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Abstract
Finding a Hamiltonian cycle in a given graph is computationally challenging, and in general remains
so even when one is further given one Hamiltonian cycle in the graph and asked to find another. In
fact, no significantly faster algorithms are known for finding another Hamiltonian cycle than for
finding a first one even in the setting where another Hamiltonian cycle is structurally guaranteed to
exist, such as for odd-degree graphs. We identify a graph class – the bipartite Pfaffian graphs of
minimum degree three – where it is NP-complete to decide whether a given graph in the class is
Hamiltonian, but when presented with a Hamiltonian cycle as part of the input, another Hamiltonian
cycle can be found efficiently.

We prove that Thomason’s lollipop method [Ann. Discrete Math., 1978], a well-known algorithm
for finding another Hamiltonian cycle, runs in a linear number of steps in cubic bipartite Pfaffian
graphs. This was conjectured for cubic bipartite planar graphs by Haddadan [MSc thesis, Water-
loo, 2015]; in contrast, examples are known of both cubic bipartite graphs and cubic planar graphs
where the lollipop method takes exponential time.

Beyond the reach of the lollipop method, we address a slightly more general graph class and
present two algorithms, one running in linear-time and one operating in logarithmic space, that take
as input (i) a bipartite Pfaffian graph G of minimum degree three, (ii) a Hamiltonian cycle H in G,
and (iii) an edge e in H, and output at least three other Hamiltonian cycles through the edge e in G.

We also present further improved algorithms for finding optimal traveling salesperson tours and
counting Hamiltonian cycles in bipartite planar graphs with running times that are not achieved yet
in general planar graphs.

Our technique also has purely graph-theoretical consequences; for example, we show that every
cubic bipartite Pfaffian graph has either zero or at least six distinct Hamiltonian cycles; the latter
case is tight for the cube graph.
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26:2 Another Hamiltonian Cycle in Bipartite Pfaffian Graphs

1 Introduction

Finding a Hamiltonian cycle in a given undirected graph is a well-known, well-researched,
and hard problem. This paper studies the question whether knowledge of one Hamiltonian
cycle helps in finding another one. More precisely, the Another Hamiltonian Cycle
problem asks, given as input (i) a graph1 G, (ii) a Hamiltonian cycle H in G, and (iii) an edge
e ∈ E(H), to find another Hamiltonian cycle H ′ ̸= H in G with e ∈ E(H ′).

Our interest is in the class of bipartite Pfaffian2 graphs, a superclass of the bipartite planar
graphs. This focus is partly motivated by the fact that both in cubic bipartite graphs and
cubic planar graphs, a well-known general algorithm for finding another Hamiltonian cycle,
Thomason’s lollipop method [27], requires exponential time in the worst case, cf. Section 1.1.
Also, the problem of deciding if the graph contains a Hamiltonian cycle at all remains
NP-hard in the family of cubic bipartite planar graphs, as proved by Akiyama, Nishizeki,
and Saito [1].

As our main result, we show that Another Hamiltonian Cycle admits both a
linear-time algorithm as well as a logarithmic-space algorithm in bipartite Pfaffian graphs of
minimum degree three. Further restricted to cubic bipartite Pfaffian graphs, we prove that
Thomason’s lollipop method runs in a linear number of steps and can be implemented to run
in linear time. This is to our knowledge a first example of a nontrivial graph class where
Another Hamiltonian Cycle is efficiently solvable; such an example was solicited by
Kintali [18]. By trivial we here intend a graph class in which Hamiltonicity detection is NP-
hard but is artificially constructed to ensure a simple local rerouting of any Hamiltonian cycle.
Rather, in our case the global properties of bipartiteness, Pfaffianity, and the everywhere-local
property of minimum-degree three, interplay to enable an efficient algorithm. Without the
minimum-degree constraint, the problem is NP-hard (see the full version [4]).

Our techniques have also purely graph-theoretic consequences. We show that every cubic
bipartite Pfaffian graph has at least three other Hamiltonian cycles through any edge of a
Hamiltonian cycle. All three Hamiltonian cycles can be found in linear time. We also show
that such Hamiltonian graphs must have at least six Hamiltonian cycles. The 8-vertex cube
graph ( ), the canonical example in this class, is an extremal example to both results. It
has precisely six distinct Hamiltonian cycles with every graph edge in exactly four of them.

1.1 Motivation and earlier work
While a graph need not be Hamiltonian, and a Hamiltonian graph need not admit another
Hamiltonian cycle, there exist graph families with Hamiltonian members where another
Hamiltonian cycle is always known to exist. Perhaps the most prominent such family are the
odd-degree graphs, which via Smith’s Theorem (see [30]) have an even number of Hamiltonian
cycles through any given edge. Thomason [27] gave a constructive proof by describing an
algorithm that solves for another Hamiltonian cycle in cubic graphs. The algorithm is often
called Thomason’s lollipop method as it transforms a Hamiltonian cycle to another one
by a sequence of lollipop graphs, see Section 3.3 for a precise description of the algorithm.
Dropping the requirement that the Hamiltonian cycle should go through a specific edge,

1 We tacitly work with undirected simple loopless graphs unless mentioned otherwise, as well as assume
knowledge of standard graph-theoretic terminology [32]. Our conventions with graphs can be found in
Section 1.6.

2 We postpone a precise definition and motivation of Pfaffian graphs to Section 1.5. Planar graphs are
Pfaffian.
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Bosák [5] proved that every cubic bipartite graph has an even number of Hamiltonian cycles.
Thomassen [28, 29] showed that no bipartite graph in which every vertex in one of the two
parts of the bipartition has degree at least three, has a unique Hamiltonian cycle. A famous
conjecture due to Sheehan [26] claims that no 4-regular graph can have a unique Hamiltonian
cycle; Thomassen’s result proves Sheehan’s conjecture for bipartite graphs.

Papadimitriou [24] popularized the Another Hamiltonian Cycle problem and Thoma-
son’s algorithm by introducing the complexity class PPA and showed the containment of
the problem in odd-degree graphs; completeness for PPA remains open. It is also open
whether the problem can be solved in polynomial time – indeed, the drawback of Thomason’s
algorithm is that it may run for a very long time; Krawczyk [19] and Cameron [8] showed
that Thomason’s algorithm requires exponential time for a family of cubic planar graphs.
Later this was shown by Zhong [33] also for cubic bipartite graphs. The best bound to date
is the recent result of Briański and Szady [6], which shows that there are cubic 3-connected
planar graphs on n vertices, in which Thomason’s lollipop algorithm runs in Ω(1.18n) time.

The above papers reason about Thomason’s algorithm specifically, but it may of course
be other algorithms that solve the problem more efficiently. Some progress in this direction
was provided by Bazgan, Santha, and Tuza [2] that showed that one given a cubic graph on
n vertices and one of its Hamiltonian cycles can find another cycle of length (1 − ϵ)n for any
fixed constant ϵ > 0 in polynomial time. Deligkas, Mertzios, Spirakis, and Zamaraev [12]
derived an exponential-time polynomial-space deterministic algorithm that given a cubic
graph along with one of its Hamiltonian cycles finds another Hamiltonian cycle; the algorithm
is shown to be faster than the fastest known exponential-time polynomial-space deterministic
algorithm for finding a Hamiltonian cycle in cubic graphs.

1.2 Main results for bipartite Pfaffian graphs
Let us now review our main results for bipartite Pfaffian graphs and the underlying techniques
in more detail. Our main theorems are as follows.

▶ Theorem 1 (Main; Linear–time Another Hamiltonian Cycle in minimum degree three).
There exists a deterministic linear-time algorithm that, given as input (i) a bipartite Pfaffian
graph G with minimum degree three, (ii) a Hamiltonian cycle H in G, and (iii) an edge
e ∈ E(H), outputs a Hamiltonian cycle H ′ ̸= H in G with e ∈ E(H ′).

▶ Theorem 2 (Main; Logarithmic–space Another Hamiltonian Cycle in minimum degree
three). There exists a deterministic logarithmic-space algorithm that, given as input (i) a
bipartite Pfaffian graph G with minimum degree three, (ii) a Hamiltonian cycle H in G, and
(iii) an edge e ∈ E(H), outputs a Hamiltonian cycle H ′ ̸= H in G with e ∈ E(H ′).

The framework underlying our main theorems can be used to prove an upper bound on
the number of steps needed for Thomason’s lollipop method to terminate.

▶ Theorem 3 (Thomason’s lollipop method in cubic bipartite Pfaffian graphs). Thomason’s
lollipop method starting from any Hamiltonian cycle H and any edge e ∈ E(H) in an n-vertex
cubic bipartite Pfaffian graph G, terminates after at most n steps.

It was conjectured in a master thesis at Waterloo by Haddadan [14] that Thomason’s
lollipop method runs in a linear number of steps in cubic bipartite planar graphs. It was
there also proven to hold for the subfamily of such graphs that does not have the wheel
graph on six vertices as a minor. However, as the author himself points out, finding a first
Hamiltonian cycle in this limited graph family does not seem intractable. We are not aware
of any other papers providing a polynomial time bound on Thomason’s lollipop method in
any graph class.

ICALP 2024



26:4 Another Hamiltonian Cycle in Bipartite Pfaffian Graphs

Our framework also can be used to prove the following structural results for Hamiltonian
cycles. Their proofs appear in the full version [4] of this paper.

▶ Corollary 4 (Non-uniqueness in minimum degree three). For every bipartite Pfaffian graph
G of minimum degree three and for every edge e ∈ E(G), it holds that G has either zero or
at least four distinct Hamiltonian cycles H with e ∈ E(H).

The cube graph is a cubic bipartite Pfaffian graph with six distinct Hamiltonian cycles.
We show that no Hamiltonian graph in this class can have fewer Hamiltonian cycles.

▶ Corollary 5 (Cubic tight lower bound). Every cubic bipartite Pfaffian graph has either zero
or at least six distinct Hamiltonian cycles.

Chia and Ong [9] (in the paragraph after Theorem 10) asked whether there exists cubic
bipartite planar graphs with exactly four Hamiltonian cycles. The above Corollary rules out
that possibility.

Remarks. One consequence of Theorem 1 is that if the Another Hamiltonian Cycle
problem in general odd degree graphs is PPA-complete as hypothesized by Papadimitriou [24,
Open Problem (4)], then any proof cannot carry over to cubic bipartite planar graphs unless
also PPA = FP. Our result also seems related to another well-known conjecture, namely
Barnette’s conjecture (cf. Tutte [31, Unsolved Problem V]), which states that every cubic
3-connected bipartite planar graph (Barnette graph) has a Hamiltonian cycle. Gorsky, Steiner,
and Wiederrecht [13] recently extended the conjecture by showing that if Barnette’s conjecture
is true, it also holds that every cubic bipartite 3-connected Pfaffian graph has a Hamiltonian
cycle. It is known that if Barnette’s conjecture is true, then there is a Hamiltonian cycle
through every edge in every such graph, see Kelmans [17]. Moreover, it was indirectly shown
by Holton, Manvel, and McKay [15] that any Barnette graph larger than the smallest such
graph – namely the cube graph – can be reduced to a smaller Barnette graph in such a way
that if the smaller graph has a Hamiltonian cycle through every edge, then the larger one
must also have a Hamiltonian cycle. This means that if it was possible given any single
Hamiltonian cycle in a Barnette graph to generate a Hamiltonian cycle through any specific
edge not on the initial cycle, then Barnette’s conjecture would be constructively true. We
remark that our algorithm is not known to be able to do this, not even indirectly by applying
it several times in a chain of Hamiltonian cycle transformations. We do note however, that
our algorithms in Theorems 1 and 2 not only make sure the edge e = {s, t} is part of both
Hamiltonian cycles, they also retain the other edge incident to s on H; this can be observed
by Lemma 10, that is, no edge incident to s is changed by the algorithms since it is not on
the alternating cycle we use. In particular this makes it possible given H and any given edge
f ∈ E(G) not on H, to find another Hamiltonian cycle H ′ such that f is also not part of H ′.

1.3 Overview of techniques
At the heart of our algorithms and structural results is what we believe to be a new
framework for efficiently witnessing a Hamiltonian cycle H through an arbitrary anchor
edge e in a bipartite Pfaffian graph G. We associate a (not necessarily proper) two-coloring
χH : V (G) → {0, 1} to H that is unique to H (but dependent on a fixed but arbitrary Pfaffian
orientation of G as well as e) and that defines a unique acyclic Hamiltonian3 orientation of

3 In precise terms, the orientation is a directed acyclic graph that contains as a directed subgraph a
directed Hamiltonian path from one end of e to the other.
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G \ e. We will refer to such an χH as a good coloring. This acyclicity in particular enables
the unique recovery of H in linear time by standard topological sorting when given χH as
advice. The reader may want to consult Figure 1 (on page 9) for an advance illustration at
this point; the framework itself is developed in Section 2.

We also show that it suffices to know χH in only one of the parts of a bipartition of G to
efficiently extend to a Hamiltonian cycle, which is not necessarily equal to H however. More
precisely, we show that a coloring λ of one of the parts leads to an auxiliary bipartite graph
Fλ whose perfect matchings correspond to the good colorings χH extending λ, which in turn
each define a unique Hamiltonian cycle H. We refer to Figure 2 (on page 11) for an advance
illustration of this setting.

Finally, when G has minimum degree three, we observe that we can use Fλ to efficiently
switch from one Hamiltonian cycle H in G (described by a perfect matching MH in Fλ) to
another Hamiltonian cycle H ′ ̸= H in G by switching along an alternating cycle in Fλ which
can be discovered through a directed cycle in an auxiliary directed graph Dλ,H . Moreover,
we show that this construction and discovery can be executed in deterministic linear time
– we refer to Figure 3 (on page 14) for an advance illustration; the switching construction
itself is developed in Section 3.

1.4 Further results
Our framework for witnessing Hamiltonicity should be contrasted with the Cut&Count
approach for detecting Hamiltonian cycles by Cygan, Nederlof, Pilipczuk, Pilipczuk, Van
Rooij, and Wojtaszczyk [10], which reduces the Hamiltonian cycle problem to a local problem
by showing that a cycle cover of the input graph is Hamiltonian if and only if the number
of the exponentially many vertex partitions that are consistent (defined in a certain local
way) with it is odd. This approach therefore necessarily reduces the original decision problem
to a parity counting problem, which has several disadvantages that seem inherent to the
approach, including the need for randomization and a running time factor that is pseudo-
polynomial in the integer weights for edge-weighted problem variants. Our framework shows
that for bipartite Pfaffian graphs there is a more natural way to witness that a cycle cover is
Hamiltonian using only a single vertex partition; that is, χH .

We explore the algorithmic consequences of our technique in the context of counting
Hamiltonian cycles and in the context of the Traveling Salesperson Problem (TSP) in bipartite
Pfaffian/planar graphs. For reasons of space, we postpone a detailed statement of these
results, a discussion of pertinent earlier work, as well as the proofs, to the full version [4] of
this paper.

1.5 Pfaffian graphs
Let us now define and motivate Pfaffian graphs in more detail. An orientation of a graph
G replaces every edge {u, v} ∈ E(G) with either the directed arc (u, v) or the directed arc
(v, u), thereby obtaining a directed graph G⃗. A cycle C in G is central if the graph G \ V (C)
admits a perfect matching. We say that an orientation of a cycle is consistent if it is strongly
connected. An orientation G⃗ of G is Pfaffian if for every central cycle C in G it holds that
both consistent orientations of C have an odd number of arcs in common with G⃗. A graph is
Pfaffian if it admits a Pfaffian orientation.

The bipartite Pfaffian graphs are most famous as the graph class in which Pólya’s
permanent problem has a solution, the bipartite graphs in which one can compute the number
of perfect matchings efficiently by reduction to a matrix determinant, see e.g. Robertson,

ICALP 2024



26:6 Another Hamiltonian Cycle in Bipartite Pfaffian Graphs

Seymour, and Thomas [25] and McCuaig [22]. This brings us to one of our motivations
to study the complexity of the detection (and counting) of Hamiltonian cycles on this
graph class: Previous algorithms for Hamiltonian cycles (such as the one by Björklund [3])
use determinant-based methods previously designed for counting matchings (modulo 2) in
polynomial time; given this close connection between the two problems it is natural to ask
whether Pfaffianity can be exploited for detecting and counting Hamiltonian cycles, similarly
as for counting perfect matchings.

The bipartite Pfaffian graphs were characterized by Little [21] as those graphs G that
do not have a vertex set U ⊆ V (G) such that G \ U has a perfect matching and the
induced subgraph G[U ] admits an even subdivision of K3,3 as a subgraph. McCuaig [22]
and Robertson, Seymour, and Thomas [25] gave a structural characterization of bipartite
Pfaffian graphs and the latter also outlined an O(n3) time algorithm for their recognition;
this algorithm can also produce a Pfaffian orientation when one exists.

A general Pfaffian graph, as opposed to a bipartite one, can be very dense as observed by
Norine [23]: there is an infinite family of n-vertex Pfaffian graphs with Ω(n2) edges. This
construction in particular poses obstacles to find characterizations as the ones mentioned
above for bipartite graphs. Indeed, it is not known how to efficiently recognize a general
Pfaffian graph.

The most famous Pfaffian graphs are the planar ones, graphs whose vertices can be
embedded in the plane with straight lines connecting the vertices of every edge without
line crossings except at endpoints. That planar graphs are Pfaffian was discovered by
Kasteleyn [16]; there is also a linear-time algorithm that finds a Pfaffian orientation given a
planar graph by Little [20].

1.6 Conventions and organization

We assume knowledge of standard graph-theoretic terminology; see e.g. West [32]. Graphs
in this paper are undirected unless otherwise mentioned; this in particular also applies to
subgraphs such as paths, cycles, and Hamiltonian cycles. No graph or directed graph in
this paper has loops or multiple edges. For a graph or directed graph G, we write V (G) for
the vertex set of G and E(G) for the edge set of G. We identify the edges of a graph with
two-subsets {u, w} where u and w are distinct vertices. We call the edges of a directed graph
arcs in what follows, and identify each arc with a two-tuple (u, w) where u and w are distinct
vertices. We recall our conventions with orientations and Pfaffian graphs from Section 1.5.

We work with Iverson’s bracket notation – for a logical proposition P , we define

[[P ]] =
{

1 if P is true ;
0 if P is false .

The rest of this paper is organized as follows. Section 2 presents our novel witnessing
technique for Hamiltonian cycles in bipartite Pfaffian graphs. We prove our main theorems
and their indirect structural corollaries in Section 3. Proofs of Lemmas, Theorems, and
Corollaries that are omitted due to space constraints can be found in the full version [4] of
this paper. In the full version we also prove the NP-hardness of Another Hamiltonian
Cycle in bipartite Pfaffian graphs without constrained vertex degrees, and state, motivate,
and prove further results on counting Hamiltonian cycles as well as on TSP.
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2 Hamiltonian cycles in bipartite Pfaffian graphs

This section presents what we believe to be a novel technique to efficiently witness Hamiltonian
cycles in bipartite Pfaffian graphs via (not necessarily proper) two-colorings of the vertices.
We also show how to efficiently construct a Pfaffian orientation from a known Hamiltonian
cycle in a bipartite Pfaffian graph, as well as show how to efficiently find a witness by
extending a given partial witness defined on only one of the parts of a bipartition.

Throughout this section G is an n-vertex bipartite Pfaffian graph and G⃗ is a fixed
but otherwise arbitrary Pfaffian orientation of G. Since we are interested in whether G is
Hamiltonian, without loss of generality we may assume that n is even and n ≥ 4 in what
follows.

Select an arbitrary edge e ∈ E(G) and call it the anchor edge.

2.1 Preliminaries: The structure of Pfaffian orientations
We start by recalling the known structure of Pfaffian orientations of G. Namely, de Carvalho,
Lucchesi, and Murty [11] observed that all Pfaffian orientations of G are obtainable from
each other by reversals of arcs across vertex cuts. More precisely, for any Pfaffian orientation
G⃗ and any vertex u ∈ V (G), it holds that reversing the arcs incident to u in G⃗ results in
another Pfaffian orientation; furthermore, every Pfaffian orientation of G can be obtained
by starting with an arbitrary Pfaffian orientation of G and repeating such operations for
different vertices [11].

2.2 The two-coloring defined by an anchored Hamiltonian cycle
We are interested in characterising each Hamiltonian cycle H in G that traverses the selected
anchor edge e – we say that such an H is anchored – using a function χH : V (G) → {0, 1}
that is unique4 to H and from which we will (in the next subsection) see H can be efficiently
constructed.

Towards this end, let us study the Pfaffian orientation G⃗ at the anchor e. Let (s, t) ∈ E(G⃗)
be the arc in G⃗ whose underlying edge in G is the anchor edge e = {s, t}. Construct from
the Pfaffian orientation G⃗ a new orientation G⃗e of G that is otherwise identical to G⃗ except
that the arc (s, t) has been replaced with the arc (t, s). That is, by definition we have
(t, s) ∈ E(G⃗e).

Now consider an arbitrary anchored Hamiltonian cycle H in G. Since e ∈ E(H), there is
a unique consistent orientation H⃗ of H such that (t, s) ∈ E(H⃗). Let us write v0, v1, . . . , vn−1
for the vertices of G indexed in the directed H⃗-path order from s to t; that is,

v0 = s , vn−1 = t , and (vi, v(i+1) mod n) ∈ E(H⃗) for all i = 0, 1, . . . , n − 1 . (1)

Associate with H the (not necessarily proper) vertex-coloring function χH : V (G) → {0, 1}
defined by setting

χH(v0) = 0 and

χH(vi+1) ≡ χH(vi) + [[(vi, vi+1) ∈ E(G⃗e)]] (mod 2) for all i = 0, 1, . . . , n − 2 . (2)

4 Unique but not canonical; as we will see, the function χH will depend not only on the Hamiltonian
cycle H but also on the choice of our assumed fixed but arbitrary Pfaffian orientation G⃗ of G.

ICALP 2024



26:8 Another Hamiltonian Cycle in Bipartite Pfaffian Graphs

Because G⃗ is a Pfaffian orientation and H is a central cycle of G, we have

|E(H⃗) ∩ E(G⃗)| =
n−1∑
i=0

[[(vi, v(i+1) mod n) ∈ E(G⃗)]] ≡ 1 (mod 2) . (3)

Since G⃗ and G⃗e differ only in the orientation of e ∈ E(H), from (3) we immediately have

|E(H⃗) ∩ E(G⃗e)| =
n−1∑
i=0

[[(vi, v(i+1) mod n) ∈ E(G⃗e)]] ≡ 0 (mod 2) . (4)

We thus conclude

χH(v0) (2)= 0
(4)
≡ |E(H⃗) ∩ E(G⃗e)| =

n−2∑
i=0

[[(vi, vi+1) ∈ E(G⃗e)]] + [[(vn−1, v0) ∈ E(G⃗e)]]

(2)
≡ χH(vn−1) + [[(vn−1, v0) ∈ E(G⃗e)]] (mod 2) . (5)

Since by definition of G⃗e we have (t, s) ∈ E(G⃗e), from (1) and (5) we conclude that χH(t) = 1.
Furthermore, from (2) and (5) we have for all (u, w) ∈ E(H⃗) that

χH(w) ≡ χH(u) + [[(u, w) ∈ E(G⃗e)]] (mod 2) . (6)

That is, each arc (u, w) ∈ E(H⃗) is χH -monochromatic (i.e. both endpoints are assigned the
same value by χH) if and only if (w, u) ∈ E(G⃗e).

2.3 The orientation induced by a good coloring
Suppose now that we do not know anything about the (anchored) Hamiltonian cycles of G,
if any, and have access only to the Pfaffian orientation G⃗ and the orientation G⃗e; the latter
is easily obtainable from G⃗, cf. Section 2.2.

Consider an arbitrary vertex coloring χ : V (G) → {0, 1} with χ(s) = 0 and χ(t) = 1.
The last observation in Section 2.2 suggests that we should explore reversing exactly the
χ-monochromatic arcs in G⃗e. Let us make this formal as follows. Let the orientation G⃗χ

e

induced by the coloring χ be the unique orientation of G that for each edge {u, w} ∈ E(G)
satisfies

(u, w) ∈ E(G⃗χ
e ) if and only if χ(w) ≡ χ(u) + [[(u, w) ∈ E(G⃗e)]] (mod 2) . (7)

To witness the serendipity of (7), suppose that G admits an anchored Hamiltonian cycle
H; it follows immediately from (6) and (7) that E(H⃗) ⊆ E(G⃗χH

e ). Thus, if we know only
the coloring χH but not H, we can search for E(H⃗) in E(G⃗χH

e ); let us next analyse this
situation in more detail from the standpoint of our arbitrary χ.

Call the coloring χ good if there exists an anchored Hamiltonian cycle H in G with
χ = χH ; otherwise call χ bad. The following lemma shows that the orientation G⃗χ

e for a
good χ enables linear-time and unique algorithmic recovery of H by standard longest-path
search in a directed acyclic graph (DAG); in fact, mere topological sorting suffices, as is
apparent from the proof. See also Figure 1 for an illustration of the concepts involved in a
Hamiltonian planar graph.

▶ Lemma 6 (Acyclic Hamiltonicity of good-coloring-induced orientations). Let χ be good. Then,
the orientation G⃗χ

e \ (t, s) of G \ e is acyclic with the unique source vertex s and the unique
sink vertex t. Moreover, the longest directed path in G⃗χ

e \ (t, s) is unique and a directed
Hamiltonian path.
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Figure 1 Illustration of orientations induced by good colorings. Left: an undirected bipartite
planar graph G drawn in one of its orientations G⃗e with e = {s, t}, one arc reversal away from a
Pfaffian orientation G⃗. Middle and right: two vertex colorings χH and coloring-induced orientations
G⃗χH

e for two different Hamiltonian cycles H, with the arcs of H⃗ drawn in bold in each case. Observe
that every monochromatic arc reverses its orientation with respect to G⃗e, whereas bichromatic arcs
keep their orientation. Observe also that the removal of the arc (t, s) from G⃗χH

e leaves an acyclic
Hamiltonian directed graph, whereby the directed Hamiltonian path and hence H can be found, for
example, by topological sorting; cf. Lemma 6.

Proof. Since χ is good, there exists an anchored Hamiltonian cycle H with χ = χH .
Furthermore, we can follow the notational conventions in Section 2.2 with respect to this
H, including the vertex-indexing v0, v1, . . . , vn−1 for G and (1) in particular. From E(H⃗) ⊆
E(G⃗χ

e ) we thus conclude that the sequence v0, v1, . . . , vn−1 defines a longest directed path
(which is also a directed Hamiltonian path from s to t) in the directed graph G⃗χ

e \ (t, s). It
follows immediately that s is the only possible source vertex and t is the only possible sink
vertex in G⃗χ

e \ (t, s).
Let us next show that G⃗χ

e \ (t, s) is acyclic as a directed graph. To reach a contradiction,
suppose that D⃗ is a directed cycle in G⃗χ

e \ (t, s). Since (t, s) = (vn−1, v0) /∈ E(D⃗) and D⃗

is a directed cycle with V (D⃗) ⊆ {v0, v1, . . . , vn−1}, there must exist 0 ≤ i < j ≤ n − 1
with at least two proper inequalities among the three such that (vj , vi) ∈ E(D⃗) and thus
(vj , vi) ∈ E(G⃗χ

e ). Let C⃗ be the directed cycle with V (C⃗) = {vi, vi+1, . . . , vj} and E(C⃗) =
{(vi, vi+1), (vi+1, vi+2), . . . , (vj−1, vj), (vj , vi)}. In particular, C⃗ ≠ H⃗ since (t, s) /∈ E(C⃗). Let
C be the underlying undirected cycle of C⃗, and observe that C is a cycle of G. Since G

is bipartite, C is even and has at least four vertices. Thus, the edges of H \ V (C) contain
a perfect matching of G \ V (C), implying that C is central. Since C avoids e and C⃗ is a
consistent orientation of C, we conclude by Pfaffianity that

|E(C⃗) ∩ E(G⃗e)| = |E(C⃗) ∩ E(G⃗)| ≡ 1 (mod 2) .

But this is a contradiction since for all (u, w) ∈ E(C⃗) we have (u, w) ∈ E(G⃗χ
e ), and thus by

(7) it holds that χ(w) ≡ χ(u) + [[(u, w) ∈ E(G⃗e)]] (mod 2); take the sum of these congruences
over all arcs (u, w) ∈ E(C⃗) to conclude that |E(C⃗) ∩ E(G⃗e)| ≡ 0 (mod 2), a contradiction.
Thus, G⃗χ

e \ (t, s) is acyclic as a directed graph.
From acyclicity it also immediately follows that s is a source vertex and t is a sink vertex of

G⃗χ
e \ (t, s); indeed, any arc into s or any arc out of t would complete a directed cycle together

with an appropriate proper segment of the directed Hamiltonian path s = v0, v1, . . . , vn−1 = t.
This longest path (of n vertices) is also seen to be unique in G⃗χ

e \ (t, s); indeed, the existence
of any other such path would again imply an arc that would complete a directed cycle
together with an appropriate proper segment of v0, v1, . . . , vn−1. ◀

An immediate corollary of the proof Lemma 6 is that there are at most 2n−2 Hamiltonian
cycles through any fixed edge in an n-vertex bipartite Pfaffian graph. For comparison, there
are planar graphs with at least 2.08n Hamiltonian cycles, see [7].
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2.4 Constructing a Pfaffian orientation from a Hamiltonian cycle
Next we address the task of constructing a Pfaffian orientation if we know one Hamiltonian
cycle, with the intent of constructing possible further Hamiltonian cycles with the help of
the Pfaffian orientation obtained.

▶ Lemma 7 (Constructing a Pfaffian orientation from a Hamiltonian cycle). There exists a
linear-time algorithm that, given as input a bipartite Pfaffian graph G and a Hamiltonian
cycle H in G, outputs a Pfaffian orientation G⃗ of G. ⋆See full version [4] for proof ⋆

2.5 Finding a good coloring
Let us now study the task of finding a good coloring χ given the bipartite Pfaffian graph
G, the Pfaffian orientation G⃗, and the anchor edge e as input; also recall the conventions
and further notation – in particular, the vertices s and t – from Sections 2.2 and 2.3. In this
setting, a natural question to ask is how much one needs to reveal from a good coloring χ to
enable efficient completion to a good coloring. We now show that it suffices to reveal χ in
one of the parts of the bipartition of G by a reduction to bipartite perfect matching in an
auxiliary bipartite graph.

More precisely, let the sets L (“left”) and R (“right”) form a partition of the vertices
of G such that s ∈ L, t ∈ R, and every edge of G has one end in L and the other end in
R.5 Let λ : L → {0, 1} with λ(s) = 0 be a given further input. Our task is to find whether
there exists a good coloring χ : V (G) → {0, 1} with χ(ℓ) = λ(ℓ) for all ℓ ∈ L ⊆ V (G); that
is, whether there exists a good coloring that extends the partial coloring λ.

Construct an auxiliary bipartite graph Fλ as follows. Let the vertex set V (Fλ) =
V (G) × {0, 1}. To avoid notational confusion between arcs and vertices of Fλ, we will use
bracketed notation [u, k] for vertices of Fλ with u ∈ V (G) and k ∈ {0, 1}. The edge set
E(Fλ) is defined by the following rule. For all ℓ ∈ L, r ∈ R, p ∈ {0, 1}, and ρ ∈ {0, 1} with
{ℓ, r} ∈ E(G), we have

{[ℓ, p], [r, ρ]} ∈ E(Fλ) (8)

if and only if both

ρ ≡ λ(ℓ) + [[(ℓ, r) ∈ G⃗e]] (mod 2) (9)

and

ℓ ̸= s or p ̸= 0 or r = t . (10)

For an edge {[ℓ, p], [r, ρ]} ∈ E(Fλ), we say that the edge {ℓ, r} ∈ E(G) is the projection of
the edge (to G) and call p the port at ℓ and ρ the parity at r, stressing that port and parity
have asymmetric roles in our construction even though both range in {0, 1}.

Let us now start analysing the structure of Fλ in more detail. First, the parts L × {0, 1}
and R × {0, 1} witness by (8) that Fλ is bipartite. In particular, Fλ has 2n vertices with
|L| = |R| = n/2, where we recall that n ≥ 4 is the number of vertices in G with n even.
Second, recalling that s ∈ L and t ∈ R, the constraint (10) effectively states that [s, 0] is
adjacent only to [t, 0] in Fλ; indeed, recalling that λ(s) = 0 and (s, t) /∈ G⃗e, from (9) we

5 This bipartition (L, R) of G is in fact unique unless G is not Hamiltonian. Moreover, (L, R) is computable
in linear time from the given input.
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have that [s, 0] is not adjacent to [t, 1]. Third, for all ℓ ∈ L \ {s}, we observe from (9) and
(10), the latter being trivially true, that the vertices [ℓ, 0] and [ℓ, 1] have identical vertex
neighborhoods in Fλ.

We are now ready for our next key lemma. Recall the coloring χH associated to an
anchored Hamiltonian cycle H of G from Section 2.2. The first lemma shows that every perfect
matching in Fλ gives rise to an anchored Hamiltonian cycle; different perfect matchings may
give rise to the same anchored Hamiltonian cycle however. This structure is illustrated in
Figure 2.

s

t

s

t

Figure 2 Illustration of a perfect matching in the graph Fλ. Left: The graph G drawn in one
of its orientations G⃗e with e = {s, t} and the bipartition (L, R) with vertices in L drawn as white
circles and the vertices in R drawn as black boxes. Right: The graph Fλ and the coloring λ drawn
as an oriented overlay of G. Observe that each vertex r ∈ R has two copies [r, ρ] in Fλ, one for
each parity ρ ∈ {0, 1}, with a blue square indicating parity 0 and an orange square indicating
parity 1. Although each vertex ℓ ∈ L has two copies [ℓ, p] in Fλ, one copy for each port p ∈ {0, 1},
we contract these two copies into one vertex (circle) in the drawing, and display for each vertex its
color λ(ℓ) ∈ {0, 1} (blue or orange) instead. Each arc in the drawing is oriented from L to R and
represents two edges of Fλ with opposite ports. A perfect matching M in Fλ is represented by the
bold arcs. In particular, observe that each circle is incident to two bold arcs; these two bold arcs
represent two edges in M with opposite ports. These opposite ports are otherwise arbitrary except
for the edge of M that projects to {s, t}, which must have port 0. Also observe that from the drawn
M it is visually intuitive how to obtain a Hamiltonian cycle in G corresponding to M by turning
the bold arcs into the edges of a Hamiltonian cycle in G; this intuition is made rigorous in Lemma 8
by the Hamiltonian cycle H[M ] of G obtained from M .

▶ Lemma 8 (Perfect matchings witness good extensions). For every perfect matching M in
Fλ, there exists a Hamiltonian cycle H[M ] in G with χH[M ](ℓ) = λ(ℓ) for all ℓ ∈ L.

Proof. Let M be an arbitrary perfect matching in Fλ. For [ℓ, p] ∈ L × {0, 1} and [r, ρ] ∈
L × {0, 1}, let us use functional notation M([ℓ, p]) = [r, ρ] or M([r, ρ]) = [ℓ, p] to signal
that the vertices [ℓ, p] and [r, ρ] are matched by M in Fλ. We construct the anchored
Hamiltonian cycle H[M ] as well as the coloring χ = χH[M ] with χ(ℓ) = λ(ℓ) for all ℓ ∈ L

by traversing all the vertices of Fλ in an order determined by M to yield the Hamiltonian
cycle H[M ]. In particular, we will define H[M ] in steps by introducing, one vertex at
a time, a vertex order v0, v1, . . . , vn−1 for the vertices of G with v0 = s, vn−1 = t, and
(vi, v(i+1) mod n) ∈ E(

−−−→
H[M ]) ⊆ E(G⃗χ

e ) for all i = 0, 1, . . . , n − 1.
Our traversal starts from the vertex [ℓ0, p0] of Fλ defined by ℓ0 = s and p0 = 1. The

traversal then follows edges in the perfect matching M , changing parity (at vertices in
R × {0, 1}) and port (at vertices in L × {0, 1}) to arrive at subsequent edges; for these
changes, for z ∈ {0, 1} it is convenient to write z = (z + 1) mod 2 for notational brevity; that
is, 0 = 1 and 1 = 0.

In precise terms, the traversal is as follows. Assuming we have defined ℓj ∈ L and pj ∈
{0, 1} for all j ∈ {0, 1, . . . , i} with i ≥ 0, we proceed to define ℓi+1 ∈ L and pi+1 ∈ {0, 1} as
follows. Set v2i = ℓi and χ(ℓi) = λ(ℓi). Define ri ∈ R and ρi ∈ {0, 1} by M([ℓi, pi]) = [ri, ρi].
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Set v2i+1 = ri and χ(ri) = ρi. Define ℓ′
i ∈ L and p′

i ∈ {0, 1} by M([ri, ρi]) = [ℓ′
i, p′

i]. Set
ℓi+1 = ℓ′

i and pi+1 = p′
i as well as χ(ℓi+1) = λ(ℓi+1) and v2(i+1) = ℓi+1. We continue this

process for i = 0, 1, . . . and claim that eventually ℓi+1 = ℓ0 and pi+1 = p0 with i+1 = n/2, at
which point {v0, v1, . . . , vn−1} = V (G) and H[M ] is a Hamiltonian cycle in G with χH[M ] = χ

with χ(ℓ) = λ(ℓ) for all ℓ ∈ L.
Let us now analyse the traversal process in more detail. First, we observe that ℓi+1 ̸= ℓi;

indeed, suppose that ℓi+1 = ℓi and observe that the traversal step from ℓi to ℓi+1 changes
parity from ρi to ρ̄i at ri, yet from (9) we observe that every edge of Fλ that projects to the
edge {ℓi, ri} = {ℓi+1, ri} has the same parity at ri, a contradiction. Next, let us observe that
(v2i, v2i+1) = (ℓi, ri) ∈ E(G⃗χ

e ). Indeed, the identity is immediate, and membership holds
by (7) and

χ(ri) = ρi

(9)
≡ λ(ℓi) + [[(ℓi, ri) ∈ G⃗e]] = χ(ℓi) + [[(ℓi, ri) ∈ G⃗e]] (mod 2) .

Let us then observe that (v2i+1, v2i+2) = (ri, ℓi+1) ∈ E(G⃗χ
e ). Again the identity is immediate,

and membership holds by (7), the fact that G⃗χ
e orients {ℓi+1, ri} ∈ E(G) in one of two

possible orientations, and

χ(ri) = ρi ̸= ρ̄i

(9)
≡ λ(ℓi+1) + [[(ℓi+1, ri) ∈ G⃗e]] = χ(ℓi+1) + [[(ℓi+1, ri) ∈ G⃗e]] (mod 2) .

Next let us show that all the vertices ℓi and ri traversed by the process are distinct,
until ℓi+1 = ℓ0 for some i ≥ 1, noting that the case i = 0 has already been excluded earlier.
Suppose ℓ1, ℓ2, . . . , ℓi are distinct; since M contains exactly two edges (of opposite parities)
that project to edges incident to any fixed r ∈ R, we observe that these two edges of M

have been each traversed once by the process for each r0, r1, . . . , ri since ℓ0, ℓ1, . . . , ℓi are
distinct, implying that r0, r1, . . . , ri are distinct, and thus that v0, v1, . . . , v2i+1 are distinct.
So suppose that ℓi+1 = ℓj for some 0 ≤ j ≤ i; also note that this must happen for some
i < |L| = n/2. If j ≥ 1, we have a contradiction since M contains exactly two edges (of
opposite ports) that project to edges incident to any fixed ℓ ∈ L, and for ℓ = ℓj these two
edges (projecting to {ℓj , rj−1} and {ℓj , rj}) have already been traversed; so there is no edge in
M that projects to {ℓj , ri} = {ℓi+1, ri}, a contradiction. So we must have j = 0. This implies
in particular that (vk, v(k+1) mod (2i+2)) ∈ E(G⃗χ

e ) for all k = 0, 1, . . . , 2i + 1. Furthermore,
since the edge of M that is incident to [ℓ0, p0] = [s, 1] has already been traversed, we have that
the edge {[ℓi+1, pi+1], [ri, ρ̄i]} in M must be the edge {[s, 0], [t, 0]} (recall our analysis earlier
that [s, 0] is adjacent only to [t, 0] in Fλ); thus we conclude that χ(t) = χ(ri) = ρi ̸= ρ̄i = 0;
that is, χ(t) = 1.

Let us next show that i = n/2 − 1. So to reach a contradiction, suppose that i < n/2 − 1.
In particular, the edges of G underlying the arcs (vk, v(k+1) mod (2i+2)) ∈ E(G⃗χ

e ) for k =
0, 1, . . . , 2i + 1 trace a cycle of even length 2i + 2 < n in G. This leaves some of the vertices
in G, and thus all corresponding vertices of Fλ regardless of port/parity, unvisited by the
traversal process. By starting the traversal process again from an arbitrary unvisited vertex
in L × {0, 1}, we end up tracing a further even-length cycle in G, and repeating the process
until all vertices of G are visited, we obtain a vertex-disjoint union of even-length cycles that
together cover the vertices of G, as well as a coloring χ such that all the cycles (in their
consistently oriented form as they were traversed) occur as directed subgraphs of G⃗χ

e . Since
2i + 2 < n, this cycle cover thus contains a cycle C that does not contain the anchor edge e

and whose consistent orientation C⃗ is a subgraph of G⃗χ
e ; observing that C is central – indeed,

use every other edge from each even cycle other than C in the cover to witness a perfect
matching in G \ V (C) – this leads to a contradiction via Pfaffianity by the same argument
as was used in the proof of Lemma 6; thus, i = n/2 − 1.
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Since i = n/2 − 1, it follows from (vk, v(k+1) mod n) ∈ E(G⃗χ
e ) for all k = 0, 1, . . . , n − 1

and from Lemma 6 we conclude that χ = χH[M ] for the anchored Hamiltonian cycle H[M ]
in G defined by V (H[M ]) = {v0, v1, . . . , vn−1} and E(H[M ]) = {{vk, v(k+1) mod n} : k =
0, 1, . . . , n − 1}. ◀

Conversely, we show that good extensions of λ are witnessed by perfect matchings in Fλ.

▶ Lemma 9 (Good extensions witness perfect matchings). For every anchored Hamiltonian
cycle H in G with χH(ℓ) = λ(ℓ) for all ℓ ∈ L, there exists a perfect matching MH in Fλ with
H[MH ] = H. ⋆See full version [4] for proof ⋆

Thus, Fλ has a perfect matching if and only if λ has a good extension. Moreover, from
the proofs of Lemma 8 and Lemma 9 we observe that the transformations M 7→ H[M ] and
H 7→ MH are computable in linear time. We also observe that for every anchored Hamiltonian
cycle H in G there are exactly 2n/2−1 perfect matchings M in Fλ with H[M ] = H; these M

are all obtainable from each other by transposing ports at zero or more vertices ℓ ∈ L \ {s}.

3 Another Hamiltonian cycle in bipartite Pfaffian graphs

This section studies the problem of finding another Hamiltonian cycle when given as input
(i) a bipartite Pfaffian graph G and (ii) a Hamiltonian cycle H in G. Recall from Lemma 7
that we can in linear time construct a Pfaffian orientation G⃗ from this input. In what follows
we thus tacitly assume that such a G⃗ is available and fixed together with an arbitrary anchor
edge e ∈ E(H).

3.1 Linear-time solvability in minimum degree three
Our first objective in this section is our main theorem, which we restate below for convenience.

▶ Theorem 1 (Main; Linear–time Another Hamiltonian Cycle in minimum degree three).
There exists a deterministic linear-time algorithm that, given as input (i) a bipartite Pfaffian
graph G with minimum degree three, (ii) a Hamiltonian cycle H in G, and (iii) an edge
e ∈ E(H), outputs a Hamiltonian cycle H ′ ̸= H in G with e ∈ E(H ′).

We now proceed to prove Theorem 1. Recall and assume the setting of Section 2.5.
Observe that from the given input, we can in linear total time (a) find a Pfaffian orientation
G⃗ using H, (b) compute the orientation G⃗e, (c) compute the coloring χH , (d) compute the
vertex bipartition (L, R) of G, (e) restrict χH to L to obtain the coloring λ, (f) construct
the graph Fλ, as well as (g) construct the perfect matching MH in Fλ.

Using MH and Fλ, introduce the directed graph Dλ,H with the vertex set V (Dλ,H) = L

and the arc set defined for all distinct ℓ, ℓ′ ∈ L by the rule (ℓ, ℓ′) ∈ E(Dλ,H) if and only if
there exist p, p′ ∈ {0, 1}, r ∈ R, and ρ ∈ {0, 1} such that

{[ℓ, p], [r, ρ]} ∈ E(Fλ) \ MH and {[ℓ′, p′], [r, ρ]} ∈ MH . (11)

That is, an arc (ℓ, ℓ′) ∈ E(Dλ,H) indicates that (disregarding ports p and p′) we can walk
from ℓ to ℓ′ in Fλ by traversing first an edge not in MH , followed by an edge in MH . We stress
that the traversal (11) preserves the parity ρ for consecutive edges, whereas the traversal in
the proof of Lemma 8 changes parity for consecutive edges; the latter also uses edges only
in MH .

We recall that G has minimum degree at least three; this enables us to find a Hamiltonian
cycle other than H in G with the help of a directed cycle in Dλ,H revealed in the following
lemma.
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▶ Lemma 10 (Existence of an s-avoiding directed cycle in Dλ,H). Suppose that every vertex
of G has degree at least three. Then, the directed graph Dλ,H contains at least one directed
cycle that avoids the vertex s. ⋆See full version [4] for proof ⋆

By the previous lemma we thus know that Dλ,H contains an s-avoiding directed cycle Q⃗

with V (Q⃗) = {ℓ0, ℓ1, . . . , ℓk−1} ⊆ L and (ℓj , ℓ(j+1) mod k) ∈ E(Q⃗) for each j = 0, 1, . . . , k − 1
and k ≥ 2. We will use Q⃗ to construct from MH another Hamiltonian cycle H ′ ≠ H in G.
Figure 3 illustrates the construction.

1a
s

t

1b
s

t

2a
s

t

2b
s

t

Figure 3 Obtaining another Hamiltonian cycle using a directed cycle in Dλ,H . 1a, 2a: Two
perfect matchings MH in Fλ drawn as oriented overlays of G (cf. Figure 2), with further overlaying
drawn in green and constituting the arcs of Dλ,H . 1b, 2b: The corresponding two orientations G⃗χH

e

and colorings χH . In both cases we have that Dλ,H contains a unique s-avoiding directed cycle Q⃗.
Using Q⃗ in each case we can switch between the left and right Hamiltonian cycles in G. Note in
particular that the two vertex colorings agree in L but differ in R.

From (11) applied to each arc of Q⃗ in turn we conclude that for j = 0, 1, . . . , k − 1 there
exist rj ∈ R and ρj , pj ∈ {0, 1} with

{[ℓj , pj ], [rj , ρj ]} ∈ E(Fλ) \ MH and {[ℓ(j+1) mod k, p′
j ], [rj , ρj ]} ∈ MH . (12)

We observe that the vertices [rj , ρj ] for j = 0, 1, . . . , k −1 are distinct because MH is a perfect
matching and ℓ(j+1) mod k for j = 0, 1, . . . , k − 1 are distinct. In spite of this, the edges (12)
for j = 0, 1, 2, . . . , k − 1 need not form a cycle in Fλ because we can have p′

j ̸= p(j+1) mod k.
Here is where the fact that Q⃗ is s-avoiding pays off. Let M = MH and recall that the vertices
[ℓ, 0] and [ℓ, 1] for each ℓ ∈ L\{s} have identical vertex neighborhoods in Fλ. Thus, whenever
we have p′

j ̸= p(j+1) mod k, we can modify M by transposing the vertices [ℓ(j+1) mod k, 0]
and [ℓ(j+1) mod k, 1] in the edges of M ; by the identical vertex neighborhoods property, the
resulting M will still be a perfect matching in Fλ. Moreover, we have H = H[MH ] = H[M ];
indeed, the traversal construction in Lemma 8 is insensitive to the specific values of the
(opposite) ports. For j = 0, 1, . . . , k − 1 we thus now have

{[ℓj , pj ], [rj , ρj ]} ∈ E(Fλ) \ M and {[ℓ(j+1) mod k, p(j+1) mod k], [rj , ρj ]} ∈ M ; (13)

that is, these edges now form a 2k-vertex cycle in Fλ. Let us write A for this cycle in Fλ.
Observe in particular from (13) that the edges of A alternate between edges in M and

edges not in M . Thus, we have that the symmetric difference M ′ = (M \ E(A)) ∪ (E(A) \ M)
is a perfect matching in Fλ. Furthermore, M ′ and M project to a different set of edges of
G; indeed, from (13) we have that rj changes adjacency from ℓ(j+1) mod k in H[M ] to ℓj in
H[M ′] for j = 0, 1, . . . , k − 1. It follows that H ′ = H[M ′] ̸= H[M ] = H. Thus, we have
constructed a Hamiltonian cycle H ′ in G that is different from H. Moreover, this construction
is computable in deterministic linear time. This completes the proof of Theorem 1. ◀
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3.2 Logarithmic-space solvability in minimum degree three
We can implement the ideas of the previous section in an algorithm that uses little space.
We consider as input a bipartite Pfaffian graph G of minimum degree three, a consistently
oriented Hamiltonian cycle H⃗ in G, and an arc (t, s) ∈ H⃗. More precisely, we assume both
graphs G and H⃗ are given in the input as a list of adjacency lists for each vertex. We seek to
output a list of edges of another Hamiltonian cycle H ′ ̸= H with {s, t} ∈ E(H ′). We assume
that the vertices of G are represented as O(log n)-bit integers in the input, where n is the
number of vertices in G.

▶ Theorem 2 (Main; Logarithmic–space Another Hamiltonian Cycle in minimum degree
three). There exists a deterministic logarithmic-space algorithm that, given as input (i) a
bipartite Pfaffian graph G with minimum degree three, (ii) a Hamiltonian cycle H in G, and
(iii) an edge e ∈ E(H), outputs a Hamiltonian cycle H ′ ̸= H in G with e ∈ E(H ′).

⋆See full version [4] for proof ⋆

3.3 Thomason’s lollipop method in cubic bipartite Pfaffian graphs
In this section we prove that Thomason’s lollipop method runs in linear time in cubic bipartite
Pfaffian graphs. Let us first set up some preliminaries and then describe Thomason’s lollipop
method.

Let G be a Hamiltonian cubic graph and let H be a Hamiltonian cycle in G. Select an
edge e = {s, t} in the Hamiltonian cycle H. Let us call e the anchor edge. A lollipop is a
connected graph with one vertex of degree one, one vertex of degree three, and all other
vertices of degree two. All lollipops considered in what follows are subgraphs of G such that
t is the unique degree-one vertex and e is the edge incident to t on the lollipop.

The lollipop method is best described as operating on a family of Hamiltonian paths in
G. We say that a Hamiltonian path in G that starts at the vertex t and continues via the
anchor edge e is an e-anchored Hamiltonian path. Now recall that G is cubic, so the vertex
t is adjacent to s (via the anchor edge e) and to two other vertices a and b. The lollipop
method transforms a given e-anchored Hamiltonian path Pe that ends at either a or b into an
e-anchored Hamiltonian path P ′

e ̸= Pe that ends at either a or b. Observe in particular that
both Hamiltonian paths Pe and P ′

e can be completed into e-anchored Hamiltonian cycles by
adding the missing edge {a, t} or {b, t} into the respective path.

The transformation from Pe to P ′
e is via a sequence of lollipop steps. A lollipop step

consists of adding one edge to an e-anchored Hamiltonian path and removing another one, so
that another e-anchored Hamiltonian path is formed. More precisely, let Q be an e-anchored
Hamiltonian path ending at some vertex u. Since G is cubic, u is adjacent to two other
vertices, x and y, such that the edges {u, x} and {u, y} of G are not in Q. Assume that
x ̸= t. Add the edge {u, x} into Q to obtain a lollipop Ω where the unique degree-three
vertex is x. Now observe that among the three adjacent vertices to x there is a unique vertex
v /∈ {u, t} such that both {v, x} ∈ E(Ω) and removing {v, x} from Ω leaves an e-anchored
Hamiltonian path Q′ ending at v. The transformation from Q to Q′ now constitutes one
lollipop step. Observe also that lollipop steps are reversible; that is, we can go back to Q

from Q′ by performing a lollipop step starting from Q′.
The lollipop state graph L(G, s, t) has as its vertices the e-anchored Hamiltonian paths in

G and two vertices are joined by an edge if and only if it is possible to transform between the
e-anchored Hamiltonian paths by one lollipop step. We observe immediately that L(G, s, t)
has no isolated vertices – indeed, from any vertex Q we can arrive at another vertex Q′ ≠ Q

by a lollipop step – and the degree-one vertices are exactly the e-anchored Hamiltonian paths
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Q that end at a vertex u adjacent to t in G; that is, u ∈ {a, b}; moreover, all other vertices
have degree two. Thus, we can transform from Pe to P ′

e ̸= Pe by tracing a path in L(G, s, t)
from Pe to P ′

e.
We now proceed to prove an upper bound on the maximum length of a path in L(G, s, t)

on a cubic bipartite Pfaffian graph G. An example of the lollipop method applied to a cubic
bipartite planar graph using the terminology in the subsequent proof is given in Figure 4.

▶ Theorem 3 (Thomason’s lollipop method in cubic bipartite Pfaffian graphs). Thomason’s
lollipop method starting from any Hamiltonian cycle H and any edge e ∈ E(H) in an n-vertex
cubic bipartite Pfaffian graph G, terminates after at most n steps.

Proof. To analyze the lollipop method in cubic bipartite Pfaffian graphs, let a cubic bipartite
Pfaffian graph G, a Hamiltonian cycle H in G, and e = {s, t} ∈ E(H) be given as input.
This input enables us to work in the setting of Section 3.1; let the vertex bipartition (L, R)
of G, the coloring λ of L, the graph Fλ, the perfect matching MH in Fλ, and the directed
graph Dλ,H be constructed accordingly. Recall that s ∈ L and t ∈ R.

The lollipop method starts by removing the edge {t, u} with u ≠ s from H to obtain e-
anchored Hamiltonian path Pe. Let Q0, Q1, . . . , Qh be the sequence of e-anchored Hamiltonian
paths traversed by consecutive lollipop steps in L(G, s, t) with Pe = Q0 and Qh = P ′

e. We
will show that P ′

e ends at u and thus we can obtain a Hamiltonian cycle H ′ ≠ H by inserting
the edge {t, u} into P ′

e. Moreover and crucially, we will show that h ≤ n.
Our analysis of the lollipop method is based on the directed graph Dλ,H . We recommend

consulting Figure 4 for intuition at this point. Recall from the proof of Lemma 10 that, in
the directed graph Dλ,H , the vertex s has in-degree zero and every vertex has out-degree at
least one. In particular, by traversing out-arcs from the vertex u in Dλ,H , and traversing
the eventual directed cycle encountered, as well as traversing backwards to u from the
directed cycle, in precise terms we observe that there exist vertices w0, w1, . . . , wd−1 with
(wj , w(j+1) mod d) ∈ E(Dλ,H) for j = 0, 1, . . . , d − 1 as well as vertices w′

0, w′
1, . . . , w′

d′ with
w0 = w′

d′ , w′
0 = u, {w0, w1, . . . , wd−1} ∩ {w′

0, w′
1, . . . , w′

d′−1} = ∅, and (w′
j , w′

j+1) ∈ E(Dλ,H)
for j = 0, 1, . . . , d′ − 1. That is, the sequence w′

0, w′
1, . . . , w′

d′ forms a directed path starting
at the vertex u = w′

0 and ending at the vertex wd′ = w0, which is on the directed cycle
formed by the vertices w0, w1, . . . , wd−1 in Dλ,H ; the directed cycle and the directed path
intersect exactly at the vertex wd′ = w0. In particular d + d′ ≤ |L| = n/2.

It will be convenient to introduce the following sequence of vertices visited on the traversal
of Dλ,H from u. For i = 0, 1, . . . , 2d′ + d, define

vi =


w′

i for i = 0, 1, . . . , d′ − 1 ;
wi−d′ for i = d′, d′ + 1, . . . , d′ + d − 1 ;
w′

2d′+d−i for i = d′ + d, d′ + d + 1, . . . , 2d′ + d .

(14)

We have (vi, vi+1) ∈ E(Dλ,H) for i = 0, 1, . . . , d′ + d − 1; these arcs are precisely the arcs
traversed forward. We have (vi+1, vi) ∈ E(Dλ,H) for i = d′ + d, d′ + d + 1, . . . , 2d′ + d − 1;
these arcs are precisely the arcs traversed backward. For an arc (ℓ, ℓ′) ∈ E(Dλ,H), let us write
r(ℓ, ℓ′), ρ(ℓ, ℓ′), and p′(ℓ, ℓ′), respectively, for the unique r ∈ R, ρ ∈ {0, 1}, and p′ ∈ {0, 1}
such that (11) holds. Also, let us write p(ℓ, ℓ′) for the minimum p ∈ {0, 1} such that that
(11) holds.

Let M− be a matching with n − 1 edges in Fλ such that the vertex [t, 1] is left unmatched
by M−; we call such matchings almost perfect – indeed, any perfect matching M in Fλ has
n edges. Also observe that the other vertex left unmatched by M− is [ℓ, p] for some ℓ ∈ L

and p ∈ {0, 1}. Recall the parity-and-port-changing traversal of M in the proof of Lemma 8
resulting in the Hamiltonian cycle H[M ]. Define a similar parity-and-port-changing traversal
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Figure 4 An example of the sequence of steps of Thomason’s lollipop method in an n-vertex cubic
bipartite planar graph viewed as a sequence of arc reversals in the directed graph Dλ,H . The given
input G and H together with e = {s, t} is displayed in the top left; the black arcs are oriented as in
G⃗e obtained from Lemma 7 on input H. We display the initial Hamiltonian cycle H (top left) and
the final Hamiltonian cycle H ′ (bottom right) obtained by the method, as well as the intermediate
e-anchored Hamiltonian paths Q0, Q1, . . . , Q9 obtained in consecutive lollipop steps; the end-vertex
of each Qi is highlighted with red. The green arcs in Q0 are the arcs of Dλ,H . Observe that each
lollipop step from Qi to Qi+1 can be understood as reversing the light-green arc in Qi; the method
terminates when the end-vertices of Q0 and Qi+1 agree. By the structure of Dλ,H , we must have
i ≤ n; cf. Theorem 3.
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of M− by starting at the vertex [ℓ, p̄] and observe by a similar argument as in the proof of
Lemma 8 that this traversal defines an e-anchored Hamiltonian path P[M−] from the vertex
ℓ to the vertex t in G; in particular, observe that P[M−] is e-anchored since by the structure
of Fλ the almost perfect M− must contain the edge {[s, 0], [t, 0]}.

We now proceed to characterize the e-anchored Hamiltonian paths Q0, Q1, . . . , Qh using
corresponding almost perfect matchings M−

0 , M−
1 , . . . , M−

h , and conclude that h = 2d′+d ≤ n

in the process. For i = 0, 1, . . . , h, let us write ui for the end-vertex of Qi other than t.
Recalling that Q0 = Pe is constructed by deleting the edge {u, t} from the Hamiltonian cycle
H, let p ∈ {0, 1} be the port and f ∈ E(Fλ) the edge with f = {[u, p], [t, 1]} ∈ MH . Take
M−

0 = MH \ {f}. In particular, we have Q0 = Pe = P[M−
0 ] and u0 = v0 = u. Let p0 = p;

we will fix values pi ∈ {0, 1} for i = 1, 2, . . . , h as we progress in what follows.
We split the analysis into two ranges based on the parameter i. The first range corresponds

to the forward-traversal of arcs in Dλ,H . For i = 0, 1, . . . , d′ + d − 1, we say an almost perfect
matching M− has property i if

(i) [vi, pi] is left unmatched by M−; and
(ii) we have {[vj , p(vj , vj+1)], [r(vj , vj+1), ρ(vj , vj+1)]} ∈ M− and

{[r(vj , vj+1), ρ(vj , vj+1)], [vj+1, p′(vj , vj+1)]} /∈ M− for all 0 ≤ j ≤ i − 1; and
(iii) we have {[vj , p(vj , vj+1)], [r(vj , vj+1), ρ(vj , vj+1)]} /∈ M− and

{[r(vj , vj+1), ρ(vj , vj+1)], [vj+1, p′(vj , vj+1)]} ∈ M− for all i ≤ j ≤ d′ + d.
The second range corresponds to the backward-traversal of arcs in Dλ,H . For i = d′ + d, d′ +
d + 1, . . . , 2d′ + d, we we say an almost perfect matching M− has property i if

(i’) [vi, pi] is left unmatched by M−; and
(ii’) we have {[vj , p(vj , vj+1)], [r(vj , vj+1), ρ(vj , vj+1)]} ∈ M− and

{[r(vj , vj+1), ρ(vj , vj+1)], [vj+1, p′(vj , vj+1)]} /∈ M−

for all d′ ≤ j ≤ d′ + d − 1 as well as for all 0 ≤ j ≤ 2d′ + d − 1 − i; and
(iii’) we have {[vj , p(vj , vj+1)], [r(vj , vj+1), ρ(vj , vj+1)]} /∈ M− and

{[r(vj , vj+1), ρ(vj , vj+1)], [vj+1, p′(vj , vj+1)]} ∈ M− for all 2d′ + d − i ≤ j ≤ d′ − 1.
From previous observations and (11) we have that M−

0 satisfies property 0.
Let us now analyse the lollipop step mapping Qi to Qi+1 one value i = 0, 1, . . . , d′ + d − 1

at a time. Suppose that there is an almost perfect matching M−
i of Fλ that satisfies

property i and that Qi = P[M−
i ]. In particular, we have ui = vi by (i) and Qi =

P[M−
i ]. We claim that the vertex r(vi, vi+1) is the unique degree-three vertex in the

lollipop formed by the lollipop step transforming Qi to Qi+1. Observe by (iii) that
{[r(vi, vi+1), ρ(vi, vi+1)], [vi+1, p′(vi, vi+1)]} ∈ M−

i , implying that {r(vi, vi+1), vi+1} is an
edge in Qi = P[M−

i ]. Recalling that M−
i is almost perfect, all vertices in R × {0, 1} are

matched, so r(vi, vi+1) ∈ R is in fact adjacent to another vertex ωi ≠ vi+1 along an edge
in Qi = P[M−

i ]. By (iii) and (11) we have {vi, r(vi, vi+1)} is an edge in G but not in
Qi = P[M−

i ], and Qi ends at vi. Thus, r(vi, vi+1) is the unique degree-three vertex in
the lollipop. Next, the lollipop step proceeds to delete an edge adjacent to the degree-
three vertex r(vi, vi+1) in the lollipop. This edge is {vi+1, r(vi, vi+1)} by the previous
analysis. It follows that Qi+1 is obtained from Qi by deleting {vi+1, r(vi, vi+1)} and inserting
{vi, r(vi, vi+1)}. Thus, Qi+1 ends at ui+1 = vi+1. Define M−

i+1 by starting with M−
i and

deleting the edge {[r(vi, vi+1), ρ(vi, vi+1)], [vi+1, p′(vi, vi+1)]} as well as inserting the edge
{[vi, p(vi, vi+1)], [r(vi, vi+1), ρ(vi, vi+1)]}. Fix pi+1 = p′(vi, vi+1). From (i), (ii), and (iii) we
have that M−

i+1 is an almost perfect matching that satisfies property i + 1. Furthermore,
Qi+1 = P[M−

i+1].
The analysis of the lollipop step mapping Qi to Qi+1 for i = d′ +d, d′ +d+1, . . . , 2d′ +d−1

is now similar, but relying on properties (i’), (ii’), (iii’) instead. From the existence of an
almost perfect matching M−

i of Fλ that satisfies property i and Qi = P[M−
i ], by a similar
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analysis we conclude that there exists an almost perfect matching M−
i+1 of Fλ that satisfies

property i + 1 and Qi+1 = P[M−
i+1]. Since v2d′+d = u and u is adjacent to t in G, from (i’)

we conclude in particular that P ′
e = Q2d′+d and thus h = 2d′ + d. Since 2d′ + d ≤ n, we have

shown that the lollipop method terminates in at most n lollipop steps. ◀

We note that the algorithm implicit in the proof not only uses at most a linear number of
lollipop steps, but also can be implemented with the guidance of Dλ,H to run in linear time.
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