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Abstract
We study sublinear time algorithms for the traveling salesman problem (TSP). First, we focus on
the closely related maximum path cover problem, which asks for a collection of vertex disjoint paths
that include the maximum number of edges. We show that for any fixed ε > 0, there is an algorithm
that (1/2 − ε)-approximates the maximum path cover size of an n-vertex graph in Õ(n) time. This
improves upon a (3/8 − ε)-approximate Õ(n

√
n)-time algorithm of Chen, Kannan, and Khanna

[ICALP’20].
Equipped with our path cover algorithm, we give an Õ(n) time algorithm that estimates the

cost of (1, 2)-TSP within a factor of (1.5 + ε) which is an improvement over a folklore (1.75 + ε)-
approximate Õ(n)-time algorithm, as well as a (1.625 + ε)-approximate Õ(n

√
n)-time algorithm

of [CHK ICALP’20]. For graphic TSP, we present an Õ(n) algorithm that estimates the cost of
graphic TSP within a factor of 1.83 which is an improvement over a 1.92-approximate Õ(n) time
algorithm due to [CHK ICALP’20, Behnezhad FOCS’21]. We show that the approximation can be
further improved to 1.66 using n2−Ω(1) time.

All of our Õ(n) time algorithms are information-theoretically time-optimal up to poly log n

factors. Additionally, we show that our approximation guarantees for path cover and (1, 2)-TSP hit
a natural barrier: We show better approximations require better sublinear time algorithms for the
well-studied maximum matching problem.
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1 Introduction

The traveling salesman problem (TSP) is a central problem in combinatorial optimization.
Given a set V of n vertices and their pairwise distances, it asks for a Hamiltonian cycle of
the minimum cost. In this paper, we study sublinear time algorithms for TSP. The algorithm
is given query access to the distance pairs, and the goal is to estimate the solution cost in
time sublinear in the input size (which is Θ(n2)).
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19:2 Sublinear Algorithms for TSP via Path Covers

TSP is NP-hard to approximate within a polynomial factor for an arbitrary distance
function. As such, much of the work in the literature has been on more specific distance
functions. Some notable examples include graphic TSP [15, 22, 23, 25, 10] where the
distances are the shortest paths over an arbitrary unweighted undirected graph, (1, 2)-TSP
[1, 10, 7, 18, 21] where the distances are 1 or 2, and more generally metric TSP [17, 14, 12, 26]
where the distances satsify triangle inequality.

In 2003, Czumaj and Sohler [13, 14] showed that for any fixed ε > 0, a (1+ε)-approximation
of the cost of metric minimum spanning tree (MST) and thus a (2 + ε)-approximation of the
cost of metric TSP can be found in Õ(n) time. Twenty years later, it still remains a major
open problem to either break two-approximation in n2−Ω(1) time or prove a lower bound.1
However, better bounds are known for both graphic TSP and (1, 2)-TSP. In this paper, we
present improved algorithms for these two well-studied variants of TSP. Our main tool to
achieve this is an improved algorithm for the closely related maximum path cover problem
which might be of independent interest.

Maximum Path Cover. The maximum path cover in a graph is a collection of vertex disjoint
paths with the maximum number of edges in it. The (almost) 1/2-approximate maximum
matching size estimator of Behnezhad [2] immediately implies an (almost) 1/4-approximation
for the maximum path cover problem in Õ(n) time.2 This can be improved to an (almost)
(3/8 = .375)-approximation using the matching-pair idea of Chen, Kannan, and Khanna [10]
in Õ(n

√
n)-time.3 Our first main contribution is an improvement over both of these results:

▶ Result 1 (Formally as Theorem 17). For any ε > 0, there is a randomized algorithm that
w.h.p. (1/2− ε)-approximates the size of maximum path cover in Õ(n · poly(1/ε)) time.

Besides quantitavely improving prior work both in the running time and the approximation
ratio, Result 1 reaches a qualitatively important milestone as well. First, the running time
of Result 1 is information-theoretically optimal up to poly log n factors (the lower bound
holds for any constant approximation – see the arXiv version of the paper). Second, its
approximation ratio hits a rather important barrier. We give a non-trivial reduction that
shows a (1/2 + Ω(1))-approximation in Õ(n) time for maximum path cover would imply
the same bound for maximum matching in bipartite graphs. Such a result has remained
elusive for matching, which is one of the most extensively studied problems in the literature
of sublinear time algorithms. See the arXiv version of the paper for the lower bound details.

It is also worth noting that in bounding the running time of our algorithm in Result 1,
we use connections to parallel algorithms. Such a connection was previously only used for
matchings [2].

(1, 2)-TSP. The (1, 2)-TSP problem has been studied extensively in the classical setting.
In his landmark paper, Karp [18] showed that (1, 2)-TSP is NP-hard. Papadimitriou and
Yannakakis [24] then proved its APX-hardness. Since then there has been a significant amount
of work on (1, 2)-TSP in the classical setting. The current best known inapproximability
bound for (1, 2)-TSP is 535/534 [19]. After a series of works, the best known polynomial

1 See e.g. Open Problem 71 on sublinear.info [16].
2 The application of sublinear time maximum matching algorithms for approximating maximum path

cover was first proposed by Gupta and Onak. See [16].
3 We note that even though a subsequent result of Behnezhad [2] improved the running time for maximal

matchings and graphic TSP from O(n
√

n) in [10] to Õ(n), it is not immediately clear whether the same
holds for path cover and (1, 2)-TSP as they rely on a different notion of a matching pair.

https://sublinear.info/index.php?title=Open_Problems:71
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Table 1 Comparison of running time and approximation ratio of our TSP algorithms and lower
bounds with prior work.

Running Time Approximation
Ratio Metric Reference

Õ(n) 1.75 + ε (1,2) Folklore

Õ(n
√

n) 1.625 + ε (1,2) Chen, Kannan, and Khanna [10]

Õ(n) 1.5 + ε (1,2) This work (Result 2)

Õ(n) 1.929 Graphic Chen, Kannan, and Khanna [10]

Õ(n) 1.834 Graphic This work (Result 3)

n2−Ω(1) 1.667 Graphic This work (Result 4)

Ω(n2) 1 + ε (1,2) & Graphic Chen, Kannan, and Khanna [10]

n1+Ω(1)

(Conditional) 1.5 − ε (1,2) & Graphic This work (arXiv version)

time approximation is 8/7 [7] which can be implemented in O(n3) time [1]. For sublinear
time algorithms, an Õ(n)-time (almost) 1.75-approximation is folklore [16]. Chen, Kannan,
and Khanna [10] improved the approximation to (almost) 1.625 in Õ(n

√
n) time.

It is not hard to see that up to a small additive error of 1, (1, 2)-TSP is equivalent to
finding a maximum path cover on the weight-1 edges and then connecting their endpoints via
weight-2 edges. A simple calculation shows that any α-approximation for the maximum path
cover problem leads to a (2− α)-approximation for (1, 2)-TSP. Our path cover algorithm of
Result 1 immediately implies the following result as a corollary:

▶ Result 2. For any ε > 0, there is a randomized algorithm that w.h.p. (1.5 + ε)-
approximates the cost of (1, 2)-TSP in Õ(n · poly(1/ε)) time.

Similar to Result 1, the running time of Result 2 is information-theoretically optimal up
to poly log n factors, and its approximation ratio hits a natural barrier due to a connection
to sublinear time matching that we establish in this work.

Graphic TSP. The graphic TSP problem is equivalent to finding a tour of the minimium
size that visits all the vertices. This is an important instance of TSP that has received a
lot of attention over the years. For polynomial time algorithms, a 1.5-approximation of
Christofides [12] (which also works more generally for metric TSP) had remained the best
known until a series of works over the last decade improved it to (1.5− ε0) [15], 1.461 [22],
1.444 [23], and finally to 1.4 [25]. For sublinear time algorithms, Chen, Kannan, and Khanna
[10] showed that an (almost) (27/14 ≈ 1.928)-approximation of graphic TSP can be obtained
in Õ(n

√
n) time. The running time was subsequently improved to Õ(n) by Behnezhad [2].

We first show that plugging Result 1 into the framework of [10] immediately improves
their approximation from 1.928 to (almost) 1.9 while keeping the running time Õ(n). We
then give a more fine tuned algorithm that obtains a much improved approximation ratio of
(11/6 ≈ 1.833).

ICALP 2024
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▶ Result 3. For any ε > 0, there is a randomized algorithm that w.h.p. (1+ε)( 11
6 ≈ 1.833)-

approximates the cost of graphic TSP in Õ(n · poly(1/ε)) time.

Over the past few years, significant advancements have been made in the development
of sublinear matching algorithms and lower bounds. Several recent results [3, 4, 5, 6, 8, 9]
have led to the creation of a (1, εn)-approximation algorithm for maximum matching, with
running time of n2−Ωε(n). Leveraging these sublinear algorithms, we have devised a slightly
subquadratic algorithm that provides a more accurate estimation of the size of graphic TSP.

▶ Result 4. For any ε > 0, there is a randomized algorithm that w.h.p. (1+ε)( 5
3 ≈ 1.666)-

approximates the cost of graphic TSP in n2−Ωε(1) time.

We contrast our results with prior sublinear TSP algorithms in Table 1.

Further related work. Finally, we note that in a recent paper, Chen, Khanna, and Tan [11]
show that assuming that the metric has a spanning tree supported on weight 1 edges, one can
obtain a (2− ε0)-approximation with Õ(n

√
n) queries for some small unspecified constant

ε0 > 0. While this is a more general metric than graphic TSP and (1,2)-TSP that we study
in this paper, we note that the two papers are orthogonal and their results are incomparable.
In particular, the techniques developed in this paper are specifically designed to improve the
approximation to much below 2, whereas [11] focuses on generalizing the distance function
while beating 2.

2 Technical Overview

In this section, we give an overview of our algorithms, especially our sublinear time maximum
path cover algorithm of Result 1 which is the key to the other results as well.

Let us start with using matchings to approximate maximum path cover. Consider a
graph that has a Hamiltonian path. Here, the optimal maximum path cover has size n− 1.
On the other hand, any maximum matching can have at most n/2 edges, which is by a
factor 2 smaller than our optimal path cover. On top of this, we only know close to 1/2
approximations for maximum matching if we restrict the running to be close to linear in n

[2, 6], thus can only achieve an approximation close to 1/4.
Instead of a single matching, Chen, Kannan, and Khanna [10] showed how to estimate

the number of edges in a maximal matching pair in Õ(n
√

n) time, where a matching pair
is simply two edge disjoint matchings. It is not hard to see that the number of edges in a
maximal matching pair is at least half the number of edges in a maximum path cover. The
problem, however, is that a maximal matching pair is not a collection of paths! In particular,
the two matchings can form cycles of length as small as four. Therefore, one may only be
able to use 3/4 fraction of the edges of a matching pair in a path cover. This is precisely
why the algorithm of [10] only obtains a 1

2 ×
3
4 = 3

8 approximation for path cover, and a
2− 3

8 = 1.625 approximation for (1, 2)-TSP.
If we could modify the matching pair algorithm of [10], and avoid cycles by manually

excluding edges whose endpoints are the endpoints of a path in the current matching pair,
then we could avoid the 3/4 factor loss discussed above and achieve a 1/2-approximation.
Unfortunately, checking whether the endpoints of an edge are endpoints of a path requires
knowledge about whether a series of other edges belong to the solution, which seems hard to
implement in sublinear time.
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Instead of checking for cycles manually, we introduce the following Algorithm 1 which
avoids cycles more naturally. While our final algorithm is a modified variant of Algorithm 1
described below, we start with Algorithm 1 as we believe it provides the right intuition.

Algorithm 1 A new algorithm for path cover.

1 Initialize P ← ∅.
2 Each vertex v has two ports that we denote by v0 and v1. Each of these ports

throughout the algorithm will be either free or occupied. Initially, all ports are free.
3 Iterate over the edges in some ordering π. Upon visiting an edge e = (u, v):

If v0 and u0 are free, add e to P , mark both as occupied, and skip to the next edge.
If v1 and u0 are free, add e to P , mark both as occupied, and skip to the next edge.
If v0 and u1 are free, add e to P , mark both as occupied, and skip to the next edge.

4 Return P .

Two properties of Algorithm 1 are crucial. First, it prioritizes occupying (u0, v0) (compared
to (u1, v0) or (u0, v1)) which in particular implies that any component in P must have a
(u0, v0) edge. Second, it never occupies (u1, v1) with an edge (u, v). While it is easy to see
that the output of Algorithm 1 has maximum degree 2, and is thus a collection of paths or
cycles, the two properties above actually guarantee that it never includes any cycle. See
Figure 1. We provide the formal proof of this later in Section 4. Additionally, we show that
the output of Algorithm 1 must be at least half the size of a maximum path cover, as we
prove next. Hence, if we manage to estimate the size of the output P of Algorithm 1, then
we have proved Result 1.
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Figure 1 Examples of why the output of Algorithm 1 will not have cycles.

Our final algorithm is slightly different from Algorithm 1 discussed above. In particular, we
slightly relax it – see Algorithm 2 – so that it can be solved via a randomized greedy maximal
independent set (RGMIS), for which we have a rich toolkit of sublinear time estimators.
Existing approaches (particularly the algorithm of Yoshida, Yamamoto, and Ito [27] and its
two-step implementation by Chen, Kannan, and Khanna [10]) can be employed to estimate
the value of this modified Algorithm 2 in Õ(n

√
n) time. We achieve the improved, and near

tight, Õ(n) time bound guarantee of Result 1 by building on the analysis of Behnezhad [2]
for maximal independent set on the line graphs (i.e., maximal matchings). Though we note
that several new ideas are needed, because the MIS graph in our case will not be exactly a
line graph. We defer more discussions about this to Sections 4 and 5.

ICALP 2024



19:6 Sublinear Algorithms for TSP via Path Covers

Implications for TSP. By having an α-approximate maximum path cover algorithm, we
immediately obtain a (2− α)-approximation for (1, 2)-TSP. Therefore, the algorithm above
immediately proves Result 2 that we can (almost) 1.5-approximate (1, 2)-TSP in Õ(n) time.
For our Result 3 for graphic TSP, we first observe that our improved path cover algorithm can
be employed to provide a better lower bound for the optimal TSP solution. This improves
the 1.92-approximation of [10] as black-box to 1.9-approximation (see the arXiv version of
the paper). However, the final improvement to 1.83 requires more ideas, in particular, on
how to better estimate the number of certain bridges in the graph. See Section 8 for more
details about this.

3 Preliminaries

Problem Definition. In the sublinear TSP problem, we have a set V of n vertices and a
distance function d : V × V → R+. The algorithm has query access to this distance function.
Namely, for any pair (u, v) of the vertices of its choice, the algorithm may query the value
of d(u, v). The goal is to design an algorithm that runs in sublinear time in the input size,
which is Θ(n2) (all the distance pairs), and produces an estimate of the size of the optimal
TSP solution. Denoting the optimal TSP value by τ(V ), we say an estimate τ̃(V ) provides
an α-approximation for α ≥ 1 if

τ(V ) ≤ τ̃(V ) ≤ α · τ(V ).

We focus specifically on graph TSP and (1, 2)-TSP problems. In graphic TSP, the distance
function d is the shortest path metric on an unweighted undirected graph G that is unknown
to the algorithm. Note, however, that the distance queries essentially provide adjacency
matrix access to this graph G. In (1, 2)-TSP, the assumption is that d(u, v) ∈ {1, 2} for every
pair u, v. In the case of (1, 2)-TSP we may use G to refer to the subgraph induced on the
pairs with distance 1.

Defining graph G as above, we use n to denote the number of its vertices, m to denote
the number of its edges, ∆ to denote its maximum degree, µ(G) to denote its maximum
matching size, ν(G) to denote its minimum vertex cover size, and d̄ to denote its average
degree.

Path Cover Definitions. Given an unweighted graph G, a path cover in G is a collection of
vertex disjoint paths in G. A maximum path cover is a path cover of G with the maximum
number of edges in it (note that we are not counting the number of paths, but rather the
total number of edges in them). We use ρ(G) to denote the size of the maximum path cover
in G. We say an estimate ρ̃(G) for ρ(G) provides an (α, ε)-approximation for α, ε ∈ [0, 1] if

α · ρ(G)− εn ≤ ρ̃(G) ≤ ρ(G).

We may also use α-approximation instead of (α, 0)-approximation.

Graph Theory Definitions/Tools. A bridge (cut edge) in a graph is an edge whose deletion
increases the number of connected components. Similarly, a cut vertex is a vertex whose
deletion (along with its edges) increases the number of connected components. A biconnected
graph is a connected graph with no cut vertex. Also, a biconnected component (block) of a
graph is a maximal biconnected subgraph of the original graph. A non-trivial biconnected
component is a block that is not a bridge. We say a graph is 2-edge-connected if there is no
bridge in the graph. A 2-edge-connected component of a graph is maximal 2-edge-connected



S. Behnezhad, M. Roghani, A. Rubinstein, and A. Saberi 19:7

subgraph of the original graph. The bridge-block tree of a graph is a tree obtained by
contracting the 2-edge-connected components; note that the edge set of a bridge-block tree
correspond to the bridges in the original graph.

We use the following classic theorem of König [20] that the size of the minimum vertex
cover is equal to the size of maximum matching in bipartite graphs. Namely:

▶ Proposition 1 (König’s Theorem). In any bipartite graph G, µ(G) = ν(G).

Probabilistic Tools. In our proofs, we use the following standard concentration inequalities.

▶ Proposition 2 (Chernoff Bound). Let X1, X2, . . . , Xn be independent Bernoulli random
variables. Let X =

∑n
i=1 Xi. For any t > 0, Pr[|X −E[X]| ≥ t] ≤ 2 exp

(
− t2

3 E[X]

)
.

▶ Proposition 3 (Hoeffding’s Inequality). Let X1, X2, . . . , Xn be independent random variables
such that a ≤ Xi ≤ b. Let X̄ = (

∑n
i=1 Xi)/n. For any t > 0, Pr[|X̄ − E[X]| ≥ t] ≤

2 exp
(
− 2nt

(b−a)2

)
.

4 New Meta Algorithms for Maximum Path Cover

In this section, we present a new meta algorithm for maximum path cover that obtains a
1/2-approximation. The algorithm, as we will state it in this section, will not be particularly
in the sublinear time model. We discuss its sublinear time implementation later in Sections 5
and 6.

Our starting point is the Algorithm 1 described in Section 2. Let us first formally prove
that it obtains a 1/2-approximation, and that no component in it is a cycle.

▷ Claim 4. The output of Algorithm 1 is a collection of disjoint paths.

Proof. Since P has maximum degree two, it suffices to show none of its connected components
are cycles. Property (i) above implies that at any point during the algorithm, any degree
one vertex v has its port v0 occupied. Now take an edge e = (u, v) that forms a cycle if
added to P . Both u and v must have degree one and so u0 and v0 are occupied. Since by
property (ii) edge e does not occupy both v1 and u1, the algorithm does not add e to P thus
not completing a cycle. ◁

▷ Claim 5. Let P ⋆ be any path cover using weight one edges. Then the output of Algorithm 1
has size at least 1

2 |P
⋆|.

Proof. For any edge e = (u, v) ∈ P ⋆ define ϕ(e) = 1
4 (degP (u) + degP (v)). We first claim that

for every edge e = (u, v) in G, we have ϕ(e) ≥ 1/2 (or, equivalently, degP (u) + degP (v) ≥ 2).
This is clear for edges e ∈ P due to the contribution of e itself to its endpoints’ degrees, so
fix e ̸∈ P . Consider the time that we process e = (u, v) in the algorithm and decide not to
add it to P . We claim that out of v0, v1, u0, u1 at least two ports must be occupied. Suppose
w.l.o.g. and for contradiction that only vx is occupied for x ∈ {0, 1}. Then (u, v) can occupy
v1−x and ux and be added to P . This contradicts (u, v) not being added to P and proves
our claim that ϕ(e) ≥ 1/2.

From the discussion above, we get that∑
e∈P ⋆

ϕ(e) ≥
∑

e∈P ⋆

1/2 = |P ⋆|/2.

ICALP 2024



19:8 Sublinear Algorithms for TSP via Path Covers

Moreover, because every vertex has degree at most two in P ⋆, we get∑
e∈P ⋆

ϕ(e) = 1
4

∑
(u,v)∈P ⋆

degP (u) + degP (v) ≤ 1
4 · 2

∑
v∈V

degP (v) = |P |.

The two inequalities above combined imply that |P | ≥ |P ⋆|/2. ◁

As discussed, our final algorithm is different from Algorithm 1 discussed above. One
problem with Algorithm 1 is that it cannot be cast as an instance of the randomized greedy
maximal independent set (RGMIS) algorithm for which there is a rich toolkit of sublinear
time estimators. To remedy this, we present a modified variant of Algorithm 1 whose output
is (almost) as good, but in addition can be modeled as an instance of RGMIS. We denote
the output of RGMIS on a graph G with a permutation π on its vertices by RGMIS(G, π).

The algorithm is stated below as Algorithm 2. Similar to the output of Algorithm 1, the
output of Algorithm 2 can be verified to have maximum degree two. Thus, it is a collection
of paths and cycles. But unlike Algorithm 1, the output of Algorithm 2 can have cycles. This
happens since, unlike Algorithm 1, each connected component of the output of Algorithm 2
is not guaranteed to have an edge (u, v) occupying both u0 and v0. Nonetheless, we are able
to show that this bad event only happens for a small fraction of connected components of
the output of Algorithm 2 in expectation, and so once we remove one edge of each of these
cycles, the resulting collection of disjoint paths has almost the same size.

Algorithm 2 A modification of Algorithm 1 that uses RGMIS.

1 Parameter: K (think of it as a large constant integer).
2 Let G = (V, E) be the subgraph of weight one edges. We construct a graph

H = (VH , EH) from G on which we run RGMIS.
3 Each vertex in H corresponds to an edge e in G and two ports (as in Algorithm 1) of

the endpoints of e that it occupies. Formally, for any (u, v) ∈ E we have K + 2
vertices in H:

One vertex that corresponds to occuping u0 and v1.
One vertex that corresponds to occuping u1 and v0.
K vertices that each corresponds to occuping u0 and v0.

4 Consider two distinct vertices a and b in H corresponding to edges ea and eb in G:
If ea = eb then we add an edge between a and b in H.
If ea and eb share exactly one endpoint v and both a and b occupy the same port
of v, we add an edge between a and b in H.

5 Find a randomized greedy maximal independent set I of H.
6 Let P be the set of edges in G corresponding to the vertices in I.
7 Return P .

▶ Observation 6. Let C be a connected component in the output of Algorithm 2. If C is a
cycle, then every edge in C occupies one 0-port and one 1-port (that is, no edge occupies two
0-ports).

Proof. Suppose that C has n′ vertices. Since each vertex in a cycle has degree two, both
ports of each vertex in C must be occupied. Hence, n′ 0-ports and n′ 1-ports of C are
occupied in total. Given that any edge occupies at least one 0-port by the algorithm, we
cannot have an edge that occupies two 0-ports, or else we should occupy more 0-ports than
1-ports of C, which is a contradiction. ◀
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Next, we show that up to a factor of (1 + 2/k) which is negligible for K in the order 1/ε,
the output of Algorithm 2 is an (almost) 1/2-approximation of the maximum path cover
value.

▶ Observation 7. Let C be a connected component in the output of Algorithm 2. If C is a
path, then it contains at most one edge that occupies two 0-ports.

Proof. Let C be the path (v1, v2, . . . , vr). Since the degree of any vertex vi for 1 < i < r is
two in the path, both ports of vi must be occupied. For v1 and vr, on the other hand, only
one port is occupied. Hence, the total number of 0-ports that are occupied by C minus the
number of 1-ports occupied by it is at most two. This means that there is at most one edge
that occupies two 0-ports since all other types of edges occupy exactly one 0-port and one
1-port. ◀

▶ Lemma 8. let P be the output of Algorithm 2 on graph G. Then

1
2ρ(G) ≤ E |P | ≤

(
1 + 2

K

)
ρ(G),

where the expectation is taken over the randomization of computing RGMIS in Algorithm 2.

Proof. Let P ∗ be a maximum path cover. For any edge e = (u, v) ∈ P ⋆ define ϕ(e) =
1
4 (degP (u) + degP (v)). With the exact same argument as in the proof of Claim 5, we get
that ϕ(e) ≥ 1/2, which implies∑

e∈P ⋆

ϕ(e) ≥
∑

e∈P ⋆

1/2 = ρ(G)/2.

Since the degree of each vertex in P is at most two, we get∑
e∈P ⋆

ϕ(e) = 1
4

∑
(u,v)∈P ⋆

degP (u) + degP (v) ≤ 1
4 · 2

∑
v∈V

degP (v) = |P |.

By combining above inequalities we get 1
2 ρ(G) ≤ |P |. Note that we do not need the

randomization for the proof of the lower bound.
By construction of P , every vertex has degree at most two in P . Hence, all connected

components of P are cycles and paths. We claim that at most 2
K+2 fraction of connected

components are cycles in expectation. Since the expected number of connected components is
at most E |P |, from this we get that the expected number of cycles is at most 2 E |P |/(K +2).
By removing one edge from each cycle, we obtain a valid solution for maximum path cover
problem. Thus,

E |P | − 2 E |P |
K + 2 = K

K + 2 E |P | ≤ ρ(G) ⇒ E |P | ≤
(

1 + 2
K

)
· ρ(G).

So it remains to show that at most 2
K+2 fraction of connected components are cycles in

expectation. As we process edges one by one according to the ordering of RGMIS, let A be
the set of edges that none of their incident edges are added to the solution of Algorithm 2.
By definition of A, if one copy of edge (u, v) is in A, then all other copies of (u, v) are also
in A. Therefore, at any point during running RGMIS, if a new component is added to the
solution, the edge (u, v) that gets added to the solution occupies (u0, v0) with probability
at least K

K+2 since K copies out of the K + 2 copies are for (u0, v0). Let C0 be the number
of times that the newly added component is an edge occupying two 0-ports, and C1 be the
number of times that the newly added component is an edge occupying one 0-port and one
1-port. By the above argument, we have
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E[C0]
E[C0] + E[C1] = K

K + 2 . (1)

Note that after running Algorithm 2, it is possible that the number of connected com-
ponents is actually smaller than C0 + C1, since some of the components may merge as
the algorithm proceeds. However, by Observation 7, two components that their first edge
occupies two 0-ports will not merge together. Also, by Observation 6, none of the cycle
components have an edge that occupies two 0-ports. Therefore, in the end, there exists at
most E[C0] + E[C1] connected components and at least E[C0] of them will not be cycles.
This completes the proof. ◀

5 A Local Query Process for Algorithm 2 and its Complexity

In this section, we define a query process to estimate the size of the output of Algorithm 2.
In graph H of Algorithm 2, each vertex corresponds to an edge in the original graph. More

precisely, we make K + 2 copies of each edge (u, v) such that one of the copies corresponds to
an edge occupying (u0, v1), one for (u1, v0), and K for (u0, v0). We use G′ = (V, E′) to show
the new graph with these parallel edges. During the course of Algorithm 2, two different
edges that share the same endpoint and port cannot appear in the solution together. We use
the following definition to formalize this notion.

▶ Definition 9 (Conflicting Pair of Edges). Two edges e, e′ ∈ E′ that share an endpoint v

are conflicting if both e and e′ correspond to same port vi for i ∈ {0, 1}. We call (e, e′) a
conflicting pair of edges.

In order to estimate the size of the output of Algorithm 2, we define a vertex oracle that
given a vertex v and a permutation π on E′, returns the degree of vertex v in the output of
Algorithm 2. These are akin to the query processes used before in the works of [2, 27], but
are specific to our Algorithm 2.

Algorithm 3 “vertex oracle” VO(u, π) to determine the degree of vertex u in
RGMIS(G′, π).

1 Let e1 = (u, v1), . . . , er = (u, vr) be the edges incident to u with π(e1) < . . . < π(er).
2 d← 0
3 for i in 1 . . . r do
4 if EO(ei, vi, π) = True then d← d + 1;
5 return d

Note that in Line 2 of the Algorithm 4 we only recursively call the function on edges that
their label, conflict with edge e since if other edges appear in the RMGIS subgraph, we can
still have e in the RGMIS subgraph. Before analyzing the query complexity of the vertex
oracle, we prove the correctness of the vertex oracle.

▷ Claim 10. For any edge e = (u, z) ∈ E′ that is occupying ports ui and zj , if EO(e, u, π)
is called while computing VO(v, π), then EO(e, u, π) = True iff e ∈ RGMIS(G′, π).

Proof. We prove the claim using induction on ranking of edge e. Assume that the claim is true
for all edges with ranking smaller than π(e). If EO(e, u, π) is called by EO(e′ = (w, z), z, π)
or directly by VO(v, π), then by definition of Algorithm 4 and Algorithm 3, all edges
e′′ = (w′, z) with π(e′′) < π(e′) that are occupying zj are queried before e′ which means that
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Algorithm 4 “edge oracle” EO(e, u, π) to determine an edge e is in RGMIS(G′, π). Also,
u must be an endpoint of e.

1 if EO(e, u, π) computed before then return the computed result.;
2 Let e1 = (u, v1), . . . , er = (u, vr) be the edges incident to e such that

π(e1) < . . . < π(er) < π(e). Also, (e, ei) is a conflicting pair for all 1 ≤ i ≤ r.
3 for i in 1 . . . r do
4 if EO(ei, vi, π) = True then return False;
5 return True

none of them return True. Hence, by induction hypothesis, none of the edges incident to z

that are occupying zj with lower rank are in the RGMIS(G′, π). Moreover, EO(e, u, π) calls
all incident edges to u with lower rank that are occupying ui and return Trueif none of
them are in the RGMIS(G′, π) by induction hypothesis. Therefore, EO(e, u, π) = True iff
e ∈ RGMIS(G′, π). ◁

▷ Claim 11. Let v ∈ V and d be the output of VO(v, π). Then d is equal to the degree of
vertex v in the subgraph outputted by RGMIS(G′, π).

Proof. The observation follows by combining the fact that the vertex oracle queries edges in
increasing order and Claim 10. ◁

Let T (v, π) denote the number of recursive calls to the edge oracle during the execution
of VO(v, π).

▶ Theorem 12. For a randomly chosen vertex v and permutation π on E′, we have that

Ev,π[T (v, π)] = O(d̄ · log2 n)

where d̄ is the average degree of the graph G.

Let Q(e, v, π) be the number of EO(e, ·, π) calls during the execution of VO(v, π).
Moreover, let Q(e, π) be the number of EO(e, ·, π) calls starting from any vertex. In
other words, we have that Q(e, π) =

∑
v∈V Q(e, v, π).

▶ Observation 13. For every edge e and permutation π, Q(e, π) ≤ O(n2).

Proof. Let e = {x, y}. For a fixed vertex u, either the vertex oracle VO(u, π) queries the
edge oracle for e directly, or through some incident edge e′. Hence, the edge oracle of e is
called through at most (K + 2)(deg(x)− 1) + (K + 2)(deg(y)− 1) of its incident edges (K + 2
appears since each edge has K +2 copies), which implies that Q(e, u, π) ≤ (2K +4)(n−1)+1.
Therefore,

Q(e, π) ≤
∑
u∈V

Q(e, u, π) ≤ n ((2K + 4)(n− 1) + 1) ≤ O(n2). ◀

The main contribution of this section is to show that the expected number of EO(e, π)
calls over all permutations π is O(log2 n), which is formalized in the following lemma.

▶ Lemma 14. For any edge e ∈ E′, we have Eπ[Q(e, ·, π)] = O(log2 n).

Assuming the correctness of Lemma 14, we can complete the proof of Theorem 12.
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Proof of Theorem 12.

Ev,π[T (v, π)] = 1
n

Eπ

[ ∑
v∈V

T (v, π)
]

= 1
n

Eπ

[ ∑
v∈V

∑
e∈E′

Q(e, v, π)
]

= 1
n

Eπ

[ ∑
e∈E′

∑
v∈V

Q(e, v, π)
]

= 1
n

Eπ

[ ∑
e∈E′

Q(e, π)
]

= 1
n

∑
e∈E′

Eπ[Q(e, π)] = 1
n

∑
e∈E′

O(log2 n)

= 1
n

O(|E′| · log2 n) = O(d̄ · log2 n). ◀

We defer the proof of Lemma 14 to the arXiv version of the paper due to the page limit.

6 Our Estimator for Maximum Path Cover

In this section, we use the oracle of the previous section to estimate the number of edges
in the output of Algorithm 2. In Section 5, we provide a lower bound on the number of
recursive calls to our local query process. Note that this bound does not necessarily imply
the same running time algorithm. For example, if we generate the whole permutation over
all copies of edges before running the algorithm, it takes Θ(m) which is no longer sublinear.
Using by now standard ideas of the literature, we show how we can implement the query
process in almost the same running time (multiplied by a polylogarithmic factor) which is
formalized in the following lemma (see the arXiv version of the paper).

▶ Lemma 15. There exists a data structure that given a graph G in the adjacency list format,
(implicitly) fixes a random permutation π over its edges. Then for any vertex v, the data
structure returns the degree of vertex v in the subgraph P produced by Algorithm 2 according
to a random permutation π. Each query v to the data structure is answered in Õ(T (v, π))
time w.h.p. where T (v, π) is as defined in Section 5.

Note that in our local query process, we need access to the adjacency list of weight-
one edges. So the challenge that arises here is how to estimate the size of the output of
Algorithm 2 in the adjacency matrix model. We present a reduction from adjacency matrix
to adjacency list that appeared in the literature [2]. In this reduction, each query to the
adjacency list can be implemented with O(1) queries to the adjacency matrix and still we
are able to estimate the maximum path cover with some additive error.

Let γ = 16Kn. We construct a graph Ĝ = (VĜ, EĜ) for weight-one edges of graph G as
follows:

VĜ is the union of V1, V2 and U1, U2, . . . , Un such that:
V1 and V2 are two copies of the vertex set of the original graph G.
Ui is a vertex set of size γ for each i ∈ [n].

We define the edge set such that degree of each vertex is in {1, n, n + γ}:
Degree of each vertex v ∈ V1 is n. The i-th neighbor of v is the i-th vertex in V1 if
(v, i) ∈ E, otherwise its i-th neighbor is the i-th vertex in V2 for i ≤ n. Note that
graph (V1, EH ∩ (V1 × V1)) is isomorphic to G.
Degree of each vertex v ∈ V2 is n + γ. The i-th neighbor of v is the i-th vertex in
V2 if (v, i) ∈ E, otherwise, its i-th neighbor is the i-th vertex in V1 for i ≤ n. For all
n < i ≤ n + γ, the i-th neighbor of v is i-th vertex in Uv.
Degree of each vertex u ∈ Ui is one for i ∈ [n]. The only neighbor of u is the i-th
vertex of V2.
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By the construction of Ĝ, the only neighbor of v ∈
⋃n

i=1 Ui can be determined without
any query to the adjacency matrix. Also, the i-th neighbor of each vertex in V1 ∪ V2 can be
determined with one query.

▶ Observation 16. For each vertex v ∈ VĜ and i ∈ [degĜ(v)], the i-th neighbor of vertex v

can be determined using at most one query to the adjacency matrix.

Fix a vertex v ∈ V2. When we run Algorithm 2, intuitively with high probability the first
edge that is incident to v and occupies port v0 is between v and u ∈ Uv. Furthermore, with
high probability, the first two edges that are incident to v and occupies port v1 are between
v and u ∈ Uv. A vertex v ∈ V2 is an abnormal vertex if the above properties do not hold for
v. Let R ∈ V2 be the set of abnormal vertices. We can show that there are few abnormal
vertices exist in V2, which implies that most of the incident edges to vertices of V1 in the
output of Algorithm 2 are in Ĝ[V1] (only those between V1 and R violate this property).
Therefore, a natural way to estimate the number of edges in the output of Algorithm 2 on G,
is to estimate the number of edges in Ĝ[V1] in the output of Algorithm 2 on Ĝ.

Algorithm 5 Final algorithm for maximum path cover.

1 Let Ĝ = (VĜ, EĜ) as described above.
2 r ← 192 ·K2 · log n.
3 Sample r vertices u1, u2, . . . , ur uniformly at random from V1 with replacement.
4 Sample r ports p1, p2, . . . , pr uniformly at random from {0, 1}.
5 Run vertex oracle for each ui and let Xi be the indicator if port upi

i is occupied with
an edge in Ĝ[V1] in output of Algorithm 2.

6 Let X =
∑

i∈[r] Xi and f = X/r.
7 Let ρ̃ = K

2(K+2) · (f · n−
n

4K ).
8 return ρ̃

▶ Theorem 17. Given an adjacency matrix access for input graph G, there exists a randomized
algorithm that w.h.p. runs in Õ(n) time and produces an estimate ρ̃, such that(

1
2 − ε

)
· ρ(G)− εn ≤ ρ̃ ≤ ρ(G).

You can find the full version of this section with formal proofs in the arXiv version of the
paper.

7 Our Estimator for (1,2)-TSP

In this section, we use the algorithm for estimating the size of maximum path cover as
a black box to estimate the size of (1,2)-TSP. First, note that if there is no Hamiltonian
cycle with weight one edges of the graph, then the set of weight-one edges of the graph
(1,2)-TSP is a solution for maximum path cover of graph G. Also, in the case that there
exists a Hamiltonian cycle, then the size of maximum path cover is n− 1. Moreover, if P ∗ is
the maximum path cover of a graph G, then it is possible to create a TSP by connecting
these paths using edges with weight two. This intuition helps to formalize the following
observation.

▶ Observation 18. Let τ(V ) be the cost of (1,2)-TSP of graph G = (V, E). Then, we have

2n− ρ(G)− 1 ≤ τ(V ) ≤ 2n− ρ(G).
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Now we are ready to present the final algorithm for estimating (1,2)-TSP.

Algorithm 6 Final algorithm for (1,2)-TSP.

1 Construct Ĝ = (VĜ, EĜ) implicitly as desribed in Section 6.
2 Let ρ̃ be the output of Algorithm 5 on Ĝ.
3 τ̃ = 2n− ρ̃

4 return τ̃

▶ Theorem 19. Let τ(V ) be the cost of (1,2)-TSP of graph G = (V, E). For any ε > 0,
there exists an algorithm that estimate the cost of (1,2)-TSP, τ̃ , such that

τ(V ) ≤ τ̃ ≤ (3
2 + ε) · τ(V ),

w.h.p in Õ(n) running time.

You can find the full version of this section with formal proofs in the arXiv version of the
paper.

8 Our Estimator for Graphic TSP

In this section, we use our algorithm for estimating the size of maximum path cover to
estimate the size of graphic TSP. In a recent work, Chen et al. [10] showed that it is possible
to obtain a (27/14)-approximate algorithm for graphic TSP by estimating the matching size
and the number of biconnected components in the graph. Since the size of graphic TSP is at
most 2n (the cost of MST is n− 1), they proved that if a graph has large matching and a
few biconnected components, the cost of graphic TSP is significantly lower than 2n. Since
estimating the number of biconnected components is not an easy task in sublinear time, they
use a proxy quantity that can be estimated in sublinear time.

In the full version of the paper, we show that if we use our estimator for maximum path
cover as a black-box instead of matching estimator in algorithm of [10], we can improve the
approximation ratio to 19/10. Moreover, we show that we can estimate the number of bridges
in Õ(n). We exploit this estimation for further improvement to get a 11/6-approximate
algorithm for graphic TSP. We use the following algorithm for estimating the size of graphic
TSP.

Algorithm 7 Improved algorithm for graphic TSP.

1 Construct Ĝ = (VĜ, EĜ) implicitly as described in Section 6.
2 Let ρ̃ be the output of Algorithm 5 on Ĝ.
3 Let B̃ be the estimate of the number of bridges.
4 τ̃ = 2n− 1

3 (ρ̃− B̃)
5 return τ̃

▶ Theorem 20. Let τ(V ) be the cost of graphic TSP of graph G = (V, E). For any ε > 0,
there exists an algorithm that estimate the cost of graphic TSP, τ̃ , such that

τ(V ) ≤ τ̃ ≤ (11
6 + ε) · τ(V ),

w.h.p in Õ(n) running time.
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You can find the full version of this section with formal proofs in the arXiv version of the
paper.
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