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Abstract
Valiant’s famous VP vs. VNP conjecture states that the symbolic permanent polynomial does not
have polynomial-size algebraic circuits. However, the best upper bound on the size of the circuits
computing the permanent is exponential. Informally, VNP is an exponential sum of VP-circuits. In
this paper we study whether, in general, exponential sums (of algebraic circuits) require exponential-
size algebraic circuits. We show that the famous Shub-Smale τ -conjecture indeed implies such
an exponential lower bound for an exponential sum. Our main tools come from parameterized
complexity. Along the way, we also prove an exponential fpt (fixed-parameter tractable) lower bound
for the parameterized algebraic complexity class VW0

nb[P], assuming the same conjecture. VW0
nb[P]

can be thought of as the weighted sums of (unbounded-degree) circuits, where only ±1 constants
are cost-free. To the best of our knowledge, this is the first time the Shub-Smale τ -conjecture has
been applied to prove explicit exponential lower bounds.

Furthermore, we prove that when this class is fpt, then a variant of the counting hierarchy, namely
the linear counting hierarchy collapses. Moreover, if a certain type of parameterized exponential
sums is fpt, then integers, as well as polynomials with coefficients being definable in the linear
counting hierarchy have subpolynomial τ -complexity.

Finally, we characterize a related class VW[F], in terms of permanents, where we consider an
exponential sum of algebraic formulas instead of circuits. We show that when we sum over cycle
covers that have one long cycle and all other cycles have constant length, then the resulting family
of polynomials is complete for VW[F] on certain types of graphs.

2012 ACM Subject Classification Theory of computation → Algebraic complexity theory; Theory
of computation → Parameterized complexity and exact algorithms

Keywords and phrases Algebraic complexity, parameterized complexity, exponential sums, counting
hierarchy, tau conjecture

Digital Object Identifier 10.4230/LIPIcs.ICALP.2024.24

Category Track A: Algorithms, Complexity and Games

Funding Pranjal Dutta: Funded by the project “Foundation of Lattice-based Cryptography”, by
NUS-NCS Joint Laboratory for Cyber Security.

1 Introduction

Valiant [23] proposed an algebraic version of the P versus NP question and defined the
class VP, the algebraic analogue of P, which contains polynomial families computable by
polynomial sized algebraic circuits. An algebraic circuit (or, arithmetic circuit) C is a
directed acyclic graph such that (1) every node has either in-degree (fan-in) 0 (the input
gates) or 2 (the computational gates), (2) every input gate is labeled by elements from a field
K or variables from X = {X1, · · · , Xn}, (3) every computational gate is labeled by either +
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24:2 Exponential Lower Bounds via Exponential Sums

(addition gate) or × (multiplication gate), with the obvious syntactic meaning, and (4) there
is a unique gate of out-degree 0, the output gate. Clearly, every gate in a circuit computes a
polynomial in K[X]. We say that the circuit C computes P (X) ∈ K[X] if the output gate
of C computes P (X). The size of C, denoted by size(C), is the number of nodes in the
circuit. An algebraic circuit is an algebraic formula if every gate in the circuit has out-degree
1 except for the output gate. The class VNP, the algebraic analogue of NP, is definable by
taking exponential sums of the form

f(X) =
∑

e∈{0,1}ℓ

g(X, e) , (1)

where g is computable by a polynomial-size circuit and ℓ is polynomial in the number of
variables. It is known that one can also replace algebraic circuits by algebraic formulas, and
still get the same class VNP [23, 18]. Valiant further proved that the permanent family is
complete for VNP (over fields of characteristic not two). Recall that the permanent of a
matrix (Xi,j) is defined as

per X =
∑

π∈Sn

X1,π(1) · · · Xn,π(n). (2)

The famous Valiant’s conjecture VP ̸= VNP is equivalent to the fact that the permanent
does not have polynomial-size circuits. The representation of the permanent in (2), although
it looks very natural, is not optimal. Ryser’s formula [19] yields an algebraic formula of size
O(2nn2). A formula of similar size was later found by Glynn [11]. Ryser’s formula is now over
sixty years old and has not been improved since. This gives rise to the interesting question
whether there is a formula or circuit of subexponential-size (in n) for the permanent? More
generally, we can now ask the following question.

▶ Question 1. Is an exponential sum f (as in Eq. (1)) always computable by an algebraic
circuit or formulas of size subexponential in ℓ, that is, size 2o(ℓ)? Or are there instances for
which exponential-size is necessary?

Note that exponential-size being necessary is a much stronger claim than VP ̸= VNP. It
could well be that VP ̸= VNP but still exponential sums like in (1) have subxponential size
circuits! In this paper, we shed some light on the question what happens if exponential sums
would always have subexponential size circuits.

Question 1 works as driving force between the famous Shub-Smale τ -conjecture [20]
and exponential lower bounds on exponential sums. The τ -complexity τ(f) of an integer
polynomial is the size of a smallest division-free circuit that computes f starting from the
constants ±1. The τ -conjecture states the the number of integer zeroes of f is polynomially
bounded in τ(f), see [20]. [20] shows that the τ -conjecture implies PC ̸= NPC, in the
Blum–Shub–Smale (BSS) model of computation over the complex numbers [5, 4].

Super-polynomial lower bounds assuming the τ -conjecture. Bürgisser [6] connected the
τ -complexity of the permanent to various other conjectures. He showed that the τ -conjecture
implies a superpolynomial lower bound on τ(pern), implying the constant-free version of
VP ̸= VNP, namely VP0 ̸= VNP0; for definitions, see Section 2.1. The proof strategy of [6]
is as follows: assume τ(pern) = poly(n), and conclude a complexity-theoretic “collapse”
that the counting hierarchy CH (for a definition, see Section 3) is in P/poly. Consider the
Pochhammer–Wilkinson polynomial fn(x) :=

∏n
i=1(x − i), and construct a unique O(log n)-

variate multilinear polynomial Bn such that under a “suitable” substitution, one gets back fn.
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The coefficients of fn as well as Bn, are efficiently computable (since CH ⊆ P/poly), implying
Bn ∈ VNP0. An inspection of Valiant’s completeness result reveals that if Bn ∈ VNP0, then
there is a polynomially bounded sequence p(n) such that τ(2p(n)Bn) = poly(log n), which
implies τ(2p(n)fn) = poly(log n), contradicting the τ -conjecture.

In [6], the superpolynomial lower bound on τ(pern) was also implied by any of the
quantities τ(n!), τ(

∑n
k=0

1
k! T

k), or τ(
∑n

k=0 krT k) (for any fixed negative integer r) not being
poly-logarithmically bounded as a function of n. Here, we remark that the separation proof of
VP0 and VNP0, even assuming strong bounds on the τ -conjecture, is merely superpolynomial:
we do not get the (possibly) desirable exponential separation between VP0 and VNP0. This
leads to the following question.

▶ Question 2. Does the τ -conjecture imply exponential algebraic lower bounds?

Here, we mention that there are variants of the τ -conjecture, e.g., the real τ -conjecture [15, 21]
or SOS-τ -conjecture [8], which also give strong algebraic lower bounds. There is also super
polynomial lower bound known from a proof complexity theoretic view due to [1] from the
original Shub-Smale τ -conjecture. However, the Shub-Smale τ -conjecture is not known to
give an exponential lower bound for the permanent.

1.1 Our results
The results of our paper revolve around answering both Question 1-2 positively. The main
result is the following.

▶ Theorem 1 (Informal). The τ -conjecture implies an exponential lower bound for some
explicit exponential sum.

Remarks.
(1) Although the existence of some polynomial requiring exponential circuits is clear from

dimension/counting, the existence of an (even non-explicit) exponential sum polynomial
requiring exponential-size circuits is unclear. Explicit here means that the family is in
VNP.

(2) One can also think of an exponential sum f in Equation (1), as f =
∑

e∈{0,1}ℓ(n) U(X, y, e),
where U(X, Y, Z) is a universal circuit of size size(U) = poly(size(g)) with Y =
(Y1, . . . , Yr) and Z = (Z1, . . . , Zℓ(n)) and y ∈ Fr is chosen such that U(X, y, e) = g(X, e);
and the number of variables ℓ(n) is linear in n.

(3) Since there’s a polynomial (non-linear) blowup in the reduction of the exponential sum on
the universal circuit from the permanent, we will only get a subexponential lower bound
on the permanent polynomial assuming the τ -conjecture. We leave it as an open question
to achieve an exponential lower bound on the permanent assuming the τ -conjecture.

The proof of Theorem 1 is rather indirect, and goes via exponential sums, which is our
main object of study (and bridge between many results and classes).

log-variate exponential sum polynomial. Let g(X, Y) be some polynomial in n-many
X-variables and ℓ(n)-many Y-variables, where ℓ(n) = O(n). Assume that g is computed by
a circuit of size m. Then we define

p-log-Expsumm,k(g) :=
∑

y∈{0,1}ℓ(n)

g(X, y) ,

ICALP 2024



24:4 Exponential Lower Bounds via Exponential Sums

where k = n/ log m. The size of the exponential is measured in the number ℓ(n) of Y-variables.
In the end, we want to measure in the input size, the number n of X-variables. To talk about
subexponential complexity, ℓ(n) should be linearly bounded. g will be typically computed
by a circuit (of unbounded degree). We want to view p-log-Expsumm,k as a parameterized
problem, the parameter will be k. Our definition of p-log-Expsum, as a polynomial-sum,
is motivated by the log-parameterizations which are used in the definition of the so-called
M -hierarchy in the Boolean setting, see [9, 10].

We show that p-log-Expsum is most likely not fixed-parameter tractable (fpt). A polyno-
mial family pn,k is fpt if both its size and degree are fpt bounded, i.e., of the form f(k)q(n),
for q ≤ poly(n), and f : N → N being any computable function. We connect p-log-Expsum
with – (1) a linear variant of the counting hierarchy (we denote it by CHlin), where the size
of the oracle calls are bounded linearly in the size of the input; for definition see Section 3;
and (2) integers definable in CHlin, similar to Bürgisser [6]. Informally, an integer is definable
in CHlin, if its sign and bits are computable in the same class.

▶ Theorem 2 (Informal). If p-log-Expsum is fixed-parameter tractable, then the following
results hold.
1. The linear counting hierarchy (CHlin) collapses.
2. Any sequence a(n) definable in the linear counting hierarchy, as well as univariate polyno-

mials with coefficients being definable in the linear counting hierarchy, have subpolynomial
τ -complexity.

For formal statements, see Theorem 13 and 21.
Finally, many algebraic complexity classes can be defined in terms of permanents. Most

prominently, the “regular” permanent family (pern) is complete for VNP. The class VW[1]
is an important class in parameterized complexity. It is defined as a bounded sum over
constant depth weft-1 circuits. Bounded sum means that we sum over {0, 1}-vectors with k

ones and k is the parameter. Bläser and Engels [3] prove that VW[1] is described by so-called
k-permanents with k being the parameter. In a k-permanent, we only sum over permutations
with n − k self-loops. The crucial parameterized class of this work is VW[P]: it is defined as a
bounded exponential sum over polynomially-sized arithmetic circuits computing a polynomial
of degree that is polynomially bounded. While we do not characterise VW[P] in terms of
permanents, we characterize the related class VW[F]: Here instead of summing over circuits,
we sum over formulas.1 The permutations that we sum over for defining our permanent
family will have one cycle of length k and all other cycles bounded by 4. Again, k is the
parameter. We call the corresponding polynomials (k, 4)-restricted permanents. It turns out
that we also need to restrict the graph classes. We call a graph G = (V, E) (4, b)-nice if we
can partition the set V = V1 ∪ V2 disjointly, such that in the induced graph G[V1], every
cycle is either a self-loop or has length > 4 and in the induced graph G[V2] has tree-width
bounded by b. While this looks artificial at a first glance, it turns out that there is a constant
b such that (k, 4)-restricted permanent on (4, b)-nice graphs describes the natural class VW[F].
There is a family of (4, b)-nice graphs such that the corresponding family of (k, 4)-restricted
permanents is VW[F]-hard. On the other hand, the (k, 4)-restricted permanent family is in
VW[F] for every family of (4, b)-nice graphs. Together, this implies:

▶ Theorem 3 (VW[F]-Completeness). (k, 4)-restricted permanent family on (4, b)-nice graphs
is VW[F]-complete.

1 Maybe an explanation of the naming convention is helpful: In VW[P], we sum of polynomial-size circuits,
which describe the class VP. In VW[F], we sum over polynomial size formulas, which define the class
VF, the modern name for VPe.
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We also prove strong separations of algebraic complexity classes and parameterized algebraic
complexity classes (Theorem 30), and exponential lower bounds in the parameterized setting
(Theorem 36).
For VNP it is known that it does not matter whether we sum over formulas or circuits, that
is, VNP = VNPe. Whether VW[P] = VW[F] remains an open questions for future research.

1.2 Proof ideas

In this section, we briefly sketch the proof ideas. The omitted proofs of the paper can be
found in the longer arxiv version of the paper. We first present the proofs of Theorem 2,
because the techniques and lemmas involved in proving them are the backbone of Theorem 1.

Proof idea of Theorem 2. We prove them in two parts.
Proof of Part (1): We prove even a stronger statement for the subexponential version of the
linear counting hierarchy. The proof goes via induction on the level of the counting hierarchy.
The criteria for some language B being in the (k + 1)-th level is that there should be some
language A in the k-th level such that |{y ∈ {0, 1}n : ⟨x, y⟩ ∈ A}| > 2n−1. Essentially, for a
language A in the k-th level, we express |{y ∈ {0, 1}n : ⟨x, y⟩ ∈ A}| > 2n−1 as an exponential
sum over an algebraic circuit χA(x, y), which captures the characteristic function of A.
Furthermore, one can show that p-log-Expsum is fpt (in an unbounded constant-free setting)
iff

∑
y g(X, y) has 2o(n)poly(m) size circuits, where g has a circuit of size m; see Theorem 15

and 16. Putting these together, one gets that the exponential sum has a subexponential-size
constant-free circuit. Lastly, we want to get the information about the highest bit of the
sum (which is equivalent to looking at it mod 2n), which can be efficiently arithmetized. In
every step there is polynomial blowup in the size, and hence the size remains subexponential,
yielding the desired result. For details, see Theorem 13.
Proof of Part (2): This proof is an adaption of [6, 14] in our context. Take a sequence
(an)n ∈ CHlinP. We define a multilinear polynomial A(Y) such that the coefficient of Yj

is the j-th bit of a(n), where j is the binary representation of j. Furthermore, checking
a(n, j) = b can be done by a subexponential circuit C(N, J), where N and J have log n and
bit(n)-many variables capturing n and j respectively. Moreover, one can define F (N, Y, J) =
C(N, J) ·

∏
i(JiYi + 1 − Ji) and show that A can be expressed as an exponential sum

over F (j, N, Y)! This is clearly a p-log-Expsum instance, which finally yields that the τ -
complexity of a(n) is subpolynomial. A similar proof strategy also holds for the polynomials
with coefficients being definable in CHlinP. For details, see Section 6.

Proof idea of Theorem 1. Take the Pochhammer polynomial pn(X) =
∏n

i=1(X + i).
The coefficient of Xn−k in pn will be σk(1, . . . , n), where σk(z1, . . . , zn) is the k-th element-
ary symmetric polynomial in variables z1, . . . , zn. It is not hard to show that CHlinP is
closed under polynomially-many additions and multiplications (Theorem 19). Therefore,
(σk(1, . . . , n))n∈N,k≤n is definable in the linear counting hierarchy (see Corollary 20). And by
Theorem 21, (pn)n∈N has no(1)-sized constant-free circuits if p-log-Expsum is fixed-parameter
tractable. But pn has n distinct integer roots. Assuming the τ -conjecture, p-log-Expsum is
not fpt. On the other hand, one can show that when exponential sums over circuits of size m

have circuits have size 2o(n)poly(m), then the p-log-Expsum is fpt, by Theorem 16; in other
words, p-log-Expsum is not fpt implies an exponential lower bound on an exponential sum.
This finishes the proof.

ICALP 2024



24:6 Exponential Lower Bounds via Exponential Sums

Proof idea of Theorem 3. The hardness proof is gadget based (Theorem 42). The details
are however quite complicated since we have to cleverly keep track of the cycle lengths. For
the upper bound, we work along a tree decomposition. While it is known that the permanent
can be computed in fpt time on graphs of bounded treewidth, we cannot simply adapt these
algorithms, since we have to produce a formula. This can be achieved using a balanced tree
decomposition.

1.3 Previous results
To prove (conditional) exponential lower bounds, the standard assumptions that P ̸= NP
or VP ̸= VNP are not enough. It is consistent with our current knowledge that for instance
P ̸= NP, but NP-hard problems can have subexponential time algorithms. What we need is
a complexity assumption stating that certain problems can only be solved in exponential
time. This is the exponential time hypothesis (ETH) in the Boolean setting. Dell et al. [7]
studied the exponential time complexity of the permanent, they prove that when there is an
algorithm for computing the permanent in time 2o(n), then this violates the counting version
of the exponential time hypothesis #ETH. #ETH states that there is a constant c such that
no deterministic algorithm can count the number of satisfying assignments of a formula in
3-CNF in time 2cn. For connections between parameterized and subexponential complexity
in the Boolean setting, we refer to [9, 10].

Bläser and Engels [3] transfer the important definitions and results from parameterized
complexity in the Boolean world to define a theory of parameterized algebraic complexity
classes. In particular, they define the VW-hierarchy and prove that the clique polynomial and
the k-permanent are VW[1]-complete (under so-called fpt-substitutions). They also claim
the hardness of the restricted permanent for the class VW[t] for every constant t and sketch
a proof. Note that VW[F] contains each VW[t]. So we strengthen the hardness proof in [3]
and complement it with an upper bound.

The main tool used by Bürgisser [6] to prove the results above is the counting hierarchy.
The polynomial counting hierarchy was introduced by Wagner [24] to classify the complexity
of Boolean counting problems. The fact that small circuits for the permanent collapses the
counting hierarchy is used by Bürgisser to prove the results mentioned above.

Finally, there have been quite a few works [6, 14, 16, 15], where we have conditional
separations on the constant-free version of VP and VNP, namely VP0 and VNP0, or their
variants, depending on the strength of the conjecture. But this is the first time that we are
separating algebraic classes and proving exponential lower bounds, assuming the τ -conjecture.

1.4 Structure of the paper
In Section 2, we defined the basics of constant-free Valiant’s model and the unbounded and
parameterized setting. In Section 3, we introduce the linear counting hierarchy (CHlin) and
its basic properties. Section 4 connects Valiant’s model to the counting hierarchy. Here,
we formally introduce exponential sums and investigate their relation to the parameterized
classes. The main result is that the fixed-parameter tractability of exponential sums collapses
the counting hierarchy. The proofs are quite similar to [6], however, we need to pay
special attention to the fact the witness size is linear. Section 5 introduces the definability
(computability) of integers in the linear counting hierarchy, and some closure properties
of the same. Section 6 proves the exponential lower bound on exponential sum assuming
τ -conjecture. Section 7 introduces the parameterized VW-classes and its basic properties.
In Section 8 we prove some easy conditional collapse results of the VW-hierarchy in various
circuit models.
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2 Preliminaries I

2.1 Constant-free and unbounded models
Constant-free Valiant’s classes. We will say that an algebraic circuit is constant-free, if no
field elements other than {−1, 0, 1} are used for labeling in the circuit. Clearly, constant-free
circuits can only compute polynomials in Z[X]. For f(X) ∈ Z[X], τ(f) is the size of a
minimum size constant-free circuit that computes f , while L(f) denotes the minimum size
circuit that computes f . It is noteworthy to observe that, unlike Valiant’s classical models,
computing integers in the constant-free model can be costly; e.g., τ(22n

Xn) = Ω(n), while
L(22n

Xn) = Θ(log n). On the other hand, for any f ∈ Z[X], L(f) ≤ τ(f).
Before defining the constant-free Valiant classes, we formalize the notion of formal degree

of a node, denoted formal-deg(·). It is defined recursively as follows: (1) the formal degree of
an input gate is 1, (2) if u = v +w, then formal-deg(u) = max(formal-deg(v), formal-deg(w)),
and (3) if u = v × w, then formal-deg(u) = formal-deg(v) + formal-deg(w). The formal
degree of a circuit is defined as the formal degree of its output node.

The class constant-free Valiant’s P, denoted by VP0, contains all p-families (f) in Z[X],
such that formal-deg(f) and τ(f) are both p-bounded. Analogously, VNP0 contains all
p-families (fn), such that there exists a p-bounded function q(n) and (gn) ∈ VP0, where

fn(X) =
∑

y∈{0,1}q(n)

gn(X, y1, . . . , yq(n)) .

It is not clear whether showing VP0 ̸= VNP0 implies VP ̸= VNP, it is not even clear
whether VP0 ̸= VNP0 =⇒ τ(pern) = nω(1). The subtlety here is that in the algebraic
completeness proof for the permanent, divisions by two occur! However, a partial implication
is known due to [6, Theorem 2.10]: Showing τ(2p(n)fn) = nω(1), for some fn ∈ VNP0 and all
p-bounded p(n) would imply that τ(pern) = nω(1).

Arithmetization is a well-known technique in complexity theory. To arithmetize a Boolean
circuit C computing a Boolean function φ, we use the arithmetization technique wherein we
map φ(x1, . . . , xn) to a polynomial p(x1, . . . , xn) such that for any assignment of Boolean
values vi ∈ {0, 1} to the xi, φ(v1, . . . , vn) = p(v1, . . . , vn) holds.

We define the arithmetization map Γ for variables xi, and clauses c1, . . . , cm, as follows:
1. xi 7→ xi,
2. ¬xi 7→ 1 − xi,
3. c1 ∨ · · · ∨ cm 7→ 1 −

∏
i∈[m](1 − Γ(ci)),

4. c1 ∧ · · · ∧ cm 7→
∏

i∈[m] Γ(ci).
This map allows us to transform C into an arithmetic circuit for p. For a Boolean circuit
C, we denote the arithmetized circuit by arithmetize(C). Here, we remark that the degree
of arithmetize(C) can become exponentially large; this is because there is no known depth-
reduction for Boolean circuits, and hence the degree may double at each step, owing to an
exponential blowup in the degree.

Valiant’s classes in the unbounded setting. It is well-known that an algebraic circuit
of size s, can compute polynomials of degree exp(s); e.g., f(x) = x2s , and L(f) = O(s).
This brings us to the next definition, the class VPnb, originally defined in [17]. A sequence
of polynomials (f) = (fn)n ∈ VPnb, if the number of variables in fn and L(fn) are both
p-bounded (the degree may be exponentially large). The subscript “nb” signifies the “not
bounded” phenomenon on the degree of the polynomial, in contrast to the original class
VP. Similarly, a sequence of polynomials (f) = (fn)n ∈ VNPnb, if there exists a p-bounded
function q(n) and gn(X, Y1, . . . , Yq(n)) ∈ VPnb where

ICALP 2024



24:8 Exponential Lower Bounds via Exponential Sums

fn(X) =
∑

y∈{0,1}q(n)

gn(X, y1, . . . , yq(n)) .

One can analogously define VP0
nb and VNP0

nb, in the constant-free setting. It is obvious that
VPnb = VNPnb implies VP = VNP, but the converse is unclear. However, [17] showed that over
a ring of positive characteristic, the converse holds, i.e., VP = VNP implies VPnb = VNPnb!
On the other hand, [16] showed that VP0 = VNP0 implies that VP0

nb = VNP0
nb, and the

converse is unclear because it seems difficult to rule out the possibility that some polynomial
family in VNP0 does not lie in VP0, but still in VP (i.e., computable by polynomial-size
algebraic circuits using exponentially large-bit integers).

2.2 Parameterized Valiant’s classes
Parameterized Valiant’s classes were introduced in [3]. We will briefly review the definitions
and results there and extend them to the constant-free and unbounded setting. We first
start with the fixed-parameter tractable classes. The W -hierarchies will be introduced later
since we only need them in the second part of this work.

Our families of polynomials will now have two indices. They will be of the form (pn,k).
Here, n is the index of the family and k is the parameter. We will say a polynomial family
(pn,k) is a parameterized p-family if the number of variables is p-bounded in n and the degree
is p-bounded in n, k. If there is no bound on the degree, we say it is parameterized family.

The most natural parameterization is by the degree: Let (pn) be any p-family then we
get a parameterized family (pn,k) by setting pn,k := the homogeneous part of degree k of pn.
For more details, we will refer the reader to [3].

We now define fixed-parameter variants of Valiant’s classes with the constant-free version.

▶ Definition 4 (Algebraic FPT classes).
1. A parameterized p-family (pn,k) is in VFPT iff L(pn,k) is upper bounded by f(k)q(n) for

some p-bounded function q and some function f : N → N (such bound will be called an
fpt bound). If one removes the requirement of p-family on pn,k, and imposes only that the
number of variables is p-bounded, one gets the class VFPTnb.

2. A parameterized p-family pn,k is in VFPT0 iff τ(pn,k) is upper bounded by f(k)q(n) for
some p-bounded function q and some function f : N → N. Similarly, one gets VFPT0

nb,
if one removes the requirement of p-family, and imposes only that the number of variables
is p-bounded.

We remark that in the above, f need not be computable as Valiant’s model is non-uniform.

▶ Definition 5 (Fpt-projection). A parameterized family f = (fn,k) is an fpt-projection of
another parameterized family g = (gn,k) if there are functions r, s, t : N → N such that r is
p-bounded, s, t are functions and fn,k is a projection of gr(n)s(k),k′ for some k′ ≤ t(k),2. We
write f ≤fpt

p g.

However p-projection in Valiant’s world seems to be weaker compared to parsimonious
poly-time reduction in the Boolean world; therefore we need a stronger notion of reduction
for defining algebraic models of the Boolean #W -classes, see [3]. That’s why we are defining
substitutions. We will analogously define it for constant-free model as well.

2 k′ might depend on n, but its size is bounded by a function in k. There are examples in the Boolean
world, where this dependence on n is used.
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▶ Definition 6 (Fpt-substitution).
1. A parameterized family f = (fn,k) is an fpt-substitution of another parameterized family

g = (gn,k) if there are functions r, s, t, u : N → N and polynomials h1, . . . , hu(r(n)s(k)) ∈
K[X] with both L(hi) and deg(hi) fpt-bounded such that r, u are p-bounded, s, t are
functions, and fn,k(X) = gr(n)s(k),k′(h1, . . . , hu(r(n)s(k))) for some k′ ≤ t(k). We write
f ≤fpt

s g. When we allow unbounded degree substitution of hi (i.e. only L(hi) is
fpt-bounded), we say that f is an fptnb-substitution of g. We denote this as f ≤fptnb

s g.
2. A parameterized family f = (fn,k) is a constant-free fpt-substitution of another para-

meterized family g = (gn,k) if there are functions r, s, t, u : N → N and polynomials
h1, . . . , hu(r(n)s(k)) ∈ K[X] with both τ(hi) and deg(hi) are fpt-bounded such that r, u

are p-bounded, s, t are functions and fn,k(X) = gr(n)s(k),k′(h1, . . . , hu(r(n)s(k))) for some
k′ ≤ t(k). We write f ≤τ-fpt

s g. If we remove the degree condition, we get fptnb-
substitutions, denoted as f ≤τ-fptnb

s g.

One can define constant-free fpt-projections analogously. The following lemma should be
immediate from the definitions, see [3] for a proof in the case of VFPT.

▶ Lemma 7. VFPT, VFPTnb and their constant-free versions (VFPT0, VFPT0
nb) are closed

under fpt-projections and fpt-substitutions (constant-free fpt-projections and constant-free
fpt-substitutions, respectively).

3 Linear counting hierarchy

In this section, we define the linear counting hierarchy, a variant of the counting hierarchy,
which will allow us to talk about subexponential complexity. The original counting hierarchy
was defined by Wagner [24]. We here restrict the witness length to be linear, which is
important when dealing with exponential complexity. Allender et al. [2] also define a
linear counting hierarchy. Their definition is not comparable to ours. We use an operator-
based definition: The base class is deterministic polynomial time and the witness length is
linearly bounded. Allender et al. use an oracle TM definition: The oracle Turing machine is
probabilistic and linear time bounded, which automatically bounds the query lengths.

▶ Definition 8. Given a complexity class K, we define C.K to be the class of all languages
A such that there is some B ∈ K and a function p : N → N, p(n) = O(nc) for some constant
c, and some polynomial time computable function f : {0, 1}∗ → N such that,

x ∈ A ⇐⇒ |{y ∈ {0, 1}p(|x|) : ⟨x, y⟩ ∈ B}| > f(x).

We start from C0P := P and for all k ∈ N, Ck+1P := C.CkP. Then the counting hierarchy
is defined as CH :=

⋃
k≥0 CkP. We now define our linear counting hierarchy:

▶ Definition 9. Given a complexity class K, we define Clin.K to be the class of all languages
A such that there is some B ∈ K and a function ℓ : N → N, ℓ(n) = O(n), and some
polynomial time computable function f : {0, 1}∗ → N such that,

x ∈ A ⇐⇒ |{y ∈ {0, 1}ℓ(|x|) : ⟨x, y⟩ ∈ B}| > f(x).

We define C-lin0P := P and for all k ∈ N, C-link+1P := Clin.C-linkP. The linear counting
hierarchy is CHlinP :=

⋃
k≥0 C-linkP.

Now, we slightly modify the above definition to get ∃lin.K and ∀lin.K in the following
way: x ∈ A ⇐⇒ ∃y ∈ {0, 1}ℓ(|x|) : ⟨x, y⟩ ∈ B and x ∈ A ⇐⇒ ∀y ∈ {0, 1}ℓ(|x|) : ⟨x, y⟩ ∈ B,
respectively. Clearly, it can be said that K ⊆ ∃lin.K ⊆ Clin.K and K ⊆ ∀lin.K ⊆ Clin.K.

We can define the linear counting hierarchy in a slightly easier manner.
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▶ Definition 10. Given a complexity class K, we define C′
lin.K to be the class of all languages

A such that there is some B ∈ K and a function ℓ : N → N, ℓ(n) = O(n), such that

x ∈ A ⇐⇒ |{y ∈ {0, 1}ℓ(|x|) : ⟨x, y⟩ ∈ B}| > 2ℓ(|x|)−1.

It is clear that C′
lin.K ⊆ Clin.K for any class K. Moreover, by an easy adaption of

the proof of [22, Lemma 3.3], for any language K ∈ CH, Clin.K ⊆ C′
lin.K. Also, from the

definition, we can say that CHlinP ⊆ CH. Therefore, the following holds.

▶ Fact 11. C-link+1P = C′
lin.C-linkP.

We also need a subexponential version of the counting hierarchy. Let SUBEXP =
DTime(2o(n)). Then we set C-lin0SUBEXP = SUBEXP and for all k ∈ N, C-link+1SUBEXP :=
Clin.C-linkSUBEXP. Moreover, CHlinSUBEXP =

⋃
k≥0 C-linkSUBEXP.

Here we define a few more terms that we shall use later in Section 5. We set NPlin = ∃lin.P,
NP with linear witness size. In the same way, we can define the levels of the linear polynomial
time hierarchy, Σlin

i and Πlin
i , by applying the operators ∃lin and ∀lin in an alternating fashion

to P. The linear polynomial hierarchy PHlin is the union over all Σlin
i .

From the above definitions, we get the following conclusion.

▶ Fact 12. NPlin ⊆ PHlin ⊆ CHlin.

4 Connecting Valiant’s model to the counting hierarchy

In this section, we aim to prove that subexponential upper bounds for exponential sums imply
a collapse of the linear counting hierarchy (for a definition, see Section 3). To show this, we will
define a polynomial family p-log-Expsum and show that p-log-Expsum ∈ VFPT0

nb is equivalent
to exponential sums having subexponential circuits (Corollary 34). p-log-Expsum ∈ VFPT0

nb
will imply a collapse of the linear counting hierarchy (Theorem 13).

4.1 log-variate exponential sum polynomial family
In this section, we will define a parameterized log-variate exponential sum polynomial family,

p-log-Expsumm,k(g) :=
∑

y∈{0,1}ℓ(n)

gn(X, y) ,

where X has n variables, ℓ(n) = O(n), and gn has circuits of size m (n = Ω(log m)), and the
parameter is k = n

log m . m and k are functions of n. Note that the running parameter of the
family is m. When we write p-log-Expsum ∈ VFPT, we mean that {p-log-Expsumm,k(g)}m,k ∈
VFPT for all families g. We are allowing g to have unbounded degree, i.e., g may not necessarily
be a p-family. We will also be using constant-free circuits computing g in the constant-free
context.

4.2 Collapsing of CHlinSUBEXP
The main theorem of the section is the following:

▶ Theorem 13. If p-log-Expsum ∈ VFPT0
nb, then for every language L in CHlinSUBEXP, we

have a constant-free algebraic circuit χL so that x ∈ L =⇒ χL(x) = 1, x /∈ L =⇒ χL(x) = 0
and χL has size 2o(n).
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Proof. We prove the above statement by induction on the level of CHlinSUBEXP. By
definition, CHlinSUBEXP =

⋃
k≥0 C-linkSUBEXP. For k = 0, C-linkSUBEXP = SUBEXP.

Now by standard arithmetization, we can get a 2o(n) size, unbounded degree constant-free
circuit for each L ∈ SUBEXP, so that the above-mentioned condition holds.

Now, by induction hypothesis say, it is true up to k-th level of the hierarchy. We will
prove that it is true for the (k + 1)-th level. Take any B ∈ C-link+1SUBEXP. By Fact 11 and
Definition 10, there exists A ∈ C-linkSUBEXP such that

x ∈ B ⇐⇒ |{y ∈ {0, 1}ℓ(|x|) : ⟨x, y⟩ ∈ A}| > 2ℓ(|x|)−1 ,

where ℓ is some linear polynomial. By slight abuse of notation, let χA denote an algebraic
circuit capturing the characteristic function for A, i.e.,

χA(x, y) = 1 ⇐⇒ ⟨x, y⟩ ∈ A .

By the induction hypothesis, we can assume that χA has size 2o(|x|). Now, one can equivalently
write the following:

x ∈ B ⇐⇒
∑

y∈{0,1}ℓ(|x|)

χA(x, y) > 2ℓ(|x|)−1 .

In this way, we get an instance of p-log-Expsum,
∑

y∈{0,1}ℓ(|x|) χA(x, y), where the size of χA

is m = 2o(|x|) and it computes a polynomial of unbounded degree (there is no depth-reduction
known for Boolean circuits and thus, it cannot be reduced).

As p-log-Expsum ∈ VFPT0
nb, there is an algebraic circuit C such that C(x) :=∑

y∈{0,1}ℓ(|x|) χA(x, y) and C has subexponential-size by Theorem 15.
Trivially, τ(2ℓ(|x|)−1) ≤ poly(|x|). So, we can make C first constant-free and then Boolean

by the standard procedure of computing on the binary representation modulo 2ℓ(n). Let
C̃ is the Boolean circuit that computes the highest bit. We just arithmetize C̃ and take
χB = arithmetize(C̃). Each time we convert the arithmetic circuit to a Boolean one and
arithmetize the Boolean circuit, we incur only a small polynomial blow-up in size. Therefore,
χB has subexponential-size, as desired. ◀

▶ Remark 14. Clearly, CHlinP ⊆ CHlinSUBEXP and hence, p-log-Expsum ∈ VFPT0
nb implies

that every language in CHlinP has subexponential-size constant-free algebraic circuits.

▶ Theorem 15. If p-log-Expsum ∈ VFPT0
nb, then

∑
y∈{0,1}ℓ(n) g(X, y) has circuits of size

2o(n)poly(m).

Proof. Assume that p-log-Expsum has circuits of size f(n/ log m)poly(m). We can assume
that f is an increasing function. Let i(n) = max({1} ∪ {j | f(j) ≤ n}). i(n) is nondecreasing
and unbounded. Moreover, f(i(n)) ≤ n for all but finitely many n.

We will prove that
∑

y∈{0,1}ℓ(n) g(X, y) has circuits of size 2n/i(n)poly(m). If m ≥ 2n/i(n),
then f(n/ log m) ≤ f(i(n)) ≤ n, thus there are circuits of size n · poly(m) = poly(m). If
m < 2n/i(n), then let m̂ = 2n/i(n). We can take a circuit C for g and pad it to a circuit Ĉ of
size s with m̂ ≤ s ≤ O(m̂), such that Ĉ has the same variables as C. Then let k̂ = n/ log m̂.
Thus,

∑
y∈{0,1}ℓ(n) g(X, y) has circuits of size f(k̂)poly(m̂) = n · poly(2n/i(n)). ◀

We will need the unbounded version as stated above, but a similar proof also works for
the bounded case. The same is true of the non-constant-free version. We will also need the
following converse direction:
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▶ Theorem 16. Let
∑

y∈{0,1}ℓ(n) g(X, y) have circuits of size 2o(n)poly(m) for each g of size
m. Then p-log-Expsum ∈ VFPT0

nb.

Proof. Let Cn be a circuit for
∑

y∈{0,1}ℓ(n) g(X, y) of size 2O(n/i(n))poly(m) for some non-
decreasing and unbounded function i. Let f be a nondecreasing function such that
f(i(n)) ≥ 2n. We claim that p-log-Expsum has circuits of size f(k)poly(m) with k = n/ log m.
If m ≥ 2n/i(n), then Cn has size poly(m) ≤ f(k)poly(m). Otherwise, k = n/ log m ≥
i(n) and therefore f(k) ≥ 2n. Thus, the trivial circuit for

∑
y∈{0,1}ℓ(n) g(X, y) has size

f(k)poly(m). ◀

5 Integers definable in CHlinP

In [6, Section 3], integers are studied that are definable in the counting hierarchy. We
adapt this notation to the linear counting hierarchy. Formally, we are given a sequence
of integers (a(n, k))n∈N,k≤q(n) for some p-bounded function q : N → N. We can assume
that |a(n, k)| ≤ 2nc for some constant c. In other words, the bit-size of a(n, k) is at most
exponential, as we think n, k has been represented in binary by O(log n) bits. Now consider
two languages,

sgn(a) := {(n, k) : a(n, k) ≥ 0} and
Bit(|a|) := {(n, k, j, b) : jth bit of |a(n, k)| is b} .

Here in both of these two languages, n, k, j are given in binary representation.

▶ Definition 17. We say an integer sequence (a(n, k))n∈N,k≤q(n) for some p-bounded function
q is definable in CHlinP whenever both of sgn(a) and Bit(|a|) are in CHlinP.

Chinese remainder language. Now, we define another language and make a connection to
the definition of an integer sequence to be definable in CHlinP, via the Chinese remainder
representation. Given that the bit-size of a(n, k) is at most nc, we consider the set of all
primes p < n2c. The product of all such primes is > 2nc . Therefore, from a(n, k) mod p, for
all primes p < n2c, we can recover a(n, k). Consider

CR(a) :=
{

(n, k, p, j, b) : p prime, p < n2c, j-th bit of (a(n, k) mod p) is b
}

.

Now we show an essential criterion for a sequence to be in CHlinP. It is an adaption with
some additional modifications and observations from [12], which were further implemented
in [6, Theorem 3.5].

▶ Theorem 18. Let (a(n, k))n∈N,k≤q(n) be a integer sequence of exponential bit-size
(|a(n, k)| < 2nc). Then, (a(n, k)) is definable in CHlinP iff both sgn(a) and CR(a) are
in CHlinP.

Now, we can prove an important closure property of non-negative integers definable in
CHlinP, which we shall use later.

▶ Theorem 19 (Closure properties). Let (a(n, k))n∈N,k≤q(n) be a non-negative integer sequence
for some p-bounded function q : N → N with a(n, k) having bit-size < nc and it is definable
in CHlinP. Consider the sum and product of a(n, k) defined as follows:

b(n) :=
q(n)∑
k=0

a(n, k) and c(n) :=
q(n)∏
k=0

a(n, k) .

Then, both of (b(n))n∈N and (c(n))n∈N are definable in CHlinP.
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▶ Corollary 20. Take a(n, k) := σn,k(1, . . . , n), k ≤ n, where σn,k(z1, . . . , zn) is the k-th
elementary symmetric polynomial on variables z1, . . . , zn. Then, (a(n, k))n∈N,k≤n is definable
in CHlinP.

6 Connecting the counting hierarchy to the τ -conjecture

In this section, we connect the τ -conjecture to the counting hierarchy. Specifically, we show
that the collapse of CHlinP implies that some explicit polynomial, whose coefficients are
definable in CHlinP, is “easy”. Formally, we prove the following theorem:

▶ Theorem 21. Say, (a(n))n∈N and (b(n, k))k≤q(n),n∈N are both definable in CHlinP. Here q

is some p-bounded function. If p-log-Expsum ∈ VFPT0
nb then the following holds:

1. τ(a(n)) = no(1),
2. If fn(X) :=

∑q(n)
k=1 b(n, k)Xk then τ(fn) = no(1).

Proof. We can assume that if a(n) is definable in CHlinP, |a(n)| ≤ 2nc , that is, the bit-size
of any integer definable in CHlinP is polynomially bounded. Furthermore, if p-log-Expsum ∈
VFPT0

nb, then every language in CHlinP has subexponential-size circuits by Theorem 13. We
will use both facts below.

Proof of part (1). Let a(n) =
∑p(n)

j=1 a(n, j)2j be the binary decomposition of a(n) and
p(n) = O(nc). Define a new polynomial:

A⌈log n⌉(Y1, . . . , Ybit(n)) :=
p(n)∑
j=0

a(n, j)Y j1
1 . . . Y

jbit(n)
bit(n) ,

where bit(n) := ⌈log(p(n))⌉. By our assumption, we can decide if a(n, j) = b by a
subexponential-size circuit, given input n and j in binary. Say, Cr(N, J) is the corres-
ponding circuit, where r = ⌊log n⌋. We have Cr(n1, . . . , n⌊log n⌋+1, j1, . . . , jbit(n)) = a(n, j),
where the ni’s and the ji’s are the bits of n and j, respectively. Consider the polynomial

Fr(J1, . . . , Jcr+1, N1, . . . , Nr+1, Y1, . . . , Ycr+1) := Cr(N, J) ·
cr+1∏
i=1

(JiYi + 1 − Ji) .

Now, by our assumption and Theorem 13, we can say that Fr has 2o(r) size constant-free
algebraic circuits (of unbounded degree). Consider the exponential sum

F̃r(N, Y) :=
∑

j∈{0,1}cr+1

Fr(j, N, Y) .

It is an instance of p-log-Expsum with τ(Fr) = 2o(r). By assumption, this implies
that τ(F̃r) = 2o(r). Finally, note that A⌈log n⌉(Y) = F̃r(n1, . . . , nr+1, Y), and a(n) =
A⌈log n⌉(220

, . . . , 22bit(n)−1). Therefore,

τ(a(n)) ≤ τ(F̃r) + τ(22bit(n)−1
) ≤ no(1) ,

as desired.
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Proof of part (2). Again we can assume that |b(n, k)| has polynomially many bits. Let
b(n, k) =

∑p(n)
j=1 b(n, k, j)2j be the binary decomposition with p(n) = O(nc′) and q(n) =

O(nc). Define

B⌈log n⌉(Y1, . . . , Yµ(n), Z1, . . . , Zλ(n)) :=
q(n)∑
k=0

p(n)∑
j=0

b(n, k, j)Y j1
1 . . . Y

jµ(n)
µ(n) Zk1

1 . . . Z
kλ(n)
λ(n) .

Here µ(n) := ⌈log(p(n))⌉ and λ(n) := ⌈log(q(n))⌉. Let the variable sets be J =
(J1, . . . , Jc′r+1), N = (N1, . . . , Nr+1), K = (K1, . . . , Kcr+1), Y = (Y1, . . . , Yc′r+1), Z =
(Z1, . . . , Zcr+1), where again r = ⌊log n⌋. Define a new polynomial Fr as follows:

Fr(J, K, N, Y, Z) := Dr(N, J, K) ·
c′r+1∏
m=1

(JmYm + 1 − Jm)
cr+1∏
s=1

(KsZs + 1 − Zs) .

Like in the previous part of the proof, (Dr(N, J, K))r is the circuit family for computing
(b(n, k, j)). In particular,

Dr(n1, . . . , nr+1, j1, . . . , jµ(n), k1, . . . , kλ(n)) = b(n, k, j) .

By our assumption, Dr has 2o(r) size constant-free algebraic circuits (of unbounded degree).
Consider,

F̃r(N, Y, Z) =
∑

j∈{0,1}c′r+1

∑
k∈{0,1}cr+1

Fr(j, k, N, Y, Z).

It is an instance of p-log-Expsum with τ(Fr) is 2o(r). Since p-log-Expsum ∈ VFPT0
nb =⇒

τ(F̃r) = 2o(r). Now, B⌈log n⌉(Y, Z) = Fr(n1, . . . , nr+1, Y, Z) and

fn(X) = B⌈log n⌉(220
, . . . , 22µ(n)−1

, X20
, . . . , X2λ(n)−1

) .

Therefore, τ(fn) ≤ τ(B⌈log n⌉) + τ(22µ(n)) + τ(X2λ(n)) ≤ no(1), as desired. ◀

▶ Theorem 22. If the τ -conjecture is true, then p-log-Expsum /∈ VFPT0
nb.

Proof. Take the Pochhammer polynomial pn(X) =
∏n

i=1(X + i). The coefficient of Xn−k in
pn will be σk(1, . . . , n), where σk(z1, . . . , zn) is the k-th elementary symmetric polynomial in
variables z1, . . . , zn. And (σk(1, . . . , n))n∈N,k≤n is definable in linear counting hierarchy by
Corollary 20. By Theorem 21, (pn)n∈N has no(1) size constant-free circuit if p-log-Expsum
is fixed-parameter tractable. But pn has distinct n many integer roots. So, assuming the
τ -conjecture, p-log-Expsum is not fpt. ◀

▶ Remark 23. Instead of taking the Pochhammer polynomial, there are many other possible
choices for some explicit polynomial, see [6].

Finally, we prove the exponential lower bound for an exponential sum, proving Theorem 1.

▶ Theorem 24 (Exponential algebraic lower bound). If the τ -conjecture is true, then there
exists an n-variate polynomial family

∑
y∈{0,1}n gn(X, y), which requires 2Ω(n)-size circuits.

Proof. If the τ -conjecture is true, then Theorem 22 shows that p-log-Expsum /∈ VFPT0
nb. By

the contrapositive statement of Theorem 16, the existence of such a hard exponential sum
follows. ◀

▶ Remark 25. The family gn simply is a universal circuit of size polynomial in n, where the
polynomial is large enough to simulate the computation of the Turing machine that shows
that the n-th Pochhammer polynomial is definable in CHlinP.
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7 Preliminaries II: The VW-hierarchy

In this section, we define different variants of the VW-hierarchy, which will be analogous to
#W -hierarchy, see [3]. We will consider circuits that can have unbounded fanin gates.

▶ Definition 26 (Weft). For an algebraic circuit C, the weft of C is the maximum number
of unbounded fan-in gates on any path from a leaf to the root.

For n ≥ k ∈ N, let ⟨ n
k ⟩ be the set of all vectors in {0, 1}n which have exactly k many 1s.

▶ Definition 27.
1. A parameterized p-family fn,k(X) is in VW[F] iff there exists a p-bounded function q(n)

and p-family gn(X, y1, . . . , yq(n)) such that fn,k ≤fpt
s

∑
y∈⟨ q(n)

k
⟩

gn(X, y1, . . . , yq(n)) and gn

can be computed by a polynomial-size formula.
2. A parameterized family fn,k(X) is in VWnb[F] iff there exists a p-bounded function q(n)

and family gn(X, y1, . . . , yq(n)) such that fn,k ≤fptnb
s

∑
y∈⟨ q(n)

k
⟩

gn(X, y1, . . . , yq(n)) and gn

can be computed by a polynomial-size formula.
3. A parameterized p-family fn,k(X) is in VW0[F] iff there exists a p-bounded function q(n)

and p-family gn(X, y1, . . . , yq(n)) such that fn,k ≤τ-fpt
s

∑
y∈⟨ q(n)

k
⟩

gn(X, y1, . . . , yq(n)) and gn

can be computed by a constant-free, polynomial-size formula.
4. A parameterized family fn,k(X) is in VW0

nb[F] iff there exists a p-bounded function q(n)
and family gn(X, y1, . . . , yq(n)) such that fn,k ≤τ-fptnb

s

∑
y∈⟨ q(n)

k
⟩

gn(X, y1, . . . , yq(n)) and gn

can be computed by a constant-free, polynomial-size formula.

In some sense, VW[F] is a substitution of a weighted sum of formulas. We will define
VW[P] as a weighted sum as above, but summing over an arbitrary circuit of polynomial-size.
Similarly, we can define VW0[P], and its counterpart in the unbounded setting, i.e. VWnb[P],
and VW0

nb[P].
Finally, we will define the completeness notion:

▶ Definition 28. We will say a parameterized p-family fn,k is VW[F]-hard if every gn,k ∈
VW[F], gn,k ≤fpt

s fn,q. Similarly, we can define completeness for VW[P].

We can also define completeness and hardness in the constant-free and unbounded models.

8 Conditional collapsing of VW-hierarchy and applications

Let us recall the definition of k-degree n-variate (n ≥ k) elementary symmetric polynomial
σn,k(X) :=

∑
y∈⟨ n

k ⟩ Xy1
1 Xy2

2 . . . Xyn
n . It is known that (σn,k)n ∈ VP0, with a simple

dynamic programming algorithm; see [13, Section 4]. Let us define a new polynomial
family Bn,k(X), which will be important in the latter part of the section: Bn,k(X) :=∑n−k

t=0 (−1)t
(

k+t
k

)
· σn,k+t(X) . The following claim is crucial:

▷ Claim 29. For y ∈ {0, 1}n, Bn,k(y) =
{

1, if y∈⟨ n
k ⟩,

0, otherwise.

Proof. For a string y ∈ {0, 1}n, we will call the weight of y, denoted wt(y), the number of 1’s
present in y. Note that if wt(y) < k, then σn,k(y) = 0 implying Bn,k(y) = 0. Similarly if
wt(y) = k, then Bn,k(y) = σn,k(y), which will be exactly equal to 1. Now if wt(y) = k + r

where r > 0, then
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Bn,k(y) =
n−k∑
t=0

(−1)t

(
k + t

k

)
· σn,k+t(y) =

r∑
t=0

(−1)t

(
k + t

k

)
· σn,k+t(y)

=
r∑

t=0
(−1)t

(
k + t

k

)
·
(

k + r

k + t

)

=
r∑

t=0
(−1)t (k + r)!

k!t!(r − t)! .

Let us further define the tri-variate polynomial Q(x, y, z) := (x + y − z)k+r ∈ Z[x, y, z]. Note
that the coefficient of xk in Q(x, y, z) is

r∑
t=0

yr−tzt(−1)t · (k + r)!
k!t!(r − t)! .

Now putting y = z = 1, we get the coefficient exactly equal to Bn,k(y); since r ̸= 0, we can
say that the coefficient of xk in Q(x, 1, 1) is 0, which finally implies that Bn,k(y) = 0. ◁

Now we are ready to prove the following transfer theorem from the parameterized Valiant’s
classes to Valiant’s algebraic models.

▶ Theorem 30. VW0[P] ̸= VFPT0 =⇒ VP0 ̸= VNP0. Similarly, VW[P] ̸= VFPT =⇒
VP ̸= VNP.

Proof. We will prove the contraposition. Assume that VP0 = VNP0. As mentioned before,
we know that (σn,k)n ∈ VP0. Further, since k ∈ [n], for t ≤ n − k, it is trivial to see that
τ(

(
k+t

k

)
) = nO(1). Therefore, for each 0 ≤ t ≤ n − k, (−1)t

(
k+t

k

)
· σn,k+t(X) has a VP0-circuit.

Since VP0 is closed under polynomially many additions, it follows that (Bn,k)n ∈ VP0.
Let qn,k ∈ VW0[P]. By definition, there is a polynomial family pn,k of the above form

pn,k(X) :=
∑

y∈⟨ n
k ⟩ gn(X, y), where gn(X, Y) is in VP0, such that qn,k ≤fpt

s pn,k. By
Claim 29, it follows that

pn,k =
∑

y∈{0,1}n

gn(X, y) · Bn,k(y) .

We have already proved above that Bn,k has poly(n) sized constant-free circuits. Hence,
gn(X, y)Bn,k(y) has constant-free poly(n)-size circuit. Therefore, by definition and our
primary assumption, it follows that pn,k ∈ VNP0 = VP0 ⊆ VFPT0. Since, VFPT0 is closed
under constant-free fpt-substitution (Lemma 7), it follows that qn,k ∈ VFPT0, implying
VW0[P] ⊆ VFPT0.

The proof in the usual (not constant-free) model also follows essentially along the same
line as above. ◀

▶ Remark 31. The above theorem holds in the unbounded regime as well, i.e., VW0
nb[P] ̸=

VFPT0
nb =⇒ VP0

nb ̸= VNP0
nb (which further implies VP0 ̸= VNP0, see [16]). Similarly,

VWnb[P] ̸= VFPTnb =⇒ VPnb ̸= VNPnb.
We now aim to prove a conditional separation of VW0

nb[P] and VFPT0
nb, by showing that

VW0
nb[P] = VFPT0

nb implies a collapse of the linear counting hierarchy. To show this, we will
show that VW0

nb[P] = VFPT0
nb =⇒ p-log-Expsum ∈ VFPT0

nb (Corollary 34) from which the
collapse of the linear counting hierarchy follows.
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▶ Theorem 32. Let f(X) =
∑

y∈{0,1}ℓ(n)

g(X, y), where ℓ(·) is a linear function and g is

computed by an arithmetic circuit of size m = 2O(nc) for some constant c. Then, f(X) can
be written as

f(X) =
∑

e∈⟨ b(m)
k

⟩

G(X, e) ,

for some p-bounded function b and k = ℓ(n)/ log m and G has poly(m) size circuits.

Proof. Let f(X) be an instance of p-log-Expsum, i.e., f(X) =
∑

y∈{0,1}n g(X, y), where
g(X, Y) has size m constant-free circuit. Here we mention that, although we just take sum
over n variables here for the ease of presentation, the same proof also works if we sum over
ℓ(n) many variables for some linear function ℓ.

Let us partition the variable set Y = {Y1, . . . , Yn} = E1 ⊔ · · · ⊔ Ek. Here k = n/ log m,
and for all i, |Ei| = log m. For each S ⊆ Ei, we take a new variable ZS

i and we do this for
all i. Define Zi := {ZS

i : S ⊆ Ei} and Z =
⋃

i Zi. The number of Z-variables is 2log m · k,
which is polynomial in m.

Let us call an assignment of Z variables a good assignment, if exactly one variable in each
set Zi is set to be 1. Below we show that there is a one-to-one correspondence between {0, 1}
assignments to the Y variables and good assignments to the Z variables.

Let φ be a homomorphism from R[Y] → R[Z], where R := F[X], such that φ : Yi 7→∏
S⊆Ei, Yj ̸∈S(1−ZS

i ). Let us define g̃(X, Z) := φ(g). Now let us fix an assignment y ∈ {0, 1}n

to the Y variables. We construct a corresponding good assignment of Z. For each Ei of
Y, we have some Si ⊆ Ei such that each variable of Ei, which is in Si, gets value 1. The
remaining variables in Ei \ Si get value 0 (so that it corresponds to y). Pick this particular
Si ⊆ Ei. Note that this Si is unique (it can be the empty set). Now set ZSi

i = 1 and ZS
i = 0,

if S ̸= Si, for all i ∈ [k].
Each variable in

⋃
i Si gets the value 1 and variables in

⋃
i(Ei \ Si) are assigned 0. Under

the map φ, any Yj ∈ E1 \ S1 is replaced by
∏

S⊆E1, Yj ̸∈S(1 − ZS
1 ). Since, S1 ⊆ E1 and

Yj /∈ S1, (1 − ZS1
1 ) occurs in the product. And, hence the product becomes 0. Now, let

Yℓ ∈ S1 and φ(Yℓ) =
∏

S⊆E1, Yℓ ̸∈S(1 − ZS
1 ). As Yℓ ∈ S1, (1 − ZS1

1 ) does not contribute to
the product. Thus, under the assignment defined before, φ(Yℓ) becomes 1. This argument
holds for any Ei. Therefore, one can conclude that

f =
∑

e: e is a good assignment
g̃(X, e) .

Note that the weft of the circuit for g̃ has increased by 1 (from that of g), and the size
has also increased by a polynomial (in m) factor. To capture a k-weight good assignment
exactly, define a new polynomial p(Z) ∈ F[Z] as follows:

p(Z) :=
k∏

i=1

( ∑
S⊆Ei

ZS
j

)
.

Clearly, p has a weft-2 circuit of size poly(m). Further, it is simple to see that for any
k-weight {0, 1} assignment e to the Z variables, p(e) = 1 iff e is a good assignment because
from each of the product terms, only one variable will survive. Therefore,

f =
∑

e∈⟨ b(m)
k

⟩

p(e) · g̃(X, e) , where b(m) = |Z| .
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We set G(X, Z) := p(Z)g̃(X, Z). By the construction, g̃ has weft ≤ t + 1, p has weft ≤ 2,
and g̃, p have poly(m) size circuits. So, this ends our proof. ◀

▶ Remark 33. The construction above increases the weft by one.

▶ Corollary 34. VW0
nb[P] = VFPT0

nb =⇒ p-log-Expsum ∈ VFPT0
nb.

Proof. In Theorem 32 we have reduced an instance of p-log-Expsum to an instance of VW0
nb[P]

with parameter k = ℓ(n)/ log m. By our assumption VW0
nb[P] = VFPT0

nb and thus we can
say that p-log-Expsum ∈ VFPT0

nb. ◀

▶ Remark 35. If one restricts p-log-Expsum to exponential sums over g, where g is a p-family
(i.e., it has polynomial degree and size), denoted p-log-Expsumbd (bd for bounded-degree),
then the above proof similarly implies that VW0[P] = VFPT0 =⇒ p-log-Expsumbd ∈ VFPT0.

Similarly, we also prove a lower bound for the class VWnb[P], assuming an fpt lower
bound on p-log-Expsum.

▶ Theorem 36. Say that any family Fm,k(X) =
∑

e∈⟨ b(m)
k

⟩

G(X, e) ∈ VW0
nb[P] has 2o(n)poly(m)

size constant-free circuits where τ(G) ≤ m, n := k log m/c, for some constant c and b is
some p-bounded function. Then, p-log-Expsum ∈ VFPT0

nb.

Proof. Take an instance of p-log-Expsum, f(X) =
∑

y∈{0,1}ℓ(n) g(X, y), for some ℓ(n) = O(n).
And g has a constant-free circuit of size m. By Theorem 32, we can make it an instance of
VW0[P] and say,

f =
∑

e∈⟨ b(m)
k

⟩

g̃(X, e) , where b is p-bounded, k = ℓ(n)/ log m

By our assumption, f has a constant-free circuit of size 2o(n)poly(m) = 2O(n/i(n))poly(m) for
some unbounded and non-decreasing function i : N → N. Let h be a non-decreasing function,
so that h(i(n)) ≥ 2n. We shall prove that f has h(k)poly(m) size constant-free circuit. If
m ≥ 2n/i(n), clearly, f has poly(m) size constant-free circuit. Otherwise, if m < 2n/i(n),
this will imply i(n) ≤ n/ log m = k. And hence, h(k) ≥ 2n. So, f has h(k)poly(m) size
constant-free circuit. ◀

9 Restricted permanent

A cycle cover of a directed graph is a collection of node-disjoint directed cycles such that each
node is contained in exactly one cycle. Cycle covers of a directed graph stand in one-to-one
relation with permutations of the nodes.

▶ Definition 37. A cycle cover is (k, c)-restricted, if it contains one cycle of length k and all
other cycles have length ≤ c.

Let G = (V, E) be directed graph and w : E → R be a weight function. Here R is a ring
and typically the ring of polynomials. The weight of a cycle cover C of G is the product of
the weights of the edges in it, that is, w(C) =

∏
e∈C w(e).

▶ Definition 38. The (k, c)-restricted permanent of an edge-weighted directed graph G is

per(k,≤c)(G) =
∑

C

w(C),

where the sum is over all (k, c)-restricted cycle covers.
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If X = (Xi,j) is a variable matrix, then pern(X) is the permanent of the complete directed
graph with the edge weights w(i, j) = Xi,j . The (k, c)-restricted permanent family per(k,≤c) =
(per(k,≤c)

n (Xn)), where Xn is an n × n-variables matrix. per(k,≤c) is a parameterized family,
n is the input size, k is the parameter, and c will be some constant to be determined later.

On general graphs, the restricted permanent is very powerful, even if we keep the
parameter fixed.

▶ Proposition 39. The (2, 2)-restricted permanent family is VNP-complete.

If we restrict the underlying graph appropriately, then the restricted permanent is complete
for the class VW[F]. Recall that the girth of an undirected graph is the length of a shortest
cycle in the graph. When we talk of the girth of a directed graph, we mean the girth of
the graph when we disregard the direction of edges. Furthermore, when we talk about the
treewidth of a directed graph, we mean the treewidth of the underlying undirected graph.

▶ Definition 40. A directed graph G = (V, E) is (c, b)-nice if we can partition the nodes
V = V1 ∪ V2 into two disjoint sets, such that
1. the graph induced by V1 has girth > c (not counting self-loops),
2. every node in V1 has a self-loop, and
3. the graph induced by V2 has tree-width bounded by b.
4. every cycle that contains vertices from V1 and V2 has length > c.

Our main result is the following completeness result.

▶ Theorem 41. Let c and b be constants. Let (Gn) be a family of (c, b)-nice graphs. Then
the (k, c)-restricted permanent is in VW[F].

▶ Theorem 42. Let the underlying field have characteristic 0. There is a constant b and a
family of (4, b)-nice graphs (Hn) such that the (3k, 4)-restricted permanent of Hn forms a
family of VW[F]-hard polynomials.
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