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Abstract
Let G be a directed weighted graph on n vertices and m edges with designated source and sink
vertices s and t. An edge in G is vital if its removal reduces the capacity of (s, t)-mincut. Since the
seminal work of Ford and Fulkerson [CJM 1956], a long line of work has been done on computing
the most vital edge and all vital edges of G. However, even after 60 years, the existing results are for
either undirected or unweighted graphs. We present the following result for directed weighted graphs
that also solves an open problem by Ausiello, Franciosa, Lari, and Ribichini [NETWORKS 2019].
1. Algorithmic Results: There is an algorithm that computes all vital edges as well as the most

vital edge of G using O(n) maximum (s, t)-flow computations.

Vital edges play a crucial role in the design of sensitivity oracle for (s, t)-mincut – a compact
data structure for reporting (s, t)-mincut after insertion/failure of any edge. For directed graphs,
the only existing sensitivity oracle is for unweighted graphs by Picard and Queyranne [MPS
1982]. We present the first and optimal sensitivity oracle for directed weighted graphs as follows.

2. Sensitivity Oracles:
(a) There is an optimal O(n2) space data structure that can report an (s, t)-mincut C in O(|C|)

time after the failure/insertion of any edge.
(b) There is an O(n) space data structure that can report the capacity of (s, t)-mincut after

failure or insertion of any edge e in O(1) time if the capacity of edge e is known.

A mincut for a vital edge e is an (s, t)-cut of the least capacity in which edge e is outgoing. For
unweighted graphs, in a classical work, Picard and Queyranne [MPS 1982] designed an O(m)
space directed acyclic graph (DAG) that stores and characterizes all mincuts for all vital edges.
Conversely, there is a set containing at most n − 1 (s, t)-cuts such that at least one mincut for
every vital edge belongs to the set. We generalize these results for directed weighted graphs as
follows.

3. Structural & Combinatorial Results:
(a) There is a set M containing at most n − 1 (s, t)-cuts such that at least one mincut for every

vital edge belongs to the set. This bound is tight as well. We also show that set M can be
computed using O(n) maximum (s, t)-flow computations.

(b) We design two compact structures for storing and characterizing all mincuts for all vital
edges – (i) an O(m) space DAG for partial and (ii) an O(mn) space structure for complete
characterization.

To arrive at our results, we develop new techniques, especially a generalization of maxflow-mincut
Theorem by Ford and Fulkerson [CJM 1956], which might be of independent interest.
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1 Introduction

For any graph problem, there are edges whose removal affects the solution of the given
problem. These edges are called vital edges for the problem. There has been extensive
research on the vital edges for various fundamental problems – shortest paths/distance
[32, 34, 23, 28, 19], minimum spanning trees [15, 26, 33], strongly connected components
(SCC) [16]. The concept of vital edge for (s, t)-mincut has existed ever since the seminal
work of Ford and Fulkerson [14] on maximum (s, t)-flow. In this article, for directed weighted
graphs, we present the following two main results – (1) an efficient algorithm for computing
all vital edges, and (2) optimal sensitivity oracles for (s, t)-mincut. The algorithm in (1)
is the first nontrivial algorithm for computing all vital edges in directed weighted graphs,
which also answers an open question in [3]. Our optimal sensitivity oracle in (2) is the first
sensitivity oracle for directed weighted graphs in the area of minimum cuts. In order to
arrive at these results, we present interesting structural & optimal combinatorial results on
mincuts for vital edges. These results provide a generalization of the classical work of Picard
and Queyranne [30] and the recent work of Baswana, Bhanja, and Pandey [4].

Let G = (V, E) be a directed graph on n = |V | vertices and m = |E| edges. Each edge
e ∈ E has a capacity, denoted by w(e), which is a positive real number. Let s be a designated
source vertex and t be a designated sink vertex in G.

A set C ⊂ V is said to be a cut if C ≠ ∅. The outgoing edges from C are called
contributing edges of C. The capacity of cut C, denoted by c(C), is defined as the sum of
the capacities of all contributing edges of C. A cut C is said to be an (s, t)-cut if s ∈ C and
t ∈ C = V \ C. An (s, t)-cut C with the least capacity is called an (s, t)-mincut. We denote
the capacity of (s, t)-mincut by f∗. The (s, t)-mincut of a graph is a fundamental concept in
graph theory and is used to design efficient algorithms for numerous real-world problems [1].
Now we formally define the vital edges for (s, t)-micuts.

▶ Definition 1 (vital edge). An edge e ∈ E is said to be a vital edge if the removal of e

decreases the capacity of (s, t)-mincut in G. Evit denotes the set of all vital edges in G.

Observe that each edge that contributes to an (s, t)-mincut is definitely a vital edge. However,
a vital edge might not necessarily contribute to any (s, t)-mincut (e.g., edge (v1, v4) in
Figure 1)(i). An edge that is not vital is called a nonvital edge. At first glance, it may appear
that we may remove all nonvital edges from the graph without affecting the (s, t)-mincut.
But it is not true, as stated in the following note.

▶ Note 2. Although the removal of any single nonvital edge does not decrease the capacity
of (s, t)-mincut, the removal of a set of nonvital edges might lead to the reduction in the
capacity of (s, t)-mincut (e.g., edges (v2, v6) and (v3, v5) in Figure 1(i)).

The design of efficient algorithms for various problems [31, 35, 27, 29] related to vital edges
started just a few years after the seminal work of Ford and Fulkerson [14]. The vitality of an
edge e is the reduction in the capacity of (s, t)-mincut after the removal of edge e. Observe
that one maximum (s, t)-flow computation is sufficient for computing the vitality of any
edge. So, for computing all vital edges and their vitality, there is a trivial algorithm that
requires O(m) maximum (s, t)-flow computations. An edge having the maximum vitality is
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Figure 1 (i) Each mincut for vital edge (v1, v4) contains a nonvital edge (shown in the same
color). (ii) A mincut cover fails to include mincut B for edges (a, t) and (s, b) if property P is not
ensured in the construction. An edge and the mincut for the edge are shown in the same color.

said to be the most vital edge. Aneja, Chandrasekaran, and Nair [2] designed an algorithm
that performs O(n) maximum (s, t)-flow computations to compute the most vital edge in an
undirected graph. Ausiello, Franciosa, Lari, and Ribichini [3] showed that O(n) maximum
(s, t)-flow computations are sufficient even for computing all vital edges and their vitality in
an undirected graph. Unfortunately, even after 60 years, the following question has remained
unanswered, which is also posed as an open problem in [3].

▶ Question 1. For directed weighted graph G, does there exist an algorithm that can compute
all vital edges along with their vitality using O(n) maximum (s, t)-flow computations?

We can generalize the notion of (s, t)-mincut to “mincut for an edge” as follows.

▶ Definition 3 (mincut for an edge). Let e be a contributing edge of an (s, t)-cut C. C

is a mincut for edge e if c(C) ≤ c(C ′) for each (s, t)-cut C ′ in which edge e appears as a
contributing edge.

Not only the study of mincuts for vital edges is important from a graph theoretic perspective
but it also plays a crucial role in designing sensitivity oracle for (s, t)-mincuts – a compact
data structure that efficiently reports an (s, t)-mincut after the failure/insertion of any edge.

The minimum cuts in a graph can be quite large in number – Ω(n2) global mincuts [11],
Ω(2n) (s, t)-mincuts [30]. Interestingly, compact structures have been invented that compactly
store and characterize various types of minimum cuts and cuts of capacity near minimum
[13, 12, 30, 11, 4]. A compact structure G′ is said to characterize a set C of cuts using a
property P if the following holds. A cut C belongs to C if and only if cut C satisfies property
P in graph G′. Specifically for (s, t)-mincuts in any directed weighted graph G, Picard and
Queyranne [30] showed that there exists a directed acyclic graph (DAG), denoted by DP Q(G),
occupying O(m) space that compactly stores all (s, t)-mincuts. In addition, it provides the
following characterization for each (s, t)-mincut.
An (s, t)-cut C is an (s, t)-mincut in G if and only if C is a 1-transversal cut in DP Q(G).
An (s, t)-cut is said to be 1-transversal if its edges intersect any simple path at most
once; e.g., cut A is 1-transversal but cut {s, v3} is not 1-transversal in Figure 1(i). The
1-transversality property also plays a crucial role in designing sensitivity oracles for (s, t)-
mincuts in unweighted graphs [30, 4]. Observe that DP Q(G) stores all mincuts for all
edges that contribute to (s, t)-mincuts. However, edges contributing to (s, t)-mincuts may
constitute a small subset of the set of all vital edges. Therefore, DP Q(G) may fail to preserve
all mincuts for all vital edges. This raises the following question.

▶ Question 2. Does there exist a compact graph structure that stores and characterizes all
mincuts for all vital edges in directed weighted graph G?

ICALP 2024
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Constructing the smallest set storing a minimum cut for every edge or every pair of vertices
has been addressed extensively [22, 11, 9, 18, 20, 21] since the remarkable work of Gomory
and Hu [18]. The smallest set of (s, t)-cuts that has at least one mincut for every edge is
called a mincut cover. For directed unweighted graphs, Baswana, Bhanja, and Pandey [4],
exploiting the DAG structure in [30], showed that there is a mincut cover of cardinality
at most n − 1 for all vital edges. For undirected weighted graphs, it is shown in [3] that
there is a mincut cover of cardinality at most n − 1 for all edges, and hence for all vital
edges. Unfortunately, for directed weighted graphs, we establish that it is not possible to
have a mincut cover of cardinality o(n2) for all edges (Theorem 37). Therefore, the following
question naturally arises.

▶ Question 3. Does there exist a mincut cover of cardinality o(n2) for all vital edges in
directed weighted graph G?

Design of sensitivity oracles have been studied quite extensively for various fundamental
problems in both unweighted and weighted graphs – shortest paths/distances [8, 19], reach-
ability [24, 10], strongly connected components [5, 16], all-pairs mincuts [6]. In weighted
graphs, the concept of failures/insertions of edges is, interestingly, more generic. Here, the
aim is to report the solution to the given problem given that the capacities of a small set of
edges are decreased/increased by an amount ∆ > 0.

For (s, t)-mincuts in directed graphs, the existing sensitivity oracles are only for unweighted
graphs and completely based on DAG DP Q(G) [30], which dates back to 1982. Firstly, there
is an O(m) space sensitivity oracle given in [30]. After the failure/insertion of an edge,
the oracle takes O(1) time for reporting the capacity and O(m) time for reporting the
corresponding (s, t)-mincut. Assuming the edge of the query exists in the graph, an O(n)
space data structure can be designed [4]. This data structure can report the capacity of
(s, t)-mincut in O(1) time and an (s, t)-mincut C in O(|C|) time after the failure/insertion of
an edge. For various problems related to sensitivity analysis, it is also important to efficiently
report a compact structure that stores and characterizes all (s, t)-mincuts after the failure
of any edge, as shown in [30]. For unweighted graphs, DAG DP Q for the resulting graph
can be reported in O(m) time [30]. All these results crucially exploit the property that, in
unweighted graphs, a mincut for a vital edge is also an (s, t)-mincut; hence, every contributing
edge is also vital. However, for weighted graphs, this property no longer holds. In fact,
nonvital edges may contribute to all mincuts for a vital edge (e.g., all mincuts {A, B, C, D}
for edge (v1, v4) in Figure 1(i)). So, the following question arises.

▶ Question 4. For directed weighted graph G, does there exist
1. an O(n) space data structure that can report the capacity of (s, t)-mincut in O(1) time,
2. a compact data structure that can report an (s, t)-mincut C in O(|C|) time, and
3. a compact data structure that can report DAG DP Q in O(m) time for the resulting graph
after increasing/decreasing the capacity of any given edge?

▶ Note 4. It is a simple exercise to design an O(n2) space data structure and an O(n) space
data structure that, after increasing the capacity of any edge, can report an (s, t)-mincut
C in O(|C|) time and its capacity in O(1) time, respectively. Henceforth, while addressing
sensitivity oracles, we focus only on handling the decrease in the capacity of an edge.

1.1 Our contribution and the organization of the results
We provide an affirmative answer to all the four questions raised above. We present basic
notations and terminologies in the following section. Thereafter, we present a generalization
of maxflow-mincut Theorem by Ford and Fulkerson [14] in Section 3. This property, which
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might be of independent interest, plays a key role in establishing various results in this
article. Mincut cover for all vital edges and sensitivity oracles for (s, t)-mincut are presented
in Section 4 and 5 respectively. Algorithm for computing all vital edges is presented in
Section 6. Compact structures for storing and characterizing all mincuts for all vital edges
are described in Section 7. We present various lower bounds in Section 8.

2 Preliminaries

For any directed weighted graph H with a designated source vertex s and a designated sink
vertex t, we define the following notations to be used throughout the article.

H \ {e}: Graph after the failure of an edge e in H.
value(f, H): value of an (s, t)-flow f in graph H. We denote value(f, G) by f∗.
f(e, H): value of (s, t)-flow f along edge e in H.
fin(C, H): For any (s, t)-flow f and an (s, t)-cut C in H, fin(C, H) is the sum of the flow
through all edges that leave C and enter C.
fout(C, H): For any (s, t)-flow f and an (s, t)-cut C in H, fout(C, H) is the sum of the
flow through all edges that leave C and enter C.

Without causing any ambiguity, we use fin(C) and fout(C) to denote fin(C, G) and fout(C, G)
respectively.

The following lemma can be proved easily using the conservation of an (s, t)-flow.

▶ Lemma 5. For any (s, t)-cut C in H, fout(C, H)− fin(C, H) = value(f, H).

For a set U ⊆ V , Evit(U) denotes the set of vital edges whose both endpoints belong to U .
We now introduce a notation that quantitatively captures the vitality of an edge.

wmin(e): the reduction in the capacity of (s, t)-mincut in G after the failure of edge e.
The following observation is immediate from Definition 1.

▶ Observation 6. For any vital edge e, wmin(e) > 0.

▶ Definition 7 (A mincut cover for a set of edges). A set A consisting of (s, t)-cuts is said to
be a mincut cover for a set of edges E′ if, for each edge e ∈ E′, at least one mincut for e is
present in A, and |A| is the smallest.

The following lemma provides a maximum (s, t)-flow based characterization for a vital edge.

▶ Lemma 8. An edge e is vital if and only if f(e) > 0 in every maximum (s, t)-flow f in G.

Lemma 8 can be proved easily using the strong duality between maximum (s, t)-flow and
(s, t)-mincut [14].

▶ Definition 9 (Edge-set of a cut). A cut C is said to separate a pair of vertices u, v ∈ V if
either u ∈ C and v ∈ C or v ∈ C and u ∈ C. The edge-set of C is the set of all those edges
whose endpoints are separated by C.

For an undirected graph, the set of contributing edges of a cut is the edge-set of the cut. In
a seminal work, Gomory and Hu [17] established the following two results for an undirected
graph. (1) There is a set of n − 1 cuts such that the cut of the least capacity separating
each pair of vertices is present in this set. (2) Each of these n− 1 cuts appears as a cut in a
spanning tree on the vertex set V . This tree is widely-known as Gomory-Hu tree.

The construction of Gomory-Hu tree crucially exploits that the capacity of each cut in
graph is defined as the sum of the capacities of all contributing edges of the cut. Suppose
capacity of each cut is defined by any arbitrary real-valued function F . Even for this generic
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setting, Cheng and Hu [9] showed that there exists a set consisting of n − 1 cuts such
that a cut of the least capacity (F -value) separating any pair of vertices is present in the
set. Furthermore, Cheng and Hu [9] showed that all these cuts can be stored in a suitably
augmented rooted full binary tree, called ancestor tree as follows. Every vertex of the given
graph is mapped to a unique leaf node in the ancestor tree, and the cut of the least capacity
separating any pair of vertices is stored at their lowest common ancestor (lca) in the tree.
The ancestor tree occupies O(n2) space and, Cheng and Hu [9] also designed an efficient
algorithm to construct the tree – It performs only O(n) calls to an algorithm that, given
any pair of vertices, can report a cut of the least capacity separating them.

Ausiello, Franciosa, Lari, and Ribichini [3] showed that the ancestor tree of Cheng and
Hu [9] can be constructed for (s, t)-cuts as well if function F is defined as follows.

For a set C ⊂ V , F (C) =
{

c(C), if s ∈ C and t ∈ C

∞, otherwise.
(1)

This insight played a crucial role in the computation of all vital edges in an undirected graph
using O(n) maximum (s, t)-flow computations [3].

3 A Generalization of FlowCut Property

Let Emin ⊆ E be the set of all edges contributing to any (s, t)-mincut. Ford and Fulkerson [14]
established a strong duality between (s, t)-mincut and maximum (s, t)-flow. Exploiting this,
the following property provides a maximum (s, t)-flow based characterization for mincut for
any edge e ∈ Emin.

FlowCut: Let C be an (s, t)-cut and e ∈ Emin is a contributing edge of C. C is a
mincut for edge e if and only if for any maximum (s, t)-flow, each contributing edge of C is
fully saturated and each incoming edge of C carries no flow.

For directed weighted graphs, we know that Emin maybe only a proper subset of the set
of all vital edges. We now present a generalization of FlowCut property that provides a
maximum (s, t)-flow based characterization for each mincut C(e), ∀e ∈ Evit.

▶ Theorem 10 (GenFlowCut). Let C be an (s, t)-cut and a vital edge e = (u, v) contributes
to C in G. C is a mincut for e if and only if there is a maximum (s, t)-flow f such that
1. fin(C) = 0.
2. e carries exactly wmin(e) amount of (s, t)-flow and every other contributing edge e′ in C

is fully saturated, that is, f(e′) = w(e′).

Proof. Suppose C is a mincut for vital edge e in G. After the removal of edge e, the capacity
of (s, t)-cut C is related to f∗ as follows.

In graph G \ {e}, c(C) = f∗ − wmin(e) (2)

Let G′ be the graph obtained from G after reducing the capacity of edge e from w(e) to
wmin(e). Therefore, using Equation 2, the capacity of C in G′ is (f∗−wmin(e))+wmin(e) = f∗.
Let Cu,v be the set of all (s, t)-cuts that keep u on the side of s and v on the side of t. The
capacity of each cut in Cu,v gets reduced by the same amount due to reduction in the
capacity of e. Therefore, C is a mincut for edge e in G′ as well. Hence the capacity of every
cut belonging to Cu,v in G′ is at least f∗. Capacity of any (s, t)-cut in G′, that does not
belong to Cu,v, is at least f∗ since it remains unaffected by the reduction in the capacity of
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edge e. These facts imply that f∗ is the capacity of (s, t)-mincut in G′. Thus, using the
strong duality between maximum (s, t)-flow and (s, t)-mincut, it follows that there exists a
maximum (s, t)-flow f in G′ such that value(f, G′) = f∗. Using Lemma 5 for C in G′, we
get the following equality.

fout(C, G′)− fin(C, G′) = f∗ (3)

It follows from the capacity constraint that fout(C, G′) ≤ c(C). So, Equation 3 implies that
fin(C, G′) ≤ c(C)− f∗. Since c(C) = f∗ in G′ as shown above, we arrive at the following.

fin(C, G′) = 0 and fout(C, G′) = f∗ (4)

This implies that, in G′, each outgoing edge of C is fully saturated and each incoming edge
does not carry any amount of flow. f is also a valid maximum (s, t)-flow for graph G because
f∗ is the value of maximum (s, t)-flow in G and f((u, v)) ≤ w((u, v)) in G. Therefore, it
follows from Equation 4 that in graph G, fin(C) = 0, each outgoing edge of C is fully
saturated, and edge e carries exactly wmin(e) amount of (s, t)-flow.

We now prove the converse part. Suppose there is a maximum (s, t)-flow in G such that
each outgoing edge of C, except e, is fully saturated and each incoming edge carries no
flow. Therefore, c(C) in G is f∗ − wmin(e) + w(e). So, in graph G \ {e}, capacity of C is
f∗ − wmin(e). Since e is a vital edge, it follows from definition that f∗ − wmin(e) is the
capacity of (s, t)-mincut in G \ {e}. Therefore, C is an (s, t)-mincut in G \ {e}. Hence, each
(s, t)-cut in G that keeps u on the side of s and v on the side of t has a capacity at least
f∗ − wmin(e) + w(e). This implies that C is a mincut for edge e. ◀

▶ Remark 11. Theorem 10 crucially exploits Equation 2 which holds for vital edges only.
Note that wmin(e) = 0 for a nonvital edge e. So, if C is a mincut for e, C might have capacity
> f∗ even after removing nonvital edge e from G.

4 A Mincut Cover for All Vital Edges

For any subset E of vital edges, let V (E) denote the smallest set of vertices such that for
each edge (u, v) ∈ E , both u and v belong to V (E). We establish an upper bound on the
cardinality of the mincut cover of E in terms of |V (E)|.

Let e be a vital edge, and let C be a mincut for e. In undirected graphs, recall that each
edge belonging to the edge-set of C is a contributing edge of C. However, in directed graphs,
there may exist edges incoming to C. Any such incoming edge, say e′, is not a contributing
edge of C, and certainly, any mincut for edge e′ is different from C. Can e′ be a vital edge?
The following lemma answers this question in negation. It crucially exploits the properties of
(s, t)-maxflow across C as stated in GenFlowCut Property (Theorem 10).

▶ Lemma 12. If C is a mincut for a vital edge, each incoming edge of C must be a nonvital
edge.

Proof. Let e′ be an incoming edge of C. It follows from Theorem 10(1) that there is a
maximum (s, t)-flow f such that fin(C) = 0. So e′ does not carry any flow in maximum
(s, t)-flow f . Hence, it follows from Lemma 8 that e′ is not a vital edge in G. ◀

The following lemma, which can be seen as a corollary of Lemma 12, establishes that a
mincut for a vital edge partitions all the vital edges into three sets.

ICALP 2024
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▶ Lemma 13. Let G = (V, E) be a directed weighted graph with a designated source vertex
s and a designated sink vertex t. Let E be a subset of vital edges. For any edge e ∈ E, let
C be a mincut for e. C partitions the entire set E into three subsets – (i) EC : edges that
are contributing to C, (ii) EL: edges whose both endpoints belong to C, and (iii) ER: edges
whose both endpoints belong to C.

Let M(E) denote the mincut cover for a subset E of vital edges. Suppose Lemma 13
additionally guarantees the following property.
P : For each vital edge e′ ∈ E that contributes to C, C is a mincut for e′ as well.
Property P ensures that C is a mincut for all vital edges that belong to EC . This implies

that M(EL) ∪M(ER) ∪ {C} is a mincut cover for E as well. Therefore, the cardinality of
mincut cover for set E can be bounded as follows.

|M(E)| ≤ |M(EL)|+ |M(ER)|+ 1 (5)

Let N (µ) denote the cardinality of a mincut cover for any set E of vital edges with µ = |V (E)|.
Note that E = ∅ implies µ = 0, and E ̸= ∅ implies µ ≥ 2. Equation 5, Lemma 13, and
Property P lead to the following recurrence for N (µ).

Base case: N (0) = 0.

For any µ ≥ 2, N (µ) ≤ 1 +N (µ1) +N (µ2), where µ1 = |V (EL)|, µ2 = |V (ER)| (6)

Note that µ1, µ2 < µ, and µ1 + µ2 ≤ µ. Using induction on µ, it is a simple exercise to
show that N (µ) ≤ µ− 1 for all µ ≥ 2.

Though property P is crucially used in establishing an upper bound on the mincut cover
of a set of vital edges, Lemma 13, in its current form, does not guarantee it. However, we
can enforce P easily as follows. In Lemma 13, the mincut for edge e is of the least capacity
among mincuts for all edges in E .

Using Recurrence 6 for the entire set of vital edges, we get an upper bound of n−1 on the
cardinality of the mincut cover for all vital edges in G. This leads to the following theorem
that answers Question 3 in the affirmative.

▶ Theorem 14 (Mincut Cover). For any directed weighted graph G on n vertices with a
designated source vertex s and a designated sink vertex t, there exists a set Cmin containing
at most n− 1 (s, t)-cuts such that, for any vital edge e in G, at least one mincut for edge e

is present in set Cmin.

The following note emphasizes the need of property P in establishing the upper bound
derived above.

▶ Note 15. Selecting any arbitrary edge e ∈ E might skip some mincuts for vital edges. Refer
to Figure 1(ii) on Page 3. The set of vital edges, denoted by E , contains four vital edges
(s, a), (s, b), (a, t), and (b, t). Suppose we first select vital edge (s, a) and mincut A = {s} for
edge (s, a). It follows from Lemma 13 that E is partitioned into EL, ER and EA. Observe that
EL does not contain any vital edge, vital edges (a, t) and (b, t) belong to ER, and (s, b) belongs
to EA. We now recurse on set E = ER and select the vital edge (b, t). Mincut C = {s, a, b}
partitions E into EL, ER, and EC . Observe that both EL and ER do not contain any vital
edge, and vital edge (a, t) belongs to EC . The process terminates as V (EL) and V (ER) are
empty. We get a pair of (s, t)-cuts A and C as mincut cover for E . Unfortunately, it does
not contain mincut B = {s, a} for edges (a, t) and (s, b).
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5 Optimal Sensitivity Oracles for (s,t)-mincut

Let e = (u, v) be an edge in G, and we wish to determine the impact of the failure of e

on (s, t)-mincut. We begin with a brief overview of O(n) space sensitivity oracle [4] for
(s, t)-mincuts in unweighted graphs. By construction of DP Q(G) [30], there is a mapping
from the vertices of G to the nodes of DP Q(G) such that the following assertion holds – u and
v are mapped to the same node of DP Q(G) if and only if there is no (s, t)-mincut in G that
separates u and v. In DP Q(G), each 1-transversal cut is an (s, t)-mincut in G. Exploiting this
property, it is shown in [4] that there is an (s, t)-mincut to which edge (u, v) contributes if
and only if the node containing u succeeds the node containing v in any topological ordering
of DP Q(G). If u and v are mapped to the same node of DP Q(G), it follows that the mincut
for edge (u, v) has a capacity strictly larger than that of the (s, t)-mincut. Therefore, if G is
unweighted, the failure of edge (u, v) does not reduce the capacity of the (s, t)-mincut; so
(u, v) is not a vital edge. Thus, the mapping from V to the nodes of DP Q(G) along with its
topological ordering serves as an O(n) space sensitivity oracle in unweighted graphs.

If G is weighted, it is still possible that though u and v mapped to the same node of
DP Q(G), yet the failure of edge (u, v) reduces (s, t)-mincut. In other words, if G is weighted,
there may be many vital edges internal to the nodes of DP Q(G) (refer to Figure 2). Thus
DP Q(G) fails to serve as sensitivity oracle for a weighted graph G; hence we need to explore
the structure of cuts internal to a node of DP Q(G).

Figure 2 (i) A graph H and (ii) DP Q(H). Thick edges in (i) represent the vital edges of H that
are internal to the nodes of DP Q(H). A mincut for them is represented by dashed curves.

Let cap(e, ∆) denote the query for reporting the capacity of (s, t)-mincut after reducing
the capacity of e ∈ E by ∆ such that 0 ≤ ∆ ≤ w(e). We now address the design of a compact
data structure that can efficiently answer query cap(e, ∆) for G.

Let us first consider only the set of vital edges. There may exist Ω(n2) vital edges in a
graph (refer to Figure 4(ii) on Page 17). Therefore, explicitly storing the capacity of a mincut
for each vital edge would occupy Ω(n2) space. To design an O(n) space data structure,
we use the following lemma for vital edges. This lemma follows from Lemma 13 and the
discussion we used for bounding the size of mincut cover for vital edges.

▶ Lemma 16. Let U ⊆ V and an edge e ∈ Evit(U). If mincut for e, say C, has the least
capacity among the mincuts for all vital edges from Evit(U), then, for any edge e′ ∈ Evit(U),
either C is a mincut for e′ or both endpoints of e′ belong to U ∩ C or U ∩ C.

Using Lemma 16, we design a divide and conquer based algorithm to build a data structure
that compactly stores the capacity of mincut for each vital edge as follows.
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Let e∗ be an edge in Evit(V ) such that the capacity of mincut for e∗ is less than or equal
to the capacity of mincut for each vital edge in G. Let C be a mincut for e∗. C serves as
the mincut for each vital edge contributing to C. For the mincuts of the remaining vital
edges, we recursively process Evit(V ∩ C) and Evit(V ∩ C). Refer to Algorithm 1 for the
pseudocode of this recursive algorithm.

It can be observed that the data structure resulting from Algorithm 1 is a rooted binary
tree. We refer to it as Tvit(G) henceforth. Its leaves are associated with disjoint subsets of
the entire vertex set V – for each vertex v ∈ V , L(v) stores the pointer to the leaf to which
v is mapped. Each internal node ν in Tvit(G) has the following three fields.

ν.cap is the capacity of mincut for the vital edge selected during the recursive call in
which node ν is created.
ν.left is the left child of ν and ν.right is the right child of ν.

Algorithm 1 : TreeConstruction(V ) computes Tvit(G).

1: procedure TreeConstruction(U)
2: Create a node ν;
3: if Evit(U) = ∅ then
4: for each x ∈ U do L(x)← ν;
5: end for
6: else
7: Let C(e) denote a mincut for edge e;
8: Select an edge e∗ ∈ Evit(U) such that c(C(e∗)) ≤ c(C(e′)) ∀e′ ∈ Evit(U);
9: Assign ν.cap← c(C(e∗));

10: ν.left← TreeConstruction(U ∩ C(e∗));
11: ν.right← TreeConstruction(U ∩ C(e∗));
12: end if
13: return ν;
14: end procedure

The following observation is immediate from the construction of Tvit(G).

▶ Observation 17. Let ν be an internal node in Tvit(G) and C be the (s, t)-cut associated
with node ν (chosen in Step 8 of Algorithm 1). For a vertex u, L(u) belongs to the subtree
rooted at ν.left if and only if u ∈ C.

Observe that Tvit(G) is a full binary tree with at most n leaves. So the number of internal
nodes is at most n− 1. Moreover, every internal node of Tvit(G) stores O(1) information.
Hence, we can state the following theorem.

▶ Theorem 18. Let G = (V, E) be a directed weighted graph on n = |V | vertices with
designated source vertex s and designated sink vertex t. There is a rooted full binary tree
occupying O(n) space that stores the capacity of mincut for each vital edge.

Let e = (x, y) be a query edge. If e is a vital edge, it follows from the construction of tree
Tvit(G) in Theorem 18 that the lca of L(x) and L(y) stores the capacity of mincut for (x, y).
So, using the efficient data structure for lca [7], it takes O(1) time to answer cap(e, ∆) for
any vital edge e. However, what if the query edge is a nonvital edge? Although there is no
impact on (s, t)-mincut capacity due to the reduction in the capacity of a nonvital edge, tree
Tvit(G) stores no information explicitly about nonvital edges. Therefore, in order to answer
cap(e, ∆) for any edge, it seems a classification of all edges as vital or nonvital is required.
Unfortunately, any such explicit classification would require Ω(m) space, which is also trivial
for answering query cap as discussed above.
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Interestingly, Tvit(G) can answer cap(e, ∆) for any edge e without any such classification.
This is because, as shown in the following lemma, it is already capable of classifying an edge
to be vital or nonvital.

▶ Lemma 19. Let e = (x, y) be any edge in G such that L(x) ̸= L(y). Let ν be the lca of
L(x) and L(y) in Tvit(G), and let C be the (s, t)-cut associated with node ν in Tvit(G). Edge
(x, y) is a nonvital edge if and only if exactly one of the following two conditions is satisfied.
1. L(x) ∈ ν.right and L(y) ∈ ν.left.
2. L(x) ∈ ν.left, L(y) ∈ ν.right, and c(C)− w(e) ≥ f∗.

Proof. Suppose edge (x, y) is a nonvital edge. Observe that L(x) and L(y) belong to the
subtree rooted at ν in Tvit(G) because ν is the lca of L(x) and L(y). It follows from
the construction of Tvit(G) (Algorithm 1) that edge (x, y) either contributes to C or is an
incoming edge to C. Suppose (x, y) is a contributing edge to C. So using Observation
17, L(x) ∈ ν.left and L(y) ∈ ν.right. If c(C) falls below f∗ upon removal of edge (x, y),
(x, y) would be a vital edge by Definition 1. Hence, c(C)− w(e) ≥ f∗. So condition (2) is
satisfied. Suppose (x, y) is an incoming edge to C, that is, x /∈ C and y ∈ C. It follows from
Observation 17 that L(x) must belong to the right subtree and L(y) must belong to the left
subtree of ν. So condition (1) is satisfied.

We now prove the converse part. Suppose condition (1) is satisfied, that is, L(x) ∈ ν.right

and L(y) ∈ ν.left. Observation 17 implies that x ∈ C and y ∈ C. Hence, edge (x, y) is an
incoming edge of C. It follows from the construction of Tvit(G) that C is a mincut for some
vital edge. So, by Theorem 10(1), there exists a maximum (s, t)-flow f such that fin(C) = 0.
Hence f(x, y) = 0. So it follows from Lemma 8 that (x, y) is a nonvital edge. Suppose
condition (2) is satisfied. Hence (x, y) is an outgoing edge of C. Assume to the contrary that
e is a vital edge. It follows from the construction of Tvit(G) that C is a mincut for e. Since e

is a vital edge, by Definition 1, c(C)− w(e) < f∗, a contradiction. ◀

For any edge e ∈ E and 0 ≤ ∆ ≤ w(e), Algorithm 2 verifies conditions of Lemma 19 to
answer query cap(e, ∆) in O(1) time using Tvit(G). So we can state the following Theorem.

Algorithm 2 Reporting the capacity of (s, t)-mincut after decreasing the capacity of an edge.

1: procedure cap((x, y), ∆)
2: if L(x)==L(y) then
3: return f∗

4: else
5: ν ← lca of L(x) and L(y) in Tvit(G).
6: end if
7: NewCapacity ← ν.cap−∆
8: if (L(x) ∈ ν.left ∧ L(y) ∈ ν.right ) ∧ NewCapacity < f∗ then
9: return NewCapacity.

10: else
11: return f∗.
12: end if
13: end procedure

▶ Theorem 20 (Sensitivity Oracle for Reporting Capacity). Let G be a directed weighted graph
on n vertices with a designated source vertex s and a designated sink vertex t. There is an
O(n) space data structure that, given any edge e ∈ E and a value ∆ satisfying 0 ≤ ∆ ≤ w(e),
can report in O(1) time the capacity of (s, t)-mincut after reducing the capacity of e by ∆.
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Reporting an (s, t)-mincut. An internal node, say ν, of Tvit(G) stores only the capacity of
the mincut for a vital edge. We augment ν with a mincut for the edge that was picked by
Algorithm 1 in Step 8. The size of the resulting data structure is O(n2). Observe that the
condition ∆ ≤ w(e) can be verified for any edge e in O(1) time if we store the capacity of
all edges of G. This will require only additional O(m) = O(n2) space. So we can state the
following theorem.

▶ Theorem 21 (Sensitivity Oracle). Let G be a directed weighted graph on n vertices with
a designated source vertex s and a designated sink vertex t. There is an O(n2) space data
structure that, given any edge e and any value ∆ ≥ 0, can report
1. the capacity of (s, t)-mincut in O(1) time, and
2. an (s, t)-mincut C in O(|C|) time for the resulting graph
3. the DAG DP Q occupying O(m) space in O(m) time (proof is in the full version)
after reducing the capacity of the edge e by ∆.

▶ Remark 22. It is a simple exercise to show that our data structure in Theorem 21(1) and (2)
can be extended to handle a vertex failure using the standard technique of vertex splitting.

Lower Bound. We complement the result in Theorem 21 by a matching lower bound, which
holds even for undirected graphs as follows (refer to Section 8 for the proof).

▶ Theorem 23. Any data structure for reporting the capacity of (s, t)-mincut after the failure
of an edge in an (un)directed graph on n vertices with positive edge capacities must require
Ω(n2 log n) bits of space in the worst case, irrespective of the query time.

▶ Remark 24. The O(n) space upper bound in Theorem 20 does not violate the Ω(n2) space
lower bound in Theorem 23. This is because Theorem 20 assumes that the query edge e

belongs to E and the reduction in capacity of e is at most w(e). However, this assumption
seems practically justified since, in real world, the capacity of an edge can decrease only if
the edge actually exists, and furthermore, it can decrease by an amount at most the capacity
of the edge.

Labeling Scheme. Let f be any function defined on the vertex/edge set of the graph. A
labeling scheme of f assigns small labels to each vertex/edge of the graph in such a way that,
for any given subset A of edges/vertices, f(A) can be computed only by using the labels of
vertices/edges in A. A labeling scheme of O(log2 n + log n log W ) bits can be designed for
reporting capacity of (s, t)-mincut after decreasing capacity of any edge in G using Theorem
20 and a labeling scheme for lca query [25]. Here W is the maximum capacity of any edge
in G. The proof is in the full version.

6 An Algorithm for Computing All Vital Edges

The existing algorithms [2, 3] that compute the most vital edge or all vital edges in undirected
graphs take cut-based approaches as follows. For computing the most vital edge in an
undirected graph, Aneja, Chandrasekaran, and Nair [2] establish that there exists an (s, t)-
cut such that the most vital edge is the maximum capacity edge among all the edges that
contribute to the cut. Ausiello, Franciosa, Lari, and Ribichini [3] define function F on cuts
as in Equation 1 in order to use the ancestor tree of Cheng and Hu [9]. To compute all vital
edges efficiently in a directed weighted graph, we take a flow-based approach that analyzes
flow along a set of edges in a maximum (s, t)-flow. We first classify all vital edges into two
types based on the maximum flow that an edge can carry in any maximum (s, t)-flow.
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A classification of vital edges. In graph G, there may exist multiple (s, t)-flows attaining
value f∗. The flow along an edge may be different in these multiple maximum (s, t)-flows.
A vital edge is a tight edge if it carries flow equal to its capacity in at least one maximum
(s, t)-flow; otherwise, it is a loose edge.

Our algorithm for computing all vital edges makes use of the classification of vital edges,
and employs two results that were derived for solving two seemingly unrelated problems.

To compute all the loose edges, we crucially exploit the following result on maximum
(s, t)-flow, which has been used for solving mincost maximum (s, t)-flow problem.

▶ Lemma 25 (Theorem 11.1 and Theorem 11.2 in [1]). For any directed weighted graph G,
there exists a maximum (s, t)-flow f# such that the edges that carry nonzero flow but not
fully saturated are at most n− 1.

For any maximum (s, t)-flow, by definition, the set of all loose edges is a subset of all edges
that carry nonzero flow but are not fully saturated. So, by Lemma 25, the number of loose
edges can be at most n − 1. Moreover, there is an algorithm that, given any maximum
(s, t)-flow, can compute f# of Lemma 25 in O(mn) time [1]. As a result, all the loose edges
of G can be computed using O(n) maximum (s, t)-flow computations.

Observe that the efficient computation of the set of loose edges crucially exploits the fact
that there can be at most n− 1 loose edges. However, there can be Ω(n2) tight edges in a
graph (refer to Figure 4(ii) on page 17). Hence, to compute all the vital edges, the main
challenge arises in computing all the tight edges of G. We now state a property of tight
edges that plays a crucial role in their efficient computation.

A property satisfied by tight edges
Let Emin be the set of all edges that contribute to (s, t)-mincuts. Set Emin is a subset of
all the tight edges since all edges in Emin are fully saturated in every maximum (s, t)-flow.
Exploiting the strong duality between maximum (s, t)-flow & (s, t)-mincut and Lemma 5, it
can be observed that each edge (u, v) ∈ Emin satisfies the following property. If C is any
(s, t)-cut such that v ∈ C and u ∈ C, then c(C) is strictly greater than f∗. The following
lemma shows that this property is satisfied by each tight edge as well.

▶ Lemma 26. Let e = (u, v) be a tight edge. Let C be a mincut for edge e and Cv,u be an
(s, t)-cut of the least capacity that keeps v on the side of s and u on the side of t. Then,
c(C) < c(Cv,u).

Proof. Edge (u, v) is a tight edge, so by definition, there is a maximum (s, t)-flow f such
that f(e) is equal to w(e). This would imply that fin(Cv,u) is at least w(e) since edge (u, v)
is an incoming edge for cut Cv,u. It follows from Lemma 5 that fout(Cv,u)− fin(Cv,u) = f∗.
Therefore, fout(Cv,u)− w(e) ≥ f∗. Since the capacity of an (s, t)-cut is an upper bound on
the value of any outgoing flow of the (s, t)-cut, therefore, fout(Cv,u) ≤ c(Cv,u). Hence we
arrive at the following inequality.

c(Cv,u) ≥ f∗ + w(e) (7)

It follows from Theorem 10(2) that wmin(e) is the minimum amount of flow that must pass
through edge (u, v) to get a maximum flow of value f∗. Let f ′ be the value of maximum
(s, t)-flow in graph G \ {e}. Thus we arrive at the following equality.

f∗ = f
′
+ wmin(e) (8)
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We now add (w(e)− wmin(e)) on both sides of Equation 8 and get the following equation.

f∗ + w(e)− wmin(e) = f
′
+ w(e) (9)

It follows from Theorem 10(2) that f
′ is also equal to the sum of capacities of all edges

contributing to C except edge (u, v). Therefore, f
′ + w(e) is equal to the capacity of C in G.

So it follows from Equation 9 that f∗ + w(e)− wmin(e) = c(C). Since (u, v) is a vital edge,
therefore, wmin(e) > 0 using Observation 6. Hence,

f∗ + w(e) > c(C) (10)

It follows from Inequality 7 and Inequality 10 that c(Cv,u) > c(C). ◀

For any tight edge (u, v), let C be an (s, t)-cut of the least capacity that separates vertex u

and vertex v. It follows from Lemma 26 that C is also a mincut for edge (u, v). So we can
state the following theorem.

▶ Theorem 27. Let G be a directed weighted graph with a designated source vertex s and a
designated sink vertex t. For any tight edge e = (u, v) in G, a mincut for edge e is identical
to an (s, t)-cut of the least capacity that separates vertex u and vertex v.

Algorithm for computing tight edges
For the given directed weighted graph G, we define function F as in Equation 1 and then
compute the Ancestor tree of Cheng and Hu [9] for (s, t)-cuts. For each pair of vertices, T(s,t)
stores an (s, t)-cut of the least capacity separating them at their lca. This tree, denoted
by T(s,t), can be built using O(n) maximum (s, t)-flow computations [9]. We augment T(s,t)
with a data structure for lca queries [7].

To compute all tight edges, we process T(s,t) and the edges of G as follows. Let (u, v) be
an edge in G. We perform lca query on T(s,t) for u and v to get the (s, t)-cut, say C, of the
least capacity that separates u and v. We determine whether C satisfies the following two
conditions.
1. Edge (u, v) contributes to C.
2. c(C)− w((u, v)) < f∗

If both conditions are satisfied, by Definition 1, (u, v) is a vital edge. Observe that there
may be vital edges that do not satisfy Condition (1); refer to Figure 3(i). However, it follows
from Theorem 27 that each tight edge does satisfy these two conditions. After processing all
edges of G, let S be the resulting set of vital edges that satisfy both these conditions. We
eliminate from S all the loose edges to get all the tight edges.

▶ Remark 28. In an undirected graph, observe that a mincut for an edge (u, v) is always an
(s, t)-cut of the least capacity that separates u and v. Therefore, computing all vital edges
in an undirected graph amounts to just verifying condition (2) for each edge as shown by
Ausiello, Lari, Franciosa, and Ribichini [3].

Thus we can state the following theorem.

▶ Theorem 29. For any directed weighted graph G on n vertices with a designated source
vertex s and a designated sink vertex t, there is an algorithm that computes all tight edges of
G using O(n) maximum (s, t)-flow computations.

Theorem 29 and the discussion on computing the loose edges lead to Theorem 30.
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Figure 3 (i) A is the (s, t)-cut of least capacity that separates a and b. Edge (a, b) is a vital edge,
and it is incoming to A. (ii) Dvit(G)=G. {s, a} is a 1-transversal cut, but not a mincut for any
vital edge. (iii) mincuts A and B for vital edges (c, t) and (d, t), respectively, are not closed under
union. Moreover, edge (b, a) (likewise edge (c, d)) contributes to A (likewise to B) and is incoming
to B (likewise to A).

▶ Theorem 30 (Computing All Vital Edges). For any directed weighted graph on n vertices
with a designated source vertex s and designated sink vertex t, there is an algorithm that
computes all vital edges and their vitality using O(n) maximum (s, t)-flow computations.

▶ Note 31. We present the following applications of our algorithm in Theorem 30 (refer to
the full version).
1. Observe that data structure T(s,t) also stores a mincut for every tight edge. Therefore, an

(s, t)-mincut in graph G\{e} for every tight edge e can be computed using O(n) maximum
(s, t)-flow computations. Moreover, since loose edges are at most n− 1, therefore, using
O(n) maximum (s, t)-flow computations, we can compute an (s, t)-mincut in graph G\{e}
for every vital edge e of G.

2. Given a mincut for all vital edges, using Algorithm 1, the process of constructing Tvit(G)
and the data structure in Theorem 21(2) requires O(m log n + n2) time. As a byproduct,
data structure in Theorem 21(2) provides a mincut cover for all vital edges.

3. As stated in (2), we can construct Tvit(G) using O(n) maximum (s, t)-flow computations.
Given any k ∈ [m], using Tvit(G) and a maxheap data structure, the k most vital edges
can be reported in O(m + k log k) time.

▶ Note 32. Given any edge e and its capacity w(e), the data structure in Theorem 20 can
be used to report the vitality of e in O(1) time by assigning ∆ = w(e).

7 Compact Structures for all Mincuts for all Vital Edges

The set containing all (s, t)-mincuts satisfies two important properties – (i) closed under
both intersection and union and (ii) an edge contributing to an (s, t)-mincut can never be
an incoming edge to another (s, t)-mincut. These two properties are exploited crucially in
the design of DAG structures for compactly storing and characterizing all (s, t)-mincuts
[30, 4] using 1-transversal cuts. Unfortunately, none of these properties holds for the set of
all mincuts for all vital edges (refer to Figure 3(iii)). This makes the problem of designing
compact structures for mincuts for all vital edges challenging. We present two structures for
storing and characterizing all mincuts for all vital edges – one is a single DAG that provides
a partial characterization and the other consists of a set of O(n) DAGs that provides a
complete characterization.

(a) An O(m) Space DAG for Partial Characterization. We first show that the approaches
taken in [30, 4] are not sufficient for designing a compact structure for all mincuts for all
vital edges. In particular, the resulting graph Q′(G), obtained from G after applying the
techniques from [30, 4], is still not acyclic. Moreover, a mincut for a vital edge can have
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unbounded transversality (refer to the full version) in Q′(G). It turns out that the source
of this problem is the set of all edges that are contributing to a mincut for a vital edge as
well as incoming to a mincut for another vital edge. The set of such edges is denoted by
Γ-edges. Exploiting GenFlowCut property crucially, we show that all edges in Γ-edges are
nonvital. Thereafter, counter intuitive to Note 2, we show that the graph obtained after the
removal of all Γ-edges from G still preserves all (s, t)-mincuts of G, and provides a partial
characterization for all mincuts for all vital edges as follows.

▶ Theorem 33 (Partial Characterization). For a directed weighted graph G on m edges with a
designated source vertex s and a designated sink vertex t, there is an O(m) space directed
acyclic graph Dvit(G) that preserves the capacity of (s, t)-mincut, and for each vital edge e

in G, (1) Every mincut for edge e in G is a 1-transversal cut in Dvit(G) and (2) A mincut
C for e in G appears as a relevant cut in Dvit(G), that is, c(C)− w(e) < f∗ in Dvit(G).

▶ Note 34. Existing DAG structures for (s, t)-mincuts [30, 4] turn out to be just a special
case of DAG Dvit(G) in Theorem 33. Moreover, Dvit(G) additionally guarantees the property
(2) in Theorem 33, which does not hold in the existing DAGs [30, 4] (refer to full version).

(b) An O(mn) Space Structure for Complete Characterization. Although each mincut
for every vital edge is a 1-transversal cut in Dvit(G), it is not necessary that each 1-transversal
cut in Dvit(G) is a mincut for a vital edge (refer to Figure 3(ii)). Hence, Dvit(G) could
provide only a partial characterization. Let e = (u, v) be any vital edge, and He denote the
graph obtained by adding two infinite weight edges, (s, u) and (v, t), in graph G. Observe
that all mincuts for (u, v) are compactly stored in the DAG for (s, t)-mincuts [30] built on
graph He. We denote this DAG by DP Q(He). It can be seen that keeping DP Q(He) for
each vital edge e serves as a compact structure for storing all mincuts for all vital edges and
characterizing them in terms of 1-transversal cuts. However, this structure may take O(m2)
space in the worst case. We present an O(mn) space structure Svit(G). This structure
consists of O(n) DAGs for storing and characterizing all mincuts for all vital edges in terms
of 1-transversal cuts. To build the structure Svit(G), the main challenge turns out to be
designing a compact structure for storing and characterizing all mincuts for all tight edges.
It follows from Theorem 27 that any tight edge e = (u, v) contributes to the (s, t)-cut of
the least capacity separating u and v. Therefore, a solution to the following problem would
suffice to overcome the challenge.

▶ Problem 1. Given a directed weighted graph G with a designated source s and a designated
sink t, build a compact structure that, for each pair of vertices a and b in G, stores and
characterizes all the (s, t)-cuts of the least capacity that separate a and b in G.

To solve Problem 1, we address the problem of designing a compact structure for storing
and characterizing all Steiner (s, t)-mincuts for a given Steiner set, which is of independent
interest.

Compact Structure for all Steiner (s, t)-mincuts. Let S ⊆ V be a Steiner set. An
(s, t)-cut C is a Steiner (s, t)-cut if C ∩ S and C ∩ S are nonempty. A Steiner (s, t)-cut
with the least capacity is a Steiner (s, t)-mincut. The main hurdle in designing a compact
structure for Steiner (s, t)-mincuts is that, unlike (s, t)-mincuts, they are not closed under
intersection/union. We overcome this hurdle by generalizing the covering technique from [4]
to directed weighted graphs and obtain a structure occupying O(|S|m) space.

Finally, we design a hierarchy tree, which is a generalization of the hierarchy tree of [25],
and augment it with the structure for Steiner (s, t)-mincuts. It leads to the following result.
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Figure 4 (i) Graph G. The dashed curve represents the mincut for edge (u2, v2). (ii) Graph
G(M). Each edge (ui, vj), 1 ≤ i, j ≤ n, is a vital as well as tight edge.

▶ Theorem 35 (Complete Characterization). For any directed weighted graph G on n vertices
and m edges with a designated source vertex s and a designated sink vertex t, there is an
O(mn) space structure Svit(G) consisting of O(n) DAGs such that for any vital edge e,
1. There exists at most two DAGs, Ds(e) and Dt(e), that store all mincuts for edge e.
2. An (s, t)-cut C in G is a mincut for edge e if and only if C is a 1-transversal cut in either
Ds(e) or Dt(e) and e is a contributing edge of C.

▶ Note 36. Problem 1 is addressed in [4] for unweighted graphs and only for those pair
of vertices for which the capacity of (s, t)-cut of the least capacity separating them is
minimum+1. An O(mn) space structure is designed in [4] for this special case of Problem 1.
Hence, Theorem 35 provides a generalization of the result in [4] for weighted graphs while
matching the space bound. An important application of structure Svit(G) is Theorem 21(3)
(refer to the full version).

8 Lower Bounds

In this section, we first provide a lower bound on the worst case size of mincut cover for all
edges. Later, we give a lower bound on the space for any data structure that can report the
capacity of (s, t)-mincut after the failure of any edge in both undirected and directed graphs.

8.1 Mincut Cover for All Edges
In this section, we establish the following theorem.

▶ Theorem 37. There exists a directed weighted graph G = (V, E) on n = |V | vertices such
that the number of mincuts for all edges in G is Ω(n2).

In order to prove Theorem 37, we construct a graph G on 2n + 2 vertices with a set of Ω(n2)
edges E′ that has the following property. For each pair of edges e, e′ ∈ E′, the capacity of
mincut for edge e is different from the capacity of mincut for edge e′ (refer to Figure 4(i)).

Construction of G. The vertex set consists of two disjoint sets A = {u1, u2, . . . , un} and
B = {u1, u2, . . . , un} of n vertices each, along with a source vertex s and a sink vertex t. The
edges are defined as follows. There is an edge with unit capacity from vertex s to each vertex
in A. Likewise, there is a unit capacity edge from each vertex in B to sink t. For each u ∈ A

and v ∈ B, there is an edge (u, v). Let E′ be the set of all edges from A to B. Each edge in
E′ is assigned a unique capacity from [n2, 2n2]. It can be observed that w(e1) ̸= w(e2) for
every pair of edges e1, e2 ∈ E′.

ICALP 2024
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▶ Lemma 38. For every pair of edges e1 and e2 from E′, the capacity of mincut for e1 is
different from the capacity of mincut for e2.

Proof. Let e = (u, v) be an edge from E′. Let us define an (s, t)-cut Ce in which edge e

contributes. Ce keeps each vertex x ∈ A \ {u} on the side of t. Similarly, Ce keeps each
vertex x ∈ B \{v} on the side of s. Therefore, the contributing edges of (s, t)-cut Ce are edge
e, the edges from s to each vertex x ∈ A \ {u}, and the edges from each vertex x ∈ B \ {v} to
t. Hence the capacity of Ce is w(e) + (n− 1) + (n− 1) = w(e) + 2n− 2. Any other (s, t)-cut
in which edge e contributes must have at least one more contributing edge e′ from E′. Since
w(e′) is at least n2, therefore, Ce is the mincut for edge e. For any other edge e′′ from E′, in
a similar way, the capacity of the mincut for e′′ is w(e′′) + 2n− 2, which is different from the
capacity of Ce since w(e) ̸= w(e′′). This completes the proof. ◀

Since |E′| = Ω(n2), it follows from Lemma 38 that graph G has Ω(n2) different capacities of
mincuts for edges in E′. This completes the proof of Theorem 37.

8.2 Fault-tolerant (s,t)-mincut
In this section, we provide a lower bound on the space for any data structure that can report
the capacity of (s, t)-mincut after the failure of any edge. Let M be a n× n matrix where
for any i, j ∈ [n], M [i, j] stores an integer in the range [1, nc] for some constant c > 0. Given
any instance of the matrix M , we construct the following undirected graph G(M) (refer to
Figure 4(ii)).

Description of G(M). The vertex set is defined as follows. There is a source vertex s and
a sink vertex t. For all the n rows of matrix M , there is a set R of n vertices {u1, u2, . . . , un}.
Similarly, For all the n columns of matrix M , there is a set C of n vertices {v1, v2, . . . , vn}.
For each i, j ∈ [n], there is an edge eij of capacity wi,j = M [i, j] between vertex ui and vj .
For each i ∈ [n], there is an edge of infinite capacity between source s and vertex ui and
there is an edge of infinite capacity between vertex vi and sink t. Let λ be the capacity of
(s, t)-mincut in G(M).

We now establish a relation between the graph G(M) and matrix M in the following
lemma.

▶ Lemma 39. For any i, j ∈ [n], the capacity of (s, t)-mincut in G(M) after the failure of
edge (ui, vj) is λ−M [i, j].

Proof. In graph G(M), C = {s} ∪ R is the only (s, t)-cut of finite capacity. Therefore, C

is the (s, t)-mincut in graph G(M). Observe that only edges (ui, vj) for any 0 < i, j ≤ n

contribute to C. Hence λ =
∑

i,j∈[n] w((ui, vj)). Therefore, upon failure of edge eij = (ui, vj),
the reduction in the capacity of (s, t)-mincut is the same as w(eij), which is M [i, j] as follows
from the construction of G(M) described above. ◀

Let F (G(M)) be any data structure that can report the (s, t)-mincut after the failure of
an edge in the graph G(M). We use the data structure F (G(M)) and Lemma 39 to report
M [i, j] for any 0 < i, j ≤ n as follows.

return (λ− λ′) where λ′ is the value returned by F (G(M)) after failure of edge (ui, vj).
Note that there are 2n2c log n different instances of the matrix M . It follows from Lemma 39

that for any pair of distinct instances of matrix M , the encoding of the corresponding data
structures must differ. Therefore, there is an instance of matrix M for which the data
structure F (G(M)) must occupy Ω(n2 log n) bits of space.
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For directed graphs, a lower bound of Ω(n2 log n) bits of space can be achieved by
orienting each undirected edge of G(M) as follows. For each i, j ∈ [n], orient edge (ui, vj)
from vertex ui to vertex vj . For each i ∈ [n], orient edge (s, ui) from source s to vertex ui.
Similarly, for each j ∈ [n], orient edge (vj , t) from vertex vj to sink t. The rest of the proof
is the same as the case of undirected graphs. This completes the proof of Theorem 23.

By exploiting Theorem 37, the following data structure lower bound can also be established
along similar lines to the proof of Theorem 23.

▶ Theorem 40. Any data structure that, given a pair of vertices {u, v}, can report the
capacity of an (s, t)-cut C of the least capacity such that u ∈ C and v ∈ C in a directed
weighted graph on n vertices must occupy Ω(n2 log n) bits of space.
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