputs, a within s factor approximation of the sparse-orbit complexity is trivial.

9 Formally, a subclass C of hom-ΣΠΣ circuits is dense if there are polynomial functions p, q : N → N such
that the following holds: For n, d, s ∈ N, the coefficient vector of every n-variate degree-d polynomial
computable by a size-s hom-ΣΠΣ circuit is in the Zariski closure of the set of coefficient vectors of
p(nds)-variate degree-d polynomials computable by size-q(nds) circuits in C. Here, “size” means “top
fan-in”.

10 Circuits of these two classes have small read-once algebraic branching programs (ROABPs), and the
class ROABP is closed under Zariski closure [18]. So, the closures of these two classes are also contained
inside ROABPs. But, there are explicit O(n) size hom-ΣΠΣ circuits that require 2Ω(n) size ROABPs
[50, 38].

11 Every n-variate degree-d size-s hom-ΣΠΣ circuit is a linear projection of an s-sparse degree-d homogen-
eous polynomial in at most sd variables. It is well known that linear projections of f are contained in
the Zariski closure of the orbit of f over fields of characteristic 0 (see [50] for a proof of this fact).

ICALP 2024

16:6 NP-Hardness of Testing Equivalence to Sparse Polynomials

1.2 ET for constant-support polynomials
ET is efficiently solvable for two special sparse polynomial families, namely the power
symmetric polynomial PSym := xd

1 + . . .+ xd
n [36] and the sum-product polynomial SP :=∑

i∈[s]
∏

j∈[d] xi,j [45, 36]. What makes ET easy for these sparse polynomials? Explanations
were provided in [24, 8]: SP is a read-once formula; it is also a 1-design polynomial. PSym is
a 1-design polynomial, but it is also a support-1 polynomial.

Is ET easy for constant-support polynomials?

In Theorem 16, we show that checking if a given f is in the orbit of a support-6 polynomial
is NP-hard; this answers the question in the negative.

1.3 Our results
We now state our results formally. The ETsparse problem is defined as follows.

▶ Problem 1 (ETsparse). Given a polynomial f ∈ F[x] in its sparse representation and an
s ∈ Z, check if there exists an A ∈ GL(|x|,F) and a b ∈ F|x| such that f(Ax + b) is s-sparse.

Our first result, Theorem 2, shows the NP-hardness of ETsparse over any field.

▶ Theorem 2 (ETsparse is NP-hard).
1. Let F be any field. There exists a deterministic polynomial-time many-one reduction from

3-SAT to ETsparse over F.
2. Let char(F) = 0. There exists a deterministic polynomial-time many-one reduction from

3-SAT to ETsparse over F where the input polynomial in ETsparse is homogeneous.
▶ Remark 3. The reduction is natural12 and has the feature that a satisfying assignment can
be mapped to a sparsifying invertible A ∈ {−1, 0, 1}|x|×|x| and vice versa. So, ETsparse is
NP-hard even when A is restricted to having only {−1, 0, 1} entries.
▶ Remark 4. The authors of [15] showed the undecidability over Z of testing if a given f is
shift equivalent to some sparse polynomial (f is shift equivalent to a polynomial g, if there
exists a b ∈ F|x| s.t f = g(x + b)). However, their result does not imply the intractability of
ETsparse as testing shift equivalence to a sparse polynomial is a special case of ETsparse
when A is the identity map.
▶ Remark 5. Depth-3 power circuits, set-multilinear depth-3 circuits, and shifted sparse
polynomials are all contained inside ROABPs. So, these models admit polynomial-time
(improper) learning algorithms [9, 40] and quasi-polynomial-time hitting sets [1, 19]. Orbits
of sparse polynomials require exponential size ROABPs [50]; we cannot expect to improperly
learn them via ROABPs. Theorem 2 suggests that proper learning orbits of sparse polynomials
is likely hard. Nonetheless, there is a quasi-polynomial time hitting set for orbits of sparse
polynomials [45, 50].
▶ Remark 6. We believe that with some more effort, the second part of Theorem 2 can be
proven over fields of finite characteristics as well. See the last remark in Section 3.4.
We prove Theorem 2 in Section 3. Next, we define the gap version of ETsparse.

▶ Problem 7 (α-gap-ETsparse). Let α > 1 be a parameter. Given a polynomial f ∈ F[x] in
its sparse representation and an integer s0, output:

YES, if there exist an A ∈ GL(|x|,F) and b ∈ F such that f(Ax + b) is s0-sparse.
NO, if for all A ∈ GL(|x|,F) and b ∈ F, f(Ax + b) has sparsity at least αs0.

12 unless char(F) = 2. See the full version for details.

O. Baraskar, A. Dewan, C. Saha, and P. Sinha 16:7

Our second result, Theorem 8, shows that α-gap-ETsparse is NP-hard for α = s
1
3 −ϵ, where s

is the sparsity of the input polynomial f and ϵ ∈ (0, 1
3) is an arbitrary constant. Theorem 8

is proven in Section 4. From Theorem 8, we get Corollary 11 which states that s 1
3 −ϵ factor

approximation of the sparse-orbit complexity of an s-sparse polynomial is NP-hard.

▶ Theorem 8 (s 1
3 -gap-ETsparse is NP-hard). Let ϵ ∈ (0, 1

3) be an arbitrary constant.
1. Let F be any field. There exists a deterministic polynomial-time many-one reduction from

3-SAT to s
1
3 −ϵ-gap-ETsparse over F where the input polynomial in s

1
3 −ϵ-gap-ETsparse

is s-sparse.
2. Let char(F) = 0. There exists a deterministic polynomial-time many-one reduction from

3-SAT to s
1
3 −ϵ-gap-ETsparse over F where the input polynomial in s

1
3 −ϵ-gap-ETsparse

is homogeneous and s-sparse.
▶ Remark 9. With a more careful analysis, the constant 1

3 in s
1
3 −ϵ may be improved.

▶ Remark 10. Interestingly, the above results are obtained without invoking the celebrated
PCP theorem [7, 6, 17].

▶ Corollary 11. Let 0 < ϵ < 1
3 be an arbitrary constant.

1. Let F be any field. It is NP-hard to compute s 1
3 −ϵ factor approximation of the sparse-orbit

complexity when the input is an s-sparse polynomial over F.
2. Let char(F) = 0. It is NP-hard to compute s 1

3 −ϵ factor approximation of the sparse-orbit
complexity when the input is an s-sparse homogeneous polynomial over F.

Now, we formally define the support of a polynomial.

▶ Definition 12 (Support of a polynomial). For a monomial xα, where α is the exponent
vector, the support of xα, Supp(xα), is the number of variables with non-zero exponent. The
support of a polynomial f , Supp(f), is the maximum support size over all the monomials
of f .

Thus, a polynomial has support σ if there exists a monomial with support σ and no other
monomial has support > σ. The ET problem for constant-support polynomials and a stronger
version of it are defined next (henceforth, σ is assumed to be a constant).

▶ Problem 13 (ETsupport). Given a polynomial f ∈ F[x] in its sparse representation and
an integer σ, check if there exists an A ∈ GL(|x|,F) such that Supp(f(Ax)) ≤ σ.

▶ Problem 14 ((σ+ 1)-to-σ ETsupport). Given a polynomial f ∈ F[x] with support σ+ 1 in
its sparse representation, check if there exists an A ∈ GL(|x|,F) such that Supp(f(Ax)) ≤ σ.

▶ Remark 15. Unlike ETsparse, checking if f is in the orbit of a constant-support polynomial
is the same as checking if f is equivalent to a constant-support polynomial. This follows
from the observation that Supp(f(x)) = Supp(f(x + b)) for any b ∈ F|x|.
Our third and last result, Theorem 16, shows that ETsupport and (σ + 1)-to-σ ETsupport
are NP-hard. We prove Theorem 16 in Section 5.

▶ Theorem 16 (ETsupport is NP-hard). Let σ ≥ 6 be a constant and F be a field with
char(F) = 0 or > σ + 1. There is a deterministic polynomial-time many-one reduction from
3-SAT to ETsupport over F. In particular, 3-SAT reduces to (σ + 1)-to-σ ETsupport in
deterministic polynomial time.

▶ Remark 17. Over fields of finite characteristic, it is assumed that the exponent vectors
corresponding to the monomials of the input polynomial are given in binary.
We prove Theorems 2, 8 and 16 by direct reductions from 3-SAT, and at the beginning of
Sections 3, 4 and 5, we give proof sketches of the respective reductions.

ICALP 2024

16:8 NP-Hardness of Testing Equivalence to Sparse Polynomials

2 Preliminaries

2.1 Definitions and notations
For n, a, b ∈ N, [n] denotes the set {1, 2 . . . , n} and [a, b] denotes the integers from a to b,
both inclusive. A polynomial is homogeneous if all its monomials have the same total degree.
The set of invertible linear transforms in n variables over a field F is denoted by GL(n,F).
For a polynomial f ∈ F[x], the action of a linear transform A ∈ F|x|×|x| on its variables is
denoted by f(Ax) as well as by A(f). The sparsity of a polynomial f , denoted as S(f), is
the number of monomials in f with non-zero coefficients. For a polynomial f , var(f) denotes
the set of variables that occur in at least one monomial of f . We have used the notation
f ∼ g earlier to denote f = g(Ax + b). Henceforth, we will ignore the translation vector b
in the main body of the discussion for simplicity but mention the necessary changes in the
proofs or point to appropriate sections when translations are involved. Thus, for polynomials
f and g, f ∼ g will mean f(x) = g(Ax) where A ∈ GL(|x|,F).13 Similarly, the orbit of a
polynomial f will now denote the set {f(Ax), A ∈ GL(|x|,F)}.

▶ Definition 18 (Degree separated polynomials). Polynomials f and g are degree separated
if no monomial of f has the same degree as a monomial of g. Similarly, f and g are degree
separated with respect to a variable x if no monomial of f has the same x-degree as a
monomial of g.14

2.2 Algebraic preliminaries
The proofs of the observations and claims in this section can be found in the full version.

▶ Observation 19. Let f and g be polynomials such that f ∼ g. Then, f and g have the
same set of degrees15 for the monomials. Thus, if f and g are degree separated, then f ̸∼ g.

▶ Observation 20. If f and g are degree separated (or degree separated with respect to some
variable), then S(f + g) = S(f) + S(g).

▶ Observation 21. If f and g are degree separated, f1 ∼ f and g1 ∼ g, then S(f1 + g1) =
S(f1) + S(g1).

Observation 22 analyzes the sparsity of powers of linear forms. Observation 23 is a special
case of Observation 22 and is stated separately because it is simpler and is invoked many
times. Observation 24 analyzes the sparsity of powers of affine forms.

▶ Observation 22. Let ℓ be a m-variate linear form16 and d ∈ N. If char(F) = 0, S(ℓd) =(
d+m−1

m−1
)

and if char(F) = p, S(ℓd) =
∏k

i=0
(

ei+m−1
m−1

)
, where d =

∑k
i=0 eip

i, ei ∈ [0, p− 1].

▶ Observation 23. If char(F) = 0 and ℓ is a linear form in exactly two variables, then
S(ℓd) = d+1. The result holds for char(F) = p fields if p > d or if d = pk −1 for some k ∈ N.
Further, if ℓ is a linear form in at least two variables and d is as before, then S(ℓd) ≥ d+ 1.

13 Note ∼ is an equivalence relation under this definition.
14 The degree of a monomial means its total degree and the degree of a polynomial f is the maximum

degree amongst all monomials in f . The x-degree of a monomial is the degree of the variable x in the
monomial.

15 The set of degrees is the set of distinct degrees of all the monomials in the polynomial. For example,
the set of degrees of f(x1, x2) = x2

1 + x1x2 + 4x2 is {2, 1}.
16 A linear form is a homogeneous degree one polynomial. An affine form is a degree one polynomial.

O. Baraskar, A. Dewan, C. Saha, and P. Sinha 16:9

▶ Observation 24. Let h = ℓ + c0, where ℓ is a linear form in at least one variable and
c0 ∈ F\{0}, then S(hd) ≥ S(ℓd) + 1. More precisely, S(hd) ≥ d+ 1 holds if char(F) = 0 or
if char(F) = p and p > d or d = pk − 1 for some k ∈ N.

Claim 25 analyzes the sparsity of polynomials divisible by a power of some linear form in at
least two variables and is used to prove part two of Theorems 2 and 8. Claim 26 analyzes the
support of monomials under invertible linear transforms and is used to prove Theorem 16.

▷ Claim 25. Let char(F) = 0. If f ∈ F[x] is a non-zero polynomial divisible by ℓd for some
linear form ℓ in at least two variables, then S(f) ≥ d+ 1.

▷ Claim 26. Let σ, d, n ∈ N, d ≥ σ, f = (x1 · · ·xn)d, and ℓ1, . . . , ℓn be linearly independent
linear forms in x1, . . . , xn. If | ∪n

i=1 var(ℓi)| ≥ σ and g := f(ℓ1 · · · ℓn), then Supp(g) ≥ σ. The
claim holds if char(F) = 0, or char(F) = p with p > d, or p > σ and d = pk − 1 for some
k ∈ N.

3 NP-hardness of ETsparse

In this section, we prove Theorem 2 over char(F) = 0 fields without translations for easy
understanding.17 The full version contains the proofs of the lemmas and the observations in
this section, and the reduction over char(F) > 0 fields and also when translations are allowed.

Proof sketch. The reduction maps each variable and clause of a 3-CNF18 ψ to distinct degree
separated polynomials which, summed together, give the polynomial f . As the summands
are degree separated, the sparsity of f under invertible transforms can be analyzed by doing
so for individual polynomials. The degrees are chosen such that f is equivalent to an s-sparse
polynomial (for a suitable sparsity parameter s) if and only if ψ ∈ 3-SAT.

3.1 Constructing f and s

Let ψ be a 3-CNF in variables x := {x1, x2 . . . xn} and m clauses:

ψ = ∧m
k=1 ∨j∈Ck

(xj ⊕ ak,j),

where Ck denotes the set of indices of the variables in the kth clause and ak,j ∈ {0, 1}. Let
y := {y1, y2 . . . yn}, x0 be a new variable and z := {x0} ⊔ x ⊔ y. For d1, d2, d3, d4 ∈ N,
consider the following polynomials:

Corresponding to variable xi, where i ∈ [n], define Qi(z) as:

Qi(z) := Qi,1(z) +Qi,2(z) +Qi,3(z), where

Qi,1(z) := x
(3i−2)d1
0 xd2

i , Qi,2(z) := x
(3i−1)d1
0 (yi + xi)d3 and Qi,3(z) := x3id1

0 (yi − xi)d3 .

For the kth clause, k ∈ [m], define Rk(z) := x
(3n+k)d1
0

∏
j∈Ck

(yj + (−1)ak,jxj)d4 .

17 Note that for f and g two homogeneous polynomials, f(x) = g(Ax + b) implies f(x) = g(Ax), where
A ∈ GL(|x|,F) and b ∈ F|x|. Hence, it suffices to prove part 2 of Theorem 2 without translations.

18 We assume, without loss of generality, that each clause of a 3-CNF has 3 distinct variables. This can be
achieved by introducing extra variables for clauses with < 3 variables.

ICALP 2024

16:10 NP-Hardness of Testing Equivalence to Sparse Polynomials

Define s := 1 + n(3 + d3) +m(d4 + 1)2 and the polynomial f as:

f(z) := xd1
0 +

n∑
i=1

Qi(z) +
m∑

k=1
Rk(z). (1)

The following conditions are imposed on the di’s:

d1 ≥ max(s, d2 + 1), d2 ≥ 2d3, d3 ≥ m(d4 + 1)2 + 1, and d4 ≥ m. (2)

Set d4 := m, d3 := m(m + 1)2 + 1 = O(m3), d2 = 2m(m + 1)2 + 2 = O(m3) and d1 =
1 + n(4 +m(m+ 1)2) +m(m+ 1)2 = O(nm3). Then s = O(nm3) and the di’s satisfy the
conditions of (2), under which the following observations hold.

▶ Observation 27. For i ∈ [n], k ∈ [m], the polynomials xd1
0 , Qi,1(z), Qi,2(z), Qi,3(z) and

Rk(z) are degree separated from one another. Also, Qi(z) is degree separated from Qj(z), for
i, j ∈ [n] and i ̸= j. Similarly, Rk(z) is degree separated from Rl(z) for k, l ∈ [m] and k ̸= l.

▶ Observation 28. The degree of f is (3n+m)d1 + 3d4 = (mn)O(1), S(f(z)) = 1 + n(2d3 +
3) +m(d4 + 1)3 and Supp(f) = 7.

3.2 The forward direction
Proposition 29 shows how a satisfiable ψ implies the existence of an invertible A, such that
S(f(Az)) ≤ s by constructing A from a satisfying assignment u ∈ {0, 1}n of ψ.

▶ Proposition 29. Let u ∈ {0, 1}n be such that ψ(u) = 1. Then S(f(Az)) ≤ s for A as:

A : x0 7→ x0, xi 7→ xi, yi 7→ yi + (−1)uixi, ∀i ∈ [n]. (3)

Proof. It follows from the definition of f in (1), Observations 27 and 21 that

S(f(Az)) = S(A(xd1
0)) +

n∑
i=1

S(Qi(Az)) +
m∑

k=1
S(Rk(Az)).

Thus, it suffices to analyze the sparsity of A(xd1
0), Qi(Az)’s and Rk(Az)’s. Now, S(A(xd1

0)) = 1
as A(xd1

0) = xd1
0 . We now analyze S(Qi(Az)) for i ∈ [n]. If ui = 0, then

Qi,1(Az) = x
(3i−2)d1
0 xd2

i , Qi,2(Az) = x
(3i−1)d1
0 (yi + 2xi)d3 and Qi,3(Az) = x3id1

0 yd3
i .

If ui = 1, then

Qi,1(Az) = x
(3i−2)d1
0 xd2

i , Qi,2(Az) = x
(3i−1)d1
0 yd3

i and Qi,3(Az) = x3id1
0 (yi − 2xi)d3 .

By Observation 23 (for linear forms in two variables over char(F) = 0 fields), if ui = 0
then S(Qi,2(Az)) = d3 + 1 and S(Qi,3(Az)) = 1 and, if ui = 1 then S(Qi,2(Az)) = 1 and
S(Qi,3(Az)) = d3 + 1. In either case, by Observations 27 and 21,

S(Qi(Az)) = S(Qi,1(Az)) + S(Qi,2(Az)) + S(Qi,3(Az)) = d3 + 3.

For the kth clause, k ∈ [m], the action of A on the corresponding polynomial Rk is:

Rk(Az) = x
(3n+k)d1
0

∏
j∈Ck

(yj + ((−1)ak,j + (−1)uj)xj)d4 .

O. Baraskar, A. Dewan, C. Saha, and P. Sinha 16:11

As the multiplicands in Rk(Az) do not share any variables, S(Rk(Az)) is the product of the
sparsity of the multiplicands. Since ψ(u) = 1, therefore in the kth clause there exists j ∈ Ck

such that ak,j ≠ uj . For that j, (yj + ((−1)ak,j + (−1)uj)xj)d4 = yd4
j . As at least one literal

is true in every clause under u, S(Rk(Az)) ≤ (d4 + 1)2 using Observation 23. Thus,

S(f(Az)) = S(A(xd1
0)) +

n∑
i=1

S(Qi(Az)) +
m∑

k=1
S(Rk(Az))

≤ 1 + n(d3 + 3) +m(d4 + 1)2 = s. ◀

3.3 The reverse direction

Now, we show that (f, s) ∈ ETsparse implies ψ ∈ 3-SAT by showing that the permuted
and scaled versions of the transform of (3) form all the viable sparsifying invertible linear
transforms. This is where the constraints on the di’s are used. So, let A ∈ GL(|z|,F) be such
that S(f(Az)) ≤ s. Lemma 30 shows that A(x0) is just a variable by leveraging d1 ≥ s.

▶ Lemma 30. Without loss of generality, A(x0) = x0.

The proof of Lemma 31 uses d2 ≥ 2d3 while that of Lemma 32 uses d3 ≥ m(d4 + 1)2 + 1.

▶ Lemma 31. For any invertible A and i ∈ [n]:

S(Qi(Az)) = S(Qi,1(Az)) + S(Qi,2(Az)) + S(Qi,3(Az)) ≥ d3 + 3,

where Qi, Qi,1, Qi,2 and Qi,3 are as defined in Section 3.1. Equality holds if and only if
A(xi) = Xi and A(yi) = Yi + (−1)uiXi for some scaled variables Xi, Yi ∈ z and ui ∈ {0, 1}.
Further, if S(Qi(Az)) ̸= d3 + 3, then S(Qi(Az)) ≥ 2d3 + 3.

▶ Lemma 32. Under the given A, S(Qi(Az)) = d3 + 3 holds for all i ∈ [n].

Lemmas 30, 31 and 32 together show that A is a permuted scaled version of the transform of
(3). We can assume A to be as described in (3) without loss of generality as permutation
and non-zero scaling of variables do not affect the sparsity of a polynomial. Proposition 33
shows how a satisfying assignment can be formed from A using d4 ≥ m.

▶ Proposition 33. For A as given in (3), u = (u1, . . . , un) is a satisfying assignment for ψ.

Proof. Suppose not; then there exists k ∈ [m] such that the kth clause, ∨j∈Ck
(xj ⊕ ak,j), in

ψ is unsatisfied. Since this clause is unsatisfied, uj = ak,j for all j ∈ Ck. Thus, Rk(Az) =
x

(3n+k)d1
0

∏
j∈Ck

(yj ± 2xj)d4 , where Rk is as defined in Section 3.1, and S(Rk(Az)) =
(d4 + 1)3 ≥ (m+ 1)(d4 + 1)2 by Observation 23, the fact that Rk(Az) is a product of linear
forms not sharing variables, and the condition d4 ≥ m. By the definition of f and s in
Section 3.1, Observations 27 and 21, it holds that

S(f(Az)) ≥ S(A(x0)d1) +
n∑

i=1
S(Qi(Az)) + S(Rk(Az))

≥ 1 + n(3 + d3) +m(d4 + 1)2 + (d4 + 1)2 = s+ (d4 + 1)2 > s,

a contradiction. Thus, u is a satisfying assignment for ψ. ◀

ICALP 2024

16:12 NP-Hardness of Testing Equivalence to Sparse Polynomials

3.4 Homogeneous case: Proof of Part 2 of Theorem 2
We show a modification of the construction in Section 3.1 which, along with arguments
similar to those in Sections 3.2 and 3.3, can be used to prove Theorem 2 for homogeneous
polynomials over char(F) = 0 fields. Because the polynomials are homogeneous, we cannot
use degree separation like in the non-homogeneous case. Instead, we introduce a new variable
y0 and redefine Qi(z) and Rk(z) of Section 3.1 so that:
1. Each polynomial is homogeneous with the same degree and is divisible by xd1

0 and yd1
0 .

2. Each polynomial has distinct y0-degree and if P1 and P2 are polynomials where P1 has
a higher y0-degree than P2, then the y0-degree of P1 is greater than the degree of any
variable (except possibly x0) in P2.

The divisibility condition ensures that both x0 and y0 map to scaled variables (see Lemma 37
and its proof), and the second condition induces a degree separation of the polynomials with
respect to y0 (see Observation 34 and Lemma 38). Formally, let x0, x and y be as defined in
Section 3.1 and y0 be a new variable. Define z := x ⊔ y ⊔ {x0} ⊔ {y0}. Let d1, d2, d3, d4 ∈ N.
Consider the following polynomials:
1. For each variable xi, i ∈ [n], let Qi(z) := Qi,1(z) +Qi,2(z) +Qi,3(z), where

Qi,1(z) := x
d1(3n−3i+6)−d2
0 y

d1(3i+m−2)
0 xd2

i , Qi,2(z) := x
d1(3n−3i+5)−d3
0 y

d1(3i+m−1)
0 (yi + xi)d3

Qi,3(z) := x
d1(3n−3i+4)−d3
0 y

d1(3i+m)
0 (yi − xi)d3 .

2. For the kth clause, k ∈ [m], let Rk(z) := x
d1(3n+m+4−k)−3d4
0 yd1k

0
∏

j∈Ck
(yj +(−1)ak,jxj)d4 .

Define s := 1 + n(d3 + 3) +m(d4 + 1)2 as before and impose the conditions of (2) on the di’s.
Using the conditions on the di’s, it is easy to verify that the individual degrees of x0 and y0
in every polynomial defined above is at least d1. Define f as:

f(z) := x3d1
0 y

d1(3n+m+1)
0 +

n∑
i=1

Qi(z) +
m∑

k=1
Rk(z). (4)

Clearly, f is a homogeneous polynomial of degree (3n+m+ 4)d1 and is divisible by xd1
0 and

yd1
0 . Further, we have the following observations under the constraints of (2).

▶ Observation 34. For all i ∈ [n], k ∈ [m], the polynomials x3d1
0 y

d1(3n+m+1)
0 , Qi,1(z),

Qi,2(z), Qi,3(z) and Rk(z) are degree separated with respect to y0 from one another. Also,
Qi(z) is degree separated with respect to y0 from other Qj(z)’s, for i, j ∈ [n] and i ̸= j.
Similarly, Rk(z) is degree separated with respect to y0 from Rl(z) for k, l ∈ [m] and k ̸= l.

▶ Observation 35. S(f(z)) = 1 + n(2d3 + 3) +m(d4 + 1)3 and Supp(f) = 8.

The forward direction. Let u ∈ {0, 1}n be such that ψ(u) = 1 and f , as described in (4),
be the polynomial corresponding to ψ. Proposition 36 shows how to construct a sparsifying
transform from u. The proof of Proposition 36 is very similar to that of Proposition 29.

▶ Proposition 36. S(f(Az)) ≤ s where A ∈ GL(|z|,F) is as follows:

A : y0 7→ y0, x0 7→ x0, xi 7→ xi, yi 7→ yi + (−1)uixi i ∈ [n]. (5)

The reverse direction. Let S(f(Az)) ≤ s for some A ∈ GL(|z|,F). Lemma 37, the proof
of which requires Claim 25, shows that A(x0) and A(y0) have only one variable. With this,
Lemma 38 shows that the summands of f(Az) must be degree separated with respect to y0.

O. Baraskar, A. Dewan, C. Saha, and P. Sinha 16:13

▶ Lemma 37. Without loss of generality, A(x0) = x0 and A(y0) = y0.

▶ Lemma 38. For all i ∈ [n], k ∈ [m], the polynomials x3d1
0 y

d1(3n+m+1)
0 , Qi,1(Az), Qi,2(Az),

Qi,3(Az) and Rk(Az) are degree separated from one another with respect to y0. Also, Qi(Az)
is degree separated with respect to y0 from other Qj(Az)’s, for i, j ∈ [n] and i ≠ j. Similarly,
Rk(Az) is degree separated with respect to y0 from Rl(Az) for k, l ∈ [m] and k ̸= l.

∴ S(f(Az)) = S(x3d1
0 y

d1(3n+m+1)
0) +

n∑
i=1

S(Qi(Az)) +
m∑

k=1
S(Rk(Az)), by Lemma 38.

Lemmas 31 and 32 then hold with slight modification to their proofs, which, along with
Lemma 37, show that A is a permuted scaled version of the transform of (5). Proposition 39
then holds and can be proven similarly to Proposition 33.

▶ Proposition 39. For A as given in (5), u = (u1, . . . , un) is a satisfying assignment for ψ.

▶ Remark 40. In the definition of f in Section 3.1 and this section, an extra summand is
present besides Qi’s and Rk’s. If char(F) = 0, we can drop the summand by using Claim 25
and suitably modifying f , the current parameters and arguments to make the reduction
work. We preserve the extra summand here for two reasons: One, for ease of understanding,
because the definition of f in (1) is similar to that in (4). Two, in the non-homogeneous case,
the extra summand proves useful in showing the reduction over finite characteristic fields,
where Claim 25 does not hold, and thus it may also prove useful in showing the reduction
for homogeneous polynomials over such fields.

▶ Remark 41. A feature of the reduction is that we can assume that the output polynomial is
of the form wDf(z), where w /∈ z. This can be achieved by multiplying the output polynomial
f of the current reduction by wD, where D is greater than the sparsity parameter s in the
reduction. If a proof of NP-hardness of hom-ΣΠΣ-MCSP has this feature, then it would
imply NP-hardness of ΣΠΣ-MCSP (via a homogenization trick).

▶ Remark 42. We believe Claim 25 (used to prove Lemma 37) can be modified for finite
characteristic fields, using which the argument in this section can be extended to such fields.

4 NP-hardness of α-gap-ETsparse

In this section, we prove parts 1 and 2 of Theorem 8 over char(F) = 0 fields when no
translations are involved. The full version contains the proofs of the lemmas in this section
and that of the finite characteristic case with translations allowed for part 1 of Theorem 8.

Proof sketch. For a 3-CNF ψ, we carefully analyze the sparsity of the corresponding
polynomial f , as defined in (1) with the constraints of (2) and (6), under all A ∈ GL(|z|,F).
For ψ ∈ 3-SAT, Lemma 43 shows lower bounds on S(f(Az)) for any A ∈ GL(|z|,F). For
ψ ∈ 3-SAT, by Proposition 29, there exists A ∈ GL(|z|,F) such that S(f(Az)) ≤ s0 :=
1 + n(d3 + 3) + m(d4 + 1)2. Proposition 44 compares the sparsities for satisfiable and
unsatisfiable ψ’s and shows α-gap-ETsparse is NP-hard using Lemma 43 and the conditions
in (6).

d1 = d2 + 1, d2 = d2
3 + 1, d3 = m(d4 + 1)2 + 1, d4 ≥ 4mn. (6)

ICALP 2024

16:14 NP-Hardness of Testing Equivalence to Sparse Polynomials

▶ Lemma 43. Let ψ ∈ 3-SAT, f be as defined in (1) corresponding to ψ and A ∈ GL(|z|,F).
1. If A(x0) is a linear form in at least 2 variables, S(f(Az)) ≥ d1 + 1.
2. If A is not as in item 1 and A(xj) is a linear form in at least 2 variables for some j ∈ [n],

then S(f(Az)) ≥ d2 + 1.
3. If A is not as in items 1 and 2 and S(A(yj + xj)) ≥ 3 or S(A(yj − xj)) ≥ 3 for some

j ∈ [n], then S(f(Az)) ≥ d2
3+3d3+2

2 .
4. If A is not of the form described in the previous three cases, then S(f(Az)) ≥ (d4 + 1)3.

▶ Proposition 44. α-gap-ETsparse is NP-hard for s-sparse polynomial inputs over F and
α = s1/3−ϵ, where ϵ ∈ (0, 1/3) is an arbitrary constant.

Proof. If ψ ∈ 3-SAT, then S(f(Az)) ≤ s0 where A is as described in (3). If ψ ∈ 3-SAT,
then it follows from Lemma 43 that for any A ∈ GL(|z|,F):

S(f(Az)) ≥ min
(
d1 + 1, d2 + 1, d

2
3 + 3d3 + 2

2 , (d4 + 1)3
)
.

The constraints imposed in (6) ensure that (d4 + 1)3 is the minimum. As d3 = m(d4 + 1)2 + 1,
therefore s0 = 1 + n(d3 + 3) + m(d4 + 1)2 ≤ 3nd3 = 3mn(d4 + 1)2 + 3n ≤ 4mn(d4 + 1)2.
Thus, the gap in the sparsities of the YES instances and the NO instances is

(d4 + 1)3

s0
≥ (d4 + 1)3

4mn(d4 + 1)2 = d4 + 1
4mn .

Also, as d4 ≥ 4mn, S(f) = s ≤ 2m(d4 + 1)3 =⇒ d4 + 1 ≥ (s
2m)1/3. Then, the gap is

(d4 + 1)3

s0
≥ d4 + 1

4mn ≥ s1/3

21/34m4/3n
.

Let ϵ ∈ (0, 1/3) be an arbitrary constant. The parameter d4, which determines s, can be
chosen a sufficiently large polynomial function in m and n such that 21/34m4/3n ≤ sϵ. Hence,
the gap is at least s1/3−ϵ. Thus, 3-SAT reduces to α-gap-ETsparse for α = s1/3−ϵ. ◀

Homogeneous polynomials over char(F) = 0 fields. We now consider the polynomial f
as defined in (4) for ψ with the constraints of (6). For ψ ∈ 3-SAT, S(f(Az)) ≤ s0 where A
is as described in (5) and s0 is as defined earlier. For ψ ∈ 3-SAT, Lemma 45, proved using
Claim 25, shows lower bounds on S(f(Az)), for all A ∈ GL(|z|,F). Proposition 46 proves
α-gap-ETsparse is NP-hard using Lemma 45 and has the same proof as Proposition 44.

▶ Lemma 45. Let ψ ∈ 3-SAT, f be as defined in (4) corresponding to ψ and A ∈ GL(|z|,F).
1. If A(x0) or A(y0) is a linear form in at least 2 variables, then S(f(Az)) ≥ d1 + 1.
2. If A is not as in item 1 and if A(xj) is a linear form in at least 2 variables for some

j ∈ [n], then S(f(Az)) ≥ d2 + 1.
3. If A is not as in items 1 and 2 and S(A(yj + xj)) ≥ 3 or S(A(yj − xj)) ≥ 3 for some

j ∈ [n], then S(f(Az)) ≥ d2
3+3d3+2

2 .
4. If A is not of the form described in the previous three cases, then S(f(Az)) ≥ (d4 + 1)3.

▶ Proposition 46. Let char(F) = 0. Then, α-gap-ETsparse is NP-hard for s-sparse homo-
geneous polynomial inputs over F and α = s

1
3 −ϵ, where ϵ ∈ (0, 1

3) is an arbitrary constant.
▶ Remark 47. The proof of Lemma 45 uses Claim 25, which works over char(F) = 0 fields.
We believe that Claim 25 can be modified for finite characteristic fields, using which the
argument in this section can be extended over such fields.

O. Baraskar, A. Dewan, C. Saha, and P. Sinha 16:15

5 NP-hardness of ETsupport

In this section, we prove Theorem 16 for characteristic 0 fields. The full version contains the
proofs of the lemmas and the reduction for the finite characteristic case.

Proof sketch. We map ψ, a 3-CNF, to a polynomial f , which is the sum of degree separated
polynomials with at least one polynomial of support σ+1 (σ is a constant integer) and the rest
of support σ. As the summands are degree separated, Supp(f) = σ+ 1 and for any invertible
linear transform A, Supp(A(f)) is the maximum support size over all the transformed
summands. Claim 26 is used to show ψ ∈ 3-SAT iff there exists an invertible linear transform
A, such that Supp(A(f)) ≤ σ. Thus, the reduction also holds for (σ + 1)-to-σ ETsupport.

5.1 Construction of f and σ

Let σ ≥ 6 be an even integer constant and ψ be as denoted in Section 3.1. Assume n ≥ σ+ 4
and that in the first clause of ψ all the variables are complemented.19 Let x := {x1, . . . , xn},
y := {y1, . . . , yn} and z := {z1, . . . , zσ−5} and w := x ⊔ y ⊔ z. Consider the polynomials:

First, introduce
(

n+σ−5
σ

)
many monomials defined by the set

P := {(wi1 · · ·wiσ
)⋆ | wi1 , . . . , wiσ

∈ z ⊔ x and are pairwise distinct}.

Then, introduce
(

n
σ
2

)
many monomials defined by the set

Q := {((xi1yi1) · · · (xi σ
2
yi σ

2
))⋆ | i1, . . . , iσ

2
∈ [n] and are pairwise distinct}.

Let R := {Rk(w) | k ∈ [m]}, where Rk(w) is defined corresponding to the kth clause as:

Rk(w) := (
∏

j∈Ck

(yj − ak,jxj))2(z1 · · · zσ−5)⋆.

Define f(w) :=
∑

g∈P g(w) +
∑

h∈Q h(w) +
∑m

k=1 Rk(w). The degrees, denoted by ⋆, are
of form σ + i where i ∈ [N] and N =

(
n+σ−5

σ

)
+

(
n

σ/2
)

+ m to ensure all polynomials in
P ⊔Q ⊔R are degree separated with degrees ≥ σ + 1. Based on this, Observation 48 holds.

▶ Observation 48. S(f(w)) = O(nσ +m) and Supp(f(w)) = σ + 1.

5.2 The forward direction
Proposition 49 shows how a satisfying assignment for ψ implies the existence of an invertible
A, such that Supp(f(Aw)) = σ by constructing A from the satisfying assignment.

▶ Proposition 49. Let ψ ∈ 3-SAT with (u1, . . . , un) ∈ {0, 1}n a satisfying assignment. Then,
Supp(f(Aw)) = σ, where the transform A is defined as

A : zj 7→ zj , xi 7→ xi, yi 7→ yi + (1 − ui)xi i ∈ [n], j ∈ [σ − 5]. (7)

19 To achieve n ≥ σ + 4, add fresh variables and clauses in these variables to ψ. To ensure that the first
clause contains only complemented variables, every uncomplemented variable x in the first clause is
replaced by ¬x followed by complementing each occurrence of x in the remaining clauses of ψ.

ICALP 2024

16:16 NP-Hardness of Testing Equivalence to Sparse Polynomials

Proof. As all polynomials in P ⊔Q ⊔R are degree separated, analysing the action of A on
individual polynomials suffices. For g ∈ P , g(Aw) = g. On each monomial of Q, A acts as:

A : ((xi1yi1) · · · (xi s
2
yi σ

2
))⋆ 7→ ((xi1)(yi1 + (1 − ui1)xi1) · · · (xi σ

2
)(yi σ

2
+ (1 − ui s

2
)xi σ

2
))⋆.

Under A, each monomial of Q has support σ by Claim 26. For k ∈ [m], A acts on Rk(w) as:

A : (
∏

j∈Ck

(yj − ak,jxj))2 · (z1 · · · zσ−5)⋆ 7→ (
∏

j∈Ck

(yj + (1 − ak,j − uj)xj)2 · (z1 · · · zσ−5)⋆.

If ak,j ̸= uj , then ak,j = 1 − uj . Since ψ is satisfiable, therefore for all k ∈ [m], ak,j ̸= uj for
some j ∈ Ck. Hence, Supp(Rk(Aw)) ≤ (σ − 5) + 5 = σ for all k ∈ [m]. ◀

5.3 The reverse direction
Now, we show that if Supp(f(Aw)) ≤ σ for A ∈ GL(|w|,F), then a satisfying assignment can
be obtained for ψ. Lemmas 50 and 51, proved using Claim 26, together show that A is as:

A : zj 7→ zj , xi 7→ xi, yi 7→ yi + cixi ci ∈ F, j ∈ [σ − 5], i ∈ [n]

without loss of generality.20 Proposition 52 constructs a satisfying assignment for ψ from A.

▶ Lemma 50. If Supp(f(Aw)) ≤ σ, then ∀w ∈ z ⊔ x, A(w) = W , for scaled variable W ∈ w.

▶ Lemma 51. If Supp(f(Aw)) ≤ σ, then A(xi) = Xi and A(yi) = Yi + ciXi, for scaled
variables Yi, Xi ∈ w.

▶ Proposition 52. A satisfying assignment u for ψ can be constructed from A.

Proof. The action of A on Rk, where k ∈ [m], is:

(
∏

j∈Ck

(yj − ak,jxj))2 · (z1 · · · zσ−5)⋆ 7→ (
∏

j∈Ck

(yj + (cj − ak,j)xj))2 · (z1 · · · zσ−5)⋆.

Thus, Supp(Rk(Aw)) ≤ σ iff for some j ∈ Ck, cj = ak,j . By assumption Supp(Rk(Aw)) ≤ σ

for all k ∈ [m]. Hence, for each Rk(w), there exists j ∈ Ck such that cj ∈ {0, 1}. Construct
u ∈ {0, 1}n by setting uj := 1−cj , for appropriate j ∈ Ck and the remaining ui’s to arbitrary
values in {0, 1}. From the definition of u, it follows that for all k ∈ [m], there exists j ∈ Ck

such that uj ̸= ak,j . As k is arbitrary, all clauses are satisfied. ◀

6 Conclusion

In this work, we show that ET for sparse polynomials is NP-hard. Particularly, we show
the NP-hardness of MCSP for orbits of homogeneous sparse polynomials (a dense subclass
of hom-ΣΠΣ circuits) over characteristic 0 fields. We also define a gap version of ET for
sparse polynomials and show it is NP-hard, which implies the NP-hardness of s 1

3 −ϵ-factor
approximation of the sparse-orbit complexity of s-sparse polynomials. Lastly, we show that
ET for constant-support polynomials is NP-hard. In all three cases, we reduce 3-SAT to the
respective problems. We end by listing some problems whose solutions we do not know:

20 as permutation and non-zero scaling of variables do not affect the support.

O. Baraskar, A. Dewan, C. Saha, and P. Sinha 16:17

1. Hardness of ETsparse for constant degree polynomials: In the reduction of
Theorem 2, can the degree of the output polynomial be made constant? Currently, the
degree is polynomial in the number of clauses and variables.

2. Improving the gap in Theorem 8: Can α-gap-ETsparse be shown NP-hard for
α = s1−ϵ, where the input polynomial has sparsity s and ϵ > 0 is an arbitrary constant?

3. Hardness of ETsupport for σ = 2: Is checking if a given polynomial is in the orbit of
a support-2 polynomial NP-hard? Theorem 16 shows ETsupport is NP-hard for σ ≥ 6 .

4. Hardness of MCSP for hom-ΣΠΣ circuits: Is MCSP for hom-ΣΠΣ circuits NP-hard?

References

1 Manindra Agrawal, Rohit Gurjar, Arpita Korwar, and Nitin Saxena. Hitting-Sets for ROABP
and Sum of Set-Multilinear Circuits. SIAM J. Comput., 44(3):669–697, 2015. doi:10.1137/
140975103.

2 Manindra Agrawal and Nitin Saxena. Automorphisms of finite rings and applications to
complexity of problems. In Proceedings of the 22nd Annual Conference on Theoretical Aspects
of Computer Science, STACS’05, pages 1–17, Berlin, Heidelberg, 2005. Springer-Verlag. doi:
10.1007/978-3-540-31856-9_1.

3 Eric Allender and Bireswar Das. Zero knowledge and circuit minimization. Inf. Comput.,
256:2–8, 2017. Conference version appeared in the proceedings of MFCS 2014. doi:10.1016/
J.IC.2017.04.004.

4 Eric Allender, Lisa Hellerstein, Paul McCabe, Toniann Pitassi, and Michael E. Saks. Minimizing
DNF Formulas and AC0

d Circuits Given a Truth Table. In 21st Annual IEEE Conference
on Computational Complexity (CCC 2006), 16-20 July 2006, Prague, Czech Republic, pages
237–251. IEEE Computer Society, 2006. doi:10.1109/CCC.2006.27.

5 Prashanth Amireddy, Ankit Garg, Neeraj Kayal, Chandan Saha, and Bhargav Thankey.
Low-depth arithmetic circuit lower bounds: Bypassing set-multilinearization. In Kousha Etes-
sami, Uriel Feige, and Gabriele Puppis, editors, 50th International Colloquium on Automata,
Languages, and Programming, ICALP 2023, July 10-14, 2023, Paderborn, Germany, volume
261 of LIPIcs, pages 12:1–12:20. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2023.
doi:10.4230/LIPICS.ICALP.2023.12.

6 Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario Szegedy. Proof
verification and the hardness of approximation problems. J. ACM, 45(3):501–555, 1998.
Conference version appeared in the proceedings of FOCS 1992. doi:10.1145/278298.278306.

7 Sanjeev Arora and Shmuel Safra. Probabilistic checking of proofs: A new characterization of
NP. J. ACM, 45(1):70–122, 1998. Conference version appeared in the proceedings of FOCS
1992. doi:10.1145/273865.273901.

8 Omkar Baraskar, Agrim Dewan, and Chandan Saha. Testing equivalence to design polynomials.
In Olaf Beyersdorff, Mamadou Moustapha Kanté, Orna Kupferman, and Daniel Lokshtanov,
editors, 41st International Symposium on Theoretical Aspects of Computer Science, STACS
2024, March 12-14, 2024, Clermont-Ferrand, France, volume 289 of LIPIcs, pages 9:1–9:22.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2024. doi:10.4230/LIPICS.STACS.2024.
9.

9 Amos Beimel, Francesco Bergadano, Nader H. Bshouty, Eyal Kushilevitz, and Stefano Var-
ricchio. Learning functions represented as multiplicity automata. J. ACM, 47(3):506–530, 2000.
Conference version appeared in the proceedings of FOCS 1996. doi:10.1145/337244.337257.

10 Michael Ben-Or and Prasoon Tiwari. A Deterministic Algorithm for Sparse Multivariate
Polynominal Interpolation (Extended Abstract). In Janos Simon, editor, Proceedings of the
20th Annual ACM Symposium on Theory of Computing, May 2-4, 1988, Chicago, Illinois,
USA, pages 301–309. ACM, 1988. doi:10.1145/62212.62241.

ICALP 2024

https://doi.org/10.1137/140975103
https://doi.org/10.1137/140975103
https://doi.org/10.1007/978-3-540-31856-9_1
https://doi.org/10.1007/978-3-540-31856-9_1
https://doi.org/10.1016/J.IC.2017.04.004
https://doi.org/10.1016/J.IC.2017.04.004
https://doi.org/10.1109/CCC.2006.27
https://doi.org/10.4230/LIPICS.ICALP.2023.12
https://doi.org/10.1145/278298.278306
https://doi.org/10.1145/273865.273901
https://doi.org/10.4230/LIPICS.STACS.2024.9
https://doi.org/10.4230/LIPICS.STACS.2024.9
https://doi.org/10.1145/337244.337257
https://doi.org/10.1145/62212.62241

16:18 NP-Hardness of Testing Equivalence to Sparse Polynomials

11 Vishwas Bhargava, Shubhangi Saraf, and Ilya Volkovich. Deterministic factorization of sparse
polynomials with bounded individual degree. J. ACM, 67(2):8:1–8:28, 2020. Conference version
appeared in the proceedings of FOCS 2018. doi:10.1145/3365667.

12 Markus Bläser and Gorav Jindal. A new deterministic algorithm for sparse multivariate
polynomial interpolation. In Katsusuke Nabeshima, Kosaku Nagasaka, Franz Winkler, and
Ágnes Szántó, editors, International Symposium on Symbolic and Algebraic Computation,
ISSAC ’14, Kobe, Japan, July 23-25, 2014, pages 51–58. ACM, 2014. doi:10.1145/2608628.
2608648.

13 Lenore Blum, Mike Shub, and Steve Smale. On a Theory of Computation and Com-
plexity over the Real Numbers: NP-completeness, Recursive Functions and Universal Ma-
chines. Bulletin of the American Mathematical Society, 21(1):1–46, 1989. doi:10.1090/
S0273-0979-1989-15750-9.

14 Marco L. Carmosino, Russell Impagliazzo, Valentine Kabanets, and Antonina Kolokolova.
Learning Algorithms from Natural Proofs. In Ran Raz, editor, 31st Conference on Com-
putational Complexity, CCC 2016, May 29 to June 1, 2016, Tokyo, Japan, volume 50
of LIPIcs, pages 10:1–10:24. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2016.
doi:10.4230/LIPICS.CCC.2016.10.

15 Suryajith Chillara, Coral Grichener, and Amir Shpilka. On hardness of testing equivalence
to sparse polynomials under shifts. In Petra Berenbrink, Patricia Bouyer, Anuj Dawar,
and Mamadou Moustapha Kanté, editors, 40th International Symposium on Theoretical
Aspects of Computer Science, STACS 2023, March 7-9, 2023, Hamburg, Germany, volume
254 of LIPIcs, pages 22:1–22:20. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2023.
doi:10.4230/LIPIcs.STACS.2023.22.

16 Richard A. DeMillo and Richard J. Lipton. A probabilistic remark on algebraic program
testing. Inf. Process. Lett., 7(4):193–195, 1978. doi:10.1016/0020-0190(78)90067-4.

17 Irit Dinur. The PCP theorem by gap amplification. J. ACM, 54(3):12, 2007. Conference
version appeared in the proceedings of STOC 2006. doi:10.1145/1236457.1236459.

18 Michael A. Forbes. Some concrete questions on the border complexity of polynomials, 2016.
URL: https://www.youtube.com/watch?v=1HMogQIHT6Q.

19 Michael A. Forbes and Amir Shpilka. Quasipolynomial-Time Identity Testing of Non-
commutative and Read-Once Oblivious Algebraic Branching Programs. In 54th Annual IEEE
Symposium on Foundations of Computer Science, FOCS 2013, 26-29 October, 2013, Berkeley,
CA, USA, pages 243–252. IEEE Computer Society, 2013. doi:10.1109/FOCS.2013.34.

20 Dima Grigoriev and Marek Karpinski. A Zero-Test and an Interpolation Algorithm for
the Shifted Sparse Polynominals. In Gérard D. Cohen, Teo Mora, and Oscar Moreno,
editors, Applied Algebra, Algebraic Algorithms and Error-Correcting Codes, 10th International
Symposium, AAECC-10, San Juan de Puerto Rico, Puerto Rico, May 10-14, 1993, Proceedings,
volume 673 of Lecture Notes in Computer Science, pages 162–169. Springer, 1993. doi:
10.1007/3-540-56686-4_41.

21 Dima Grigoriev, Marek Karpinski, and Michael F. Singer. Fast Parallel Algorithms for Sparse
Multivariate Polynomial Interpolation over Finite Fields. SIAM J. Comput., 19(6):1059–1063,
1990. doi:10.1137/0219073.

22 Dima Grigoriev and Alexander A. Razborov. Exponential Complexity Lower Bounds for Depth
3 Arithmetic Circuits in Algebras of Functions Over Finite Fields. In 39th Annual Symposium
on Foundations of Computer Science, FOCS ’98, November 8-11, 1998, Palo Alto, California,
USA, pages 269–278. IEEE Computer Society, 1998. doi:10.1109/SFCS.1998.743456.

23 Ankit Gupta, Pritish Kamath, Neeraj Kayal, and Ramprasad Saptharishi. Arithmetic circuits:
A chasm at depth 3. SIAM J. Comput., 45(3):1064–1079, 2016. Conference version appeared
in the proceedings of FOCS 2013. doi:10.1137/140957123.

24 Nikhil Gupta, Chandan Saha, and Bhargav Thankey. Equivalence Test for Read-Once
Arithmetic Formulas. In Nikhil Bansal and Viswanath Nagarajan, editors, Proceedings of the
2023 ACM-SIAM Symposium on Discrete Algorithms, SODA 2023, Florence, Italy, January
22-25, 2023, pages 4205–4272. SIAM, 2023. doi:10.1137/1.9781611977554.ch162.

https://doi.org/10.1145/3365667
https://doi.org/10.1145/2608628.2608648
https://doi.org/10.1145/2608628.2608648
https://doi.org/10.1090/S0273-0979-1989-15750-9
https://doi.org/10.1090/S0273-0979-1989-15750-9
https://doi.org/10.4230/LIPICS.CCC.2016.10
https://doi.org/10.4230/LIPIcs.STACS.2023.22
https://doi.org/10.1016/0020-0190(78)90067-4
https://doi.org/10.1145/1236457.1236459
https://www.youtube.com/watch?v=1HMogQIHT6Q
https://doi.org/10.1109/FOCS.2013.34
https://doi.org/10.1007/3-540-56686-4_41
https://doi.org/10.1007/3-540-56686-4_41
https://doi.org/10.1137/0219073
https://doi.org/10.1109/SFCS.1998.743456
https://doi.org/10.1137/140957123
https://doi.org/10.1137/1.9781611977554.ch162

O. Baraskar, A. Dewan, C. Saha, and P. Sinha 16:19

25 Thomas R. Hancock, Tao Jiang, Ming Li, and John Tromp. Lower Bounds on Learning
Decision Lists and Trees. Inf. Comput., 126(2):114–122, 1996. doi:10.1006/INCO.1996.0040.

26 Johan Håstad. Tensor Rank is NP-Complete. J. Algorithms, 11(4):644–654, 1990. Conference
version appeared in the proceedings of ICALP 1989. doi:10.1016/0196-6774(90)90014-6.

27 Shuichi Hirahara. Non-Black-Box Worst-Case to Average-Case Reductions within NP. In
Mikkel Thorup, editor, 59th IEEE Annual Symposium on Foundations of Computer Science,
FOCS 2018, Paris, France, October 7-9, 2018, pages 247–258. IEEE Computer Society, 2018.
doi:10.1109/FOCS.2018.00032.

28 Shuichi Hirahara. NP-Hardness of Learning Programs and Partial MCSP. In 63rd IEEE Annual
Symposium on Foundations of Computer Science, FOCS 2022, Denver, CO, USA, October 31
– November 3, 2022, pages 968–979. IEEE, 2022. doi:10.1109/FOCS54457.2022.00095.

29 Shuichi Hirahara, Igor C. Oliveira, and Rahul Santhanam. NP-hardness of Minimum Circuit
Size Problem for OR-AND-MOD Circuits. In Rocco A. Servedio, editor, 33rd Computational
Complexity Conference, CCC 2018, June 22-24, 2018, San Diego, CA, USA, volume 102
of LIPIcs, pages 5:1–5:31. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2018. doi:
10.4230/LIPICS.CCC.2018.5.

30 Rahul Ilango. Constant Depth Formula and Partial Function Versions of MCSP are Hard.
In Sandy Irani, editor, 61st IEEE Annual Symposium on Foundations of Computer Science,
FOCS 2020, Durham, NC, USA, November 16-19, 2020, pages 424–433. IEEE, 2020. doi:
10.1109/FOCS46700.2020.00047.

31 Rahul Ilango. The Minimum Formula Size Problem is (ETH) Hard. In 62nd IEEE Annual
Symposium on Foundations of Computer Science, FOCS 2021, Denver, CO, USA, February
7-10, 2022, pages 427–432. IEEE, 2021. doi:10.1109/FOCS52979.2021.00050.

32 Rahul Ilango, Bruno Loff, and Igor C. Oliveira. NP-Hardness of Circuit Minimization
for Multi-Output Functions. In Shubhangi Saraf, editor, 35th Computational Complexity
Conference, CCC 2020, July 28-31, 2020, Saarbrücken, Germany (Virtual Conference), volume
169 of LIPIcs, pages 22:1–22:36. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2020.
doi:10.4230/LIPICS.CCC.2020.22.

33 Russell Impagliazzo and Avi Wigderson. P = BPP if E Requires Exponential Circuits:
Derandomizing the XOR Lemma. In Frank Thomson Leighton and Peter W. Shor, editors,
Proceedings of the Twenty-Ninth Annual ACM Symposium on the Theory of Computing, El
Paso, Texas, USA, May 4-6, 1997, pages 220–229. ACM, 1997. doi:10.1145/258533.258590.

34 Valentine Kabanets and Jin-yi Cai. Circuit minimization problem. In F. Frances Yao and
Eugene M. Luks, editors, Proceedings of the Thirty-Second Annual ACM Symposium on
Theory of Computing, May 21-23, 2000, Portland, OR, USA, pages 73–79. ACM, 2000.
doi:10.1145/335305.335314.

35 Erich L. Kaltofen and Barry M. Trager. Computing with polynomials given by black boxes
for their evaluations: Greatest common divisors, factorization, separation of numerators and
denominators. J. Symb. Comput., 9(3):301–320, 1990. Conference version appeared in the
proceedings of FOCS 1988. doi:10.1016/S0747-7171(08)80015-6.

36 Neeraj Kayal. Efficient algorithms for some special cases of the polynomial equivalence problem.
In Dana Randall, editor, Proceedings of the Twenty-Second Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 2011, San Francisco, California, USA, January 23-25, 2011,
pages 1409–1421. SIAM, 2011. doi:10.1137/1.9781611973082.108.

37 Neeraj Kayal. Affine projections of polynomials: extended abstract. In Howard J. Karloff
and Toniann Pitassi, editors, Proceedings of the 44th Symposium on Theory of Computing
Conference, STOC 2012, New York, NY, USA, May 19–22, 2012, pages 643–662. ACM, 2012.
doi:10.1145/2213977.2214036.

38 Neeraj Kayal, Vineet Nair, and Chandan Saha. Separation between read-once oblivious
algebraic branching programs (roabps) and multilinear depth-three circuits. ACM Trans.
Comput. Theory, 12(1):2:1–2:27, 2020. Conference version appeared in the proceedings of
STACS 2016. doi:10.1145/3369928.

ICALP 2024

https://doi.org/10.1006/INCO.1996.0040
https://doi.org/10.1016/0196-6774(90)90014-6
https://doi.org/10.1109/FOCS.2018.00032
https://doi.org/10.1109/FOCS54457.2022.00095
https://doi.org/10.4230/LIPICS.CCC.2018.5
https://doi.org/10.4230/LIPICS.CCC.2018.5
https://doi.org/10.1109/FOCS46700.2020.00047
https://doi.org/10.1109/FOCS46700.2020.00047
https://doi.org/10.1109/FOCS52979.2021.00050
https://doi.org/10.4230/LIPICS.CCC.2020.22
https://doi.org/10.1145/258533.258590
https://doi.org/10.1145/335305.335314
https://doi.org/10.1016/S0747-7171(08)80015-6
https://doi.org/10.1137/1.9781611973082.108
https://doi.org/10.1145/2213977.2214036
https://doi.org/10.1145/3369928

16:20 NP-Hardness of Testing Equivalence to Sparse Polynomials

39 Neeraj Kayal, Vineet Nair, Chandan Saha, and Sébastien Tavenas. Reconstruction of full rank
algebraic branching programs. ACM Trans. Comput. Theory, 11(1):2:1–2:56, 2019. Conference
version appeared in the proceedings of CCC 2017. doi:10.1145/3282427.

40 Adam R. Klivans and Amir Shpilka. Learning restricted models of arithmetic circuits. Theory
Comput., 2(10):185–206, 2006. Conference version appeared in the proceedings of COLT 2003.
doi:10.4086/TOC.2006.V002A010.

41 Adam R. Klivans and Daniel A. Spielman. Randomness efficient identity testing of multivariate
polynomials. In Jeffrey Scott Vitter, Paul G. Spirakis, and Mihalis Yannakakis, editors,
Proceedings on 33rd Annual ACM Symposium on Theory of Computing, July 6-8, 2001,
Heraklion, Crete, Greece, pages 216–223. ACM, 2001. doi:10.1145/380752.380801.

42 Nutan Limaye, Srikanth Srinivasan, and Sébastien Tavenas. Superpolynomial Lower Bounds
Against Low-Depth Algebraic Circuits. In 62nd IEEE Annual Symposium on Foundations
of Computer Science, FOCS 2021, Denver, CO, USA, February 7-10, 2022, pages 804–814.
IEEE, 2021. doi:10.1109/FOCS52979.2021.00083.

43 Richard J. Lipton and Nisheeth K. Vishnoi. Deterministic identity testing for multivariate
polynomials. In Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete
Algorithms, January 12-14, 2003, Baltimore, Maryland, USA, pages 756–760. ACM/SIAM,
2003. URL: http://dl.acm.org/citation.cfm?id=644108.644233.

44 W. J. Masek. Some NP-complete set covering problems. Unpublished Manuscript, 1979.
45 Dori Medini and Amir Shpilka. Hitting sets and reconstruction for dense orbits in vp_{e}

and ΣΠΣ circuits. In Valentine Kabanets, editor, 36th Computational Complexity Conference,
CCC 2021, July 20-23, 2021, Toronto, Ontario, Canada (Virtual Conference), volume 200
of LIPIcs, pages 19:1–19:27. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2021. doi:
10.4230/LIPICS.CCC.2021.19.

46 Jacques Patarin. Hidden fields equations (HFE) and isomorphisms of polynomials (IP): two
new families of asymmetric algorithms. In Ueli M. Maurer, editor, Advances in Cryptology –
EUROCRYPT ’96, International Conference on the Theory and Application of Cryptographic
Techniques, Saragossa, Spain, May 12-16, 1996, Proceeding, volume 1070 of Lecture Notes in
Computer Science, pages 33–48. Springer, 1996. doi:10.1007/3-540-68339-9_4.

47 Ján Pich and Rahul Santhanam. Why are Proof Complexity Lower Bounds Hard? In David
Zuckerman, editor, 60th IEEE Annual Symposium on Foundations of Computer Science, FOCS
2019, Baltimore, Maryland, USA, November 9-12, 2019, pages 1305–1324. IEEE Computer
Society, 2019. doi:10.1109/FOCS.2019.00080.

48 Alexander A. Razborov. Lower bounds on the size of bounded depth circuits over a complete
basis with logical addition. Math. Notes, 41:333–338, 1987. doi:10.1007/BF01137685.

49 Daniel S. Roche. What Can (and Can’t) we Do with Sparse Polynomials? In Manuel Kauers,
Alexey Ovchinnikov, and Éric Schost, editors, Proceedings of the 2018 ACM on International
Symposium on Symbolic and Algebraic Computation, ISSAC 2018, New York, NY, USA, July
16-19, 2018, pages 25–30. ACM, 2018. doi:10.1145/3208976.3209027.

50 Chandan Saha and Bhargav Thankey. Hitting sets for orbits of circuit classes and polynomial
families. In Mary Wootters and Laura Sanità, editors, Approximation, Randomization, and
Combinatorial Optimization. Algorithms and Techniques, APPROX/RANDOM 2021, August
16-18, 2021, University of Washington, Seattle, Washington, USA (Virtual Conference), volume
207 of LIPIcs, pages 50:1–50:26. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2021.
doi:10.4230/LIPICS.APPROX/RANDOM.2021.50.

51 Nitin Saxena. Morphisms of rings and applications to complexity. PhD thesis, Indian Institute of
Technology, Kanpur, 2006. URL: https://www.cse.iitk.ac.in/users/manindra/Students/
thesis_saxena.pdf.

52 Jacob T. Schwartz. Fast probabilistic algorithms for verification of polynomial identities. J.
ACM, 27(4):701–717, 1980. doi:10.1145/322217.322225.

53 Yaroslav Shitov. How hard is the tensor rank?, 2016. arXiv:1611.01559.

https://doi.org/10.1145/3282427
https://doi.org/10.4086/TOC.2006.V002A010
https://doi.org/10.1145/380752.380801
https://doi.org/10.1109/FOCS52979.2021.00083
http://dl.acm.org/citation.cfm?id=644108.644233
https://doi.org/10.4230/LIPICS.CCC.2021.19
https://doi.org/10.4230/LIPICS.CCC.2021.19
https://doi.org/10.1007/3-540-68339-9_4
https://doi.org/10.1109/FOCS.2019.00080
https://doi.org/10.1007/BF01137685
https://doi.org/10.1145/3208976.3209027
https://doi.org/10.4230/LIPICS.APPROX/RANDOM.2021.50
https://www.cse.iitk.ac.in/users/manindra/Students/thesis_saxena.pdf
https://www.cse.iitk.ac.in/users/manindra/Students/thesis_saxena.pdf
https://doi.org/10.1145/322217.322225
https://arxiv.org/abs/1611.01559

O. Baraskar, A. Dewan, C. Saha, and P. Sinha 16:21

54 Sébastien Tavenas. Improved bounds for reduction to depth 4 and depth 3. Inf. Comput.,
240:2–11, 2015. Conference version appeared in the proceedings of MFCS 2013. doi:10.1016/
J.IC.2014.09.004.

55 Thomas Thierauf. The isomorphism problem for read-once branching programs and arithmetic
circuits. Chic. J. Theor. Comput. Sci., 1998, 1998. URL: http://cjtcs.cs.uchicago.edu/
articles/1998/1/contents.html.

56 Joachim von zur Gathen and Erich L. Kaltofen. Factoring Sparse Multivariate Polynomials.
J. Comput. Syst. Sci., 31(2):265–287, 1985. doi:10.1016/0022-0000(85)90044-3.

57 Richard Zippel. Probabilistic algorithms for sparse polynomials. In Symbolic and Al-
gebraic Computation, EUROSAM ’79, An International Symposiumon Symbolic and Al-
gebraic Computation, Marseille, France, June 1979, Proceedings, pages 216–226, 1979.
doi:10.1007/3-540-09519-5_73.

ICALP 2024

https://doi.org/10.1016/J.IC.2014.09.004
https://doi.org/10.1016/J.IC.2014.09.004
http://cjtcs.cs.uchicago.edu/articles/1998/1/contents.html
http://cjtcs.cs.uchicago.edu/articles/1998/1/contents.html
https://doi.org/10.1016/0022-0000(85)90044-3
https://doi.org/10.1007/3-540-09519-5_73

	1 Introduction
	1.1 ETsparse and MCSP for depth-3 circuits
	1.2 ET for constant-support polynomials
	1.3 Our results

	2 Preliminaries
	2.1 Definitions and notations
	2.2 Algebraic preliminaries

	3 NP-hardness of ETsparse
	3.1 Constructing f and s
	3.2 The forward direction
	3.3 The reverse direction
	3.4 Homogeneous case: Proof of Part 2 of Theorem 2

	4 NP-hardness of alpha-gap-ETsparse
	5 NP-hardness of ETsupport
	5.1 Construction of f and sigma
	5.2 The forward direction
	5.3 The reverse direction

	6 Conclusion

