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—— Abstract

The Separating Hyperplane theorem is a fundamental result in Convex Geometry with myriad

applications. The theorem asserts that for a point a not in a closed convex set K, there is a
hyperplane with K on one side and a strictly on the other side. Our first result, Random Separating
Hyperplane Theorem (RSH), is a strengthening of this for polytopes. RSH asserts that if the distance
between a and a polytope K with k vertices and unit diameter in ®? is at least &, where 6 is a fixed
constant in (0, 1), then a randomly chosen hyperplane separates a and K with probability at least
1/ poly(k) and margin at least 0 (6/\/3)

RSH has algorithmic applications in learning polytopes. We consider a fundamental problem,
denoted the “Hausdorff problem”, of learning a unit diameter polytope K within Hausdorff distance
0, given an optimization oracle for K. Using RSH, we show that with polynomially many random
queries to the optimization oracle, K can be approximated within error O(4). To our knowledge,
this is the first provable algorithm for the Hausdorff Problem in this setting. Building on this result,
we show that if the vertices of K are well-separated, then an optimization oracle can be used to
generate a list of points, each within distance O(d) of K, with the property that the list contains
a point close to each vertex of K. Further, we show how to prune this list to generate a (unique)
approximation to each vertex of the polytope. We prove that in many latent variable settings, e.g.,
topic modeling, LDA, optimization oracles do exist provided we project to a suitable SVD subspace.
Thus, our work yields the first efficient algorithm for finding approximations to the vertices of the
latent polytope under the well-separatedness assumption. This assumption states that each vertex
of K is far from the convex hull of the remaining vertices of K, and is much weaker than other
assumptions behind algorithms in the literature which find vertices of the latent polytope.
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1 Introduction

The Separating Hyperplane theorem is a fundamental result in Convex Geometry with myriad
applications (see e.g. [6]). The theorem asserts that for a point a not in a closed convex set
K, there is a hyperplane with K on one side and a strictly on the other side.

This paper makes two main contributions. Our theoretical contribution, which is an
extension of the classical Separating Hyperplane Theorem, is what we call the Random
Separating Hyperplane Theorem (RSH). Our main algorithmic contribution is to use RSH
to prove that a natural algorithm, which we call the k-OLP algorithm, can learn (vertices
of) latent polytopes arising in a number of problems in Latent Variable Models including
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Clustering, Mixture Learning , LDA (linear discriminant analysis), Topic Models. The
algorithmic result is shown by reducing the problem of learning latent polytopes in a variety
of settings to that of constructing approximate optimization oracles for the corresponding
polytopes. Bulk of our algorithmic contribution is in proving this reduction and the existence
of such oracles.

1.1 Random Separating Hyperplane Theorem (RSH)

RSH draws its motivation mainly from the Separating Hyperplane Theorem of Convex Geo-
metry. It also has connections to the Johnson-Lindenstrauss Random Projection theorem [15].
The Separating Hyperplane Theorem formally states that given a closed convex set K and a
point a ¢ K, there exists a vector u such that

u-a > Maxyeg u-y.

The following question arises: Does a randomly picked u separate a from K7 Taking into
account some necessary conditions for a positive answer, we can ask if the following inequality
holds for a randomly chosen u: (here A is the diameter of K, a is at distance at least dA
from K, where ¢ € (0,1)):

Pr(u-a > Maxyegu -y + |uladA) > 1/polys,* (1)

with a being as high as possible.

The question (1) is also motivated from the Johnson-Lindenstrauss Random Projection
theorem (JL theorem) [15] which states that if a,b are points in R¢ and U is a random
subspace of dimension s, then with probability bounded away from 0, the distance between the
projection of @ and b on U is at least Q(|a — b|y/5/v/d). The following natural generalization
of this is interesting already for s = 1:

Instead of b being a point, if it is now a polytope K, does a similar lower bound on the
distance of a to K in the projection onto a random line hold?

It is easy to see that in spirit, this is the same question as whether (1) holds. It is also
easy (see below) to see that the projection shrinks the distance between a and K by a factor
of Q*(v/d). The RSH theorem proves that the shrinkage is O(v/d) thus making this parameter
nearly (within log factors) tight. We now state the RSH theorem:

» Theorem 1 (Random Separating Hyperplane Theorem(RSH): Informal version). Suppose
K is a k vertex polytope with diameter A(K) and a is a point at distance at least 0A(K),
d€(0,1), from K. Let V be an m—dimensional subspace containing K U{a}. For a random
Gaussian vector u € V', the following event happens with probability at least 1/polys(k):

SA(K)|ul
10/m

We provide a simple example where K is a line segment (see Appendix A) to show that the
factor v/m cannot be improved. It is also interesting to note that the success probability of
the event in (2) needs to depend on k. (see Appendix A). In particular, RSH does not hold
for general convex sets (where k is not necessarily finite.)

(2)

u-a > Matycgu-y+

! polys(z) denotes zPoY(1/9).,
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1.2 Algorithmic application of RSH

We now discuss the second main contribution of our work, i.e., applications of RSH to learning
vertices of a latent polytope. We begin with the definition of an approximate optimization
oracle.

» Definition 2. For a non-empty convex set K C R and ¢ € (0,1), an Optimization oracle
for K with error ¢, denoted OptOr_(K) oracle, takes as input any u € R, |u| = 1, and
returns a point x(u) satisfying both these conditions :

z(u) € K + eA(K)Ba, where By is the unit ball, i.e., {x € R? : |z| < 1}, and

u-z(u) > Mazyegu -y —eA(K)

Problem Formulation. Several latent variable problems including Clustering, LDA;, MMBM
can be reduced (See Section 6 for details) to a problem that we call k-OLP: given an e-
optimization oracle for a k vertex polytope K C R?, learn the vertices of K (approximately).
We define two simpler (than k-OLP) problems — ListLearn and Hausdorff, that are related to
k-OLP, and then we define k-OLP.

The first problem, Hausdorff, seeks to find an approximation to a polytope K when we
are given an approximate optimization oracle for the polytope.

» Definition 3 ((, §)-Hausdorff-Problem). Given an OptOr_(K) oracle for a polytope K in
R4 with k vertices, find a set P of m = poly,(dk) points such that Haus(CH(P), K) < §A(K),
where, Haus denotes Hausdorff distance (see Definition 20 for a formal definition), and CH(P)
is the convex hull of P.

In the problem ListLearn, we also wish to find a small list of points, such that each vertex
of K is close to at least one point in this list.

» Definition 4 ((e, d)-ListLearn Problem). Given an OptOr (K) oracle for a polytope K in
R4 with k vertices, each separated from the convex hull of the other k — 1 wertices by at least
IA(K), find a list P C K + 0A(K)By of m = polys(dk) points such that for every vertex v
of K, there is some v' € P with [v —v'| < §A(K)/10.

When the parameters ¢, will be clear from the context, we shall abbreviate the above
two problems as Hausdorff and ListLearn problems respectively. It is not difficult to see that
any solution P to ListLearn is also a solution to Hausdorff, but, the converse need not hold:
CH(P) may nearly contain K without P having any point close to some vertex of K. Our
technical results (see below for the informal versions) show that if € € Os(1/v/d) 2, then we
can solve the above-mentioned problems efficiently and indeed then, the following simple
algorithm gives the desired answers (the proof crucially uses RSH):

Random Probes Algorithm

Pick uniformly at random unit vectors w1, usg, . .. Uy, where m =polys(dk).

Return P, which is the set of m answers of the OptOr_(K) oracle to the queries
UL, U2y -+ - Uy -

The first result (see Theorem 21 for a formal statement) states that the convex hull
of answers to polynomially many random queries to the approximate optimization oracle
approximates K well.

2 Os(x) stands for f(8)z for some function f.
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» Theorem 5 (Hausdorff Approximation from oracle (Informal)). Consider an instance of
the (e,6)-Hausdorff problem for a polytope K C R¢. Assume that € € Os(1/V/d), and let P
be the set of points returned by the Random Probes Algorithm above. Then with high
probability,

Haus(CH(P), K) < §A(K).

The second result (see Theorem 28 for a formal statement) shows that as long as each
vertex of K is well-separated from the convex hull of the other vertices of K, the set P
constructed by the Random Probes Algorithm contains an approximation to each of the
vertices. Thus, answers to polynomially many random queries list-learns the polytope.

» Theorem 6 (List-Learning from Oracle (Informal)). Consider an instance of the ListLearn
problem for a polytope K C R%, and assume that € € Os(1/\/d). Then, with high probability,
the set P output by the Random Probes Algorithm above has the following property: for
every vertex a of K, there is a point ' € P with

la" —a| < JA(K)/10.

The V/d factor in both the above theorems is near-optimal (within a logd factor). Indeed,
we shall prove:

» Theorem 7 (Oracle Lower Bound). The problem where, one is required to output a point
which is within A(K)/10 of some vertex of K, given only by an OptOr_(K) oracle, cannot
be solved in deterministic polynomial time when € > 81n d/\/&

We now define the k-OLP problem (the parameters €,6 in the definition will often be
clear from the context and may not be mentioned explicitly). The problem statement is
similar to that of ListLearn, but we want to output a list of exactly k points.

» Definition 8 ((¢,0)-k-OLP Problem). Under the same hypothesis as for the ListLearn
problem, find a set of points P, |P| =k, satisfying the following condition: for each vertex v
of K, there is a (unique) point v' € P such that |[v — v'| < A(K)/10.

Our next result gives a strengthening of Theorem 6.

» Theorem 9. Consider an instance of the k-OLP problem on a polytope K C R?, and assume
e € 05(1/V/d) in a k-OLP problem. Let P be the set of points returned by the Random
Probes Algorithm. Then, in polynomial time, we can find a Q C P,|Q| = k satisfying the
following condition: for each vertex v of K, there is a (unique) v' € P, |v —v'| < dA(K)/10.

The algorithm for finding @ from P is likely of independent interest. We call this problem
the “Soft Convex Hull” problem and it is described in Section 6.1.

Do Approximate Optimization Oracles exist?

The answer to this question is a qualified Yes. They exist, but unfortunately, as we point out
below, for many latent variable problems including the simple mixture of two Gaussians with
means separated by Q(1) standard deviations, we do not get ¢ € Os(1/+/d), when, k < d.
Thus, we do not satisfy the hypothesis of the results mentioned in Theorem 5,Theorem 6,
and Theorem 9. But we are able to tackle this hurdle by projecting to the k-SVD subspace
(of the input data points which satisfy conditions discussed below) where, we do get the
necessary € € Os(1/VE).
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First we observe that approximate optimization oracles arise in a natural setting — that
of latent variable models. [7] show that these models can be reduced to a geometric problem
called LkP described below. [We will not reproduce the reduction here.] LkP is the following
problem: Let K be a k vertex polytope in R?. Let M.1,...,M. j denote the vertices of K.
Assume that there are latent (hidden) points P. ;,j = 1,2,...,n, in K. The observed data

points A. j,7 =1,2,...,n are generated (not necessarily under any stochastic assumptions)
by adding displacements A. ; — P. ; respectively to P. ;. Let?
_ P —Ajl
ap ‘= .

vn
We assume that there is a certain wq fraction of latent points close to every vertex of K, i.e.,
for all £ € [K],

Cyp = {j : |P.J — M.,

go .
< ——1} satisfies |Cy| > wgn.
) e

» Theorem 10 (From Data to Oracles). Using the above notation, the following “Subset

Smoothing algorithm” gives us a polynomial time OptOr 4., (K) oracle..
A vuwo

3

Subset Smoothing Algorithm
Given query u, let S be the set of the won j’s with the highest u - A. ; values.
Return A. g := ﬁ Yies A

The Subset Smoothing algorithm was used in [7]. It is also reminiscent of Super-
quantiles [18], though our use here is not directly related to them. While this theorem helps
us get optimization oracles, the error guarantee of O(co/A\/wg) is not good enough in many
applications. An elementary example illustrates this issue:

Consider a mixture of two equal weight standard Gaussians centered at —v and v, where,
v is a vector of length 10. [This fits the paradigm “means separated by (1) standard
deviations”.] Then, data generated by the mixture model fits our data generation process
with K = {Av, A € [-1,1]}, and each P. ; is either v or —v depending on the Gaussian from
which the point has been sampled. Here A.; denotes the actual sampled point from the
mixture. Now, A = 20 and it can be seen from Random Matrix Theorems (see e.g., [19]) that
oo = O(1) with high probability. So, o9/A\/wo € O(1) with high probability, and hence, the
Theorem above yields an OptOr,_(K) oracle with € € £(1). But d can be arbitrarily large
and so we do not have the required OptOry,, , /5 (K) oracle.

This elementary example can be tackled in several ways. Our algorithm which we call
the “k-OLP algorithm” is simply stated and works in general settings (including on this toy
example) for several Latent Variable problems (see Section 6 for details). The main idea is
to first project the input points on a suitable SVD subspace and then use the approximate
optimization oracle in the projection.

SVD and the k-OLP Algorithm

We now state the result (see Theorem 39 for a formal version) for k-OLP in the setting of
LkP. As mentioned above, this uses SVD followed by subset smoothing.

3 By the standard definition of spectral norm, it is easy to see that ¢Z is the maximum mean squared
displacement in any direction.

25:5

ICALP 2024



25:6

Random Separating Hyperplane Theorem and Learning Polytopes

» Theorem 11. Recall the notation and assumptions of Theorem 10. In addition, we assume
that each vertex of K is 0A(K) far from the convex hull of other vertices of K, where, §
satisfies:

oo < 052A\/w0/\/§

Then, the set of points P returned by the following k-OLP algorithm list learns the vertices
of K. Further, we can find a subset Q of P with |Q| = k and for each v, vertex of K, Q
contains a v with v —v'| < JA/10 :

Algorithm k-OLP

Project to the k-dim SVD subspace V corresponding to the points A. ;.

Pick m = polys(k) random vectors uy, ug, ..., Uy, in V.

For each wu;, take the mean of the A. ; with the wyn/2 highest values of u; - A. ;.
Let P be the set of m means computed in the step above.

Output a subset @ of P, |@Q| = k, using Theorem 9.

4

We sketch here the steps in the proof (the details are contained in the proof of Theorem 39.)

Sketch. Let K denote projection of K onto V. By Theorem 10 , Step 3 of Algorithm k-OLP
is an OptOrE(lA() oracle, where ¢ = O ( gy ) Also, each M. ;, which is the projection of

Aoy
]\/4\.74 on V, is O(SA(K)) far from the convex hull of the other vertices of K. Now, Theorem 9
applied to K in the subspace V implies the desired result. <

It is worth noting that data obtained from several generative models are known to satisfy
the LkP condition stated in Theorem 11, e.g., Stochastic Mixture models with k& components,
Topic Models, Mixed membership community models.

From List Learning to k-OLP

As outlined above, the k-OLP algorithm works in two stages: (i) Project the data points
on the SVD subspace V' of dimension k, and (ii) make polynomially calls to the OptOr_(K)
oracle, where each query is given by a randomly chosen unit vector in the subspace V' (as in
the statement of Theorem 5) — let P be the set of points returned by the oracle. The first
statement in Theorem 11 shows that the convex hull of P is close to K.

Obtaining approximations to the vertices of K from P requires addressing a new problem:
given a set of points W, find a small subset T" of W, such that their convex hulls are close. We
call this the soft convex hull problem. A similar problem was addressed by [12]; however they
gave a bi-criteria approximation algorithm for this problem. Under stronger assumptions,
where we assume that there in the optimal solution T, each point of T* is well-separated from
the convex hull of the rest of the points of T*, we show that one can recover approximations
to each of the points in T*. Applying this result to the set of points P returned by the
optimization oracle, we get a set of k points @), each of which approximates a unique vertex
of the polytope K.

The algorithm for obtaining soft convex hull proceeds as follows. We first prune points
w € W which have the following property: consider the subset X of points in W which are
sufficiently far from w. Then w is close the convex hull of X. After pruning such points from
W, we pick a subset of points which are sufficiently far-apart from each other. The main
technical result shows that this procedure outputs the desired set T
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1.3 Related Work

The well known result of [15] shows that given a set of n points in ¢, projection to a random
subspace of dimension O(logn/e?) preserves all pair-wise distances up to (1 + ¢)-factor with
high probability. Further, this bound on the dimension on which the points are projected
is known to be tight [2, 16]. Note that in our setting, there are k + 1 points “of interest”,
namely, the k vertices of K and a point a ¢ K and by the above, a random projection to
O*(log k) dimensional space preserves all pairwise distances among them. But this is not
sufficient for our problems. We need separation of a not just from the vertices of K, but from
all of K in the projection. We achieve this by projecting to a set of random 1-dimensional
subspaces, and show that the distance between a point and a polytope does not scale down by
more than O(v/d) factor for at least one of them with high probability (this is an immediate
corollary of the RSH Theorem).

The problem of learning vertices of a polytope arises in many settings where data is
assumed to be generated by a stochastic process parameterized by a model. Examples
include topic models [10], stochastic block models [1], latent Dirichlet allocation [11]. A
variety of techniques have been developed for these specific problems (see e.g. [3, 4, 14]). [7]
(see also [5]) proposed the latent k-polytope (LkP) model which seeks to unify all of these
latent variable models. In this model, there is latent polytope with k vertices, and data is
generated in a two step process: first we pick latent points from this polytope, and then the

observed points are obtained by perturbing these latent points in an adversarial manner.

They showed that under suitable assumptions on this deterministic setting, one can capture
the above-mentioned latent variable problems. Assuming strong separability conditions on
the vertices of the polytope (i.e., each vertex of K is far from the affine hull of other vertices
of K), they showed that one can efficiently recover good approximations to the vertices of
the polytope from the input data points. In comparison, our assumption on K is that each
vertex of K is far from the convex hull of the remaining vertices of K. This is a much milder
condition, e.g., it allows a polytope with more than 2 vertices in a plane. [8] showed how to

infer the parameter k from data in the LkP setting (under the strong separation condition).

[12] addressed a problem similar to the Hausdorff problem: instead of an e-optimization
oracle for a polytope K, we are given an explicit set P of points, whose convex hull is within
Hausdorff distance at most dA(K) from K. They are able to get better dependencies on the
parameters k, §, e than Theorem 21 under these stronger assumptions.

2 Preliminaries

For two points x,y € R¢, |z — y| denotes the Euclidean distance between the points. Given a
point z € R4 and a subset X C R?, define dist(x, X) as the minimum distance between x
and a point in X, i.e., inf e x |z — y|. For a set of points X, A(X) denotes the diameter of
X, ie., sup, ,cx |z —y|. We denote the convex hull of X by CH(X). For two subsets A, B
of R4, define their Minkowski sum A+ B as {x +y:z € A,y € B}. Similarly, define \A,
where A € R, as {\z : € A}. For an m x n matrix B, we use B. ; to denote the j** column
of B. For a subset S C [n] of columns of B, B. g denotes ﬁ > jes
the vertices of a polytope K in R¢ by a d x k matrix M, and so the columns M. 1, ..., M.
would represent the vertices of K. We shall use the notation polys(z) to denote a quantity
which is zP°Y(1/%) " Further the notation Os(z) shall denote a quantity which is f(8)z, where
f(9) is a function depending on § only (and hence, is constant if § is constant).

B. ;. Often, we represent

We now give an outline of rest of the paper. In Section 3, we prove the Random Separating
Hyperplane theorem. In Section 4, we prove Theorem 5 by showing that an OptOr,(K) oracle
leads to efficient constructions of approximation to K. In Section 5 we give an algorithm
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for the ListLearn problem under the stronger assumption that the vertices of K are well
separated. We also prove the lower bound result Theorem 7 in this section. In Section 6,
we extend the algorithm for ListLearn to the k-OLP problem. This requires the concept of
soft convex hulls. The algorithm for constructing soft convex hulls in given in Section 6.1.
Finally, in Section 7, we apply the k-OLP algorithm for the latent polytope problem. As note
earlier, in the setting of latent polytopes K, we can only guarantee OptOr_(K) oracles with
¢ being O(1/Vk), whereas our algorithm for k-OLP requires ¢ to be O(1/v/d). We handle
this issue by projecting to a suitable SVD subspace and executing the k-OLP algorithm in
this subspace. We conclude with some open problems in Section 8.

3 Random Separating Hyperplane (RSH) Theorem

In this section, we prove RSH for polytopes: If a point p point is at a distance from a polytope
K, then, the Gaussian measure of the set of well-separating hyperplanes has a positive lower
bound depending on the number of vertices in K. More specifically, we show:

» Theorem 12. Suppose K is a polytope in R with k vertices and diameter A(K). Suppose
a is a point in R% and 6 € (0,1] with

in a — y| > 6A(K). 3
min |a —y| = 0A(K) (3)

Let V' be an m-dimensional subspace containing Span(K U {a}) and let u be a random vector
drawn from the normal distribution N(0,I,,) in V. Then,

Vlog k 7]{; 10/6%
3vlogk + 46y/m| — 40

Pr, |(u-a— y) > |ul - SA(K
ry |(u-a max y) = [ul - 6A(K) -

Proof Overview

We give an informal overview of the proof. A naive, though incorrect, idea would be
the following: let ( be the closest vertex of K to a. We can argue that with reasonable
o . —1/82 o ) . . 2\/10gk-|C7a| logk A(K
probability (i.e., Q(k )) that [(¢ — a) - u| is at least 5 . Call
this event £;. Now consider a line segment joining two distinct vertices say Q, ¢, of K.
The length of such a line segment is at most A(K), and hence there is high probability

that [((; — ¢G) - ul < L 5\/E 25 Iy fact, we can apply union bound, and show that this
property holds for all pairs of vertices of K — call this event &. If both & and & occur,
then it is easy to see that along the direction u, a is separated from all the vertices of K.
However, the events £ and & are not independent, and hence, we cannot argue that both
events will occur with non-trivial probability. Here one could use the union bound, but a

calculation shows that for this we need § > 1. But é < 1 in our applications, so we cannot
use this approach.

Instead, we rely on the following more nuanced idea. Let w be the unit direction along
the line joining a and the closest point b of K. As argued above, we can show that |(b—a) - u|

Q(4/logk-|b—al| > Q(4/logk)-A(K)
5v/m = vm

of u along w; let & denote this event. Now we show that the following event, say £}, occurs
with high probability: along the component of u orthogonal to w, the projections of the

O(y/log k)A(K)

vm
concerned with orthogonal directions, they are independent using properties of the Gaussian.

Thus we can show that both of these events happen with non-trivial probability. This suffices

is at least

— this only requires arguing about the component

line segments joining any two vertices of K is at most . Since & and &} are
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to show the desired result. We now give the formal proof of this result. First, we state the
following well-known concentration bound for Gaussian random variables (see e.g. [19]):

» Theorem 13 (Gaussian Concentration Bounds). Let X be an N(0,1) Gaussian random
variable, i.e., with mean 0 and variance 1. Then, for any t > 0,

e_t2/4/2 <Pr[|X| >t < 21"

We shall also need the following result on the sum of squares of i.i.d. normal random variables.

» Theorem 14 ([17]). Let X1,...,X, ben i.i.d. N(0,1) Gaussian random variables. Then,

Pr[z X2 >4n] <e V7",
i=1

We now proceed with the proof of Theorem 12.
Proof of Theorem 12. Let (1,(s,...,(x be the k vertices of K. Let b be the closest point
in K to a, and define
a—>b
w=—-:.
|la — |
Then by standard results on separation between a point and a closed convex set (see e.g. [13]),

we know that for all points y € K:

w-y < w-b. (4)

Now, we extend w to an orthonormal basis wy := w, ws, ..., w,, of the subspace V. The
random vector u can be generated as follows: sample m i.i.d. N(0,1) random variables
Aly+v oy Am, and define u := Z:’;l Ajw;. We first observe that it is enough to argue that the
projection of a along u is well separated from that for each vertex (y, of K. Indeed, we can
express (U -a — MaxXyck U-Y) as

u-(a—b)—maxu-(y—>b)=wu-(a—0)— max u-({ —0b) (5)

yeK 0=1,....k

It suffices to show that with reasonably high probability, there is a lower bound on
u - (@ —b) and an upper bound on u - (¢, — b) for all £. We proceed with the latter goal
first. Observe that along the direction w, K lies below b. Thus, it suffices to argue that the
projection of ({, — b) along the direction orthogonal to w is not large for any vertex (; of
K. Let z denote \ows + ...+ A\ wy,. Then u can be expressed as Ayw + z. We now define
events upper bounding z - (¢, — b) for all vertices ¢, of K.

» Definition 15. For £ =1,2,... k, define the event & as [|z - ({y — b)| < 2VIn kA(K)].

» Proposition 16. Suppose the events & occur for all £ =1,...,k. Then, for any ¢ € [k],
u- (¢ —b) < 2vVInkA(K).

Proof. Observe that
W (G ) = A (G D)4 (G- B) S 2 (G b,

The desired result now follows from the definition of the event &,. <
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We now define events to lower bound u - (a — b): Observe that (a — b) is along w, and
hence, is orthogonal to z. Therefore u- (a —b) = \jw(a —b) = A1]a — b|. Therefore, we define
an event that lower bounds ;. We also define an event that upper bounds |z|.

» Definition 17. Define & as the event [|z| < 4y/m]. Also define Exy1 as the event
I\ > 3vInk/d).

» Proposition 18. Suppose the events &y, ..., Exr1 happen. Then,
AA(K)|ul 5\/1n EA(K)|ul
w-a—maxu-y >
yekK 3(>\+4\F) 3vVInk +45/m

Proof. As observed above, u - (a — b) = A]a — b|. Now observe that for any vertex ¢, of
K, Proposition 16 shows that

(3)
u- (e —b) <2VInkA(K) < 2VInk|a —b|/d < 2X\1|a — b|/3,

where the last inequality follows from the definition of of event & y;. Thus, we see from the
above two inequalities and (5) that

3
u-a—meaé(u-yz)\l|a—b|/32/\15|A(K)|/3. (6)
y
It remains to upper bound |u|. Recall that u = A\jw+2z, and hence, |u| < |A1]+]z] < A1 +4v/m,
where we have used the definition of the event £11 and the fact that A\; > 0 because of
event &. Using this in (6) yields the first inequality in the desired claim. The second desired

inequality follows from the fact that A\1d > 3vInk (definition of event Exy1). <
It remains to show that the events &, ..., k1 occur with reasonable probability.

» Proposition 19. Pr [/\k“zi'f] > 10](10/52.

Proof. Consider any ¢ € [k]. Observe that z - (¢, — b) is a 1-dimensional Gaussian random
variable with zero mean and with variance |, — b|? < A(K)?. Thus, (C(‘ )b) is an N(0,1)
normal random variable. Therefore, Theorem 13 shows that

z2- (G —b)
Pr[=& = Pr > 2vInk| < —
r-é] A(K) 2k2
By definition of 2, [2|> = Aa + ...+ A2,. By Theorem 14,
Pr[—&] = Pr[|z]? > 16m] < e~ V™ < 1/20,

for large enough m. Applying union bound to the above two inequalities, we get

k
Pr(Af_o&) >1—) Pr(=&)>1/4 (7)
£=0
Finally we consider event &;41. Observe that Ay is N(0,1) Gaussian random variable.
Applying Theorem 13 to A1, we see that

Pr[&j41] = Pr [Al > 3vIn /5] k—10/52 (8)
Observe that the event /\Z:[)Eg depends on the random variables Ao, ..., Ax, and hence, is
independent of the event 1. The desired result now follows from the (7) and (8). <

The theorem now follows from Proposition 18 and Proposition 19. |



C. Bhattacharyya, R. Kannan, and A. Kumar 25:11

4 From OptOr,(K) oracles to the Hausdorff Problem
We prove Theorem 5 in this section. We begin by defining Hausdorff distance formally.

» Definition 20. The Hausdorfl-distance, Haus(K, K'), between two polytopes K and K' is
the infimum over all values o such that the following condition is satisfied: for every point
x € K, there is a point y € K’ such that |x — y| < «, and vice versa.

We now give the formal version of Theorem 5:

» Theorem 21. Suppose €,§ are reals in [0, 1] with
§>ceVd,§ > c/\/a7 9)

where ¢ is a large enough constant. Let K be a k-vertex polytope with A(K) denoting
the diameter of K. Suppose we are also given an OptOr_(K) oracle O. Let P be the
set of answers from the oracle on m := Jplo+es™? independent random queries. Then,

Haus(K,CH(P)) < ¢ - A(K).

Before giving the proof, we highlight the main ideas here. Let the random queries
correspond to unit directions u',...,u™, and for each of these queries w/, the oracle O
returns a near-optimal point x(u’). Let P’ denote the subset {z(ul),...,z(u/)}. Let v be a
vertex of K. The non-triviality in the proof lies in showing that there is a point in CH(P)
close to v. Suppose there is no such point in CH(P7), and let b the closest point in CH(P7)
to v. Then we show that with constant probability the following events happen: (i) the
unit vector u/T! has a non-trivial component along the direction joining b and v, and (ii) its
component along the orthogonal direction is not too large. If both of these events happen, we
show that dist(v, CH(P/T1)) < (1 — O(6?))dist(v, CH(P?)). We now give details of the proof.

Proof. We describe the algorithm for obtaining the desired set S (referred as Random
Probes Algorithm in Section 1.2) in Algorithm 1. The set P is constructed as follows: we
pick a set of m random unit vectors. For each such unit vector u, we add the corresponding
point z(u) returned by the oracle O to the set P.

Algorithm 1 Algorithm for finding the set P such that CH(P) approximates K.

1.1 Input: An OptOr_(K) oracle O.
1.2 Initialize a set P to @
1.3 Repeat m times:

1.4 Let u be a random unit vector in R%.
1.5 Call O on u to get a vector x(u).

1.6 Add z(u) to P.

1.7 Output P.

One side of the desired result is easy to show:
> Claim 22. For each « € CH(P), there is a y € K such that |z — y| < JA(K).

Proof. For a point z(u) € P, we know by the definition of OptOr_(K) oracle that there is
a point y € K such that |z(u) — y| < eA(K) < 0A(K), where € < § follows from (9). The
desired result now follows from the convexity of K. <
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It remains to show that for any vertex v of K, there is a point y € CH(P) such that
|lv —y| < SA(K). Fix such a vertex v of K for rest of the discussion. Let the random unit
vectors considered in Algorithm 1 (in the order they get generated) be ul',...,u™. Let PJ
denote the subset {z(u'),...,z(u/)} of P. Define an event &; as follows:

dist(v, CH(P?)) < ¢ - A(K) or dist(v, CH(PIT1)) < (1 - 52) dist(v, CH(P?)),

C,

where ¢’ is a large enough constant. Our main technical result is to show that conditioned
on any choice of u',...,u’ the event & happens with reasonably high probability (where
the probability is over the choice of u/*1):

» Lemma 23. For any index j € [m — 1],

1 j 1
uarl [Sj|u ,...,uj] > T

Proof. Fix the vectors u,...,u’. If dist(v,CH(P?)) < § - A(K), then we are done. So
assume this is not the case. Let b be the closest point in CH(P?) to v. Thus,

lv—0b] >d - A(K). (10)
Define w as
v b
w = 7\“ o

We can now express the vector u/*! as Aw + z, where (z,w) = 0. We first show the following
useful properties of these vectors.

> Claim 24. With probability at least ﬁ, the following three events happen:

2| < 4Vd (11)

ma}){<|z~ (v—1)| <2vVInkA(K) (12)
ye
100
N> —=Vink (13)
Proof. The proofs of these three inequalities are same as the arguments in Proposition 19 (in
order to prove (12), it suffices to show it for points y which are vertices of K). <

The following fact is also easy to show:

» Proposition 25.
lv — z(uft)| < 2A(K).

Proof. By the definition of OptOr_(K) oracle, there is a point p € K such that [p—z(u/1)| <
§- A(K) < A(K). The desired result now follows by triangle inequality. <

Let 6, denote %. Let b; denote the vector
(51x(uj+1) + (1 — (51)()

Since by € CH(P7*1), the desired result will follow if we prove the following:

52
lv—bi]* < (1—100> v —b|*. (14)
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Now,

v — l)1|2 = 5%\1} — ac(uj'*'l)|2 +(1- (51)2|v — b|2 +25(1—61)(v— x(uj+1)) -(v—0)
Prop. 25

< AA(K)? 4 (1 —261)|v — b + TA(K)? +26:(1 — 61) (v — z(u? ™)) - (v —b)
(10) 36, ) -
< 1—7 [v — b2 + 4261 (1 — 61)|v —b] - (v — z(w/h)) - w

= (15 o= o w2t - o [ P sttty

=A

- L;b' (v =z )z (15)

=B

We now bound each of the terms A and B above. Now,

AL

_ (9) _ (10) _ p|2 (13) _ b2
v =8 b| AK) 'S |v — blOA(K) g |v — 0] g |[v— 0] 5)
A cA cA c

where the first inequality follows from the definition of OptOr_(K') oracle. We now bound the

quantity B. Let y be the point in K closest to x(u/T1). We know that |y —z(uw/™1)| < eA(K).

Therefore,

(I(v = y) - 2| + |2[eA(K))

'(2FA( K) + 4eVAA(K))

5|v—b|A( )<1<0> lv — b|?
- 10 - 10

Substituting the above bound on A and B in (15) yields the desired result. |

We are now almost done. As the following result shows, it suffices to argue that enough
number of events £; happen:

> Claim 26. If at least g—; In(2/e) of the events &;, j € [m — 1] happen, then dist(v, CH(P)) <
SA(K).

Proof. Assume, for the sake of contradiction, that dist(v, CH(P)) > eA(K). Assume that
events &;,,...,&;, happen, where h := %111(2/5). Now, for any index ¢ € [h — 1], the
definition of &;

]7+1

implies that

dist(v, CH(PJi+1)) < (1 - f) dist(v, CH(P7i+1 1) < dist(v, CH(P7?)).

Therefore,

2

) ) h Proposition 25 52
dist(v, CH(P’")) < (1 - d) dist(v, P') < (

1—) 2A(K) < SA(K). <

C,

25:13
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It remains to show that with high probability at least h := g—; In(2/¢) of the events happen.
In order to prove this, we divide the sequence [m] into [h] subsequences, each of length m/h.
Call these subsequences C1,...,Ch. It follows from Lemma 23 that for any i € [h],

1
Pr[Ajec,~&;] < 0.99™/" < 3

A simple union bound now shows that with probability at least 1 — 1/h, at least one event
&; happens during each of the subsequences C1, ..., C}. Claim 26 now proves the theorem.
<4

5 From OptOr (K) oracles to ListLearn

We first define the notion of well-separatedness.

» Definition 27. We say that a polytope K with vertex set V is d-well-separated if for every
vertex v € V', we have dist(v, CH(V '\ {v})) > 0 - A(K).

Recall that Theorem 7 states that given access to only an OptOr_(K) oracle, ¢ must be
Q(Ind/+/d) for any deterministic algorithm to output a point within A(K)/10 of K. We show
this result in the full version [9]. We now prove Theorem 6, which gives such an algorithm
for the ListLearn problem.

» Theorem 28. Suppose ¢,§ are reals in [0, 1] with 6% > ceVd, 5% > ce, where ¢ is a large
enough constant. Let K be a 6-well-separated k-vertex polytope. Suppose we are also given
OptOr (K) oracle O. Let W be the set of answers of the oracle to m = poly(d) - |1/
independent random queries. Then for each vertex v of K, there is a point v' € W such that

lv —v'| < O(82A(K)/c).

Proof. The algorithm chooses a set U of k2(1/ %) unit length i.i.d. Gaussian vectors. For each
u € U, it calls the oracle O to find a vector z(u). Let W denote the set {z(u) : u € U}. We
first show that for every vertex of K, there is a direction w in U along which the projection of
this vertex is higher than the projection of the remaining vertices by a large enough margin.
Let M. 1,..., M.\ be the vertices of K. The proof of the following result is deferred to the
full version [9].

> Claim 29. With high probability, the following event happens: for each ¢ € [k], there is a
vector ul¥) € U such that for all ¢ € [k],# # ¢, we have

ce - A(K)
862
For rest of the proof, assume that the statement in Claim 29 holds true, i.e., there are

directions u™, ..., u(F) € U satisfying (16). We now show that for every vertex of M., of
K, the corresponding point x(u) is close to M. .

> Claim 30. For every £ € [k], |x(u®)) — M. 4| < 1762A(K)/c.

u® M >u M+ (16)

Proof. By the definition of O, we know that z(u®)) can be written as y(u’) + z(u'?), where
y(u®) € K and |2(u'®)| < eA(K). Thus, there is a convex combination Ay, ¢’ € [k], of the
vertices M. o of K such that z(u(?)) = Dvem e M e + 2(u®).

By the definition of O, z(u¥) - u® > M. ;- u® — e A(K) and |z(u®) - u)| < cA(K).
So, we get

My u® —eAE) < > MM - ul”) + eA(K),
elk]
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which implies (after subtracting A¢M. ;- u'®) from both sides):
(1= A)M.ul® <3 Ao M.y - ul®) + 26 A(K)
oL
which, using Claim 29, yields:
ceA(K)
842

It follows from the above inequality that 1 — Ay < @. Therefore,

(1= X)M_u'® < (1= A)M.u® — (1= \) + 2eA(K).

w(uD) = M| = > Ao (Mg = M.p)| + eA(K) (17)
0140
1762A(K
< TAA(K) 1 A(K) < ALK <
0140 ¢
This completes proof of the Theorem. |

6 From ListLearn to the k-OLP Problem

In this section, we show that for well-separated polytopes, a solution for the ListLearn problem
can be used to solve the k-OLP problem as well. This algorithm uses the notion of soft
convex hulls. We first describe the algorithm for constructing soft convex hulls, and then use
it to solve the k-OLP problem.

6.1 Soft Convex Hulls

Let W be a finite set of points in ®¢, and T be the vertices of CH(W). The subset T' of W
is the unique subset of W with the following properties:

(P1) W C CH(T)

(P2) YVw e W, if w ¢ CHW \ {w}), then w € T.

We now define a natural notion of soft convex hull.

» Definition 31. For an e > 0, and S C W, define the e-convex hull of S, e-CH(S), as
CH(S) + eA(W)B, where B is the unit ball of the Fuclidean norm.

The intuition behind the above definition is that CH(W') can have many vertices, but there
may be a small set of points whose soft convex hull contains W. This is defined more formally
as follows:

» Definition 32. We call a subset T C W an e-envelope of W, written e-ENV(W), if
W C e-CH(T).

Remarks. The following observations about the set e-ENV(WW) are easy to see:
(a) There are several distinct sets T which could qualify as e-ENV(W). For example, let W
consist of the following set of points in R?: a set of points W; close to (0,0) and a set of
points W close to (1,0). Let T be a pair of points {z,y} with z € Wi,y € Wa. Then it is
easy to check that T is an e-ENV(W); and (b) Let T be e-ENV(W). Unlike property (P2)
above, it is not necessary that if w € W is such that w ¢ e-CH(W \ {w}), then w € T..
Since the set e-ENV(W) is not uniquely determined, we will impose one more condition
on it to make it unique (if it exists) and polynomial time computable. This condition requires
the points of T" to be “far apart” from each other. More precisely:

25:15
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» Definition 33. For e, € [0,1], a set T is called a (g,6)-ENV(W) if it is an e-ENV(WV)
and

Yw € T, dist(w, CH(T \ {w})) > SA(W) (18)

The proof of the following result follows from standard arguments and is deferred to the
appendix.

Given a subset T of W, we can check in polynomial time whether T is an (e, §)-ENV(W).

For rest of the section, we address the following question: given the set W, and parameters
g,0, is there a (e,6)-ENV(W), and if so, can we find in polynomial time an approximation
to this set? In the full version [9], we argue that several “natural” greedy strategies do not
work. If ¢ = 0, the above question is easy to answer in polynomial time. The answer is yes
iff the set T of vertices of CH(W) satisfies (18). Also, if § = 1, T has to be a singleton to
satisfy (18).

In rest of this section, we consider the following problenm: For what pairs of values of
€,0, can we prove that there is essentially at most one (g,6)-ENV(W), and if so, can we
determine this set efficiently? We do not know the exact answer to this, but our main result
here (which suffices for the applications) is (verbally stated) an affirmative answer to the
question if the following condition is satisfied: § € (y/€). This will follow as a corollary of
our main result:

» Theorem 34. Let 0,¢,e3 be reals in (0,1/8) satisfying

é > max ( ,453) (19)

€3 — &

Let W be a finite set of points in R%. We can determine in polynomial time whether exists a
set T in (£,0)-ENV(W), and if so, we can efficiently find a subset Q@ of W such that

Q= |T] (20)
Vwe T,z € Q:|w—z| <2e3A(W) (21)

» Corollary 35. Let d,¢ be reals in (0,1/8) satisfying § > 164/ Let W be a finite set of points
in R, We can determine in polynomial time whether exists a set T forming a (g,8)-ENV(W),
and if so, we can efficiently find a subset Q of W such that

Q=T (22)
Vw e T, 3z € Q : |w— x| < 8/eA(W) (23)
Proof. The Corollary follows from Theorem (34) by taking e3 = 4/ <

We defer the proof of Theorem 34 to the full version [9]. The procedure for computing the
set Q is as follows: We first compute a subset Q" of W consisting of points w € W which do
not lie in the soft convex hull of the points in W which are “far” from w — this can be done
in polynomial time by using arguments similar to those in the proof of Section 6.1. Then @
is defined as a maximal subset of points in Q" such that the pair-wise distance between the
points in it is large.

6.2 Algorithm for k-OLP

We now show how soft convex hulls can be used to generate a solution for the k-OLP
problem. The following result, which formalizes Theorem 9, uses the same setting as that
in Theorem 28:
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» Theorem 36. Suppose ¢, are reals in [0, 1] with §% > ceNd, 5% > ce, where ¢ is a large
enough constant. Let K be a §-well-separated k-vertex polytope. Suppose we are also given an
OptOr_(K) oracle O. Let W be the set of answers of the oracle O to m = poly(d) - ER(1/8%)
independent random queries. We can find Q C W, |Q| = k in randomized poly(d) - SU1/8%)
time which satisfies the following condition w.h.p.: for every vertex v of K, there is a point
v in Q with v —v'| < 0A(K)/10.

Proof. The proof of Theorem 28 shows that for every vertex M., of K, there is a point
z(u’) € W such that

lz(u®) — M| < 176°A(K) /c. (24)
Let T denote {x(u(®) : £ € [k]}. Our first claim is that the points of T are also well-separated.

> Claim 37.  For any ¢ € [k], dist(x(u®), CH(T \ {z(u)})) > 6A(K)/2. Further, the
diameter of CH(T') is at most 2A(K).

Proof. Fix an index £ € [k] and a point y € CH(T \ {z(u'?)})). We can express y as a convex
combination of points in 7'\ {z(u®)}, ie., y = dovse A z(u)),  where Do =1
Now,

o (ul®) —y]

Y

M., — Z Ao Mg | = |o(@®) — M. | - Z A - (@) = M|
040 =

where the second last inequality follows from (24) and the fact that K is d-well-separated.
Since dist(z(u?)), K) < eA(K), it follows that A(CH(T)) < 2A(K). <

Recall that W denotes the set {z(u) : u € U}. We now show that CH(T') closely approximates
CH(W).

> Claim 38. W C &/-CH(T), where ¢’ = 320°,

(&

Proof. Fix a point x(u) € W. We know that z(u) can be written as z(u) = y(u) +
z(u),  y(u) € K, |z(u)] < e. Let y(u) = 3254y Ae - M. ¢, where the coefficients A, form a
convex combination. Then

1762 A(K 3202A(K
=) Aa(®)] < Z)\e |2 (u'D) =M. | +|2(u)| < %JrsA(K)g#,
[k]

Le k] ¢

where the second last inequality follows from (24) and the last inequality by the assumption
in. <

Claim 37 and Claim 38 imply that T is (¢’,6")-ENV(W) with ¢’ = §/4,¢’ = . We can
now apply Corollary 35 to get approximations to z(u(*)) within distance 17f A( ) Claim 38
now implies that we can get approximations to M., within distance

1662A(K) _ 0A(K)

17Ve' A(K) + 10

This proves the desired result. |
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7 k-OLP algorithm for Latent Polytopes using Singular Value
Decomposition

Theorem 7 showed that a solution to k-OLP problem requires the error parameter € to
be O*(1/v/d). Theorem 28 gives an algorithm achieving this bound. However, for many
polytopes with k vertices, we can solve the k-OLP problem with € being O*(l/\/ﬁ) However,
if k& < d, this error is too high. To tackle this, we find a good approximation to the
subspace spanned by the vertices of K, then we project to this subspace and use the result
in Theorem 28. One such example is the “Latent k— Polytope” (abbreviated LkP) problem
which we now describe.

The LkP problem has been studied in [7]. Certain assumptions were made on the model,
namely, the hidden polytope K as well as on the (hidden) process for generating observed
data from latent points in K. These assumptions are (a) shown to hold in several important
Latent Variable models and (b) are sufficient to enable one to get polynomial time learning
algorithms.

Here, we formulate assumptions which are similar, but, weaker in one important aspect.
Whereas [7] assumed that each vertex of K has a separation from the affine hull of the
other vertices (thus, in particular, each vertex is affinely independent of other vertices), we
assume here that each vertex is separated only from the convex hull of the others. Under this
weaker assumption, the algorithm of [7] does not work. We give a different algorithm which
we prove works. It is also simpler to state and carry out and its proof is based on a new
general tool we introduce here - the Random Separating Hyperplane theorem (Theorem 12).

Assumptions on data in the LkP problem. Let M. ;,..., M.} denote the vertices of K and
M be the d x k matrix with columns representing the vertices of K. We assume there are
latent (hidden) points P. ;,j =1,2,...,n in K and observed data points A. ;,7 =1,2,...,n
are generated (not necessarily under any stochastic assumptions) by adding displacements
A
learn K given only the observed data. So we need some bound on the displacements.

Secondly, if all (or almost all) latent points lie in (or close to) the convex hull of a subset
of k — 1 or fewer vertices of K, the missing vertex cannot be learnt. To avoid this, we will
assume that there is a certain wq fraction of latent points close to every vertex of K.

Let 4 0 := %. We now show that the k-OLP-Algorithm mentioned in Section 1.2
has the desired properties:

— P. j respectively to P. ;. Clearly if the displacements are arbitrary, it is not possible to

» Theorem 39. Suppose K is a latent poytope with k vertices M. 1,M.5,..., M., and P, A
are latent points (all in K ) and observed data respectively. Assume

. o .
Forallte[k], Co:={j:|Pj— M, < —5)0} satisfies |C¢| > won. (25)

Suppose (vIogk/+/cok) < § <1 and ¢y is a large constant satisfying

§2A(K) /wg
% < 000 R (26)

Let V' be the k-dimensional SVD subspace of A, and K denote the projection of K on V.

4 By the standard definition of spectral norm, it is easy to see that o2 is the maximum mean squared
displacement in any direction.
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There is an OptOr 100y (I?) oracle O.

N
The algorithm k-OLP Algorithm in Section 1.2 outputs a set Q of k points such that
the following condition is satisfied w.h.p.: for every vertex v of K, there is a point v’ in
Q with |v —v'| < JA(K)/5.
In the Theorem above, (26) implies an upper bound on o of A(K),/wg/(covk) and so

~

the oracle O used by the Theorem lies in opt_(K) for € < 1/(covk). Thus, we get around
the lower bound result Theorem 7 by working in the k-dimensional SVD subspace of A. The
proof of this result is deferred to the full version [9].

8

Open Problems

We now mention some problems that remain open in our work:

(i
)

(iii)

In the statement of RSH, the success probability of the desired event is O (1 /O] ‘52))

Can we improve the exponential dependence of the success probability on 1/67
Theorem 21 on the Haus problem returns exponentially many points whose convex hull
approximates K. Can this be improved, either via an improvement mentioned in the
first open problem above or by feeding the exponentially many points to the algorithm
of [12]?

RSH asserts that if a point is sufficiently far from a k vertex polytope, then, a random
hyperplane separates them, where, “sufficienlty” is measured with respect to the diameter
of the polytope. An interesting question is whether there is a “dual” statement. The
dual of points are facets, so, intuitively, a dual statement might assert that if for
a polytope with k facets, there is a sufficiently deep cut, then, a random cut cuts
reasonably deep into the polytope. But it is not obvious how to measure “deep” (and
reasonably deep) . We leave a dual statement of RSH as an open question.
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A Some Examples

The first example shows that the factor 1//m in the statement of RSH (Theorem 1) cannot
be improved, even for a simple polytope K consisting of just one line segment.

» Example 1. Suppose K is a polytope in R¢ with just two vertices A distance apart and
V =R, § = 1. It is easy to verify from standard results on random projection on a line that
the additive term in inequality (2) is tight up to constant factors.

The next example shows that the success probability of the desired event (2) in Theorem 1
needs to depend on k, the number of vertices of the polytope K.

» Example 2. Consider the Euclidean space ¢ and the d — 1 dimensional sphere K :=
{x € R? : |z| < 1,71 = 0}. Observe that the diameter A of K is 1. Let a denote the
point (1,0,0,...,0). It is at distance 1 from K, and so the parameter § in the statement
of Theorem 1 can be set to 1. But, with high probability, a random unit length vector u has
u - a ~ —= for some constant ¢, whereas the maximum of v - x over all points = in the sphere
K is about 1. Therefore the probability of the event (2) is exponentially small in d.
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