
Splitting-Off in Hypergraphs
Kristóf Bérczi #

MTA-ELTE Matroid Optimization Research Group and HUN-REN-ELTE Egerváry Research
Group, Department of Operations Research, Eötvös Loránd University, Budapest, Hungary

Karthekeyan Chandrasekaran
University of Illinois, Urbana-Champaign, IL, USA

Tamás Király #

MTA-ELTE Matroid Optimization Research Group and HUN-REN-ELTE Egerváry Research
Group, Department of Operations Research, Eötvös Loránd University, Budapest, Hungary

Shubhang Kulkarni #

University of Illinois, Urbana-Champaign, IL, USA

Abstract
The splitting-off operation in undirected graphs is a fundamental reduction operation that detaches
all edges incident to a given vertex and adds new edges between the neighbors of that vertex while
preserving their degrees. Lovász [45,47] and Mader [48] showed the existence of this operation while
preserving global and local connectivities respectively in graphs under certain conditions. These
results have far-reaching applications in graph algorithms literature [2,7,8,12,17,22,23,24,25,26,
29,30,32,33,35,38,40,41,46,48,49,50,51]. In this work, we introduce a splitting-off operation in
hypergraphs. We show that there exists a local connectivity preserving complete splitting-off in
hypergraphs and give a strongly polynomial-time algorithm to compute it in weighted hypergraphs.
We illustrate the usefulness of our splitting-off operation in hypergraphs by showing two applications:
(1) we give a constructive characterization of k-hyperedge-connected hypergraphs and (2) we give an
alternate proof of an approximate min-max relation for max Steiner rooted-connected orientation of
graphs and hypergraphs (due to Király and Lau [38]). Our proof of the approximate min-max relation
for graphs circumvents the Nash-Williams’ strong orientation theorem and uses tools developed for
hypergraphs.

2012 ACM Subject Classification Theory of computation → Network optimization; Theory of
computation → Routing and network design problems

Keywords and phrases Hypergraphs, Hypergraph Connectivity, Splitting-off, Constructive Charac-
terizations, Hypergraph Orientations, Submodular Functions, Combinatorial Optimization

Digital Object Identifier 10.4230/LIPIcs.ICALP.2024.23

Category Track A: Algorithms, Complexity and Games

Related Version This is an extended abstract.
Full Version: https://arxiv.org/abs/2307.08555

Funding Karthekeyan and Shubhang were supported in part by NSF grants CCF-1814613 and CCF-
1907937. Karthekeyan was supported in part by the Distinguished Guest Scientist Fellowship of the
Hungarian Academy of Sciences – grant number VK-6/1/2022. Kristóf and Tamás were supported
in part by the Lendület Programme of the Hungarian Academy of Sciences – grant number LP2021-
1/2021, by the Ministry of Innovation and Technology of Hungary from the National Research,
Development and Innovation Fund – grant number ELTE TKP 2021-NKTA-62 funding scheme,
and by the Dynasnet European Research Council Synergy project – grant number ERC-2018-SYG
810115.

Acknowledgements Part of this work was done while Karthekeyan and Shubhang were visiting Eötvös
Loránd University. Karthekeyan thanks Eklavya Sharma for engaging in preliminary discussions on
hypergraph splitting-off.

EA
T

C
S

© Kristóf Bérczi, Karthekeyan Chandrasekaran, Tamás Király, and Shubhang Kulkarni;
licensed under Creative Commons License CC-BY 4.0

51st International Colloquium on Automata, Languages, and Programming (ICALP 2024).
Editors: Karl Bringmann, Martin Grohe, Gabriele Puppis, and Ola Svensson;
Article No. 23; pp. 23:1–23:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:kristof.berczi@ttk.elte.hu
mailto:tamas.kiraly@ttk.elte.hu
https://orcid.org/0000-0001-7218-2112
mailto:smkulka2@illinois.edu
https://orcid.org/0000-0002-1670-6011
https://doi.org/10.4230/LIPIcs.ICALP.2024.23
https://arxiv.org/abs/2307.08555
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


23:2 Splitting-Off in Hypergraphs

1 Introduction

The splitting-off operation in undirected graphs is a simple yet powerful operation in graph
theory. It is a reduction operation that detaches all edges incident to a given vertex and adds
new edges between the neighbors of that vertex while preserving their degrees. Equivalently,
it enables a vertex to exit the network by informing its neighbors how to reconfigure the
lost links among themselves in order to preserve their degrees. Lovász [45, 47] introduced
the splitting-off operation and showed the existence of the operation to preserve global edge-
connectivity under certain conditions. Mader [48] showed the existence of the splitting-off
operation to preserve local edge-connectivity (i.e., all pairwise edge-connectivities) under
certain conditions. Both Lovász’s and Mader’s results also admit strongly polynomial-time
algorithms [24, 27,49]. Owing to the inductive nature of the splitting-off operation, Lovász’s
and Mader’s results have enabled fundamental results in graph theory as well as efficient
algorithms and min-max relations for numerous graph optimization problems. In fact,
Mader [48] illustrated the power of his local edge-connectivity preserving splitting-off result
by deriving Nash-Williams’ strong orientation theorem [52] (also see Frank’s exposition
of this derivation [26]). Subsequently, the splitting-off operation has been used to give
a constructive characterization of k-edge-connected graphs [24] and to address problems
in edge-connectivity augmentation [2, 22, 23, 24, 49], graph orientation [25, 38], minimum
cuts enumeration [29, 32, 50], network design [12, 30, 35], tree packing [7, 41], congruency-
constrained cuts [51], and approximation algorithms for TSP [8,30]. Designing fast algorithms
for global/local edge-connectivity preserving splitting-off remains an active area of research
(e.g., see recent works [9, 10,11, 42]) due to these far-reaching applications. In this work, we
introduce a splitting-off operation in hypergraphs, show the existence of local-connectivity
preserving splitting-off operation and design a strongly polynomial-time algorithm to compute
it in weighted hypergraphs, and illustrate its usefulness by showing two applications.

Hypergraphs. Hypergraphs offer a richer and more accurate model than graphs for several
applications. Consequently, hypergraphs have found applications in several modern areas
(e.g., see [44, 54, 57, 60]) and these applications have, in turn, driven exciting recent progress
in algorithms for hypergraph optimization problems [1, 4, 13, 14, 15, 18, 19, 21, 28, 31, 34, 36,
37, 39, 43, 55, 58]. A hypergraph G = (V, E) consists of a finite set V of vertices and a
set E of hyperedges, where every hyperedge e ∈ E is a subset of V . We will denote a
hypergraph G = (V, E) with hyperedge weights w : E → Z+ by the tuple (G, w) and use
Gw to denote the unweighted multi-hypergraph over vertex set V containing w(e) copies of
every hyperedge e ∈ E. Throughout this work, we will be interested only in hypergraphs
with positive integral weights and for algorithmic problems where the input/output is a
hypergraph, we will require that the weights are represented in binary. If all hyperedges have
size at most 2, then the hyperedges are known as edges and we call such a hypergraph as a
graph. We emphasize a subtle but important distinction between hypergraphs and graphs:
the number of hyperedges in a hypergraph could be exponential in the number of vertices.
This is in sharp contrast to graphs where the number of edges is at most the square of the
number of vertices. Consequently, in hypergraph network design problems where the goal is
to construct a hypergraph with certain properties, one needs to be mindful of the number
of hyperedges in the hypergraph returned by the algorithm. Recent works in hypergraph
algorithms literature have focused on this issue in the context of cut/spectral sparsification
of hypergraphs [4, 18,19,34,36,37,39,43,55,58].



K. Bérczi, K. Chandrasekaran, T. Király, and S. Kulkarni 23:3

Notation. Let (G = (V, E), w : E → Z+) be a hypergraph. For X ⊆ V , let δG(X) :=
{e ∈ E : e ∩ X ̸= ∅, e \ X ≠ ∅}. We define the cut function d(G,w) : 2V → Z≥0 by
d(G,w)(X) :=

∑
e∈δG(X) w(e) for every X ⊆ V . For a vertex v ∈ V , we use d(G,w)(v) to denote

d(G,w)({v}). We define the degree of a vertex v to be the sum of the weights of hyperedges
containing v – we note that the degree of a vertex is not necessarily equal to d(G,w)(v) since we
could have {v} itself as a hyperedge (i.e., a singleton hyperedge that contains only the vertex
v). For distinct vertices u, v ∈ V , let λ(G,w)(u, v) := min{d(G,w)(X) : u ∈ X ⊆ V \ {v}} –
i.e., λ(G,w)(u, v) is the value of a minimum {u, v}-cut in the hypergraph. If all hyperedge
weights are unit, then we drop w from the subscript and simply use dG and λG.

Hypergraph Splitting-off. We now introduce our definition of splitting-off in hypergraphs.
To compare and contrast our definition of splitting-off for hypergraphs with the classical
definition of splitting-off for graphs, we include both our definition and the classical definition
and distinguish them by identifying them as h-splitting-off and g-splitting-off. In the
definitions below, we encourage the reader to consider the input hypergraph (G, w) to be a
graph while considering g-splitting-off terminology and to be a hypergraph while considering
h-splitting-off terminology. We encourage the reader to also assume unit weights during first
read. See Figure 1 for an example.

▶ Definition 1. Let (G = (V, E), w : E → Z+) be a hypergraph and s ∈ V .
1. In merge almost-disjoint hyperedges, we pick a pair of hyperedges e, f ∈ δG(s) such that

e ∩ f = {s}, pick a positive integer α ∈ Z+ such that α ≤ min{w(e), w(f)}, reduce the
weights of hyperedges e and f by α, and increase the weight of a hyperedge g by α. Here,
a. if we choose g := e ∪ f , then the associated operation will be called as h-merge almost-

disjoint hyperedges operation.
b. if we choose g := (e ∪ f) \ {s}, then the associated operation will be called as g-merge

almost-disjoint hyperedges operation.
In the above, if α = w(e) (resp. if α = w(f)), then we discard the hyperedge e (resp.
hyperedge f) from the hypergraph obtained after the operation; if the hyperedge g ̸∈ E,
then we introduce g as a new hyperedge with weight w(g) := 0 before performing the weight
increase on the hyperedge g.

2. In trim hyperedge operation, we pick a hyperedge e ∈ δG(s), pick a positive integer
α ∈ Z+, reduce the weight of the hyperedge e and increase the weight of the hyperedge
g := e \ {s}. Here,
a. if we choose α ≤ w(e), reduce the weight of the hyperedge e by α, and increase the

weight of the hyperedge g by α, then the associated operation will be called as h-trim
operation (if α = w(e), then we discard e from the hypergraph obtained after the
operation; if g ̸∈ E, then we add g as a new hyperedge with weight w(g) := 0 before
performing the weight increase on the hyperedge g).

b. if we choose α ≤ w(e)/2, reduce the weight of the hyperedge e by 2α, and increase the
weight of the hyperedge g by 2α, then the associated operation will be called as g-trim
operation (if α = w(e)/2, then we discard e from the hypergraph obtained after the
operation; if g ̸∈ E, then we add g as a new hyperedge with weight w(g) := 0 before
performing the weight increase on the hyperedge g).

3. We say that a hypergraph (H = (V, EH), wH : EH → Z+) is obtained by applying a
a. h-splitting-off operation at s from (G, w) if (H, wH) is obtained from (G, w) by either

the h-merge almost-disjoint hyperedges operation or the h-trim hyperedge operation.
b. g-splitting-off operation at s from (G, w) if (H, wH) is obtained from (G, w) by either

the g-merge almost-disjoint hyperedges operation or the g-trim hyperedge operation.

ICALP 2024



23:4 Splitting-Off in Hypergraphs

Certain remarks regarding the definitions are in order. Firstly, the trim operation is valuable
and unique to hypergraphs. It has been used in the hypergraph literature to obtain small-sized
certificates for hypergraph connectivity [18] and for certain notions of directed hypergraph
connectivity [24]. We note that the trim operation has limited value in graphs – trimming
an edge leads to a singleton edge and singleton edges contribute only to the degree but not
to the cut value of any set. Secondly, all operations mentioned above are degree preserving
for vertices u ∈ V \ {s}: both h-trim and g-trim operations preserve degrees by definition;
both h-merge and g-merge almost-disjoint hyperedges operations preserve degrees due to
the almost-disjoint property of the chosen hyperedges. Thirdly, all operations mentioned
above do not increase the cut values of subsets X ⊆ V \ {s}. Thus, the relevant goal with
these operations is ensuring that the cut values do not decrease too much – i.e., preserving
global/local connectivity. We will be interested in repeated application of h-splitting-off
operations at a vertex from a given hypergraph to isolate that vertex while preserving
global/local connectivity. We define these formally next.

▶ Definition 2. Let (G = (V, E), w : E → Z+) be a hypergraph and s ∈ V .
1. We say that a hypergraph (G∗ = (V, E∗), w∗ : E∗ → Z+) is a

a. complete h-splitting-off at s from (G, w) if d(G∗,w∗)(s) = 0 and (G∗, w∗) is obtained
from (G, w) by repeatedly applying h-splitting-off operations at s from the current
hypergraph.

b. complete g-splitting-off at s from (G, w) if d(G∗,w∗)(s) = 0 and (G∗, w∗) is obtained
from (G, w) by repeatedly applying g-splitting-off operations at s from the current
hypergraph.

2. Let (G∗, w∗) be a complete h-splitting-off/g-splitting-off at s from (G, w). We say that
(G∗, w∗)
a. preserves local connectivity if λ(G∗,w∗)(u, v) = λ(G,w)(u, v) for every distinct u, v ∈

V \ {s} and
b. preserves global connectivity if

min{λ(G∗,w∗)(u, v) : u, v ∈ V \ {s}, u ̸= v} = min{λ(G,w)(u, v) : u, v ∈ V \ {s}, u ̸= v}.

Our first contribution in this work is the definition of h-splitting-off operations at a vertex
from a hypergraph. To the best of our knowledge, this definition has not appeared in the
literature before. A notion of hypergraph splitting-off motivated by hypergraph connectivity
augmentation applications has been studied in the literature before [3, 6, 20]. These works
have explored local connectivity preserving complete g-splitting-off at a vertex s from a
hypergraph under the assumption that all hyperedges incident to the vertex s are edges (i.e.,
have size at most 2). In contrast, our focus is on local connectivity preserving complete
h-splitting-off at a vertex s from a hypergraph without any assumption on the size of the
hyperedges incident to the vertex s (i.e., the vertex s could have arbitrary-sized hyperedges
incident to it). We refer the reader to Figure 1 for an example of complete h-splitting-off at
a vertex from a hypergraph.

We will primarily be concerned with complete h-splitting-off at a vertex from a hypergraph
and complete g-splitting-off at a vertex from a graph. Complete g-splitting-off at a vertex
from a graph is equivalent to the classical and well-studied notion of complete splitting-off
at a vertex from a graph (for the definition of the classical notion in graphs, see [24, 49]).
We cast the results of Lovász [45, 47] and Mader [48] in the framework of our definitions
now. Let (G, w) be a graph and let s be a vertex in G. Lovász [45, 47] showed that if
d(G,w)({s}) is even and min{λ(G,w)(u, v) : u, v ∈ V \ {s}} ≥ K for some K ≥ 2, then there
exists a global connectivity preserving complete g-splitting-off at the vertex s from (G, w).



K. Bérczi, K. Chandrasekaran, T. Király, and S. Kulkarni 23:5

Figure 1 Example of (local connectivity preserving) complete h-splitting-off at a vertex s from a
hypergraph. Consider the leftmost hypergraph where all hyperedge weights are one and the vertex s

is as labeled. Operations (I) and (II) correspond to h-merge almost-disjoint hyperedges operations
and Operation (III) corresponds to an h-trim hyperedge operation.

Mader [48] showed that if d(G,w)({s}) is even, there is no cut-edge1 incident to s, and (G, w)
is connected, then there exists a local connectivity preserving complete g-splitting-off at the
vertex s from (G, w).

We compare and contrast complete h-splitting-off at a vertex from a hypergraph and
complete g-splitting-off at a vertex from a graph. Complete h-splitting-off at a vertex s

from a hypergraph enables the vertex s to exit the hypergraph by informing its incident
hyperedges about how to merge and trim themselves in order to preserve degrees. In this
sense, the definition of complete h-splitting-off at a vertex from a hypergraph serves the
same role as complete g-splitting-off at a vertex from a graph. On the other hand, there are
important differences between the two notions. Firstly, complete h-splitting-off at a vertex
from a graph may not necessarily be a graph (owing to the creation of hyperedges of size at
least 3) while it is an easy exercise to show that complete g-splitting-off at a vertex from a
graph will necessarily be a graph. Secondly, local/global connectivity preserving complete
g-splitting-off at a vertex from a graph may not exist – see Figure 2.

Figure 2 An example showing that global connectivity preserving complete g-splitting-off at a
vertex from a graph may not exist. All edge weights are one and the vertex s is as labeled.

As our second main contribution, we show that local connectivity preserving complete
h-splitting-off at a vertex from a hypergraph always exists and can be computed in strongly
polynomial time (the rightmost hypergraph in Figure 1 is a local connectivity preserving
complete h-splitting-off at the vertex s from the hypergraph in Figure 2).

▶ Theorem 3. Given a hypergraph (G = (V, E), wG : E → Z+) and a vertex s ∈ V , there
exists a strongly polynomial-time algorithm to find a local connectivity preserving complete
h-splitting-off at s from (G, wG).

A difference between Theorem 3 and the graph splitting-off results of Lovász and Mader is
that Theorem 3 shows the existence of a local connectivity preserving complete h-splitting-off
at a vertex from a hypergraph without any assumptions on the hypergraph whereas Lovász’s

1 Equivalently, for every edge e ∈ δG(s) with w(e) = 1, the removal of that edge does not disconnect the
graph.

ICALP 2024



23:6 Splitting-Off in Hypergraphs

and Mader’s results hold only under certain technical assumptions on the graph. In several
applications of their results, additional arguments are needed to address cases where those
technical assumptions do not hold. For this reason, we believe that Theorem 3 could be
useful in simplifying the arguments involved in some of the applications of Lovász’s and
Mader’s graph splitting-off results (e.g., we will later see that the edge version of Menger’s
theorem in undirected graphs follows in a straightforward fashion from Theorem 3).

A crude run-time of our algorithm that proves Theorem 3 is O(|V |6(|V | + |E|)3). We
understand that this run-time is impractical for applications. Nevertheless, we mention it
here explicitly for the sake of completeness and as a potential starting point for future work:
it would be interesting to design a near-linear time algorithm to find a local connectivity
preserving complete h-splitting-off at a vertex from a weighted hypergraph.

▶ Remark 4. We note that existence of a local/global connectivity preserving complete
h-splitting-off at a vertex from a hypergraph does not necessarily imply a polynomial-time
algorithm to find it. This is because, a local/global connectivity preserving complete h-
splitting-off at a vertex from a hypergraph (G, wG) could contain exponential number of
hyperedges although G contains only polynomial number of hyperedges. We give an example
to illustrate this issue. Consider the graph (G = (V, E), wG) where G is the star graph on
n + 1 vertices with s being the center of the star and all edge weights are 2n−1 − 1. Consider
the hypergraph (H = (V, EH), wH) such that EH := {e : e ⊆ V \ {s} and |e| ≥ 2} with all
hyperedge weights being one. The hypergraph (H, wH) is a local connectivity preserving
complete h-splitting-off at s from (G, wG), but (H, wH) has exponential number of hyperedges
although (G, wG) has only n edges. In order to design a polynomial-time algorithm to find
a local connectivity preserving complete h-splitting-off at a vertex from a hypergraph, a
necessary step is to show the existence of a local connectivity preserving complete h-splitting-
off at a vertex from a hypergraph that contains only polynomially many additional hyperedges.
For the star graph (G, wG) with edge weights 2n−1 − 1 mentioned above, the hypergraph
(H ′ = (V, EH′), wH′) containing only one hyperedge, namely EH′ := {V \ {s}} with the
weight of that hyperedge being 2n−1 − 1 is also a local connectivity preserving complete
h-splitting-off at s from (G, wG). One of the features of our algorithmic proof of Theorem 3
is the existence of a local connectivity preserving complete h-splitting-off at a vertex from a
hypergraph that contains only polynomially many additional hyperedges.

As our third main contribution, we present two applications of Theorem 3.

Application 1: Constructive characterization of k-hyperedge-connected hypergraphs.
For the purposes of this application, graphs and hypergraphs will refer to multi-graphs
and multi-hypergraphs, respectively. Let k be a positive integer. A graph G = (V, E) is
k-edge-connected if dG(X) ≥ k for every non-empty proper subset X ⊊ V . Constructive
characterization of k-edge-connected graphs is a central problem in graph theory. It is
well-known that a graph is 1-edge-connected if and only if it containss a spanning tree.
Robbins’ [56] showed that a graph is 2-edge-connected if and only if it admits an ear
decomposition (see [24] for definition of ear decomposition). Generalizing Robbins’ result,
Lovász [45,47] gave a constructive characterization of k-edge-connected graphs for even k

using his result on global connectivity preserving complete g-splitting-off at a vertex from
a graph. Mader [48] gave a constructive characterization of k-edge-connected graphs for
odd k using his result on local connectivity preserving complete g-splitting-off at a vertex
from a graph. Motivated by these results, we present a constructive characterization of
k-hyperedge-connected hypergraphs using our splitting-off result in Theorem 3. A hypergraph
G = (V, E) is defined to be k-hyperedge-connected if dG(X) ≥ k for every non-empty proper
subset X ⊊ V .



K. Bérczi, K. Chandrasekaran, T. Király, and S. Kulkarni 23:7

Both Lovász’s and Mader’s constructive characterizations of k-edge-connected graphs are
based on a pinching operation in graphs. Our constructive characterization of k-hyperedge-
connected hypergraphs is also based on a pinching operation, but our pinching operation is
defined for hypergraphs. We define this operation now (see Figure 3 for an example).

▶ Definition 5. Let G = (V, E) be a hypergraph and p, k ∈ Z+ be positive integers such that
p ≤ k. In (k, p)-pinching hyperedges of G, we obtain a new hypergraph by performing the
following sequence of operations:
1. pick p distinct hyperedges e1, . . . , ep ∈ E,
2. pick p positive integers t1, . . . , tp ∈ Z+ such that

∑p
i=1 ti = k,

3. for each i ∈ [p], choose a partition of the hyperedge ei into ti non-empty parts ei =
⊎j∈[ti]f

j
i ,

4. remove the hyperedges e1, . . . , ep from the hypergraph G,
5. add a new vertex s and hyperedges {f j

i ∪ {s} : j ∈ [ti], i ∈ [p]} to the hypergraph G.

Figure 3 An example of a (4, 2)-pinching operation. Here, t1 = t2 = 2.

With this definition of pinching, we show the following constructive characterization of
k-hyperedge-connected hypergraphs.

▶ Theorem 6. Let k ∈ Z+ be a positive integer. A hypergraph G = (V, E) is k-hyperedge-
connected if and only if G can be obtained by starting from the single vertex hypergraph with
no hyperedges and repeatedly applying one of the following two operations:
1. add a new hyperedge over a subset of vertices of the existing hypergraph, and
2. (k, p)-pinching hyperedges of the existing hypergraph for some positive integer p ≤ k.

Our proof of Theorem 6 is constructive: i.e., given a k-hyperedge-connected hypergraph
G, our proof gives a polynomial-time algorithm to construct a sequence of hypergraphs
G0, G1, G2, . . . , Gt, where G0 is the single vertex hypergraph with no hyperedges, Gt = G and
for each i ∈ [t], the hypergraph Gi is obtained from Gi−1 by either adding a new hyperedge
over a subset of vertices in Gi−1 or by (k, p)-pinching hyperedges in Gi−1 for some positive
integer p ≤ k.

▶ Remark 7. Robbins’ constructive characterization of 2-edge-connected graphs and Lovász’s
constructive characterization of 2k-edge-connected graphs find applications in graph orient-
ation problems – e.g., Robbins’ result leads to an algorithm to find a strongly connected
orientation of 2-edge-connected graphs and Lovász’s result leads to an algorithm to find a
strongly k-arc-connected orientation of 2k-edge-connected graphs. In fact, the latter leads
to an alternative proof of Nash-Williams’ weak orientation theorem [52]. Along the same
vein, we hope that our above characterization of k-edge-connected hypergraphs might find
applications in hypergraph orientation problems.

ICALP 2024



23:8 Splitting-Off in Hypergraphs

Application 2.1: Steiner Rooted k-arc-connected Orientation of Graphs. Orienting a
graph to achieve high connectivity is a fundamental area in graph theory, combinatorial
optimization, and algorithms. Let G = (V, E) be an undirected graph. An orientation −→

G of
G is a directed graph obtained by assigning a direction to each edge of G. Let G = (V, E)
be an undirected graph, T ⊆ V be a set of terminals, r ∈ T be a root vertex, and k be a
positive integer. An orientation −→

G of G is defined to be Steiner rooted k-arc-connected if
there exist k arc-disjoint paths in −→

G from t to r for every terminal t ∈ T \ {r}. In Max
Steiner Rooted-Connected Orientation problem, the goal is to find the maximum
integer k and an orientation −→

G of G such that −→
G is Steiner rooted k-arc-connected. Max

Steiner Rooted-Connected Orientation generalizes two classic problems in graph
theory: The case of |T | = 2 is the max edge-disjoint {r, v}-paths problem and is solved via
Menger’s theorem. The case of T = V is the max edge-disjoint spanning trees problem and is
solved via Tutte and Nash-Williams’ theorem [53, 59]. We mention that both these problems
are also generalized by the Steiner Tree Packing problem and the associated Kriesell’s
conjecture [33,40,41], but we will not focus on that generalization.

Király and Lau [38] introduced the Max Steiner Rooted-Connected Orientation,
showed that it is NP-hard, and gave a 2-approximation via an approximate min-max relation.
We state their approximate min-max relation now. An undirected graph G is Steiner k-
edge-connected if λG(u, v) ≥ k for every pair of distinct terminals u, v ∈ T . It is clear that
if the graph G has a Steiner rooted k-arc-connected orientation, then G should be Steiner
k-edge-connected. However, the converse is not necessarily true. Király and Lau observed
that if the graph is Steiner 2k-edge-connected, then it has a Steiner rooted k-arc-connected
orientation.

▶ Theorem 8 (Király and Lau [38]). Let G = (V, E) be an undirected graph, T ⊆ V be a
subset of terminals, r ∈ T be the root vertex, and k be a positive integer. If G is Steiner
2k-edge-connected, then it has a Steiner rooted k-arc-connected orientation.

Király and Lau observed that Theorem 8 follows immediately from Nash-Williams’ strong
orientation theorem. Nash-Williams’ strong orientation theorem [52] states that every
undirected graph G = (V, E) admits an orientation −→

G such that λ−→
G

(u, v) ≥ ⌊λG(u, v)/2⌋
for every distinct u, v ∈ V , where λ−→

G
(u, v) is the maximum number of arc-disjoint directed

paths from u to v in −→
G . In this work, we give an alternative proof of Theorem 8 that does

not rely on Nash-Williams’ strong orientation theorem. Instead, we use Theorem 3. Our
proof strategy is unique since it proves an orientation result for graphs using tools developed
for hypergraphs.
▶ Remark 9. Nash-Williams’ proof of the strong orientation theorem [52] is a sophisticated
inductive argument. Giving a simple and more insightful proof of the strong orientation
theorem has been a central topic of interest in graph theory and combinatorial optimization
(see [26]). Mader [48] gave a different proof of the strong orientation theorem using his
local connectivity preserving splitting-off theorem, but his proof also involved sophisticated
technical arguments. Frank [26] condensed the ideas of both Nash-Williams and Mader to
present a proof of the strong orientation theorem using Mader’s local connectivity preserving
splitting-off, but it is still technically complicated. The technical complication in using
Mader’s local connectivity preserving splitting-off result arises from the assumptions that
need to be satisfied by the vertex to be split-off. In contrast, our splitting-off result for
hypergraphs (namely, Theorem 3) does not need any assumptions on the vertex to be split-off.
In light of these considerations, our proof of Theorem 8 using Theorem 3 provides hope
that Theorem 3 (or the ideas therein) could be used to give a conceptually simpler proof of
Nash-Williams’ strong orientation theorem.



K. Bérczi, K. Chandrasekaran, T. Király, and S. Kulkarni 23:9

Application 2.2: Steiner Rooted k-hyperarc-connected Orientation of Hypergraphs. Ori-
enting hypergraphs is also a fundamental area in graph theory and combinatorial optimization
(see Frank’s book [24]) with far reaching implications. For example, Woodall’s conjecture
can be reformulated as a hypergraph orientation problem (see Conjecture 9.4.15 in [24]);
moreover, hypergraph orientation results have recently been used in coding theory [1]. Király
and Lau [38] showed that the approximate min-max relation in Theorem 8 also holds for
hypergraphs. To state their result, we need some terminology in hypergraph orientations.

Let G = (V, E) be a hypergraph. An orientation −→
G = (V, E, head : E → V ) of G is a

directed hypergraph obtained by assigning a unique head vertex head(e) ∈ e for each e ∈ E.
A pair (e, head(e)) is denoted as a hyperarc with the head of the hyperarc being head(e) and
the tails of the hyperarc being e\head(e). Let G = (V, E) be a hypergraph, T ⊆ V be a set of
terminals, r ∈ T be a root vertex, and k be a positive integer. An orientation −→

G of G is defined
to be Steiner rooted k-hyperarc-connected if there exist k hyperarc-disjoint paths in −→

G from
t to r for every terminal t ∈ T \ {r}. Here, a path from t to r in a directed hypergraph is an
alternating sequence of distinct vertices and hyperarcs t = v1, a1, v2, a2, ..., aℓ−1, vℓ = r such
that vi is a tail of ai and vi+1 is the head of ai for every i ∈ [ℓ−1]. We say that a hypergraph
G is Steiner k-hyperedge-connected if λG(u, v) ≥ k for every pair of distinct terminals u, v ∈ T .
It is clear that if the hypergraph G has a Steiner rooted k-hyperarc-connected orientation,
then G should be Steiner k-hyperedge-connected. However, the converse is not necessarily
true. Király and Lau [38] showed that if the hypergraph is Steiner 2k-hyperedge-connected,
then it has a Steiner rooted k-hyperarc-connected orientation.

▶ Theorem 10 (Király and Lau [38]). Let G = (V, E) be a hypergraph, T ⊆ V be a subset of
terminals, r ∈ T be the root vertex, and k be a positive integer. If G is Steiner 2k-hyperedge-
connected, then it has a Steiner rooted k-hyperarc-connected orientation.

Király and Lau’s proof of Theorem 10 was based on careful uncrossing and contractions.
In this work, we give an alternative proof of Theorem 10 using Theorem 3. Our proof of
Theorem 10 reveals the source of the 2-factor gap in the approximate min-max relation of
Király and Lau for Max Steiner Rooted-Connected Orientation Problem: it arises
from the 2-factor gap between connectivity and weak-partition-connectivity of hypergraphs
(see Definition 5.1 for the definition of weak-partition-connectivity and Lemma 5.2 in the full
version).

▶ Remark 11. Our proof technique for Theorems 8 and 10 using Theorem 3 – i.e., via
the local-connectivity preserving splitting-off operation in hypergraphs – also leads to an
alternate proof of Menger’s theorem in undirected graphs and hypergraphs (edge-disjoint
version). For details, we refer the reader to Section 5 of the full version where we discuss a
proof of Menger’s theorem using Theorem 3 as a warm-up towards a proof of Theorems 8
and 10.

Both Theorems 8 and 10 can be extended to weighted graphs/hypergraphs (by considering
parallel copies of edges/hyperedges). The weighted version of Theorems 8 and 10 can also be
shown to admit strongly polynomial-time algorithms using our proof strategy as well as the
proof strategy of Király and Lau. We avoid stating the weighted versions in the interests of
brevity.

1.1 Proof Technique for Theorem 6
We outline the proof technique for Theorem 6. The reverse direction follows by observing
that if a hypergraph is k-hyperedge-connected, then both operations in the statement of the
theorem preserve k-hyperedge-connectivity. We sketch a proof of the forward direction. The

ICALP 2024



23:10 Splitting-Off in Hypergraphs

proof is by induction on the number of hyperedges plus the number of vertices. First, suppose
that there exists a hyperedge e ∈ E such that G − e is still k-hyperedge-connected. We note
that deleting the hyperedge e is the inverse of operation (1). Consequently, the proof follows
by deleting the hyperedge e, using the induction hypothesis on the resulting hypergraph H,
and then noting that the hypergraph G is obtained from H by operation (1). Next, suppose
that there does not exist a hyperedge e ∈ E such that G − e is k-hyperedge-connected. We
call such a hypergraph to be minimally k-hyperedge-connected. In Lemma 4.1 of the full
version, we show that a minimally k-hyperedge-connected hypergraph contains a vertex u

with degree exactly k. By Theorem 3, there exists a global-connectivity preserving complete
h-splitting-off at the vertex u from the hypergraph G. Let H be a global-connectivity
preserving complete h-splitting-off at the vertex u from the hypergraph G. We note that
complete h-splitting-off at u followed by deletion of the vertex u is the inverse of operation (2)
at u. Consequently, the proof follows by using the induction hypothesis on the hypergraph
H − u and then noting that the hypergraph G is obtained from H − u by operation (2).

1.2 Proof Technique for Theorems 8 and 10
We outline the proof technique for Theorem 10 and will remark after the proof about how it
also implies a proof for Theorem 8. Our proof of Theorem 10 will be in three steps. Let us
denote the set of non-terminals as Steiner vertices. Our first step is to obtain a hypergraph
H = (T, EH) by applying our local connectivity preserving complete h-splitting-off at each
Steiner vertex of G (sequentially, in arbitrary order of the Steiner vertices) and deleting the
isolated vertices. We note that deleting the isolated vertices ensures that the vertex set of H

is the set of terminals T . Moreover, our local connectivity preserving complete h-splitting-off
ensures that the hypergraph H is 2k-hyperedge-connected since the hypergraph G is Steiner
2k-hyperedge-connected. Our second step is to show that this hypergraph H = (T, EH)
admits a rooted k-hyperarc-connected orientation. A known characterization for the existence
of a rooted k-hyperarc-connected orientation of a hypergraph is that the hypergraph is k-
weak-partition-connected (see Definition 5.1 for the definition of weak-partition-connectivity
and Theorem 5.1 for the characterization in the full version). We mention that the notion
of weak-partition-connectivity in hypergraphs has been used recently in the context of
coding theory [1, 31]. In order to use the characterization for the existence of a rooted
k-hyperarc-connected orientation of a hypergraph, we relate the connectivity of a hypergraph
to its weak-partition-connectivity and conclude that if H is 2k-hyperedge-connected, then
it is k-weak-partition-connected (see Lemma 5.2 in the full version). Consequently, the
hypergraph H admits a rooted k-hyperarc-connected orientation. We note that such an
orientation of H is equivalent to a Steiner rooted k-hyperarc-connected orientation of H

since the vertex set of H is the set T of terminals. Our third step is to use this Steiner rooted
k-hyperarc-connected orientation of H to obtain a Steiner rooted k-hyperarc-connected
orientation of the hypergraph G: we will see that there is a natural way to extend the
orientation of hyperedges while reversing the h-splitting-off operations to preserve Steiner
rooted k-hyperarc-connected property (see Lemma 5.1 in the full version). This would
complete the proof of Theorem 10.

We note that if the hypergraph G is a graph, then the same proof above obtains the
required graph orientation, thus proving Theorem 8. In particular, to prove Theorem
8, we start from a graph G = (V, E) that is Steiner 2k-edge-connected, but our local
connectivity preserving complete h-splitting-off operations at Steiner vertices results in a
hypergraph H = (T, EH) that is 2k-hyperedge-connected; by Lemma 5.2 in the full version,
the hypergraph H is k-weak-partition-connected; now Theorem 5.1 in the full version gives a



K. Bérczi, K. Chandrasekaran, T. Király, and S. Kulkarni 23:11

rooted k-hyperarc-connected orientation of the resulting hypergraph. Such an orientation is
extended to a Steiner rooted k-hyperarc-connected orientation of the graph G = (V, E) using
Lemma 5.1 in the full version. Essentially, the proof starts from the given graph, obtains a
related hypergraph, orients that hypergraph, and extends that orientation of the hypergraph
back into a desired orientation of the given graph.

Our proof technique for Theorems 8 and 10 also leads to an alternate proof of Menger’s
theorem in undirected graphs and hypergraphs (edge-disjoint version) – see Section 5 in the
full version.

1.3 Proof Technique for Theorem 3
We prove a more general statement that implies Theorem 3. We begin with the definitions
needed for the more general statement.

▶ Definition 12. Let V be a finite set, p : 2V → Z be a set function, and (H = (V, E), w :
E → Z+) be a hypergraph.
1. The set function p

a. is symmetric if p(X) = p(V − X) for every X ⊆ V , and
b. is skew-supermodular if for every X, Y ⊆ V , at least one of the following inequalities

hold:
i. p(X) + p(Y ) ≤ p(X ∩ Y ) + p(X ∪ Y ).
ii. p(X) + p(Y ) ≤ p(X − Y ) + p(Y − X).

2. The coverage function b(H,w) : 2V → Z≥0 is defined by b(H,w)(X) :=
∑

e∈BH (X) w(e) for
every X ⊆ V , where BH(X) := {e ∈ E : e ∩ X ̸= ∅} for every X ⊆ V .

3. The hypergraph (H, w) weakly covers the function p if b(H,w)(X) ≥ p(X) for every X ⊆ V .
4. The hypergraph (H, w) strongly covers the function p if d(H,w)(X) ≥ p(X) for every

X ⊆ V .

If a hypergraph (H, w) strongly covers a function p : 2V → Z, then it also weakly covers
the function p. However, the converse is false – i.e., a weak cover is not necessarily a strong
cover2. Bernáth and Király [5] showed that a weak cover of a symmetric skew-supermodular
function can be converted to a strong cover of the same function by repeated merging of
disjoint hyperedges. We recall their definition of the merging operation, discuss their result,
and its significance now.

▶ Definition 13. Let (H = (V, E), w : E → Z+) be a hypergraph. We use Hw to denote the
unweighted multi-hypergraph over vertex set V containing w(e) copies of every hyperedge
e ∈ E. By merging two disjoint hyperedges of Hw, we refer to the operation of replacing
them by their union in Hw. We will say that a hypergraph (G = (V, EG), c : EG → Z+) is
obtained from (H, w) by merging hyperedges if the multi-hypergraph Gc is obtained from the
multi-hypergraph Hw by repeatedly merging two disjoint hyperedges in the current hypergraph.

Bernáth and Király showed the following result:

▶ Theorem 14 (Bernáth and Király [5]). Let (H = (V, E), w : E → Z+) be a hypergraph and
p : 2V → Z be a symmetric skew-supermodular function such that b(H,w)(X) ≥ p(X) for
every X ⊆ V . Then, there exists a hypergraph

(
H∗ = (V, E∗), w∗ : E∗ → Z+

)
such that

(1) d(H∗,w∗)(X) ≥ p(X) for every X ⊆ V and
(2) the hypergraph (H∗, w∗) is obtained by merging hyperedges of the hypergraph (H, w).

2 For example, consider the function p : 2V → Z defined by p(X) := 1 for every non-empty proper subset
X ⊊ V and p(∅) := p(V ) := 0, and the hypergraph (H = (V, E := {{u} : u ∈ V }), w : E → {1}).

ICALP 2024



23:12 Splitting-Off in Hypergraphs

We observe that Theorem 14 can be used to prove the existential version of Theorem 3:
namely, for every hypergraph (G = (V, E), wG : E → Z+) and a vertex s ∈ V , there exists a
local connectivity preserving complete h-splitting-off at s from (G, wG). This can be shown
by setting up the hypergraph (H, w) and the function p suitably based on (G, wG) and using
Theorem 14 (see the first two paragraphs of the proof of Theorem 3.1 in Section 3 of the full
version). We emphasize that this conclusion regarding hypergraph splitting-off from Bernáth
and Király’s result was not known before in the literature and is one of our contributions.
▶ Remark 15. We were also able to prove the existential version of Theorem 3 using element-
connectivity preserving reduction operations (see [16] for the definition of element-connectivity
and the notion of element-connectivity preserving reduction operations) – we omit the details
of this alternate proof in the interests of brevity. The alternate proof does not seem to be
helpful for the purposes of a strongly polynomial time algorithm. In fact, it remains open
to design a strongly polynomial-time algorithm to perform complete element-connectivity
preserving reduction operations in the weighted setting [16].

We recall that existence of a local connectivity preserving complete h-splitting-off at a
vertex from a hypergraph does not immediately imply a polynomial-time algorithm – see the
example in Remark 4. However, the above-mentioned proof of existence of a local-connectivity
preserving complete splitting-off at an arbitrary vertex from a hypergraph (i.e., existential
version of Theorem 3) via Theorem 14 suggests a natural approach towards designing a
strongly polynomial time algorithm to find a local-connectivity preserving complete splitting-
off at a given vertex from a given hypergraph: it suffices to prove a constructive version of
Theorem 14 via a strongly polynomial-time algorithm. Towards this end, the example in
Remark 4 suggests a necessary structural step towards a strongly polynomial-time algorithmic
version of Theorem 14: we need to show Theorem 14 with the extra conclusion that the
number of additional hyperedges in H∗ is polynomial in the number of hyperedges and
vertices in H.

Bernáth and Király proved Theorem 14 in the context of a reduction between certain
hypergraph connectivity augmentation problems. For that reduction, the existential version of
Theorem 14 is sufficient. However, for the purposes of our application to hypergraph splitting-
off, we need an algorithmic version of Theorem 14. Bernáth and Király’s proof of Theorem
14 is in fact algorithmic, but the run-time of the associated algorithm is not necessarily
polynomial. Their proof implies that the number of additional hyperedges in the hypergraph
(H∗, c∗) returned by their algorithm is at most

∑
e∈E w(e) (i.e., |E∗| − |E| ≤

∑
e∈E w(e))

and the run-time of the algorithm is O(
∑

e∈E(|e| + w(e)). In particular, their run-time is
polynomial only if the input weights are given in unary. Moreover, the exponential-sized
hypergraph from Remark 4 could indeed arise as a consequence of their algorithm.

We address both the structural and the algorithmic issues mentioned above by proving a
stronger algorithmic version of Theorem 14. In order to phrase an algorithmic version of
Theorem 14, we need suitable access to the function p. Bernáth and Király [5] suggested
access to a certain function maximization oracle associated with the function p that we
describe below.

▶ Definition 16. Let p : 2V → Z be a set function. p-max-sc-Oracle
(
(G0, c0) , S0, T0

)
takes

as input a hypergraph (G0 = (V, E0), c0 : E0 → Z+) and disjoint sets S0, T0 ⊆ V , and returns
a tuple (Z, p(Z)), where Z is an optimum solution to the following problem:

max
{

p(Z) − d(G0,c0)(Z) : S0 ⊆ Z ⊆ V − T0

}
. (p-max-sc-Oracle)



K. Bérczi, K. Chandrasekaran, T. Király, and S. Kulkarni 23:13

For the purposes of our application (namely local connectivity preserving complete h-splitting-
off at a vertex from a hypergraph), the above-mentioned function maximization oracle can be
implemented to run in strongly polynomial time (see Lemma 3.1 in the full version). Using
the above mentioned oracle, we prove the following algorithmic version of Theorem 14.

▶ Theorem 17. Let (H = (V, E), w : E → Z+) be a hypergraph and p : 2V → Z be a
symmetric skew-supermodular function such that b(H,w)(X) ≥ p(X) for every X ⊆ V . Then,
there exists a hypergraph

(
H∗ = (V, E∗), w∗ : E∗ → Z+

)
such that

(1) d(H∗,w∗)(X) ≥ p(X) for every X ⊆ V ,
(2) the hypergraph (H∗, w∗) is obtained by merging hyperedges of the hypergraph (H, w), and
(3) |E∗| − |E| = O(|V |).
Furthermore, given a hypergraph (H = (V, E), w : E → Z+) and access to p-max-sc-Oracle
of a symmetric skew-supermodular function p : 2V → Z where b(H,w)(X) ≥ p(X) for every
X ⊆ V , there exists an algorithm that runs in O(|V |3(|V | + |E|)2) time using O(|V |3(|V | +
|E|)) queries to p-max-sc-Oracle and returns a hypergraph

(
H∗ = (V, E∗), w∗ : E∗ → Z+

)
satisfying the above three properties. The run-time includes the time to construct the
hypergraphs used as input to the queries to p-max-sc-Oracle. Moreover, for each query to
p-max-sc-Oracle, the hypergraph (G0, c0) used as input to the query has O(|V |) vertices and
O(|V | + |E|) hyperedges.

Theorem 17 is a strengthening of Theorem 14 in two ways. Firstly, our theorem shows
the existence of a hypergraph that not only satisfies properties (1) and (2), but also satisfies
property (3) – i.e., the number of additional hyperedges in the returned hypergraph is linear
in the size of the vertex set. Secondly, our Theorem 17 shows the existence of a strongly
polynomial-time algorithm that returns a hypergraph satisfying the three properties. Our
main contribution is modifying Bernáth and Király’s algorithm and analyzing the modified
algorithm to bound the number of additional hyperedges and the run-time. We mention that
property (3) cannot be tightened to guarantee that |E∗ − E| = O(|V |) – we were able to
construct an example where |E∗ − E| = Ω(|V |2) (see Appendix A of the full version).

Theorem 17 immediately leads to a proof of Theorem 3 (see Theorem 3.1 and its proof in
Section 3 of the full version). Instead of using Theorem 17 as a black-box, if we delve into
the proof of it in the context of the proof of Theorem 3, we obtain the following theorem:

▶ Theorem 18. Let (G = (V, E), w : E → Z+) be a hypergraph and s ∈ V . Then, there exists
a hypergraph (G′ = (V, E′), w′ : E′ → Z+) obtained by applying a h-splitting-off operation at
s from (G, w) such that λ(G′,w′)(u, v) = λ(G,w)(u, v) for every distinct u, v ∈ V \ {s}.

We omit the proof of Theorem 18 in the interests of brevity. Theorem 18 closely resembles
the existential edge splitting-off results of Lovász [45,47] and Mader [48] for graphs. Lovász’s
and Mader’s existential edge splitting-off results for graphs are important since they have
been used to simplify the proofs of fundamental results in graph theory – e.g., Nash-Williams’
Strong Orientation Theorem. On the other hand, Theorem 18 does not immediately imply
a strongly polynomial-time algorithm for finding a local connectivity preserving complete
h-splitting off at a vertex from a given weighted hypergraph. So, Theorem 3 may be useful
in algorithmic contexts while Theorem 18 may be useful in graph-theoretical contexts.

1.4 Proof Technique for Theorem 17
In this section, we describe our proof technique for the existential result in Theorem 17.
The algorithmic results in that theorem follow from the existential result using standard
algorithmic tools for submodular functions, so we focus only on outlining a proof of the

ICALP 2024



23:14 Splitting-Off in Hypergraphs

existential result. Let (H = (V, E), w : E → Z+) be a hypergraph and p : 2V → Z+ be a
symmetric skew-supermodular function such that (H, w) weakly covers the function p. Our
goal is to show that there exists a hypergraph (H∗ = (V, E∗), w∗ : E → Z+) such that
(1) (H∗, w∗) strongly covers the function p,
(2) (H∗, w∗) is obtained by merging hyperedges of the hypergraph (H, w), and
(3) |E∗| − |E| = O(|V |).

Preliminaries. We define a set X ⊆ V to be (p, H, w)-tight if b(H,w)(X) = p(X). For a
function p and hypergraph (H, w), let Tp,H,w denote the family of (p, H, w)-tight sets and let
Tp,H,w be the family of inclusionwise maximal sets in Tp,H,w. We will need the following two
operations:

(i) For hyperedges e, f ∈ E and a positive integer α ≤ min{w(e), w(f)}, the operation
Merge ((H, w), e, f, α)) returns the hypergraph obtained from (H, w) by decreasing
the weight of hyperedges e and f by α and increasing the weight of the hyperedge e ∪ f

by α. All hyperedges with zero weight are discarded.
(ii) For a hyperedge e ∈ E and a positive integer α ≤ w(e), the operation Reduce

((H, w), e, α) returns the hypergraph obtained by decreasing the weight of the hyperedge
e by α. All hyperedges with zero weight are discarded.

Algorithm of [5]. Our proof of the existential result builds on the techniques of Bernáth and
Király [5] who proved the existence of a hypergraph (H∗ = (V, E∗), w∗ : E∗ → Z+) satisfying
properties (1) and (2), so we briefly recall their techniques. We present the algorithmic
version of their proof since it will be useful for our purposes.

The proof in [5] is inductive, and consequently, the algorithm implicit in their proof is
recursive. The algorithm takes as input a hypergraph ((H = (V, E), w : E → Z+) and a
symmetric skew-supermodular function p : 2V → Z such that the hypergraph (H, w) weakly
covers the function p. If w(E) = 0, then the algorithm is in its base case and returns the empty
hypergraph. Otherwise, w(E) > 0; the algorithm chooses an arbitrary hyperedge e ∈ E and
defines hypergraphs (H0, w0) and (H ′, w′) and the function p′ by considering two cases. First,
suppose that the hyperedge e is not contained in any set of the family Tp,H,w. In this case,
the algorithm defines (H0, w0) to be the hypergraph on vertex set V consisting of a single
hyperedge e with w0(e) = 1, constructs the hypergraph (H ′, w′) := Reduce((H, w), e, 1),
and defines the function p′ := p−d(H0,w0). Second, suppose that the hyperedge e is contained
in some set X ∈ Tp,H,w. It can be shown that there exists a hyperedge f ∈ E such that
f ⊆ V − X. In this case, the algorithm defines (H0, w0) to be the empty hypergraph on
vertex set V , constructs the hypergraph (H ′, w′) := Merge((H, w), e, f, 1), and defines the
function p′ := p. In both cases, the algorithm recurses on the inputs (H ′, w′) and p′ to obtain
a hypergraph (H∗

0 , w∗
0) and returns the hypergraph (H∗, w∗) = (H∗

0 + H0, w∗
0 + w0). Here,

the hyperedges of H∗ are the union of the hyperedges of H∗
0 and H0 with the weight w∗(e)

of a hyperedge e being the sum of the weights w∗
0(e) + w0(e) if the hyperedge e is present in

both H∗
0 and H0, being w∗

0(e) if the hyperedge e is present only in H∗
0 , and being w0(e) if

the hyperedge e is present only in H0.
We note that w′(E′) = w(E) − 1. Furthermore, it can be shown that the function p′

is symmetric skew-supermodular and the hypergraph (H ′, w′) weakly covers the function
p′. Consequently, by induction on w(E), the algorithm can be shown to terminate in w(E)
recursive calls and returns a hypergraph satisfying properties (1) and (2). Moreover, the
number of additional hyperedges in the returned hypergraph is at most the number of
recursive calls where the Merge operation is performed, which is also at most w(E). Thus,



K. Bérczi, K. Chandrasekaran, T. Király, and S. Kulkarni 23:15

in order to reduce the number of additional hyperedges and to design a strongly polynomial-
time algorithm, our goal is to reduce the recursion depth of the algorithm. We emphasize
that the recursion depth of Bernáth and Király’s algorithm could indeed be exponential
(the exponential sized example mentioned in Remark 4 could arise in the execution of their
algorithm), so we need to necessarily modify their algorithm.

Preprocessing for Additional Structure. Similar to Bernáth and Király’s algorithm, our
algorithm also takes as input a hypergraph (H = (V, E), w : E → Z+) and a symmetric
skew-supermodular function p : 2V → Z such that the hypergraph (H, w) weakly covers
the function p. However, unlike Bernáth and Király’s algorithm, our algorithm performs
a preprocessing step so that the inputs (H, w) and p satisfy the following two additional
conditions:
(a) every hyperedge e ∈ E is contained in some set of Tp,H,w and
(b) the degree of every vertex in (H, w) is non-zero.
As a consequence of these additional conditions, the family Tp,H,w will be a disjoint family, a
property that we leverage heavily throughout our analysis. Furthermore, we modify Bernáth
and Király’s algorithm to ensure that these conditions hold during every recursive call.

Our Algorithm. We now describe our modification of the above-mentioned Bernáth and
Király’s algorithm to reduce the recursion depth. Our algorithm is also recursive and its base
case is the same as that of Bernáth and Király’s algorithm (i.e., w(E) = 0). During recursive
cases (i.e., if w(E) > 0), instead of performing one of the two (i.e., Merge or Reduce)
operations, our algorithm performs both operations in a sequential fashion. In particular,
we find a pair of disjoint hyperedges e, f ∈ E contained in distinct sets of Tp,H,w (such a
pair exists by condition (a) and the arguments of Bernáth and Király mentioned above).
Next, instead of performing one Merge operation (as was done by Bernáth and Király’s
algorithm), we perform as many Merge operations as possible using the hyperedges e and
f . Formally, let

αM := max
{

α ∈ Z+ : hypergraph returned by Merge((H, w), e, f, α) weakly covers p
}

.

We let (HM , wM ) := Merge((H, w), e, f, αM ) and pM := p. Next, instead of recursing on
((HM , wM ), pM ) (as was done by Bernáth and Király’s algorithm), we perform as many
Reduce operations as possible on the newly created hyperedge e ∪ f . Formally, let

αR := max
{

α ∈ Z≥0 : Hypergraph returned by Reduce((HM , wM ), e ∪ f, α)
weakly covers the function (pM − d(Hα

0 ,wα
0 ))

}

where (Hα
0 , wα

0 ) denotes the hypergraph on vertex set V consisting of a single hyperedge e∪f

with wα
0 (e ∪ f) = α. We construct the hypergraph (H0, w0) := (HαR

0 , wαR

0 ), the hypergraph
(HR, wR) := Reduce((HM , wM ), e ∪ f, αR) and define the function pR := pM − d(HαR

0 ,wαR
0 ).

This immediate reduce step ensures that the hypergraph (HR, wR) and the function pR

satisfy condition (a) – i.e., every hyperedge in (HR, wR) is contained in some set of TpR,HR,wR .
Finally, we compute sets Z := {u ∈ V : b(HR,wR)(u) = 0} and V ′ := V − Z, hypergraph
(H ′ := (V ′, E′ := ER), w′ := wR), and define the function p′ : 2V ′ → Z by p′(X) :=
max{p(X ∪ R) : R ⊆ Z} for every X ⊆ V ′ – this final step can be viewed as a clean up
step since it gets rid of vertices that are not incident to any hyperedges (and revises the
function p appropriately). This clean up step ensures that the hypergraph (H ′, w′) satisfies
condition (b) – i.e., the degree of every vertex in (H ′, w′) is non-zero. It can be shown that

ICALP 2024



23:16 Splitting-Off in Hypergraphs

the function p′ is symmetric skew-supermodular and the hypergraph (H ′, w′) weakly covers
the function p′. Furthermore, the function p′ and hypergraph (H ′, w′) satisfy conditions (a)
and (b). We recursively call the algorithm on input ((H ′, w′), p′) to obtain a hypergraph
(H∗

0 , w∗
0). We obtain the hypergraph (G, c) from (H∗

0 , w∗
0) by adding the vertices Z and

return the hypergraph (G + H0, c + w0). By induction on the total weight of hyperedges in
the input hypergraph, it can be shown that our algorithm returns a hypergraph satisfying
properties (1) and (2) and also terminates within a finite number of recursive calls.

Recursion Depth and Potential Functions. We now sketch our proof to show that the
recursion depth of our algorithm is |E| + O(|V |). We note that this also bounds the number
of additional hyperedges in the hypergraph returned by the algorithm, and consequently
this hypergraph also satisfies property (3). Let ℓ be the number of recursive calls made by
the algorithm on the input instance ((H, w), p). We partition the set [ℓ] of recursive calls
into two parts: let P1 ⊆ [ℓ] be the set of recursive calls during which the merged hyperedge
e ∪ f survives in the hypergraph (H ′, w′) that is input to the subsequent recursive call and
P2 ⊆ [ℓ] be the recursive calls during which the merged hyperedge e ∪ f does not survive
in the hypergraph (H ′, w′) that is input to the subsequent recursive call. We note that
[ℓ] = P1 ⊎ P2. We bound |P1| and |P2| separately using certain carefully designed potential
functions.

First, we show that |P1| = O(|V |) as follows: for i ∈ [ℓ], consider the maximal tight
set family Ti = Tpi,Hi,wi

where ((Hi, wi), pi) is the input to the ith recursive call. Also, let
T≤1 := T1 and T≤i := Ti ∪ {X ∩ Vi : X ∈ T≤i−1} for integers i where 2 ≤ i ≤ ℓ and Vi is the
ground set of the input to the ith recursive call. Thus, T≤i is the projection of all the maximal
tight sets encountered in the first i recursive calls of the algorithm onto the ground set of the
inputs at the ith recursive call. We show that T≤i is laminar for every i ∈ [ℓ] (Lemma 6.11 in
the full version). However, |T≤i| is not necessarily non-decreasing with i since projection of a
set family to a subset could result in the loss of sets from the family. Consequently, |T≤i|
is not suitable as a potential function to measure progress. Instead, we use the potential
function ϕ(i) := |T≤i| + 3|Z≤i−1|, where Z≤i is the union of the sets Z computed up to
the ith recursive call. We show that ϕ(i) is non-decreasing and strictly increases if i ∈ P1
(Claim 6.4 in Lemma 6.12 of the full version). Consequently, |P1| = O(|V |).

Secondly, we bound |P2| as follows. We use a lookahead-potential function: let Φ1(i)
be the number of recursive calls between i and ℓ during which the merged hyperedge e ∪ f

survives in the hypergraph (H ′, w′) that is input to the subsequent recursive call and let
Φ(i) := |Ei|+Φ1(i), where Ei is the set of hyperedges in the hypergraph (Hi, wi) input to the
ith recursive call. We show that Φ(i) is non-increasing and strictly decreases if i ∈ P2 (Claim
6.5 in Lemma 6.12 of the full version). Hence, |P2| ≤ Φ(1) − Φ(ℓ) ≤ Φ(1) ≤ |E1| + |P1| =
|E| + O(|V )), where the last equality is because of the bound on |P1| from the previous
paragraph.

▶ Remark 19. Our key technical contributions are twofold. Our first key technical contribution
is identifying conditions (a) and (b) under which Tp,H,w becomes a disjoint family. We ensure
that conditions (a) and (b) hold in every recursive call by performing immediate reduction
and clean-up steps in the algorithm. Our second key technical contribution is identifying
appropriate potential functions to measure progress of the algorithm. The disjointness of
Tp,H,w was crucial for identifying the laminar structure of the family of projected maximal
tight sets across recursive calls, which was subsequently helpful in bounding the number
of recursive calls corresponding to P1. Moreover, we bound the number of recursive calls
corresponding to P2 using a lookahead-potential function that relates |P2| to |P1|. As
discussed above, the additive |E| in the recursion depth comes from the bound on |P2|.



K. Bérczi, K. Chandrasekaran, T. Király, and S. Kulkarni 23:17

2 Conclusion

We introduced a splitting-off operation in (weighted) hypergraphs. Our contribution on
this front is conceptualizing an appropriate notion of splitting-off in hypergraphs. Next,
we proved that for every hypergraph there exists a local-connectivity preserving complete
h-splitting-off at an arbitrary vertex from the hypergraph. Although our proof of existence
follows from previously known existential results of Bernáth and Király [5] for an abstract
function cover problem, our main contribution is identifying that our newly introduced
notion of hypergraph splitting-off falls within their framework. Next, we designed a strongly
polynomial-time algorithm to find a local-connectivity preserving complete splitting-off at
a vertex. This involved substantial technical challenges to overcome. In particular, our
main contribution towards the strongly polynomial-time algorithm is a strengthening of
the above-mentioned existential result: we showed that there exists a local connectivity
preserving complete h-splitting-off at an arbitrary vertex from the hypergraph in which
the number of additional hyperedges is polynomial in the number of vertices. The strongly
polynomial-time algorithm follows from our techniques to achieve this stronger existential
result via standard algorithmic tools in submodularity. Finally, we illustrated the usefulness
of the existence of local connectivity preserving complete h-splitting-off at an arbitrary
vertex from a hypergraph by presenting two applications. Our first application is to give a
constructive characterization of k-hyperedge-connected hypergraphs. Our second application
is to give an alternative proof of an approximate min-max relation for the max Steiner
rooted-connected orientation problem in graphs and hypergraphs. Two notable features of
our proof of this relation for graphs are that (1) it avoids the strong orientation theorem of
Nash-Williams and (2) it proves a result for graphs using tools developed for hypergraphs.

Local and global connectivity preserving complete splitting-off at a vertex from a graph is
a powerful operation for graphs. It finds applications in a variety of graph problems including
graph orientation [25,26,38,48], connectivity augmentation [2,22,23,24,49], minimum cuts
enumeration [29,32,50], network design [12,17,35,46], tree packing [7, 33,40,41], congruency-
constrained cuts [51], and approximation algorithms for TSP [8, 30]. We believe that our
local connectivity preserving complete splitting-off results for hypergraphs is likely to find
future applications akin to its counterpart in graphs. We mention some of the open questions
raised by our work:
1. Our work focused on local connectivity preserving complete h-splitting-off at a vertex

from a hypergraph. We gave an example showing that local/global connectivity preserving
complete g-splitting-off at a vertex from a hypergraph may not exist (Figure 2). Are there
sufficient conditions to guarantee local/global connectivity preserving complete g-splitting-
off at a vertex from a hypergraph? We recall that Lovász’s [45, 47] and Mader’s [48]
results give sufficient conditions to guarantee local and global connectivity preserving
complete g-splitting-off at a vertex from a graph.

2. As one of the applications of our splitting-off result, we presented an alternative proof of an
approximate min-max relation for the max Steiner rooted-connected orientation problem
in hypergraphs. The computational complexity of a closely related hypergraph orientation
problem is open: In max Steiner connected orientation problem in hypergraphs, the input
is a hypergraph G = (V, E) and a subset T of terminals. The goal is to find the maximum
k and an orientation −→

G of G such that −→
G contains k hyperarc-disjoint paths from u to v

for every pair of distinct terminals u, v ∈ T . Max Steiner connected orientation problem
in graphs is solvable in polynomial time via the Nash-Williams’ strong orientation theorem.
Is max Steiner connected orientation problem in hypergraphs solvable in polynomial time?

ICALP 2024



23:18 Splitting-Off in Hypergraphs

References
1 O. Alrabiah, V. Guruswami, and R. Li. Randomly punctured reed–solomon codes achieve

list-decoding capacity over linear-sized fields. In (To appear) Proceedings of the 56th Annual
ACM Symposium on Theory of Computing, STOC, 2024.

2 J. Bang-Jensen, A. Frank, and B. Jackson. Preserving and increasing local edge-connectivity
in mixed graphs. SIAM Journal on Discrete Mathematics, 8(2):155–178, 1995.

3 J. Bang-Jenson and B. Jackson. Augmenting hypergraphs by edges of size two. Mathematical
Programming, 84:467–481, 1999.

4 N. Bansal, O. Svensson, and L. Trevisan. New notions and constructions of sparsification
for graphs and hypergraphs. In IEEE 60th Annual Symposium on Foundations of Computer
Science, FOCS, pages 910–928, 2019.

5 A. Bernáth and T. Király. Covering skew-supermodular functions by hypergraphs of minimum
total size. Operations Research Letters, 37(5):345–350, 2009.

6 A. Bernáth and T. Király. A unifying approach to splitting-off. Combinatorica, 32:373–401,
2012.

7 A. Bhalgat, R. Hariharan, T. Kavitha, and D. Panigrahi. Fast Edge Splitting and Edmonds’
Arborescence Construction for Unweighted Graphs. In Proceedings of the 19th Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA, pages 455–464, 2008.

8 Jannis Blauth and Martin Nägele. An improved approximation guarantee for prize-collecting
tsp. In Proceedings of the 55th Annual ACM Symposium on Theory of Computing, STOC
2023, pages 1848–1861, New York, NY, USA, 2023. Association for Computing Machinery.

9 R. Cen, W. He, J. Li, and D. Panigrahi. Steiner connectivity augmentation and splitting-off in
poly-logarithmic maximum flows. In Proceedings of the 34th Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA, pages 2449–2488, 2023.

10 R. Cen, J. Li, and D. Panigrahi. Augmenting edge connectivity via isolating cuts. In Proceedings
of the 33rd Annual ACM-SIAM Symposium on Discrete Algorithms, SODA, pages 3237–3252,
2022.

11 R. Cen, J. Li, and D. Panigrahi. Edge connectivity augmentation in near-linear time. In
Proceedings of the 54th Annual ACM SIGACT Symposium on Theory of Computing, STOC,
pages 137–150, 2022.

12 Y. H. Chan, W. S. Fung, L. C. Lau, and C. K. Yung. Degree Bounded Network Design with
Metric Costs. SIAM Journal on Computing, 40(4):953–980, 2011. Prelim. version in FOCS
2008.

13 K. Chandrasekaran and C. Chekuri. Hypergraph k-cut for fixed k in deterministic polynomial
time. Mathematics of Operations Research, 47(4), 2022. Prelim. version in FOCS 2020.

14 K. Chandrasekaran and C. Chekuri. Min-max partitioning of hypergraphs and symmetric
submodular functions. Combinatorica, 43:455–477, 2023. Prelim. version in SODA 2021.

15 K. Chandrasekaran, C. Xu, and X. Yu. Hypergraph k-Cut in randomized polynomial time.
Mathematical Programming, 186:85–113, 2021. Prelim. version in SODA 2018.

16 C. Chekuri and N. Korula. A Graph Reduction Step Preserving Element-Connectivity and
Packing Steiner Trees and Forests. SIAM Journal on Discrete Mathematics, 28(2):577–597,
2014. Prelim. version in ICALP 2009.

17 C. Chekuri and B. Shepherd. Approximate Integer Decompositions for Undirected Network
Design Problems. SIAM J. Discrete Math., 23:163–177, 2008.

18 C. Chekuri and C. Xu. Minimum cuts and sparsification in hypergraphs. SIAM Journal on
Computing, 47(6):2118–2156, 2018. Prelim. version in SODA 2016.

19 Y. Chen, S. Khanna, and A. Nagda. Near-linear size hypergraph cut sparsifiers. In IEEE 61st
Annual Symposium on Foundations of Computer Science, FOCS, pages 61–72, 2020.

20 B. Cosh. Vertex splitting and connectivity augmentation in hypergraphs. PhD thesis, University
of London, 2000.

21 K. Fox, D. Panigrahi, and F. Zhang. Minimum cut and minimum k-cut in hypergraphs via
branching contractions. ACM Trans. Algorithms, 19(2), 2023. Prelim. version in SODA 2019.



K. Bérczi, K. Chandrasekaran, T. Király, and S. Kulkarni 23:19

22 A. Frank. Augmenting graphs to meet edge-connectivity requirements. SIAM Journal on
Discrete Mathematics, 5(1):25–53, 1992. Prelim. version in FOCS 1990.

23 A Frank. Connectivity augmentation problems in network design. Mathematical Programming:
State of the Art 1994, pages 34–63, 1994.

24 A. Frank. Connections in Combinatorial Optimization. Oxford University Press, Oxford, 2011.
25 A. Frank and Z. Király. Graph orientations with edge-connection and parity constraints.

Combinatorica, 22:47–70, 2002.
26 András Frank. Applications of submodular functions. Surveys in Combinatorics, 1993 (Keele),

pages 85–136, 1993.
27 H. N. Gabow. Efficient splitting off algorithms for graphs. In Proceedings of the 26th Annual

ACM Symposium on Theory of Computing, STOC, pages 696–705, 1994.
28 M. Ghaffari, D. Karger, and D. Panigrahi. Random Contractions and Sampling for Hypergraph

and Hedge Connectivity. In Proceedings of the 28th annual ACM-SIAM Symposium on Discrete
Algorithms, SODA, pages 1101–1114, 2017.

29 M. X. Goemans. Approximate Edge Splitting. SIAM Journal on Discrete Mathematics,
14(1):138–141, 2001.

30 M.X. Goemans and D.J. Bertsimas. Survivable networks, linear programming relaxations and
the parsimonious property. Mathematical Programming, 60:145–166, 1993.

31 Z. Guo, R. Li, C. Shangguan, I. Tamo, and M. Wootters. Improved List-Decodability and List-
Recoverability of Reed-Solomon Codes via Tree Packings. In IEEE 62nd Annual Symposium
on Foundations of Computer Science, FOCS, pages 708–719, 2022.

32 M. Henzinger and D. Williamson. On the number of small cuts in a graph. Information
Processing Letters, 59:41–44, 1996.

33 K. Jain, M. Mahdian, and M. R. Salavatipour. Packing Steiner Trees. In Proceedings of the
14th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA, pages 266–274, 2003.

34 A. Jambulapati, Y. P. Liu, and A. Sidford. Chaining, group leverage score overestimates, and
fast spectral hypergraph sparsification. In Proceedings of the 55th Annual ACM Symposium
on Theory of Computing, STOC, pages 196–206, 2023.

35 T. Jordán. On minimally k-edge-connected graphs and shortest k-edge-connected Steiner
networks. Discrete Applied Mathematics, 131(2):421–432, 2003.

36 M. Kapralov, R. Krauthgamer, J. Tardos, and Y. Yoshida. Towards tight bounds for spectral
sparsification of hypergraphs. In Proceedings of the 53rd Annual ACM SIGACT Symposium
on Theory of Computing, STOC, pages 598–611, 2021.

37 M. Kapralov, R. Krauthgamer, J. Tardos, and Y. Yoshida. Spectral Hypergraph Sparsifiers of
Nearly Linear Size. In IEEE 62nd Annual Symposium on Foundations of Computer Science,
FOCS, pages 1159–1170, 2022.

38 T. Király and L. C. Lau. Approximate min–max theorems for Steiner rooted-orientations of
graphs and hypergraphs. Journal of Combinatorial Theory, Series B, 98:1233–1252, November
2008. Prelim. version in FOCS 2006.

39 D. Kogan and R. Krauthgamer. Sketching cuts in graphs and hypergraphs. In Proceedings of
the 2015 Conference on Innovations in Theoretical Computer Science, ITCS, pages 367–376,
2015.

40 M. Kriesell. Edge-disjoint trees containing some given vertices in a graph. J. Comb. Theory
Ser. B, 88:53–63, 2003.

41 L. C. Lau. An Approximate Max-Steiner-Tree-Packing Min-Steiner-Cut Theorem. Combinat-
orica, 27:71–90, 2007. Prelim. version in FOCS 2004.

42 L. C. Lau and C. K. Yung. Efficient Edge Splitting-Off Algorithms Maintaining All-Pairs
Edge-Connectivities. SIAM Journal on Computing, 42(3):1185–1200, 2013. Prelim. version in
IPCO 2010.

43 J. R. Lee. Spectral hypergraph sparsification via chaining. In Proceedings of the 55th Annual
ACM Symposium on Theory of Computing, STOC, pages 207–218, 2023.

ICALP 2024



23:20 Splitting-Off in Hypergraphs

44 P. Li and O. Milenkovic. Inhomogeneous hypergraph clustering with applications. Advances
in neural information processing systems, 30, 2017.

45 L. Lovász. Lecture. Presented in a Conference on Graph Theory, Prague, 1974.
46 L. Lovász. On some connectivity properties of Eulerian graphs. Acta Math. Hungarica,

28:129–138, 1976.
47 L. Lovász. Combinatorial Problems and Exercises, Second Edition. American Mathematical

Soc., 1993. First Edition: North-Holland, Amsterdam, 1979.
48 W. Mader. A reduction method for edge-connectivity in graphs. In Annals of Discrete

Mathematics, volume 3, pages 145–164. Elsevier, 1978.
49 H. Nagamochi and T. Ibaraki. Algorithmic Aspects of Graph Connectivity. Encyclopedia of

Mathematics and its Applications. Cambridge University Press, 2008.
50 H. Nagamochi, K. Nishimura, and T. Ibaraki. Computing all small cuts in an undirected

network. SIAM Journal on Discrete Mathematics, 10(3):469–481, 1997.
51 M. Nägele and R. Zenklusen. A new contraction technique with applications to congruency-

constrained cuts. Mathematical Programming, 183(2):455–481, 2020. Prelim. version in IPCO
2019.

52 C. St. J. A. Nash-Williams. On orientations, connectivity and odd vertex pairings in finite
graphs. Canad. J. Math, 12:555–567, 1960.

53 C. St. J. A. Nash-Williams. Edge disjoint spanning trees of finite graphs. J. London Math.
Soc., 36:445–450, 1961.

54 S. Ornes. How big data carried graph theory into new dimensions. Quanta Magazine, 2021.
URL: https://www.quantamagazine.org/how-big-data-carried-graph-theory-into-new-
dimensions-20210819/.

55 K. Quanrud. Quotient sparsification for submodular functions. Manuscript available at
kentquanrud.com, November 2022.

56 H. E. Robbins. A Theorem on Graphs with an Application to a Problem of Traffic Control.
Amer. Math. Monthly, 46:281–283, 1939.

57 S. Schlag, T. Heuer, L. Gottesbüren, Y. Akhremtsev, C. Schulz, and P. Sanders. High-quality
hypergraph partitioning. ACM Journal of Experimental Algorithmics, 27:1–39, 2023.

58 T. Soma and Y. Yoshida. Spectral sparsification of hypergraphs. In Proceedings of the 30th
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA, pages 2570–2581, 2019.

59 W. T. Tutte. On the problem of decomposing a graph into n connected factors. J. London
Math. Soc., 36:221–230, 1961.

60 N. Veldt, A. R. Benson, and J. Kleinberg. Hypergraph cuts with general splitting functions.
SIAM Review, 64(3):650–685, 2022.

https://www.quantamagazine.org/how-big-data-carried-graph-theory-into-new-dimensions-20210819/
https://www.quantamagazine.org/how-big-data-carried-graph-theory-into-new-dimensions-20210819/
kentquanrud.com

	1 Introduction
	1.1 Proof Technique for Theorem 6
	1.2 Proof Technique for Theorems 8 and 10
	1.3 Proof Technique for Theorem 3
	1.4 Proof Technique for <thm:WeakToStrongCover:main>

	2 Conclusion

