
Oracle Separation of QMA and QCMA with
Bounded Adaptivity
Shalev Ben-David #

Institute for Quantum Computing, University of Waterloo, Canada

Srijita Kundu #

Institute for Quantum Computing, University of Waterloo, Canada

Abstract
We give an oracle separation between QMA and QCMA for quantum algorithms that have bounded
adaptivity in their oracle queries; that is, the number of rounds of oracle calls is small, though each
round may involve polynomially many queries in parallel. Our oracle construction is a simplified
version of the construction used recently by Li, Liu, Pelecanos, and Yamakawa (2023), who showed
an oracle separation between QMA and QCMA when the quantum algorithms are only allowed
to access the oracle classically. To prove our results, we introduce a property of relations called
slipperiness, which may be useful for getting a fully general classical oracle separation between QMA
and QCMA.

2012 ACM Subject Classification Theory of computation → Quantum complexity theory

Keywords and phrases Quantum computing, computational complexity

Digital Object Identifier 10.4230/LIPIcs.ICALP.2024.21

Category Track A: Algorithms, Complexity and Games

Related Version Full Version: https://arxiv.org/abs/2402.00298

Funding Shalev Ben-David: Supported in part by the Natural Sciences and Engineering Research
Council of Canada (NSERC), DGECR-2019-00027 and RGPIN-2019-048041.
Srijita Kundu: Supported by the Natural Sciences and Engineering Research Council of Canada
(NSERC) Discovery Grants Program, and Fujitsu Labs America.

1 Introduction

It is a long-standing open problem in quantum complexity theory whether the two possible
quantum analogs of the complexity class NP are equivalent. QMA is defined as the class of
decision problems that are solvable by a polynomial-time quantum algorithm that has access
to a polynomial-sized quantum witness, whereas QCMA is the class of decision problems
that are solvable by a polynomial-time quantum algorithm that only has access to the
polynomial-sized classical witness. In other words, the question asks: are quantum proofs
more powerful than classical proofs?

While the inclusion QCMA ⊆ QMA is easy to see, the question of whether these two
classes are actually equal, which was first posed by Aharonov and Naveh [3], remains
unanswered. Indeed, an unconditional separation between these classes is beyond currently
known techniques.

An easier, but still unsolved, problem is to show an oracle separation between QMA
and QCMA. This is because oracle separations in the Turing machine model can be shown
by means of separations in the much simpler model of query complexity, where similar

1 Cette recherche a été financée par le Conseil de recherches en sciences naturelles et en génie du Canada
(CRSNG), DGECR-2019-00027 et RGPIN-2019-04804.

EA
T
C
S

© Shalev Ben-David and Srijita Kundu;
licensed under Creative Commons License CC-BY 4.0

51st International Colloquium on Automata, Languages, and Programming (ICALP 2024).
Editors: Karl Bringmann, Martin Grohe, Gabriele Puppis, and Ola Svensson;
Article No. 21; pp. 21:1–21:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:shalev.b@uwaterloo.ca
https://orcid.org/0009-0009-4176-8693
mailto:srijita.kundu@uwaterloo.ca
https://orcid.org/0000-0002-8630-0113
https://doi.org/10.4230/LIPIcs.ICALP.2024.21
https://arxiv.org/abs/2402.00298
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

21:2 Oracle Separation of QMA and QCMA with Bounded Adaptivity

separations between complexity classes are routinely shown (for example, a recent oracle
separation between BQP and PH was provided in [12]). The problem of finding an oracle
separation between QMA and QCMA has been a longstanding focus of the quantum computing
community; it boils down to asking whether quantum proofs are more powerful than classical
proofs in the query model.

1.1 Previous work
The first progress on the question of an oracle separation of QMA and QCMA was made by
Aaronson and Kuperberg [2], who showed that there is a quantum oracle, i.e., a blackbox
unitary, relative to which QMA ̸= QCMA. Later, Fefferman and Kimmel [7] showed that the
separation also holds under what they called an “in-place permutation oracle”, which is still
inherently quantum. Ideally, we would like to get these separations in the standard model of
classical oracles: classical functions that a quantum algorithm may query in superposition.
[4] showed separations between QMA and QCMA in other non-standard oracle models.

Very recently, there has been some progress on this question, with two different variations
of the standard classical oracle model. Natarajan and Nirkhe [11] showed an oracle separation
relative to a “distributional oracle”. This essentially means that the classical oracle is drawn
from a distribution, which the prover knows, but the specific instance drawn is not known to
the prover. Therefore, the witness only depends on the distribution over the oracles, which
makes it easier to show QCMA lower bounds. Following this, [9] showed a separation with a
classical oracle that is fully known to the prover, but assuming the verifier is only allowed to
access this classical oracle classically, i.e., the verifier is not allowed to make superposition
queries (this makes the class similar to MA in terms of its query power and witness type).
This model is also simpler to analyze because whatever information the verifier gets from
the oracle by classically querying it, could also have been provided as the classical QCMA
witness. [9] also gave an alternate construction of a distributional oracle separation, with a
simpler proof than [11]. Their constructions are based on the relational problem used by
Yamakawa and Zhandry [14], in their result on quantum advantage without structure.

Closely related to the QMA vs QCMA question is the BQP/qpoly vs BQP/poly question.
BQP/qpoly is the class of decision problems that are solvable by a polynomial-time quantum
algorithm with access to polynomial-sized quantum advice, which depends non-uniformly on
the length of inputs, but nothing else. BQP/qpoly is the class of decision problems solvable
by a polynomial-time quantum algorithm with access to polynomial-sized classical advice.
Most works which have found oracle separations for QMA vs QCMA in various oracle models,
such as [2, 11, 9], have also found oracle separations between BQP/qpoly and BQP/poly with
related constructions in the same oracle models.

The question of the relative power of classical vs quantum advice was recently re-
solved unconditionally (without oracles) for relational problems by Aaronson, Buhrman and
Kretschmer [1], who showed an unconditional separation between FBQP/qpoly and FBQP/poly.
FBQP/qpoly and FBQP/poly are the classes of relational problems analogous to BQP/qpoly
and BQP/poly respectively. Their result was based on observing that separations between
quantum and classical one-way communication complexity can be used to show separations
between classical and quantum advice. The reason their result only works for the relation
classes is that a separation in one-way communication complexity which satisfies the necessary
conditions can only hold for relational problems. The specific relational problem used in [1] is
known as the Hidden Matching problem. But as was observed in [9], the Yamakawa-Zhandry
problem [14] also achieves the required communication separation, and could have been used
instead. In light of this, the constructions in [14] can viewed as a way to convert relational

S. Ben-David and S. Kundu 21:3

separations in one-way communication complexity, which correspond to relational separations
for quantum vs classical advice, to separations for decision QMA vs QCMA, and BQP/qpoly
vs BQP/poly, relative to classically accessible oracles. The construction is not blackbox – it
does not work if the Hidden Matching Problem is used instead of the Yamakawa-Zhandry
problem, though it plausibly might work with a parallel repetition of the former.

1.2 Our results
Unlike previous work, we prove an oracle separation between QMA and QCMA relative to a
bona fide regular oracle with regular (quantum) queries. Our catch is, instead, that we only
allow the algorithms bounded adaptivity.

Bounded adaptivity means that the number of rounds of queries made by the algorithms
is small, although there can be polynomially many queries in each round. Although our
result is not formally stronger than those of [11] and [9], we feel our result is intuitively closer
to a full QMA-QCMA separation, as it allows the full power of classical proofs and some of
the power of quantum queries. Our main result is formally stated below.

▶ Theorem 1. There is an oracle O : {0, 1}∗ → {0, 1} such that QCMAO,r ≠ QMAO,r, for
r = o(logn/ log logn).

In the above statement, QMAO,r is the class of decision problems solvable by QMA algorithms
that have oracle access to O, and make at most r batches of parallel queries to O; QCMAO,r

is defined analogously. The parameter n is the efficiency parameter (so the number of queries
is poly(n)).

▶ Theorem 2. There is a function family F = {FN}N∈I which is efficiently computable
in 1-round query QMA, but with the property that the growth rate of QCMAr(FN) for
r = o(log logN/ log log logN) as N →∞ is not in O(polylog(N)).

We shall formally define the query versions of QMA and QCMA, and the r-round QCMA
query complexity QCMAr, which are used in this theorem statement, in Section 2.1.

Our construction for the query complexity separation is a somewhat simplified version of
the construction in [9], which is based on the Yamakawa-Zhandry problem. [14] and [10]
showed that there exists a relational problem Rf , indexed by functions f : [n]× {0, 1}m →
{0, 1}, for m = Θ(n), such that given oracle access to a quantum advice |zf ⟩, a quantum
algorithm on any input x ∈ {0, 1}n, and on average over f , can find a u such that (x, u) ∈ Rf

2.
On the other hand, no quantum algorithm can find such an u for most x, when given only
a classical advice zf , and classical query access to f . Using this relation Rf , for a subset
E ⊆ {0, 1}n, we construct the following oracle:

O[f,E](x, u) =
{

1 if (x, u) ∈ Rf ∧ x /∈ E
0 otherwise.

The 1-instances of the problem FN that will separate QMA and QCMA in the query complexity
model will be O[f, ∅], and the 0-instances will be O[f,E] for |E| ≥ 2

3 · 2
n, for a large subset

of all functions f . This is essentially the same construction that is used in [9], except they
also use an additional oracle G for a random function from {0, 1}n to {0, 1}n, which O also
depends on.

2 The Yamakawa-Zhandry relation is a TFNP relation, which means that the u-s are of poly(n) length,
and a u such that (x, u) ∈ Rf exists for every x.

ICALP 2024

21:4 Oracle Separation of QMA and QCMA with Bounded Adaptivity

Note that the query complexity lower bound we obtain for QCMA is of a different nature
than the one obtained in [9]: we need to lower bound (bounded-round) quantum query
algorithms instead of only classical query algorithms, and we focus on the worst-case rather
than average-case setting. In order to get an oracle separation for Turing machines from
a separation in query complexity, one needs to use a diagonalization argument; because
our result is set up a bit differently than in previous work, we reprove the diagonalization
argument for our setting in. This can be found in Appendix A of the full version of this
paper on arXiv.

Finally, we emphasize that the bounded adaptivity limitation of our result is because we
allow the full power of classical proofs and also quantum queries. If one were to drop the
power of classical proofs (resulting in the class BQP), or if one were to drop the power of
quantum queries (resulting in, essentially, MA), it would follow from [9] that close variants
of FN cannot be solved even without the bounded-round restriction. We conjecture their
lower bounds apply to FN as well.

1.3 Our techniques
We briefly describe the techniques used to obtain the query complexity result. We start by
observing that the oracle O[f, ∅] is essentially just a verification oracle for the Yamakawa-
Zhandry relation. Therefore, there is a quantum witness and a quantum algorithm that can
distinguish O[f, ∅] and O[f,E] by using this witness, with only one query, with probability
1 − 2−Ω(n) over f . The witness for the yes instance O[f, ∅] is simply the quantum advice
for the Yamakawa-Zhandry problem, which finds a u for any x with probability 1− 2−Ω(n)

over f . The quantum algorithm finds a u for a random x using the witness, and queries
the oracle. Since the no instances return 0 on any (x, u) for most x, this algorithm can
distinguish O[f, ∅] and O[f,E] for 1− 2−Ω(n) fraction of the f -s.

We now consider the uniform distribution over these good f -s (for which we can distinguish
O[f, ∅] andO[f,E] with quantum advice), which has 2Ω(n) min-entropy. If there was a classical
witness function depending on f , of size k, that made a quantum algorithm accept O[f, ∅] for
these f -s, then there would exist a fixed witness string w that would make O[f, ∅] accept for
2−k fraction of f -s. The quantum algorithm depends on the witness, but if we fix the witness
string w, the algorithm is fixed, and we can then ignore the dependence of the algorithm on
the witness.

We now attempt to remove rounds of the quantum query algorithm, starting with the
first round, while keeping the behavior of the algorithm the same on as many oracles as
possible. Every time we remove a round, we restrict our attention to a smaller set of oracles,
all of which are consistent with a growing partial assignment we assume is given to us. At
the end, the quantum algorithm will have no rounds left, and hence will make no queries; we
want the set of oracles O[f, ∅] on which the behavior is preserved to be non-empty, because
then we can conclude that the algorithm cannot distinguish O[f, ∅] and O[f,E] for some
large erased set E (since it now makes no queries).

To remove the first round of the query algorithm, we start by considering the the uniform
distribution over the 2−k fraction of good f -s such that O[f, ∅] is accepted by w. This
distribution has 2Ω(n)−k min-entropy, and therefore, by a result of [8, 6], it can be written as
a convex combination of finitely many dense distributions. Dense distributions are a concept
that was first introduced in the context of communication complexity: in a dense distribution,
some coordinates are fixed, and the rest of the coordinates have high min-entropy in every
subset. In fact we will not need the full convex combination of dense distributions – we
restrict our attention to one such distribution in the convex combination, and try to preserve
the behavior of the quantum algorithm only within a subset of its support.

S. Ben-David and S. Kundu 21:5

Since some coordinates are fixed in our dense distribution, the probability over this
distribution of the event (x, u) ∈ Rf non-negligible, for some (x, u) pairs (this probability is
exactly 2−n over uniform f). The quantum algorithm can potentially learn a lot about f by
querying the oracle O[f, ∅] for these pairs. Therefore, we shall fix the coordinates of f that
are fixed by (x, u) being in Rf . Here is where we use the fact that the Yamakawa-Zhandry
relation is what we shall call slippery. This essentially means that given a small number
of fixed coordinates for f , the number (x, u) pairs that have non-negligible probability is
not too high, and the number of extra coordinates fixed by these (x, u) pairs being in Rf is
also not too high. The Yamakawa-Zhandry relation being slippery essentially follows from it
using a code that has good list recoverability properties. (The Hidden Matching relation, or
its parallel repetition, are not slippery by this definition, and so our construction does not
work with these.)

Using the slippery property, we can increase the size of the partial assignment by not
too much, and via a hybrid-like argument [5], we can ensure that the first round of the
quantum algorithm does not learn much from queries outside this partial assignment. We
then restrict our attention to oracles consistent with this partial assignment; on those, we
can simulate the first round of the algorithm without making real queries (we simply use
the known partial assignment and guess “0” on the rest of the oracle positions, which are
highly unlikely to be 1). This way, we get a quantum algorithm with one fewer round, which
mimics the original algorithm on a small (but not too small) set of oracles.

Continuing this way, we eliminate all rounds of the algorithm while still maintaining
a non-empty set of oracles on which the behavior is preserved. Each such oracle can be
“erased”, turning a 1-input into a 0-input, so we only need the final 0-round algorithm to
preserve the behavior of the original algorithm on at least one input. Using this technique,
we can handle up to o(logn/ log logn) rounds of O(polyn) non-adaptive quantum queries
each.

1.4 Discussion and further work
We expect our techniques for the QMA vs QCMA separation may also work for a BQP/qpoly
vs BQP/poly separation with boundedly adaptive oracle queries, using the same problem
that is described in [9]. Their oracle in the query complexity setting is given by a random
function G, which the BQP algorithm has to compute given oracle access to

O[f,G](x, u) =
{
G(x) if (x, u) ∈ R′

f

⊥ otherwise,

and a quantum or classical advice. Here R′
f is a modified 1-out-of-n version of the Yamakawa-

Zhandry problem, which has better completeness properties, but is similar to the original
problem otherwise. Clearly this problem can be solved in BQP/qpoly by using the quantum
advice for the Yamakawa-Zhandry problem. It cannot be solved on input x with any classical
advice and with access to an oracle that outputs ⊥ for every (x, u). In order to show a
BQP/poly lower bound for this problem, one needs that there exist many x-s such that a
quantum algorithm with classical advice cannot distinguish O[f,G] from a version of O[f,G]
that is erased on those x-s. Since O[f,G] essentially serves as a verification oracle for the
relation just as O[f, ∅] does in the QMA vs QCMA construction, we expect that when the
quantum algorithm has bounded rounds, a proof very similar to our QCMA lower bound will
work.3

3 R′
f , being a 1-out-of-n version of Rf , has worse slipperiness properties than Rf , which gets in the way

of applying our techniques. But instead of using R′
f for better completeness, we can focus on the (large

enough) subset of x, f for which the BQP algorithm with quantum advice works for Rf with high
probability, and have O[f, G] give G(x) for free outside of this set. This would make the analysis very
similar to the QMA vs QCMA case.

ICALP 2024

21:6 Oracle Separation of QMA and QCMA with Bounded Adaptivity

The final goal is, of course, to be able to show both these results without a bound on
the number of rounds of oracle queries the quantum algorithm makes. As mentioned earlier,
we fail to do this because the slipperiness parameters of the relation we picked are not
good enough, and our methods would work to separate QMA and QCMA with an analogous
problem definition where the Yamakawa-Zhandry relation is replaced by a different relation
Rf that has the appropriate slipperiness property.

We now expand more on the required strong slipperiness property. Let Rf be a family
of TFNP relations on {0, 1}n × {0, 1}m indexed by f ∈ {0, 1}N , where m = poly(n) and
N = Ω(2n). We further assume Rf satisfies the property that if (x, u) ∈ Rf , then there is a
polynomial-sized partial assignment p for f which certifies this, i.e., (x, u) ∈ Rf ∀f ⊇ p. Let
P ⊆ {0, 1, ∗}N denote the set of polynomial-sized partial assignments for f . We define the
extended version R̃ of the family of relations Rf as follows:

R̃ = {(p, x, u) : p is the minimal partial assignment s.t. (x, u) ∈ Rf ∀f ⊇ p}.

Since p is polynomial-sized, if we consider the uniform distribution over {0, 1}N , Pr[p ⊆ f] is
exponentially small. Now consider a partial assignment q for f with size at most s(n); we
fix the bits in q and generate the other bits of f uniformly at random, which can make the
probability of some other partial assignments p non-negligible. The slipperiness property is
concerned with the total additional support (outside of q) of all partial assignments p such
that Pr[p ⊆ f |q ⊆ f] is non-negligible, and (p, x, u) ∈ R̃. We say R̃ is (η, s(n), t(n))-slippery
if for all s(n)-sized q, the total additional support of all p-s such that Pr[p ⊆ f |q ⊆ f] ≥ η
and (p, x, u) ∈ R̃ is at most t(n). See Definition 13 for a more formal definition.

Our techniques show that the following conjecture implies an oracle separation between
QMA and QCMA.
▶ Conjecture 3. There exists a family of TFNP relations Rf such that
1. There exists a polynomial-time algorithm A, and for each f , a poly(n)-sized quantum

state |zf ⟩ such that, given access to x and |zf ⟩, A can find u such that (x, u) ∈ Rf , with
probability at least 1− 2−Ω(n) over a product distribution µXµF on x, f . Moreover, µX

and µF are required to respectively have min-entropy 2Ω(n) and Ω(n).
2. There exists a function s(n) = 2o(n) such that for all polynomial functions p(n), the

extended relation R̃ is (1/p(n), s(n), t(n))-slippery for some t(n) such that log(t(n)) =
o(log(s(n))).

Assuming Conjecture 3 is true, the oracle function separating QMA and QCMA would be
distinguishing O[f, ∅] and O[f,E], for |E| ≥ 2

3 · 2
n, which we have defined earlier, using a

relation Rf that satisfies the conjecture. (We can only prove the Yamakawa-Zhandry relation
is (η, s(n), t(n))-slippery, with t(n) bigger than s(n), though it is possible that is satisfies the
conjecture under finer analysis.)

We further note that any family of relations Rf that satisfies Conjecture 3 must give an
exponential separation between quantum and randomized one-way communication complexity,
with the communication setting being that Alice gets input f , Bob gets input x, and Bob
has to output u such that (x, u) ∈ Rf .4 This is because, if there was a polynomial-sized
classical message wf that Alice could send to Bob in the communication setting, then wf

could also serve as a QCMA proof. Therefore, it seems that the slipperiness condition could
also be used for lower-bounding one-way randomized communication complexity (although
weaker slipperiness parameters than in the conjecture would also suffice for this).

4 Strictly speaking, condition 1 of the conjecture only implies that there exists a one-way communication
protocol, in which Alice sends the state |zf ⟩, which works on average over x and f , whereas we usually
require worst-case success in communication complexity. However, we can restrict to the set of x and f
for which the algorithm A works, in order to get the communication problem.

S. Ben-David and S. Kundu 21:7

2 Preliminaries

2.1 QMA and QCMA in query complexity
In this section, we review the formal definitions of QMA, QCMA, computationally-efficient
QMA, and bounded-round QCMA in the context of query complexity.

▶ Definition 4 (Bounded-round quantum query algorithm). For r, T, n ∈ N, give the following
definition of a quantum query algorithm Q acting on n bits, using r rounds, with T queries
in each round. The algorithm will be a tuple of r + 1 unitary matrices, Q = (U0, U1, . . . , Ur).
These unitary matrices will each act on T “query-input” registers of dimension n, T “query-
output” registers of dimension 2, an “output” register of dimension 2, and a work register of
arbitrary dimension.

For each x ∈ {0, 1}n, let Ux be the oracle unitary, which acts on the query-input and
query-output registers by mapping

|i1⟩ |b1⟩ |i2⟩ |b2⟩ . . . |iT ⟩ |bT ⟩ → |i1⟩ |b1 ⊕ xi1⟩ |i2⟩ |b2 ⊕ xi2⟩ . . . |iT ⟩ |bT ⊕ xiT
⟩

for all i1, . . . , iT ∈ [n] and all b1, . . . , bT ∈ {0, 1}. We extend Ux to other registers via a
Kronecker product with identity, so that Ux ignores the other registers.

The action of the algorithm Q on input x ∈ {0, 1}n, denoted by the Bernoulli random
variable Q(x), will be the result of measuring the output register of the state

UrU
xUr−1U

x . . . UxU1U
xU0 |ψinit⟩ ,

where |ψinit⟩ is a fixed initial state.

We will use the term “T -query quantum algorithm” without referring to the number of
rounds to indicate T rounds with 1 query in each.

▶ Definition 5 (Query algorithm with witness). Let Q be a r-query quantum algorithm on
n bits with T queries in each round. For any quantum state |ϕ⟩ and any x ∈ {0, 1}n, let
Q(x, |ϕ⟩) be the random variable corresponding to the measured output register after the
algorithm terminates, assuming the initial state contained |ϕ⟩ in the work register (with
ancilla padding) instead of being |ψinit⟩. That is, Q(x, |ϕ⟩) is a Bernoulli random variable
corresponding to the measurement outcome of the output register of the final state

UrU
xUr−1U

x . . . U1U
xU0 |ϕ⟩ |pad⟩ ,

where |pad⟩ is the ancilla padding.

▶ Definition 6 (Query QMA and QCMA). Let f be a possibly partial Boolean function on n

bits, and let Q be a quantum query algorithm on n bits with T total queries. We say that Q
is a QMA algorithm for f with witness size k if the following holds:
1. (Soundness). For every x ∈ f−1(0) and every k-qubit state |ϕ⟩, we have Pr[Q(x, |ϕ⟩) =

1] ≤ ϵ.
2. (Completeness). For every x ∈ f−1(1), there exists a k-qubit state |ϕ⟩ such that

Pr[Q(x, |ϕ⟩) = 1] ≥ 1− δ.
Here, ϵ and δ govern the soundness and completeness of Q; by default, we take them both to
be 1/3. We denote the QMA query complexity of f by QMAϵ,δ(f), which is the minimum
possible value of T + k over any QMA algorithm for f with the specified soundness and
completeness.

ICALP 2024

21:8 Oracle Separation of QMA and QCMA with Bounded Adaptivity

We say that Q is a QCMA algorithm for f if the same conditions hold, except with
the witness state |ϕ⟩ quantifying over only classical k-bit strings in both the soundness and
completeness conditions. We define QCMAϵ,δ(f) analogously to QMAϵ,δ(f), and we omit
the subscripts when they are both 1/3.

▶ Definition 7 (Bounded round query QMA and QCMA). We define r-round QMA and QCMA
in exactly the same way as the above definition, except the query algorithms are required to
have at most r rounds. We use QMAr

ε,δ(f) and QCMAr
ε,δ(f) to denote the r-round QMA

and QCMA query complexities of f respectively.

▶ Definition 8 (Function family). A function family is an indexed set F = {fn}n∈I where
I ⊆ N is an infinite set and where each fn is a partial Boolean function fn : Dom(fn)→ {0, 1}
with Dom(fn) ⊆ {0, 1}n.

▶ Definition 9 (Efficiently computable QMA). Let F = {fn}n∈I be a function family. We say
that F is in efficiently computable query QMA if there is a polynomial-time Turing machine
which takes in the binary encoding ⟨n⟩ of a number n ∈ I and outputs a QMA verifier Q by
explicitly writing out the unitaries of Q as quantum circuits (with a fixed universal gate set).
The verifier Q must be sound and complete for fn. Efficiently computable bounded-round
QMA is defined analogously.

In other words, QMA(fn) must be O(polylog(n)), and moreover, the different algorithms
for fn must be uniformly generated by a single polynomial-time Turing machine.

With these definitions, we show in the full version that Theorem 2 implies Theorem 1.

2.2 Error-correcting codes
A Reed-Solomon error-correcting code RSq,γ,k over Fq, with degree parameter 0 < k < q − 1
and generator γ ∈ F∗

q , is defined as

RSq,γ,k = {(f(γ), . . . f(γq)) : f ∈ Fq[x]deg≤k},

where Fq[x]deg≤k is the set of polynomials over Fq of degree at most k.
Let q − 1 = mn, for some integers m and n. The m-folded version RS(m)

q,γ,k of RSq,γ,k is a
mapping of the code to the larger alphabet Fm

q as follows:

RS(m)
q,γ,k = {((x1, . . . , xm), . . . , (xq−m, . . . , xq)) : (x1, . . . , xq) ∈ RSq,γ,k}.

Note that the alphabet of RS(m)
q,γ,k is Fm

q .

▶ Definition 10. We say that a code C ⊆ Σn is combinatorially (ζ, ℓ, L)-list recoverable if
for any subsets Si ⊆ Σ such that |Si| ≤ ℓ, we have,

|{(x1, . . . , xn) ∈ C : |{i : xi ∈ Si}| ≥ (1− ζ)n}| ≤ L.

▶ Lemma 11 ([13, 14]). For a prime power q such that mn = q − 1, any generator γ ∈ F∗
q ,

and degree k < q − 1, RS(m)
q,γ,k is (ζ, ℓ, qs)-list recoverable for some s ≤ m if there exists an

integer r such that the following inequalities hold:

(1− ζ)n(m− s+ 1) ≥
(

1 + s

r

)
(mnℓks)1/(s+1) (1)

(r + s)
(
mnℓ

k

)1/(s+1)
< q. (2)

S. Ben-David and S. Kundu 21:9

▶ Corollary 12. Let m be Θ(n) integer such that nm+ 1 = q is a prime power. Let k = 5
6mn

and let c, d be constants. Then RS(m)
q,γ,k is (c logn/n, 2(log n)d

, 2(log n)d+2)-list recoverable.

This corollary is proved simply by checking that the equations (1)–(2) are satisfied
with this choice of parameters. The choice of parameters is in fact the same as those
as [14]. Therefore, the above code satisfies the other conditions required for the [14] quantum
algorithm to succeed in evaluating the relation RC,f defined in the next section.

3 The Yamakawa-Zhandry problem

For a function f : [n]× {0, 1}m → {0, 1} and a linear code C ⊆ {0, 1}nm, define the relation
RC,f ⊆ {0, 1}n × {0, 1}nm

RC,f = {(x, u) = (x1 . . . xn, u1 . . . un) : (u1 . . . un ∈ C) ∧ (∀i f(i, ui) = xi)}.

We shall typically work with m = Θ(n). We shall usually work with a fixed code C, in which
case we shall omit the subscript C from RC,f .

Let P ⊆ {0, 1, ∗}n2m denote the set of polynomial-sized partial assignments for functions
f : [n]×{0, 1}m → {0, 1}. We define the extended version R̃C of {RC,f}f over P ×{0, 1}n×
{0, 1}nm as follows:

R̃C = {(p, x, u) : p is the minimal partial assignment s.t. (x, u) ∈ RC,f ∀f ⊇ p}.

In particular, (p, x, u) is in R̃C when p is the partial assignment (f(i, ui) = xi)i, which is n
bits.

▶ Definition 13. Let R̃n be a sequence of relations on Pn ×{0, 1}n ×{0, 1}poly(n), where Pn

consists of fixed polynomial-sized partial assignments for N = 2Ω(n)-bit strings, and poly(n)
is some fixed polynomial. We say R̃n is (η, s(n), t(n))-slippery w.r.t. distribution µ on f if
for any partial assignment q on N bits with size at most s(n), if we fix the bits of q in f and
generate the other bits of f according to µ (conditioned on q), we will have∣∣∣∣∣∣∣∣∣

⋃
(p,x,u)∈R̃n,

Prf∼µ[p⊆f |q⊆f]≥η

supp(p) \ supp(q)

∣∣∣∣∣∣∣∣∣ ≤ t(n).

We omit mentioning the distribution µ explicitly if it is the uniform distribution.

▶ Lemma 14. When C is a code with parameters from Corollary 12, then for c = polylog(n)
and d = o(logn/ log logn), R̃C is (1

nc , 2(log n)d

, c logn · 2(log n)d+2)-slippery.

Proof. Let q be a partial assignment of size 2(log n)d . For each i ∈ [n], let Si = {v :
(i, v) is fixed in q}. Clearly for each i, |Si| ≤ 2(log n)d . By Corollary 12,

Cq = |{u1 . . . un ∈ C : |{i : ui ∈ Si}| ≥ n− c logn}| ≤ 2(log n)d+2
.

A tuple (p, x, u) can satisfy (p, x, u) ∈ R̃C and Prf∼U [p ⊆ f |q ⊆ f] only if u ∈ Cq, so we
only need to compute |

⋃
supp(p)| for such tuples. In fact we only need to worry about the

number of (x, u) pairs that could be in RC,f , since p is completely fixed by x and u. Each
u has at most c logn many locations that are not fixed by q, and x can take any value in
those c logn locations. The x-s taking different values in these locations have overlapping

ICALP 2024

21:10 Oracle Separation of QMA and QCMA with Bounded Adaptivity

p-s (i.e., the same bits are fixed to different values for the different x-s), and since we only
care about |

⋃
supp(p)|, we need not count these x-s separately. Therefore, the number of

unique indices fixed by such p-s is determined only by the number of u-s in Cq.
Since the total support of each p is outside of q is c logn, we have,∣∣∣∣∣∣∣∣∣∣

⋃
(p,x,u)∈R̃n,

Prf [p⊆f |q⊆f]≥ 1
nc

supp(p) \ supp(q)

∣∣∣∣∣∣∣∣∣∣
≤ 2(log n)d+2

· c logn. ◀

▶ Corollary 15. If µ is a distribution such that for all partial assignments p with |p| = n,
we have µ|q[p] ≤ k · u|q[p] (where µ|q[p] is the probability mass of strings consistent with p
under µ conditioned on q, and u|q[p] is the same with the uniform distribution), then R̃C

from Lemma 14 is also (k
nc , 2(log n)d

, c logn · 2(log n)d+2)-slippery w.r.t. µ.

Proof. Since µ[p] ≤ k · u|q[p] for all p, partial assignments that have probability at least
k

nc against µ conditioned on q have probability at least 1
nc against the uniform distribution

conditioned on q. Now we can apply Lemma 14. ◀

▶ Theorem 16. There exists a code C such that
1. R̃C is (1

nc , 2(log n)d

, c logn · 2(log n)d+2)-slippery for c = polylog(n) and d =
o(logn/ log logn).

2. There exists a quantum advice |zf ⟩ with polynomially many qubits, and a polynomial-time
quantum algorithm A that has access to |zf ⟩ , x, and makes no queries to any oracle, such
that for any x ∈ {0, 1}n,

Pr
f∼U

[(u← A(|zf ⟩ , x)) ∧ ((x, u) ∈ RC,f)] ≥ 1− 2−Ω(n),

where the probability is over uniformly random functions f : [n]× {0, 1}m → {0, 1}, and
the internal randomness of A.

Proof. Item 1 is due to Lemma 14. As stated before, the problem R̃C , and the choice of
parameters for the code C in Lemma 14, is the same as [14]. Therefore, item 2 is due to
[14, 10].5 ◀

4 Techniques for bounded-round quantum query algorithms

In this section, we prove some results about bounded-round quantum query algorithms that
will be useful in proving our QCMA lower bound.

Recall that a non-adaptive quantum algorithm works on T query-input registers and T

query-output registers plus an additional work register W , so that its basis states look like

|i1⟩ |b1⟩ |i2⟩ |b2⟩ . . . |iT ⟩ |bT ⟩ |W ⟩ .

To clear up notational clutter, we will use i⃗ ∈ [N]T to represent a tuple of T indices in [N].
Moreover, for a string x ∈ {0, 1}N and for i⃗ ∈ [N]T , we will define x⃗i

:= (x⃗i1
, x⃗i2

, . . . , x⃗iT
).

5 The quantum algorithm in [14] makes some non-adaptive quantum queries (not depending on x), and
does not take an advice state. The modified algorithm, which instead takes an advice state (which is
essentially the state of the algorithm in [14] after its non-adaptive queries) and makes no queries, was
described in [10].

S. Ben-David and S. Kundu 21:11

The basis states can then be written |⃗i⟩ |⃗b⟩ |W ⟩, and the action of the query unitary Ux to
the string x is to map |⃗i⟩ |⃗b⟩ |W ⟩ → |⃗i⟩ |⃗b⊕ x⃗i⟩ |W ⟩, extended linearly to the rest of the space.
(Here ⊕ denotes the bitwise XOR of the two strings of length T .)

Define Π⃗i
:= |⃗i⟩ ⟨⃗i| ⊗ I⃗b,W to be the projection onto basis states with i⃗ in the query-input

registers. For i ∈ [N], define Πi :=
∑

i⃗∋i Π⃗i to be the projection onto basis states with i

occurring in one of the query-input registers. The projections Π⃗i are onto orthogonal spaces,
though the projections Πi are not. Observe that

∑
i⃗ Π⃗i = I, and that

∑
i Πi =

∑
i

∑
i⃗∋i Π⃗i =∑

i⃗

∑
i∈⃗i Π⃗i = T · I. Moreover, since the oracle unitary Ux does not change the query-input

registers, Ux commutes with both Π⃗i and Πi. Another convenient property is that if x⃗i = y⃗i

for two strings x, y ∈ {0, 1}N , then Π⃗i(Ux−Uy) = 0; this holds because both Ux and Uy map
|⃗i⟩ |⃗b⟩ |W ⟩ to the same vector when x⃗i = y⃗i. Using these properties, we have the following
lemma.

▶ Lemma 17 (Hybrid argument for nonadaptive queries). For any strings x, y ∈ {0, 1}N and
any quantum state |ψ⟩ =

∑
i⃗,⃗b,W α⃗i,⃗b,W |⃗i⟩ |⃗b⟩ |W ⟩, we have

∥Ux |ψ⟩ − Uy |ψ⟩ ∥2
2 ≤ 4

∑
i:xi ̸=yi

∥Πi |ψ⟩ ∥2
2.

Proof. We write the following, with justification afterwards.

∥Ux |ψ⟩ − Uy |ψ⟩ ∥2
2 =

∥∥∥∥∥∥
∑

i⃗

Π⃗i(U
x − Uy) |ψ⟩

∥∥∥∥∥∥
2

2

=
∑

i⃗

∥Π⃗i(U
x − Uy) |ψ⟩ ∥2

2

=
∑

i⃗:x⃗i ̸=y⃗i

∥Π⃗i(U
x − Uy) |ψ⟩ ∥2

2

≤
∑

i⃗

∑
i∈⃗i:xi ̸=yi

∥Π⃗i(U
x − Uy) |ψ⟩ ∥2

2

=
∑

i:xi ̸=yi

∑
i⃗∋i

∥Π⃗i(U
x − Uy) |ψ⟩ ∥2

2

=
∑

i:xi ̸=yi

∥∥∥∥∥∥
∑
i⃗∋i

Π⃗i(U
x − Uy) |ψ⟩

∥∥∥∥∥∥
2

2

=
∑

i:xi ̸=yi

∥Πi(Ux − Uy) |ψ⟩ ∥2
2

=
∑

i:xi ̸=yi

∥(Ux − Uy)Πi |ψ⟩ ∥2
2

≤ 4
∑

i:xi ̸=yi

∥Πi |ψ⟩ ∥2
2.

In the first line, we used
∑

i⃗ Π⃗i = I. In the second, we used the orthogonality of the images
of the projections Π⃗i. In the third, we used Π⃗i(Ux − Uy) = 0 when x⃗i = y⃗i.

In the fourth line, we replaced the sum over i⃗ containing at least one i with xi ̸= yi with
a weighted sum, where the weight of i⃗ is the number of i ∈ i⃗ such that xi ̸= yi; this weight is
0 when x⃗i = y⃗i and at least 1 when x⃗i ̸= y⃗i. This weight can be represented as a sum over
i ∈ i⃗ with xi ̸= yi, since we are counting i⃗ once for each such i in the tuple.

ICALP 2024

21:12 Oracle Separation of QMA and QCMA with Bounded Adaptivity

The fifth line flips the order of the sums, and the sixth uses orthogonality of the images
of Π⃗i to put the sum back inside the squared norm. The seventh line is the definition of Πi,
and the eighth holds since Πi commutes with Ux and Uy. Finally, the last line follows either
from the triangle inequality, or from the fact that the spectral norm of (Ux − Uy) is at most
2 (since Ux and Uy are unitary). ◀

For an oracle x ∈ {0, 1}n and a block B ⊆ [N], use x[B] to denote the string x with
queries in B erased; that is, x[B]i = xi if i /∈ B, and x[B]i = 0 for i ∈ B. Next, we use this
hybrid argument in combination with a Markov inequality to show that if a distribution µ

over {0, 1}n has a set of queries B ∈ [N] that nearly always return zero for oracles sampled
from µ, then for any non-adaptive quantum algorithm, there exists a large set of oracles
(measured against µ) such that the algorithm does not detect whether any subset of B is
erased.

▶ Lemma 18 (Nonadaptive algorithms don’t detect oracle erasures). Fix |ψ⟩ representing the
state of a quantum algorithm before a batch of non-adaptive queries. Let µ be a distribution
over {0, 1}N , and let ϵ > 0. Let B = {i ∈ [N] : Prx∼µ[xi = 1] ≤ ϵ}. Then there exists a set
S ⊆ {0, 1}N such that µ[S] ≥ 1/2 and for all x ∈ S and all subsets B1, B2 ⊆ B, we have

∥Ux[B1] |ψ⟩ − Ux[B2] |ψ⟩ ∥2 ≤
√

8ϵT .

Proof. We write the following, with justification afterwards.

E
x∼µ

 ∑
i:xi ̸=x[B]i

∥Πi |ψ⟩ ∥2
2

 = E
x∼µ

[∑
i∈B

xi∥Πi |ψ⟩ ∥2
2

]

=
∑
i∈B

∥Πi |ψ⟩ ∥2
2 E

x∼µ
[xi]

≤ ϵ
∑
i∈B

∥Πi |ψ⟩ ∥2
2

≤ ϵ
∑

i∈[N]

∥Πi |ψ⟩ ∥2
2

= ϵ
∑

i∈[N]

∑
i⃗∋i

∥Π⃗i |ψ⟩ ∥
2
2

= ϵT
∑

i⃗

∥Π⃗i |ψ⟩ ∥
2
2

= ϵT.

The first line follows by noting that xi ̸= x[B]i can only happen if both i ∈ B and xi = 1;
we replace the sum over i : xi ̸= x[B]i with the sum over i ∈ B, and multiply the summand
by the indicator for xi = 1, which is xi itself.

The second line is the result of pushing the expectation inside the sum, and observing that
the norm does not depend on x and can be factored out of the expectation. The third line
follows from the definition of B: we know that for all i ∈ B, the probability of xi = 1 is at
most ϵ. The fourth replaces the sum over B with that over [N]. The fifth uses the definition
of Πi, and exchanges the sum over i⃗ with the squared norm using orthogonality. The sixth
line follows by noting that each i⃗ appears exactly T times in this double sum. Finally, the
last line follows by pushing the sum inside the squared norm (using orthogonality), and
recalling that

∑
i⃗ Π⃗i = I, together with the fact that |ψ⟩ is a unit vector.

S. Ben-David and S. Kundu 21:13

Given this bound on the expectation, we can apply Markov’s inequality to conclude that
at least half the strings x (weighted by µ) must satisfy

∑
i:xi ̸=x[B]i

∥Πi |ψ⟩ ∥2
2 ≤ 2ϵT . Let S be

the set of such strings x; then µ[S] ≥ 1/2. Observe that for any x ∈ S and any B1, B2 ⊆ B,
the set {i : x[B1]i ̸= x[B2]i} is a subset of {i : xi ̸= x[B]i}. We now apply Lemma 17 to get

∥Ux[B1] |ψ⟩ − Ux[B2] |ψ⟩ ∥2
2 ≤ 4

∑
i:x[B1]i ̸=x[B2]i

∥Πi |ψ⟩ ∥2
2 ≤ 4

∑
i:xi ̸=x[B]i

∥Πi |ψ⟩ ∥2
2 ≤ 8ϵT.

The desired result follows by taking square roots. ◀

5 QMA vs QCMA

In this section, we prove Theorem 2. Theorem 19 will define the function FN and show that
it is in QMA, and Theorem 21 will show that it is not in QCMA.

5.1 Construction and QMA protocol
Fix a code C for which Theorem 16 holds, with c = logn. We shall henceforth refer to RC,f as
only Rf for this C. For a subset E ⊆ {0, 1}n, define the oracle O[f,E] : {0, 1}n×{0, 1}nm →
{0, 1} as

O[f,E](x, u) =
{

1 if (x, u) ∈ Rf ∧ x /∈ E
0 otherwise.

▶ Theorem 19. There exists an efficient uniform collection of query QMA protocols (generated
uniformly by a polynomial time Turing machine) which uses 1 query and polynomial witness
size, and which outputs 0 on all oracles O[f,E] with |E| ≥ (2/3) · 2n, and outputs 1 on
O[f, ∅] for 1− 2−Ω(n) fraction of f -s.

Proof. The quantum witness for the algorithm will be quantum advice state for Rf from
Theorem 16. The quantum algorithm works as follows: it samples a uniformly random
x ∈ {0, 1}n, and runs the procedure from Theorem 16 to find a u such that (x, u) ∈ Rf .
Note that this requires no queries to the oracle. Then it queries the oracle at (x, u) and
returns the query output. If the oracle is O[f, ∅] and the actual state |zf ⟩ from Theorem 16
is provided as witness, then due to Theorem 16 we have,

Pr
f∼U

[AO[f,∅](|zf ⟩) = 1] ≥ 1− 2−Ω(n).

On the other hand, if the oracle is O[f,E] for |E| ≥ 2
3 ·2

n, no matter what witness is provided,
and what u is obtained from this witness, the oracle outputs 0 on (x, u) for 2

3 of the x-s.
Since the algorithm samples a uniformly random x and queries it with some u for every f ,
we have for every f ,

Pr[AO[f,E](|zf ⟩) = 1] ≤ 1
3 . ◀

Defining the function FN . We now define the following partial query function with input
size 2n×2mn: its 1-inputs are all the oracles O[f, ∅] for which the algorithm from Theorem 19
accepts with probability at least 2/3, and its 0-inputs are O[f,E] for which O[f, ∅] is a
1-input and |E| ≥ (2/3) · 2n. Note that these oracles correspond to the inputs “x” of the
query problem. This defines a family FN of query tasks with N = 2n× 2mn, and Theorem 19
showed that this family is in efficiently-computable QMA.

ICALP 2024

21:14 Oracle Separation of QMA and QCMA with Bounded Adaptivity

5.2 Densification of probability distributions
To prove our QCMA lower bound, we will need some properties of distributions on {0, 1}N .
For such a distribution µ, let RU(µ) := maxx∈{0,1}N log2(2Nµ[x]) be the max relative entropy
of µ relative to the uniform distribution. We will generally be interested in distributions
µ such that RU(µ) is small (say, polylogN), which means that no input x ∈ {0, 1}N has
probability µ[x] much larger than 2−N .

For a partial assignment p, let µ[p] be the probability mass of strings in {0, 1}N which
are consistent with p. Let |p| be the size of p (the number of revealed bits in p). We define
the density of µ to be density(µ) := 1 −maxp

log2(2|p|µ[p])
|p| , with the maximum taken over

partial assignments p. The density of the uniform distribution is 1.
For a partial assignment p, we let µ|p denote the distribution µ conditioned on the

sampled input being consistent with p. Items 1 and 3 of the following lemma essentially
follow from results in [8, 6]. We produce a proof here because the version of the lemma we
need is simpler than what was shown in [8, 6].

▶ Lemma 20 (Densification). Let µ be a distribution over {0, 1}N , and let δ ∈ (0, 1). Then
there exists a partial assignment p such that
1. |p| ≤ RU(µ)/δ
2. RU(µ|p) ≤ RU(µ)/δ
3. density(µ|p) > 1− δ, where the density is measured on the bits not fixed by p.

Proof. Let p be the largest partial assignment (we can pick the lexicographically first one
according to some ordering, if there is a tie) for which µ[p] ≥ 2−(1−δ)|p|. Then

2−(1−δ)|p| ≤ µ[p] =
∑
x⊇p

µ[x] ≤ 2N−|p| · 2−(N−RU(µ)) = 2RU(µ)−|p|,

so δ|p| ≤ RU(µ), from which the first item follows. Next,

RU(µ|p) = max
x

log2(2Nµ|p[x]) = max
x⊇p

log2(2Nµ[x]/µ[p]) ≤ RU(µ) + log2(1/µ[p])

≤ RU(µ) + log2(2(1−δ)|p|) = RU(µ) + (1− δ)|p| ≤ RU(µ) + (1− δ) RU(µ)/δ = RU(µ)/δ,

which gives the second item. Finally, to upper bound the density of µ|p, let q be a partial
assignment on a set of indices disjoint from that of p. By the maximality of p, we must have
µ[p ∪ q] < 2−(1−δ)(|p|+|q|). Now,

log2(2|q|µ|p[q]) = log2(2|q|µ[q ∪ p]/µ[p]) < log2(2|q|2−(1−δ)(|p|+|q|)/2−(1−δ)|p|) = δ|q|.

From this it follows that density(µ|p) > 1− δ, as desired. ◀

5.3 QCMA lower bound
▶ Theorem 21. There is no bounded-round, polynomial-cost QCMA protocol for the family
FN defined in Section 5.1. More formally, consider any family of QCMA protocols for the
query problems FN . If the number of rounds for these QCMA protocols grows slower than
o(log logN/ log log logN), then either the number of queries or the witness size must grow
like logω(1) N .

We will prove this theorem by a sequence of claims. The idea of the proof will be to
remove the rounds of the algorithm one by one. We start by moving from QCMA to BQP
via the following claim.

S. Ben-David and S. Kundu 21:15

▷ Claim 22. If there is a QCMA protocol for FN with witness size k = k(N), then there is
a quantum algorithm Q and a large set of functions S such that Q accepts all oracles O[f, ∅]
for f ∈ S and rejects all oracles O[f,E] for f ∈ S and |E| ≥ (2/3)2n. The set S is large
enough that the uniform distribution µ over S has RU(µ) ≤ 2k. The algorithm Q makes the
same number of rounds and number of queries as the QCMA protocol. By “accepting” and
“rejecting”, we mean with probability at least 2/3.

Proof. The idea is just to take a witness w that works for as many 1-inputs as possible, and
hard-code this witness into the quantum algorithm. S will correspond to the set of 1-inputs
on which this witness works.

More explicitly, since the witness is a classical string, there are only 2k witnesses over
which we quantify. Since each 1-input O[f, ∅] has some witness accepting it, we conclude
that at least one witness w of size k is a valid witness for at least a 2−k fraction of the
1-inputs, and hence also for at least a 2−k(1−2−Ω(n)) fraction of all oracles O[f, ∅] (including
those not in the domain of FN). This is because the fraction of f -s for which the quantum
algorithm does not succeed with probability at least 2/3 is at most 2−Ω(n). We can assume
2−k(1− 2−Ω(n)) ≥ 2−2k.

Let S be the set of f such that O[f, ∅] is accepted by the algorithm given witness w. Let
µ be the uniform distribution over S, and observe that RU(µ) ≤ 2k. Let Q be the quantum
algorithm which hard-codes the witness w into the verifier; then Q accepts all oracles O[f, ∅]
for f ∈ supp(µ) and rejects all oracles O[f,E] if |E| ≥ (2/3)2n. ◁

Defining the round reduction. Given a pair (Q,µ) of a quantum algorithm and a distribution
over functions, we wish to define a pair (Q̃, µ̃) such that Q̃ has one less round than Q, supp(µ̃)
is a subset of supp(µ) but “not by much” (i.e. RU(µ̃) is not much larger than RU(µ)), and
the two algorithms behave similarly on µ̃.

To define (Q̃, µ̃) given (Q,µ), we proceed in several steps.

1. First, use Lemma 20 with δ = 1/n to find a partial assignment q with |q| ≤ nRU(µ),
RU(µ|q) ≤ nRU(µ), and with µ|q being (1− δ)-dense on the bits not used by q.

2. Second, use Lemma 18 with ϵ = 1/3200r2T on the distributions of oracles O[f, ∅] when
f is sampled from µ|q. The state |ψ⟩ in the lemma will be the state of the algorithm
Q just before the first batch of T queries. The lemma gives a set S ⊆ supp(µ|q) with
µ|q[S] ≥ 1/2. It has the property that for all f ∈ S and all sets B1, B2 containing pairs
(x, u) with Prf∼µ|q

[O[f, ∅](x, u) = 1] ≤ ϵ, we have ∥UO[f,B1] |ψ⟩−UO[f,B2] |ψ⟩ ∥2 ≤ 1/20r.
Condition µ|q on the set S to get a distribution µ′.
Note that O[f,B1] is an abuse of notation, since normally we erase inputs x to f from
the oracle, yet B1 is a set of pairs (x, u). We will use this abuse of notation throughout; if
we write O[f,B] where B is a set of pairs, we mean to erase those pairs from the oracle,
while if B is a subset of Dom(f), we mean to erase the pairs (x, u) for x ∈ B and all u
from the oracle.

3. Third, use the slippery property from Corollary 15 on q to conclude that the number of
bits used by partial assignments p for which (p, x, u) ∈ R̃C and Prf∼µ′ [p ⊆ f |q ⊆ f] ≥ ϵ/4
is small. Recall that (p, x, u) ∈ R̃C means that the condition O[f, ∅](x, u) = 1 is equivalent
to p ⊆ f for all f ; such certifying p have |p| = n. Corollary 15 can be applied because
ϵ/4 is larger than 1/nc for c = logn, since we are choosing r = o(logn/ log logn) and
T ≤ O(2log2 n/ logn). Now, since µ|q is (1 − δ)-dense outside of q, the probability of a
partial assignment p against µ|q is at most 2δ|p| times the probability against the uniform
distribution conditioned on q. Here |p| = n and δ = 1/n, so the probability against

ICALP 2024

21:16 Oracle Separation of QMA and QCMA with Bounded Adaptivity

µ|q is at most twice that against the uniform distribution conditioned on q. Moving
from µ|q to µ′ conditions on a set S of probability at least 1/2, so it can increase the
probability of p by at most a factor of 2. Hence the probability of p against µ′ is overall
at most 4 times its probability against the uniform distribution conditioned on q. By
Corollary 15, we conclude the total number of bits used by partial assignments p for
which Prf∼µ′ [O[f, ∅](x, u) = 1] ≥ ϵ is small. Let Z be the set of all such bits.
Our final modification to µ′ will be to fix the bits in Z to the highest-probability partial
assignment (measured against µ′), and let µ̃ be µ′ conditioned on this partial assignment.

4. Set Q̃ to be the quantum algorithm which is the same as Q, except that the first batch
of queries is made to a fake oracle instead of a real one. The fake oracle is defined as
follows: on queries (x, u) for which O[f, ∅](x, u) is fixed for all f ∈ supp(µ̃), return this
value O[f, ∅](x, u); on queries (x, u) for which this value is not fixed for f ∈ supp(µ̃),
return 0. Note that the fake oracle does not depend on the true input oracle O[f, ∅], so
queries to it can be implemented by Q̃ without making queries to the real oracle. This
replaces the first round of Q, so Q̃ has one less round.

▷ Claim 23. Let Q and µ be as in Claim 22 (with µ the uniform distribution over S). Let
(Q0, µ0) = (Q,µ), and iteratively define (Qℓ, µℓ) = (Q̃ℓ−1, µ̃ℓ−1) for ℓ = 1, 2, . . . , r, where r
is the number of rounds of Q.

Then Qr makes no queries and µr “has large support”: log RU(µr) ≤ (2 logn)2r log 2k
(assuming n is sufficiently large).

Proof. That Qr makes no queries is clear, since each Qℓ in the chain makes one less round of
queries than Qℓ−1, and since the first algorithm Q0 = Q makes r rounds.

To bound RU(µr), we need to show that log RU(µℓ+1) is at most a factor of 2 log2 n more
than log RU(µℓ).

Recall the construction of µℓ+1 from µℓ. The first step moved from µℓ to µℓ|q with
RU(µℓ|q) ≤ nRU(µℓ). The second step conditioned the latter distribution on a set S of
probability mass at least 1/2, which can only increase RU(·) by 1, so RU(µ′

ℓ) ≤ nRU(µℓ) + 1.
The third step found the set of all bits fixed in partial assignments p which certify some

(x, u) as evaluating to 1, and picked the highest-probability partial assignment on those
bits. The maximum increase in RU(·) is the number of bits that were fixed in this way.
This number comes from Theorem 16, and depends on the number of bits fixed in q; when
|q| = 2(log n)d , the number we are looking for is c logn · 2(log n)d+2 , so we can express this
as c logn · 2(log2 n)(log |q|). We had |q| ≤ nRU(µℓ) and c = logn. It is not hard to see that
this additive increase dominates nRU(µℓ) + 1; assuming everything is large enough (e.g.
logn is sufficiently large, and RU(µℓ) is at least n2, which is without loss of generality
by restricting the original µ0 to a smaller set if necessary), we can get the upper bound
RU(µℓ+1) ≤ 22 log2 n log RU(µℓ), as desired. ◁

▷ Claim 24. Assume the witness size k is O(poly(n)) and the number of rounds r is
o(logn/ log logn), and let n be large enough. With notation as in Claim 23, there exists
f̂ ∈ supp(µr) and a large set E (with |E| ≥ (2/3)2n) of inputs x such that for every x ∈ E
and every u, the pair (x, u) is “not fixed to 1 by µr” (that is, there exists f ∈ supp(µr) such
that O[f, ∅](x, u) = 0).

Proof. We essentially apply another round-reduction iteration (without the second step)
to µr. Using Lemma 20, we find a partial assignment q′ such that µr|q′ is (1 − δ)-dense
outside of q′, with δ = 1/n. We then apply Theorem 16 to conclude there are few pairs (x, u)
with Prf [O[f, ∅](x, u) = 1] ≥ 1/2, and hence few pairs (x, u) with Prf [O[f, ∅](x, u) = 1] = 1

S. Ben-David and S. Kundu 21:17

when f is sampled from µr|q′ ; the number of such pairs is at most 2(2 log n)2r+2 log k. Using
k = O(poly(n)) and r = o(logn/ log logn), this means that there are at most 2o(n) pairs
(x, u) that are fixed to 1 for all the oracles O[f, ∅] for f ∈ supp(µr|q′). Therefore, there are
2n−o(n) many inputs x such that for all u, the pair (x, u) is not fixed to 1 by supp(µr|q′).
Let E be the set of such x; then |E| ≥ (2/3)2n. Let f̂ ∈ supp(µr|q′) be arbitrary, and the
desired result follows. ◁

Proof of Theorem 21. Start with a QCMA protocol for fN , and use Claim 22 to get a Q
and µ; to get a contradiction, we just need to find f ∈ supp(µ) and a large set E of inputs x
such that Q fails to distinguish the oracle O[f, ∅] from the oracle O[f,E].

Let (Qℓ, µℓ) be as in Claim 23, and let f̂ and E be as in Claim 24. To complete the proof,
we just need show that Q = Q0 fails to distinguish O[f̂ , ∅] and O[f̂ , E].

Let B = {(x, u) : x ∈ E,O[f̂ , ∅](x, u) = 1}. Moreover, let Bℓ be the set of pairs (x, u)
which had Prf∼µℓ−1|q

[O[f, ∅](x, u) = 1] ≤ ϵ in iteration ℓ (where q is the partial assignment
from step 1 of iteration ℓ). Note that the pairs not in Bℓ are all fixed in all the oracles in the
support of µℓ, because we choose values for the bits used by their proving partial assignments
p. This means that B ⊆ Bℓ for all ℓ. Also, let Oℓ be the oracle used by Qℓ to simulate the
first query batch of Qℓ−1. Recall that Oℓ(x, u) returns 0 unless (x, u) is fixed to 1 in all
O[f, ∅] for f ∈ supp(µℓ). Since the support of µℓ decreases as a subset in each iteration, the
bits fixed in µℓ are also fixed in µr, and hence also agree with f̂ . This means that Oℓ can be
written as an erased oracle O[f̂ , Aℓ] for some set Aℓ of pairs (x, u) that were not fixed in µℓ;
in other words, Aℓ ⊆ Bℓ.

We now note the oracle O[f̂ , E] is the same as O[f̂ , B]. Additionally, since B,Aℓ ⊆ Bℓ,
we have by Lemma 18,

∥UO[f̂ ,B] |ψ⟩ − UO[f̂ ,Aℓ] |ψ⟩ ∥2 ≤ 1/20r

where |ψ⟩ is the state right before the first query of the algorithm Qℓ−1. This can also be
written

∥UO[f̂ ,E] |ψ⟩ − UOℓ |ψ⟩ ∥2 ≤ 1/20r.

Now, applying additional unitary matrices does not change the 2-norm, and Qℓ replaces only
the first query of Qℓ−1 with Oℓ and applies the same unitaries as Qℓ−1 in all other rounds.
If we use Qℓ(O) to denote the final state of Qℓ on the oracle O, we therefore get

∥Qℓ(O[f̂ , E])−Qℓ−1(O[f̂ , E])∥2 ≤ 1/20r.

By triangle inequality, we then get

∥Q(O[f̂ , E])−Qr(O[f̂ , E])∥2 ≤ 1/20.

Since ∅ ⊆ Bℓ for all ℓ, the same argument also works to show that

∥Q(O[f̂ , ∅])−Qr(O[f̂ , ∅])∥2 ≤ 1/20,

and of course we also have Qr(O[f̂ , ∅]) = Qr(O[f̂ , E]) since Qr makes no queries. A final
application of the triangle inequality gives us

∥Q(O[f̂ , E])−Q(O[f̂ , ∅])∥2 ≤ 1/10.

This gives the desired contradiction, as Q failed to sufficiently distinguish these two oracles
(it must accept one with probability at least 2/3 and the other with probability at most 1/3;
converting this to a lower bound on the 2-norm distance is a straightforward exercise). ◀

ICALP 2024

21:18 Oracle Separation of QMA and QCMA with Bounded Adaptivity

References
1 Scott Aaronson, Harry Buhrman, and William Kretschmer. A Qubit, a Coin, and an Advice

String Walk into a Relational Problem. In 15th Innovations in Theoretical Computer Science
Conference (ITCS 2024), 2024. doi:10.4230/LIPIcs.ITCS.2024.1.

2 Scott Aaronson and Greg Kuperberg. Quantum versus classical proofs and advice. In Twenty-
Second Annual IEEE Conference on Computational Complexity (CCC’07), pages 115–128,
2007. doi:10.1109/CCC.2007.27.

3 Dorit Aharonov and Tomer Naveh. Quantum NP - A Survey, 2002. doi:10.48550/arXiv.
quant-ph/0210077.

4 Roozbeh Bassirian, Bill Fefferman, and Kunal Marwaha. On the Power of Nonstandard
Quantum Oracles. In 18th Conference on the Theory of Quantum Computation, Communication
and Cryptography (TQC 2023), 2023. doi:10.4230/LIPIcs.TQC.2023.11.

5 Charles H. Bennett, Ethan Bernstein, Gilles Brassard, and Umesh Vazirani. Strengths
and weaknesses of quantum computing. SIAM Journal on Computing, 26:1510–1523, 1997.
doi:10.1137/S0097539796300933.

6 Sandro Coretti, Yevgeniy Dodis, Siyao Guo, and John Steinberger. Random oracles and
non-uniformity. In Advances in Cryptology – EUROCRYPT 2018, 2018.

7 Bill Fefferman and Shelby Kimmel. Quantum vs. Classical Proofs and Subset Verification.
In 43rd International Symposium on Mathematical Foundations of Computer Science (MFCS
2018), 2018. doi:10.4230/LIPIcs.MFCS.2018.22.

8 Mika Göös, Toniann Pitassi, and Thomas Watson. Query-to-communication lifting for BPP.
In Proceedings of the 58th Annual IEEE Symposium on Foundations of Computer Science
(FOCS), 2017. doi:10.1109/FOCS.2017.21.

9 Xingjian Li, Qipeng Liu, Angelos Pelecanos, and Takashi Yamakawa. Classical vs Quantum
Advice and Proofs Under Classically-Accessible Oracle. In 15th Innovations in Theoretical
Computer Science Conference (ITCS 2024), 2024. doi:10.4230/LIPIcs.ITCS.2024.72.

10 Qipeng Liu. Non-uniformity and quantum advice in the quantum random oracle model. In
Carmit Hazay and Martijn Stam, editors, Advances in Cryptology – EUROCRYPT 2023, 2023.

11 Anand Natarajan and Chinmay Nirkhe. A Distribution Testing Oracle Separating QMA and
QCMA. In 38th Computational Complexity Conference (CCC 2023), 2023. doi:10.4230/
LIPIcs.CCC.2023.22.

12 Ran Raz and Avishay Tal. Oracle separation of bqp and ph. In Proceedings of the 51st
Annual ACM SIGACT Symposium on Theory of Computing, STOC 2019, 2019. doi:10.1145/
3313276.3316315.

13 Atri Rudra. List Decoding and Property Testing of Error Correcting Codes. PhD thesis,
University of Washington, 2007. URL: https://cse.buffalo.edu/faculty/atri/papers/
coding/thesis.html.

14 Takashi Yamakawa and Mark Zhandry. Verifiable quantum advantage without structure. In
2022 IEEE 63rd Annual Symposium on Foundations of Computer Science (FOCS), pages
69–74, 2022. doi:10.1109/FOCS54457.2022.00014.

https://doi.org/10.4230/LIPIcs.ITCS.2024.1
https://doi.org/10.1109/CCC.2007.27
https://doi.org/10.48550/arXiv.quant-ph/0210077
https://doi.org/10.48550/arXiv.quant-ph/0210077
https://doi.org/10.4230/LIPIcs.TQC.2023.11
https://doi.org/10.1137/S0097539796300933
https://doi.org/10.4230/LIPIcs.MFCS.2018.22
https://doi.org/10.1109/FOCS.2017.21
https://doi.org/10.4230/LIPIcs.ITCS.2024.72
https://doi.org/10.4230/LIPIcs.CCC.2023.22
https://doi.org/10.4230/LIPIcs.CCC.2023.22
https://doi.org/10.1145/3313276.3316315
https://doi.org/10.1145/3313276.3316315
https://cse.buffalo.edu/faculty/atri/papers/coding/thesis.html
https://cse.buffalo.edu/faculty/atri/papers/coding/thesis.html
https://doi.org/10.1109/FOCS54457.2022.00014

	1 Introduction
	1.1 Previous work
	1.2 Our results
	1.3 Our techniques
	1.4 Discussion and further work

	2 Preliminaries
	2.1 QMA and QCMA in query complexity
	2.2 Error-correcting codes

	3 The Yamakawa-Zhandry problem
	4 Techniques for bounded-round quantum query algorithms
	5 QMA vs QCMA
	5.1 Construction and QMA protocol
	5.2 Densification of probability distributions
	5.3 QCMA lower bound

