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—— Abstract

The hereditary discrepancy of a set system is a quantitative measure of the pseudorandom properties
of the system. Roughly speaking, hereditary discrepancy measures how well one can 2-color the
elements of the system so that each set contains approximately the same number of elements of each
color. Hereditary discrepancy has numerous applications in computational geometry, communication
complexity and derandomization. More recently, the hereditary discrepancy of the set system of
shortest paths has found applications in differential privacy [Chen et al. SODA 23].

The contribution of this paper is to improve the upper and lower bounds on the hereditary
discrepancy of set systems of unique shortest paths in graphs. In particular, we show that any
system of unique shortest paths in an undirected weighted graph has hereditary discrepancy O(nl/ H,
and we construct lower bound examples demonstrating that this bound is tight up to polylog n
factors. Our lower bounds hold even for planar graphs and bipartite graphs, and improve a previous
lower bound of Q(nl/e) obtained by applying the trace bound of Chazelle and Lvov [SoCG’00] to a
classical point-line system of Erdés.

As applications, we improve the lower bound on the additive error for differentially-private all
pairs shortest distances from Q(n'/%) [Chen et al. SODA 23] to §(n1/4), and we improve the lower
bound on additive error for the differentially-private all sets range queries problem to ﬁ(nl/ 4), which
is tight up to polylog n factors [Deng et al. WADS 23].
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The Discrepancy of Shortest Paths

1 Introduction

In graph algorithms, a fundamental problem is to efficiently compute distance or shortest
path information of a given input graph. Over the last decade or so, the community has
increasingly sought a principled understanding of the combinatorial structure of shortest
paths, with the goal to exploit this structure in algorithm design. That is, in various graph
settings, we can ask:

What notable structural properties hold for shortest path systems, that do not neces-
sarily hold for arbitrary path systems?

The following are a few of the major successes of this line of work:

An extremely popular strategy in the literature is to use hitting sets, in which we (often
randomly) generate a set of nodes S and argue that it will hit a shortest path for every
pair of nodes that are sufficiently far apart. Hitting sets rarely exploit any structure
of shortest paths, as evidenced by the fact that most hitting set algorithms generalize
immediately to arbitrary set systems. However, they have inspired a successful line of
work into graphs of bounded highway dimension [1, 6, 7]; very roughly, these are graphs
whose shortest paths admit unusually efficient hitting sets of a certain kind.

Shortest paths exhibit the notable structural property of consistency, i.e., any subpath of
a shortest path is itself a shortest path. This fact is used throughout the literature on
graph algorithms [21, 22, 8], including e.g. in the classic Floyd-Warshall algorithm for
All-Pairs Shortest Paths. A recent line of work has sought to characterize the additional
structure exhibited by shortest path systems, beyond consistency [8, 21, 19, 20, 17, 4, 2].
Planar graphs have received special attention within this research program, and planar
shortest path systems carry some notable additional structure. For example, it is known
that planar shortest paths have unusually efficient tree coverings [5, 11], and that their
shortest paths can be compressed into surprisingly small space [12, 13]. Shortest path
algorithms also often benefit from more general structural facts about planar graphs,
such as separator theorems [29, 28].

The main result of this paper is a new structural separation between shortest path systems
and arbitrary path systems, expressed through the lens of discrepancy theory. We will come
to formal definitions of discrepancy in just a moment, but at a high level, discrepancy has
been described as a quantitative measure of the combinatorial pseudorandomness of a discrete
system [18], and it has widespread applications in discrete and computational geometry,
random sampling and derandomization, communication complexity, and much more!. We
will show the following:

» Theorem 1 (Main Result, Informal). The discrepancy of unique shortest path systems in
wetghted graphs is inherently smaller than the discrepancy of arbitrary path systems in graphs.

This separation between unique shortest paths and arbitrary paths is due to the structural
property of consistency of unique shortest path systems, which is well-studied in the literature
[21, 22, 8].

1 We refer to the excellent textbooks of Alexander, Beck, and Chen [3], Chazelle [14], Matousek [33] for
discussion and further applications.
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Our results can be placed within a larger context of prior work in computational geometry.

A classical topic in this area is to determine the discrepancy of incidence structures between
points and geometric range spaces such as axis-parallel rectangles, half-spaces, lines, and
curves (cf. [14, Section 1.5]). These results have been used to show lower bounds for geometric
range searching [37, 34].

Indeed, systems of unique shortest paths in graphs capture some of the geometric range
spaces studied in prior work. For instance, arrangements of straight lines in Euclidean space
can be interpreted as systems of unique shortest paths in an associated graph, implying a
relation between the discrepancies of these two set systems. This connection has recently
found applications in the study of differential privacy on shortest path distance and range
query algorithms [16, 23].

More generally, discrepancy on graphs have also found applications in proving tight lower
bounds on answering cut queries on graphs [26, 32]. We provide a detailed literature review
for discrepancy on graphs in the full version of our paper [9]. The full version of our paper
further discusses the connection between our results and the discrepancy of arrangements of
curves.

1.1 Formal Definitions of Discrepancy
We first collect the basic definitions needed to understand this paper.

» Definition 2 (Edge and Vertex Incidence Matrices). Given a graph G = (V, E) and a set
of paths I in G, the associated vertex incidence matrix is given by A € RIM*IVI where for
each v € V and 7 € 11 the corresponding entry is

A= 1 ifvern
7 0 ifvém.

The associated edge incidence matrix is given by A € RIUXIEl where for each e € E and
w € II the corresponding entry is

1 ifeen
Afr,e = .
0 ifedm.
» Definition 3 (Discrepancy and Hereditary Discrepancy). Given a matriz A € R™*", its
discrepancy is the quantity
disc(A) = min ||Az| .
16{17_1}”‘
Its hereditary discrepancy is the mazximum discrepancy of any submatriz Ay obtained by
keeping all rows but only a subset Y C [n] of the columns; that is,
herdisc(A) = disc, (Ay ).
erdisc(A) }Ifnga[if] iscy (Ay)
For a system of paths II in a graph G, we will write disc,(I1), herdisc, (IT) to denote the

(hereditary) discrepancy of its vertex incidence matriz, and disce(I), herdisc. (II) to denote
the (hereditary) discrepancy of its edge incidence matrix.

For intuition, the vertex discrepancy of a system of paths I can be equivalently understood
as follows. Suppose that we color each node in G either red or blue, with the goal to balance
the red and blue nodes on each path as evenly as possible. The discrepancy associated to
that particular coloring is the quantity

max {v e | v colored red}| — |{v € m | v colored blue}| |.
TE
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The Discrepancy of Shortest Paths

The discrepancy of the system II is the minimum possible discrepancy over all colorings. The
hereditary discrepancy is the maximum discrepancy taken over all induced path subsystems
IT’ of II; that is, I’ is obtained from II by selecting zero or more vertices from G, deleting
these vertices, and deleting all instances of these vertices from all paths.? We may delete
nodes from the middle of some paths 7 € II, in which case II' may no longer be a system of
paths in GG, but rather a system of paths in some other graph G’ with fewer nodes and some
additional edges. Nonetheless, its vertex incidence matrix and therefore herdisc, (II') remain
well-defined with respect to this new graph G’. Edge discrepancy can be understood in a
similar way, coloring edges rather than vertices.

1.2 Our Results

Our main result is an upper and lower bound on the hereditary discrepancy of unique shortest
path systems in weighted graphs, which match up to hidden polylog n factors.

» Theorem 4 (Main Result).
(Upper Bound). For any n-node undirected weighted graph G with a unique shortest path
between each pair of nodes, there exists a polynomial-time algorithm that finds a coloring
for the system of shortest paths I1 such that:

herdisc, (II) < O(n'/*) and herdisc, (IT) < O(n'/4).

(Lower Bound). There are ezamples of n-node undirected weighted graphs G with a
unique shortest path between each pair of nodes in which this system of shortest paths
IT has herdisc, (IT) > Q(n'/4) and herdisc. (II) > Q(n/4). In fact, in these lower bound
examples we can take G to be planar or bipartite.

This theorem has immediate applications in differential privacy; we refer to Theorem 6
discussed below. We can strengthen the hereditary discrepancy lower bound into a vertex
(non-hereditary) discrepancy lower bound in the undirected and directed settings. We leave
open whether our lower bound extends to (non-hereditary) edge discrepancy as well, and to
vertex or edge discrepancy of planar graphs. We refer to Table 1 for a list of our results in
these settings.

Table 1 Overview of vertex/edge (hereditary) discrepancy on general graphs and special families
of graph: tree, bipartite and planar graphs. Here n is the number of vertices of the graph and m is
the number of edges. D is the graph diameter or the longest number of hops of paths considered.

Tree | Bipartite | Planar Undirected Graph Directed Graph
disc | ©(1) | ©(1) | omn'/Y O(n'/*4) o(n'/%)
v herdisc | ©(1) | ©(nY) | 8(n'/*Y) | Qn'/%)[15] — O(n'/4) o(n'/%)
disc | ©1) | ©1) | om O(n/*) min {O(m1/4), 5(1)1/2)}
" herdisc | ©(1) | ©(n'*) | 6(n'/*) | Qn!/%)[15] = O(n'/4) Q(n'/%)

2 In the coloring interpretation, hereditary discrepancy allows a different choice of coloring for each
subsystem II’, rather than fixing a coloring for IT and considering the induced coloring on each IT'.
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The upper bound in Theorem 4 is constructive and algorithmic; that is, we provide

an algorithm that colors vertices (resp. edges) of the input graph to achieve vertex (resp.

edge) discrepancy 6(711/ 4) on its shortest paths (or on a given subsystem of its shortest
paths). Notably, Theorem 4 should be contrasted with the fact that the maximum possible
discrepancy of any simple path system of polynomial size in a general graph is known to be
O(n'/2).3 In fact, the lower bound on discrepancy (as well as hereditary discrepancy) for a
grid graph for a polynomial number of simple paths can be Q(y/n) (see the full version of
our paper [9] for a proof and more discussion on grid graphs). Thus, Theorem 4 represents a
concrete separation between unique shortest path systems and general path systems.

The main open question that we leave in this work is on the hereditary edge discrepancy
of shortest paths in directed weighted graphs. We show the following;:

» Theorem 5. For any n-node, m-edge directed weighted graph G with a unique shortest
path between each pair of nodes, the system of shortest paths 11 satisfies

herdisc, (I) < O(n'/*) and herdisc, (IT) < O(m!/%).

Lower bounds in the undirected setting immediately apply to the directed setting as well,
and so this essentially closes the problem for directed hereditary verter discrepancy. It is an
interesting open problem whether the bound for directed hereditary edge discrepancy can be
improved to O(n/4) as well.

Applications to Differential Privacy. One application of our discrepancy lower bound on
unique shortest paths is in differential privacy (DP) [24, 25]. An algorithm is differentially
private if its output distributions are relatively close regardless of whether an individual’s
data is present in the data set. More formally, for two databases Y and Y’ that are identical
except for one data entry, a randomized algorithm M is (e, ) differentially private if for any
measurable set A in the range of M, Pr[(M(Y) € A] <e*Pr[M(Y') € A] + 6.

The topic of discrepancy of paths on a graph is related to two problems already studied in
differential privacy: All Pairs Shortest Distances (APSD) ([16, 27, 36]) and All Sets Range
Queries (ASRQ) ([23]), both assuming the graph topology is public. In APSD problem, the
edge weights are not publicly known. A query in APSD is a pair of vertices (u,v) € V. x V
and the answer is the shortest distance between v and v. In contrast, in ASRQ problem, the
edge weights are assumed to be known, and every edge also has a private attribute. Here,
the range is defined by the shortest path between two vertices (based on publicly known
edge weights). The answer to the query (u,v) € V x V then is the sum of private attributes
along the shortest path. In what follows, we give a high-level argument for the lower bound
on DP-APSD problem; the lower bound of ﬁ(nl/ 4) for the DP-ASRQ problem also follows
nearly the same arguement (see the full version of our paper [9] for details).

Chen et al. [16] showed that DP-APSD can be formulated as a linear query problem. In
this setting, we are given a vertex incidence matrix A of the (Z) shortest paths of a graph and
a vector z of length n and asked to output Az. They show that the hereditary discrepancy
of the matrix A provides a lower bound on the /., error for any (e,0)-DP mechanism for
this problem. With this argument, our new discrepancy lower bound immediately implies:

3 A path system is simple if no individual path repeats nodes. The upper bound of 5(711/ 2) follows by
coloring the nodes randomly and applying standard Chernoff bounds. The lower bound is nontrivial
and follows from an analysis of the Hadamard matrix; see [14], Section 1.5.
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» Theorem 6 (Informal version of Corollaries 7.1 and F.1in [9]). The (¢,5)-DP APSD problem
and (g,6)-DP ASRQ problem require additive error at least Q(n'/*).

The best known additive error bound for the DP-ASRQ problem is O(n'/4) [23], which,
by Theorem 6, is tight up to a polylog(n) factor. Prior to this work, the only known
lower bounds for DP-ASRQ and DP-APSD were from a point-line system with hereditary
discrepancy of Q(n'/%) [16]. The best known additive error upper bound for DP-APSD is
O(n'/?) [16, 27]. Closing this gap remains an interesting open problem.

In addition to differential privacy, our hereditary discrepancy results also have implications
for matrix analysis. In short, we can show that the factorization norm of the shortest path
incidence matrix is é(nl/ 4). We delay a detailed discussion to the full version of our paper [9].

1.3 Our Techniques

We will overview our upper and lower bounds on discrepancy separately.

Upper Bound Techniques. A folklore structural property of unique shortest paths is
consistency. Formally, a system of undirected paths II is consistent if for any two paths
71, T2, their intersection mp Ny is a (possibly empty) contiguous subpath of each. It is well
known that, for any undirected graph G = (V, E, w) with unique shortest paths, its system of
shortest paths II is consistent. An analogous fact holds for directed graphs. Our discrepancy
upper bounds will actually apply to any consistent system of paths — not just those that
arise as unique shortest paths in a graph.

We give our upper bounds on the discrepancy of consistent systems in two steps. First,
we prove the existence of a low-discrepancy coloring using a standard application of primal
shatter functions (see the the full version of our paper [9] for a definition). For consistent
paths, the primal shatter function has degree two in both directed and undirected graphs.
This immediately gives us an upper bound of O(n'/*) for vertex discrepancy and O(m!/%)
for edge discrepancy (since edge discrepancy is defined on a ground set of m edges in the
graph G).

When the graph is dense, this upper bound on edge discrepancy deteriorates, becoming
trivial when m = ©(n?). We thus present a second proof of O(n'/*) for both vertex and
edge discrepancy, which explicitly constructs a low-discrepancy coloring. This improves the
bound for vertex discrepancy by polylogarithmic factors and edge discrepancy by polynomial
factors. The main idea in this construction is to adapt the path cover technique, used in the
recent breakthrough on shortcut sets [30]. That is, we start by finding a small base set of
roughly n'/2 node-disjoint shortest paths in the distance closure of the graph. These paths
have the property that any other shortest path 7 in the graph contains at most O(n'/?)
nodes that are not in any paths in the base set. We then color randomly, as follows:

For every node that is not contained in any path in the base set, we assign its color

randomly. Thus, applying concentration bounds, the contribution of these nodes to the

discrepancy of 7 will be bounded by +0(n'/4).

For every path in the base set, we choose the color of the first node in the path at

random, and then alternate colors along the path after that. Then we can argue that

by consistency, the nodes in each base path randomly contribute +1 or —1 (or 0) to the

1/2 paths in the

discrepancy of 7 (see Figure 1 for a visualization). Since there are only n
base set, we may again apply concentration bounds to argue that the contribution to

discrepancy from these base paths will only be +0(n!/4).



G. Bodwin, C. Deng, J. Gao, G. Hoppenworth, J. Upadhyay, and C. Wang
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Figure 1 If we color the nodes of a unique shortest path with alternating colors, then its nodes
will contribute discrepancy 0, +1, or —1 to all unique shortest paths that intersect it.

Summing together these two parts, we obtain a bound of 6(n1/ 4) on discrepancy, which
holds with high probability. We can translate this to a bound on hereditary discrepancy
using the fact that consistency is a hereditary property of path systems.

Lower Bound Techniques. For lower bounds, we apply the trace bound of [15] on hereditary
discrepancy together with an explicit graph construction [10] that was recently proposed as
a lower bound against hopsets in graphs. An (exact) hopset of a graph G with hopbound
[ is a small set of additional edges H in the distance closure of G, such that every pair of
nodes has a shortest path in G U H containing at most 5 edges.

Until recently, the state-of-the-art hopset lower bounds were achieved using a point-line
construction of Erdés [35], which had n points and n lines in R? with each point staying on
O(n'/?) lines and each line going through ©(n'/3) points. This point-line system also implies
tight lower bounds for the Szemerédi-Trotter theorem and the discrepancy of arrangements of
lines in the plane [15], as well as the previous state-of-the-art lower bound on the discrepancy
of unique shortest paths.

This point-line construction can be associated with a graph that possesses useful properties
derived from geometry. If edges in this graph are weighted by Euclidean distance, then the
paths in the graph corresponding to straight lines are unique shortest paths by design. On
the other hand, two such shortest paths (along straight lines) only intersect at most once.

Recently, a construction in Bodwin and Hoppenworth [10] obtained stronger hopset lower
bounds with a different geometric graph construction, which still took place in R? but allowed
shortest paths to have many vertices/edges in common. We show that this construction can
be repurposed to derive a stronger lower bound of (Z(nl/ 4) on vertex hereditary discrepancy,
by applying the trace bound of [15]. Combined with our upper bounds, this substantially
improves our understanding of the discrepancy of unique shortest paths.

The above upper and lower bounds are for general graphs. Naturally, one can ask if we
have better bounds for special families of graphs. We further show that the lower bounds
remain the same for two interesting families: planar graphs and bipartite graphs. The lower

bound construction mentioned above is not planar, and so this requires some additional work.

A natural attempt is to restore planarity by adding vertices to the construction wherever
two edges cross. However, this comes at a cost of an increase in the number of vertices,
and also with a potential danger of altering the shortest paths. In the full version of our
paper [9], we first show that the number of crossings is not too much higher than n. Then,
by carefully changing the weights of the edges and by exploiting the geometric properties of

the construction, we show that the topology and incidence of shortest paths are not altered.

For bipartite graphs, although the vertex discrepancy can be made very low — by coloring
the vertices on one side +1 and vertices on the other side —1 — the hereditary discrepancy
can be as high as the general graph setting. Specifically, we show a 2-lift of any graph G to
a bipartite graph which essentially keeps the same hereditary discrepancy. Details can be
found in the full version of our paper [9].

27:7
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2 Preliminaries

A path system is a pair S = (V,II) where V is a ground set of nodes and II is a set of vertex
sequences called paths. Each path may contain at most one instance of each node. We now
formally define consistency, a structural property of unique shortest paths that will be useful.

» Definition 7. A path system S = (V,1I) is consistent if no two paths in S intersect, split
apart, and then intersect again later. Formally:
In the undirected setting, consistency means that for all u,v € V and all my,m9 € I such
that u,v € m N g, we have that m [u, v] = malu, v, i.e., the intersection of w1 and sy is
a contiguous subpath (subsequence) of w1 and ms.
In the directed setting, consistency means that for all u,v € V and all m1,m € I such
that u precedes v in both w1 and w2, we have that 7 [u,v] = malu, v].

In every weighted graph for which all pairs shortest paths exist (i.e. no negative cycles),
we can represent all-pairs shortest paths using a consistent path system. In particular, if all
shortest paths are unique, then consistency is implied immediately.

We will investigate the combinatorial discrepancy of path systems (V,II). Usually, we will
assume that |V| = n and |II| is polynomial in n. We define a vertex coloring x : V — {—1,1}
and define the discrepancy of II as

disc(IT) = mXin x(II),  where x(II) = max |x(7)|, x(7) = Zx(v).

well
vET

Using a random coloring x, we can guarantee that for all paths = € II [14]:

IX(m)] < v/2|m| In(4/TI]).
This immediately provides a few observations.

» Observation 8. When II is a set of paths with size polynomial in n, then disc(Il) =
O(v/nlogn). This bound is true even for paths that are possibly non-consistent.

» Observation 9. When the longest path in II has D vertices we have disc(II) = O(v/Dlogn).
Thus, for graphs that have a small diameter (e.g., small world graphs), the discrepancy of
shortest paths is automatically small.

Hereditary discrepancy is a more robust measure of the complexity of a path system
(V,1I), defined as herdisc(Il) = maxy cy disc(Il]y ), where II]y is the collection of sets of the
form 7 NY with w € II. Clearly, herdisc(II) > disc(II). Sometimes the discrepancy of a set
system may be small while the hereditary discrepancy is large [14]. Thus in the literature,
we often talk about lower bounds on the hereditary discrepancy.

Now that we have defined vertex and edge (hereditary) discrepancy, one may wonder if
there is an underlying relationship between vertex and edge (hereditary) discrepancy since
they share the same bounds in most settings presented in Table 1. The following observation
shows that vertex discrepancy bounds directly imply bounds on edge discrepancy.

» Observation 10. Denote by disc(n) (and herdisc(n)) the mazimum discrepancy (minimum
hereditary discrepancy, respectively) of a consistent path system of a (undirected or directed)
graph of n vertices. We have that

1. Let g(x) be a non-decreasing function. If herdisc,(n) > g(n), then herdisce(n) > g(n/2).
2. Let f(x) be a non-decreasing function. If disc,(n) < f(n), then disc.(m) < f(m).

The proof of Observation 10 is deferred to the full version of our paper [9]. We also use
some technical tools from discrepancy theory and statistics. For details please refer to the
full version of our paper [9].
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3 Undirected Graphs: Lower Bound and Explicit Colorings

We now discuss the main result (Theorem 4). We first show in Section 3.1 a hereditary
discrepancy lower bound of Q(nl/ 4/\/Togn) for both edge and vertex discrepancy in general
undirected graphs. Then in Section 3.2 we present a vertex coloring achieving hereditary
discrepancy of 5(711/ 4). Finally, we present an explicit edge coloring with the same hereditary
discrepancy bound in Section 3.3.

3.1 Lower Bound

As suggested by Observation 10, we focus on the vertex hereditary discrepancy, and our
goal is to prove the following statement (Theorem 11). In Theorem 10 of the full version of
our paper [9], we show that this theorem implies the same lower bound on (non-hereditary)
vertex discrepancy as well.

» Theorem 11. There are examples of n-vertex undirected weighted graphs G with a unique
shortest path between each pair of vertices in which this system of shortest paths I has

herdisc, (IT) > Q(n'/*//logn).

To obtain the lower bound, we employ the new graph construction by [10], which shows
that any exact hopset with O(n) edges must have at least Q(n'/2) hop diameter. Despite
seeming unrelated, this construction also sheds light on our problem. Another technique we
use to show the hereditary discrepancy lower bound is the trace bound [31] (and restated
in the full version of our paper [9]). In the following proof section, we first summarize the
construction related to our objective, then show the calculation using the trace bound that
leads to our lower bound.

Proof. The key properties of the graph construction in [10] (see also Section 5 of [9]) that
we need can be summarized in the following lemma.

» Lemma 12 (Lemma 1 of [10]). For any p € [1,n?], there is an infinite family of n-node
undirected weighted graphs G = (V, E,w) and sets I of p paths in G such that

G has =0 (\/;;?Tgn) layers. Fach path in 11 starts in the first layer, ends in the last

layer, and contains exactly one node in each layer.

Each path in 11 is the unique shortest path between its endpoints in G.

For any two nodes u,v € V, there are at most ﬁ paths in 11 that contain both u and
v, where h(u,v) is the hopdistance (number of edges on the shortest path) between u and
vin G and 1 < h(u,v) < £.

Each node v € V lies on at most O (%p) distinct paths in II.

We will make use of the shortest path vertex incidence matrix of this graph. Recall that
hereditary discrepancy considers the sub-incidence matrix induced by columns corresponding
to a set of vertices. We select the set of vertices occurring in the paths in II, and show it
leads to hereditary discrepancy at least Q(n'/*/y/logn). Specifically, take A as the incidence
matrix such that each row corresponds to one path in II. A has dimension p X n where n is
the number of vertices in G and the (4, j)-th entry of A is 1 is the vertex j is in the path i.

Now define M = AT A. Recall that tr(M) is the number of 1s in the matrix A. Since
by construction, every path has length ¢, we have tr(M) = pf. Furthermore, let m;; be the
(i, 4)-th element of matrix M, and observe that it is exactly the number of paths that contain
vertices ¢ and j. (Note that m;; = mj;.) Additionally, tr(M?) is the number of length 4
closed walks in the bipartite graph representing the incidence matrix A. This implies that

27:9
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J=1lu,veP;, =1 j=11i=1 u,veP;,
u#v h(u,v)=1
p ¢ 292 292 2 242
<3 £~€+O<M) <p€2log€+0<p ! ) _ mplog() +O°F)
oo n n n

By setting p = nlogn, it follows that £ = ©(y/n/logn) and tr(M) = pl. Further,

npl?logl = O(n-nlogn - 712 logn) = O(n?) = O(p*¢?).
log“n

By Equation (1), we have tr(M?) = O(p*¢?/n). Using this and tr(M) = pf in the trace
bound of [31] gives us

. (tr(M))? (M) ((M)? (M)
herdisc(A) > 8emin{p, n} - tr(M?) \| max{p,n} ~ 8en - tr(M?) D

Zﬂ(izgﬂ) :Q(x/z)zsz(;l;%).

The trace bound is formally stated in the full version of our paper [9]. |

3.2 Vertex Discrepancy Upper Bound — Explicit Coloring

In this subsection, we will upper bound the discrepancy x(IT) of a consistent path system
(V,II) with |V| = n and |II| = poly(n). This will immediately imply an upper bound for the
hereditary vertex discrepancy of unique shortest paths in undirected graphs.

» Theorem 13. For a consistent path system S = (V,II) where |V| = n and |II| = poly(n),
there exists a labeling x such that x(IT) = O(n*/*log/?n). Consequently, every n-vertex
undirected graph has hereditary vertex discrepancy O(n/* logl/2 n).

Let S = (V,II) be a consistent path system with |V| = n and |II| = poly(n). As the first
step towards constructing our labeling x : V — {—1,1}, we will construct a collection of
paths IT' on V that will have a useful covering property over the paths in II.

Constructing path cover IT’. Initially, we let II' = (). We define V' to be the set of all
nodes in V' belonging to a path in IT', i.e., V' :={J, cyp 7' While |7\ V'| > n'/? for some
7w € 11, find a (possibly non-contiguous) subpath of 7 of length n'/2 that is vertex-disjoint
from all paths in IT’. Formally, find a subpath 7’ C 7 such that |7’'| = n'/? and 7/ N V' = §.
Add path 7" to path cover II' and update V’. Repeatedly add paths to path cover IT’ in this
manner until |7\ V’| < n'/? for all 7 € II.

» Proposition 14. Path cover I satisfies the following properties:

1. for all T €I, |7| = n'/2,

2. the number of paths in I’ is |II'| < n'/?,

3. (Disjointness Property). The paths in II' are pairwise vertez-disjoint,

4. (Covering Property). For all w € 11, the number of nodes in 7 that do not lie in any path in
path cover I is at most n*/2. Formally, let V' = Upcrpn’. Then ¥V € I, |m \ V| < nl/2,

5. (Consistency Property). For all m € II and 7’ € II', the intersection m N7’ is a (possibly
empty) contiguous subpath of m'.*

4 Note that it may not be true that 7 N7’ is a contiguous subpath of 7.
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Proof. Properties 1, 3, and 4 follows from the construction of IT’. Property 2 follows from
Properties 1 and 3 and the fact that |V| = n. The Consistency Property of II' is inherited
from the consistency of path system S. Specifically, by the construction of II’, path «’ € II' is
a subpath of a path 7" € II. Recall that by the consistency of path system S, the intersection
mNx"” is a (possibly empty) contiguous subpath of 7”/. Then 7 N7’ is a contiguous subpath
of n’ since ' C 7”’. This concludes the proof. <

Constructing labeling x. Let 7’ = (v1,...,v;) € Il be a path in our path cover. We will
label the nodes of '’ using the following random process. With probability 1/2 we define
x: 7 — {=1,1} to be

)

1 ¢=0 mod2andie€llk
x(vi) = : :
-1 i=1 mod2andie€]ll,k

and with probability 1/2 we define x : #’ — {—1,1} to be

x(vi) =

-1 i=0 mod2andie€]llk
1 i=1 mod2andiecl[lk]

The labels of consecutive nodes in 7’ alternate between 1 and —1, with vertex v; taking labels
1 and —1 with equal probability. Since the paths in path cover IT' are pairwise vertex-disjoint,
the labeling  is well-defined over V' := Urcr’. We choose a random labeling for all nodes
in V\ V', i.e., we independently label each node v € V'\ V' with x(v) = —1 with probability
1/2 and x(v) = 1 with probability 1/2. An illustration can be found in Figure 2.

O. O
O. T O

. O—Z—(/)
OOOO/V-O—OOOO o0 OO0~ O0~Q 00
T O T o]
3 o 2

Figure 2 In this figure, paths mi, 72,73 € II' from the path cover are intersecting a path
7w € II. Paths in the path cover are pairwise vertex-disjoint, and each path in the cover contributes
discrepancy 0, —1, or +1 to .

Bounding the discrepancy x(IT). Fix a path m € II. We will show that |}, .. x(v)| =
O(n'/*1og'/? n) with high probability. Theorem 13 will follow as |II| = poly(n).
» Proposition 15. For each path 7' in path cover I,
Z X(U) € {_17071}'
verNm!

If|[rna’'| =0 mod 2, then - .~ x(v) = 0. Moreover,

Pr[ Z X(v):—ll :Pr[ Z X(v):ll.
vemrNm! vernn!
Proof. By the Consistency Property of I’ (as proven in Proposition 14), path 7 N7’ is a
(possibly empty) contiguous subpath of #’. Then since consecutive nodes in 7’ alternate
between —1 and 1, it follows that > . - x(v) € {-1,0,1}.

Now note that > . -, x(v) # 0 iff |7 N 7’| is odd. Moreover, the first vertex of m N7’
takes labels 1 and —1 with equal probability. This concludes the proof of Proposition 15. <«

ICALP 2024
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We are now ready to bound the discrepancy of .
» Proposition 16. With high probability, x(m) = O(n'/4log'/? n).
Proof. We partition the nodes of 7 into two sources of discrepancy that we will bound

separately. Let V' := Uprer .

Discrepancy of m# N V’. TFor each path 7’ € IT', let X,» be the random variable defined as

X = Z x(v).

vernnm!

We can restate the discrepancy of 7NV’ as

Z x(v) Z Xl

verNV’ 7' ell’
By Proposition 15, if |7 N 7/| = 0 mod 2, then X,» = 0, so we may assume without
any loss of generality that |7 N 7'| is odd for all 7’ € II'. In this case, Pr[X, = —1] =

Pr (X, = 1] = 1/2, implying that E[Y__, ., X7/] = 0. Then by Proposition 14 and Chernoff,
it follows that for any constant ¢ > 1,

Pr[ > X

' ell’
Discrepancy of w \ V’. Note that by the Covering Property of the path cover (as proven
in Proposition 14), |7\ V’| < n!/2. Moreover, the nodes in V' \ V' are labeled independently
at random, implying that E[}", . \y/ x(v)] = 0. Then we may apply a Chernoff bound to
argue that for any constant ¢ > 1,

2nl/21ogn
S < e—&/(zlog(n)) _ n—c2/2_

C

Zc~n1/4log1/2n] <e

,n'/?logn

2 2
< o=/ (2 og(n) _ ,—*/2
2|\ V| f<e "

Pr Z x(v)| > ¢-nt/* log'/?n| < exp{—c
ver\V’

We have shown that with high probability, the discrepancy of our labeling is O(n'/41og/? n)
for 7 NV’ and O(n*/*log'/? n) for =\ V', so we conclude that the total discrepancy of m is
O(n*/*1og'/? n), completing the proof of Proposition 16. <

Extending to hereditary discrepancy. Let A be the vertex incidence matrix of a path
system S = (V,II) on n nodes, and let Ay be the submatrix of A obtained by taking all of
its rows but only a subset Y of its columns. Then there exists a subset Vy C V' of the nodes
in V' such that Ay is the vertex incidence matrix of the path system S[Vy| (path system
S induced on Vy). Moreover, if path system S is consistent, then S[Vy] is also consistent.
Then we may apply our explicit vertex discrepancy upper bound to S[Vy]. We conclude that
the hereditary vertex discrepancy of S is O(n'/* log!/? n).

3.3 Edge Discrepancy Upper Bound — Explicit Coloring

By Theorem 5, the edge discrepancy of the unique shortest paths of a (possibly directed)
graph on m edges is O(m'/*). However, in the case of undirected graphs and DAGs, we
can improve the edge discrepancy to O(n'/4 logl/ 2 n), where n is the number of vertices
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in the graph, by modifying the explicit construction for vertex discrepancy in Section 3.2.

Our proof strategy will follow the same framework as the explicit construction for vertex
discrepancy, but with some added complications in the construction and analysis.

We first introduce some new notation that will be useful in this section. Given a path =
and nodes u,v € 7, we say that u <, v if u occurs before v on path 7. Additionally, given a
path system S = (V,II), we define the edge set E C V x V of the path system as the set of
all pairs of nodes u,v € V that appear consecutively in some path in II. Likewise, for any
path 7 over the vertex set V, we define the edge set of m, E(7) C 7 x 7, as the set of all
pairs of nodes u,v € 7 such that u,v appear consecutively in 7 and (u,v) € E. Note that if

path system S corresponds to paths in a graph G, then E will be precisely the edge set of G.

Recall that we wish to construct an edge labeling x : E — {—1,1} so that

xX(I) = max| > x(e)

mell
ecE(m)

is minimized. We will upper bound the discrepancy x(II) of consistent path systems such
that |V| =n and |[II] = poly(n). This will immediately imply an upper bound on the edge
discrepancy of unique shortest paths in undirected graphs.

» Theorem 17. For all consistent path systems S = (V,1II) where |V| = n and |II| = poly(n)
with edge set E, there exists a labeling x : E — {—1,1} such that

x(I1) = O(n'/*log? n).

Consequently, every n-vertex undirected graph has hereditary edge discrepancy
O(n'/*1og'/? n).

Let S = (V,II) be a consistent path system with |V| =n and |II| = poly(n). As the first
step towards constructing our labeling x : E — {—1,1}, we will construct a collection of
paths II' on V that will have a useful covering property over the paths in II.

3.3.1 Constructing path cover IT’

Initially, we let II' = (). We define V’ to be the set of all nodes in V' belonging to a path in
Ir, ie.,

V= U 7.

' ell’

While there exists a path 7 € II such that |7 \ V’| > n!/2, find a (possibly non-contiguous)

1/2 that is vertex-disjoint from all paths in II'. Specifically, let 7’ C 7

subpath of 7 of length n
be a (possibly non-contiguous) subpath of 7 containing exactly the first n/? nodes in 7\ V.
Add path 7" to path cover II' and update V’. Repeatedly add paths to path cover II’ in this
manner until |7\ V’| < n'/? for all 7 € T1.

Note that our path cover II' is very similar to the path cover used in the explicit vertex
discrepancy upper bound. Indeed, path cover II' inherits all properties of the path cover
defined in Subsection 3.2. The key difference here is that we require subpaths 7’ C 7 in IT’
to contain the first n'/2

cover, which we call the No Repeats Property.

nodes in 7 \ V’. This will imply an additional property of our path

» Proposition 18. Path cover I’ satisfies all properties of Proposition 14, as well as the
following additional properties:

27:13
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Figure 3 In this figure, paths 71,72 € I’ are intersecting a path 7 € II. This arrangement of
paths is forbidden by the No Repeats Property of Proposition 18.

(Edge Covering Property). For all w € T1, the number of edges in m that are not incident
to any node lying in a path in path cover I is at most n*/2. Formally, let V' = Uprcmpn’.
For all m € 11,

{(u,v) € E(n) |ug V' and v & V'}| < n'/?,

(No Repeats Property). For all paths m € I, 71,75 € I, and nodes v1, va, v3,v4 € T such
that v1,vs € T and va,vy € o, the following ordering of the vertices in 11 is impossible:

V1 <g V2 <z V3 <gx U4,
where © <, y indicates that node x occurs in m before node y.

Proof. All properties from Proposition 14 follow from an identical argument as in the original
proof. The Edge Covering Property follows immediately from the Covering Property of
Proposition 14. What remains is to prove the No Repeats Property.

Suppose for the sake of contradiction that there exist paths = € II, 71, my € II’, and nodes
v1, V2,3, Vg € ™ such that vy,v3 € w1 and vy, v4 € o, where v1 <; Vo < v3 <, v4. We will
assume that path 7; was added to I’ before path my (the case where mo was added to II'
first is symmetric). By the construction of II', path w1 € II' is a (possibly non-contiguous)
subpath of a path 7} € II that it was constructed from. Additionally, by the consistency of
the path system S, the intersection m N 7 is a contiguous subpath of w. Then ve € w N 7Y,
and specifically, ve € 7.

We assumed that vs € 7, which implies that vy € 71, since paths in II' are pairwise
vertex-disjoint. Since path m; was added to II' before path o, this means that when 7; was
added to I, node vy did not belong to any path in II' (i.e., vy was not in V’). Recall that in
our construction of II'; we constructed subpath 7; C 77 so that it contained exactly the first
n'/2 nodes in 7} \ V'. However, vy ¢ 71, but v3 € 71, and vy comes before vz in 7}. This
contradicts our construction of path 71 in path cover IT'. |

3.3.2 Constructing labeling x

Let 7" € I’ be a path of length & in our path cover. Let ey, ..., e, € E(n’) be the edges in 7/
listed in the order they appear in 7’. Note that since 7’ is a possibly non-contiguous subpath
of a path in II, pairs of nodes u,v € V that appear consecutively in m do not necessarily
correspond to edges in edge set F.

We will label the edges in E(n’) using the following random process. With probability
1/2 we define x : E(7') — {—1,1} to be

x(ei) =

)

1 ¢=0 mod2andie€llk
-1 i=1 mod2andie€]ll,k
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and with probability 1/2 we define x : E(x') — {—1,1} to be

-1 ¢=0 mod2andie€]llk
x(ei) = : . :
1 i=1 mod2andie€]l,k

Note that the labels of consecutive edges e;, ;11 in 7’ alternate between 1 and —1, with
edge e; taking labels 1 and —1 with equal probability.

Since the paths in path cover II' are pairwise vertex-disjoint, the labeling y is well-
defined over E' := U e E(n'). We take a random labeling for all edges in £\ F’, i.e., we
independently label each edge e € E'\ E’ with x(e) = —1 with probability 1/2 and x(e) =1
with probability 1/2.

3.3.3 Bounding the discrepancy ¢

Fix a path 7 := 7n[s, t] € II. We will show that

Z x(e)| = O(n'/*10g'/? n)

ecE(m)

with high probability. This will complete the proof of Lemma 17 since |II| = poly(n). The
proof of the following proposition follows from an argument identical to Proposition 15 and
hence omitted.

» Proposition 19. For each path 7’ in path cover I,

> x(e)e{-1,0,1}

ecE(m)NE(x’)

If |[E(m) N E(r")| =0 mod 2, then - c p(rnp(x) X(€) = 0. Moreover,

Pr Z x(e)=—-1| =Pr Z x(e) =1

e€E(m)NE(n’) e€ E(m)NE(r’)

We are now ready to bound the edge discrepancy of w. Define

V= U 7' and E = U E(r").

eIl ' eIl

We partition the edges of the path 7 into three sources of discrepancy that we will bound
separately. Specifically, we split E(w) C 7w X 7 into the following sets Ey, Es, E3:

E,:=E(m)NFE,

Ey, :=E(mn(V\V) x(V\V"), and

E3 = E(ﬂ') \ (El U EQ)
Sets E4 and Es roughly correspond to the two sources of discrepancy considered in the vertex
discrepancy upper bound, while set E3 corresponds to a new source of discrepancy that will
require new arguments to bound. We begin with set Ej.

» Proposition 20 (Discrepancy of E1). With high probability, |3 .c 5, x(€)| = O(n**log'/? n).

27:15
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Proof. The proposition follow from an argument similar to Proposition 16. For each path
7w’ € I, let X+ be the random variable defined as

X = Z x(e).

e€E(m)NE(w")

We can restate the discrepancy of F; as

Z x(e) Z X,

ecEq ' ell’

By Proposition 19, if |E(r) N E(x’)| =0 mod 2, then X,» = 0, so without any loss of
generality, we may assume that |E(7) N E(n’)] is odd for all #’ € II'. In this case,

Pr [X.,r/ = 71} =Pr [X,T/ = 1] = 1/2,

implying that E[}_, ;;, Xxv] = 0. Then by Proposition 18 and the Chernoff bound, it follows
that for any constant ¢ > 1,

Prl > X

' ell’
We now bound the discrepancy of Fj.

2nl/2logn
T < 6—02/2‘10gn < n—c2/2. <

2c~n1/410g1/2n <e

» Proposition 21 (Discrepancy of Es). With high probability, ’Zee& X(e)| = O(n'/* log!/? n).
Proof. The proposition follow from an argument similar to Proposition 16. Note that by the
Edge Covering Property of the path cover (Proposition 18),

|Ba| = [{(u,0) € E(m) | u,0 g V'Y < n'/2

Moreover, the edges in E \ E’ are labeled independently at random, so we may apply a
Chernoff bound to argue that for any constant ¢ > 1,

’VL1/2 og n
Pr Z x(e)| > ¢ nl/4 10g1/2 n] < e—c2 Z‘Ej < e—c2/2.1ogn < n—c2/2_
e€FEs
completing the proof. <

Finally, we upper bound the discrepancy of Fs.

» Proposition 22 (Discrepancy of E3). With high probability, |ZeeE3 X(e)| = O(n'/* log!/? n).

Proof. Let
ki=|{r" ell'|mnn’ #0}

denote the number of paths in our path cover that intersect m. We define a function
f: Zso — Z>¢ such that f(¢) equals the largest possible value of |E3| when ¢ = k. Note
that f is well-defined since 0 < |E5| < |E|. We will prove that f(¢) < 4¢, by recursively
decomposing path .
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When ¢ = 1, there is only one path 7’ € I’ that intersects . Then the only edges in F3
are of the form

E(m) (V! x (VAV)) U((VAV) x V) = E(m) 0 ((x" x (VA7) U ((V\7) x7)).

By the Consistency Property of Proposition 18, path 7’ can intersect m and then split apart
at most once. Then

fQA) =|BEs[ = [E(m) N ((«" x (VA7) U((V\7) x )| < 2.

When ¢ > 1, we will split our analysis into the two cases:
Case 1. There exists paths 77,75 € II' and nodes v1, v, v3 € 7 such that vy, v3 € 7] and
vg € mh and vy <; v2 <p v3. In this case, we can assume without any loss of generality
that w[v1, vs] N 7] = {v1,v3} (e.g., by choosing vy, v3 so that this equality holds). Let z
be the node immediately following vy in 7, and let y be the node immediately preceding
vz in 7. Recall that s is the first node of 7 and t is the last node of 7. It will be useful
for the analysis to split 7 into three subpaths:

= m[s,v1] o[z, y] o w[vs, 1],
where o denotes the concatenation operation. Let
b1 = {7 €T | mlw,y] N’ # 0} and gy = [{« € IV | (x5, v1] o wlus, ) (7' D},

We claim that ¢1 < ¢, ¢p2 < ¢, and @1 + ¢2 = ¢. We will use these facts to establish a
recurrence relation for f. By our assumption that w[vy,vs] N7} = {v1,v3}, it follows that
mlx,y] N7 =0, and so ¢1 < ¢. Likewise, by the No Repeats Property of Proposition 18,

(wls,v1] o 7lvs, t]) N = 0,

S0 ¢ < ¢. Finally, observe that more generally, if there exists a path n’ € II' such
that #’ N[z, y] # 0 and 7' N (xw[s, v1] o w[vs,t]) # O, then the No Repeats Property of
Proposition 18 is violated. We conclude that ¢ + ¢2 = ¢.

Now |Es5| can be upper bounded by the following inequality:

|E3| S |E3 n E(T([.’B,y])l + |E3 n E(?T[S,’Ul] o 7T[U3,t])| + 2.

Then using the observations about ¢1, ¢2, and ¢ in the previous paragraph, we obtain
the following recurrence for f:

F(@) < f(01) + f(92) +2=f(i) + f(¢—1) +2,

where 0 < 7 < ¢.

Case 2. There exists a path ' € II' and vy,vy € 7 such that 7 N 7' = 7w[vy,va] N V.
Let x be the node immediately preceding v; in 7, and let y be the node immediately
following vy in w. Again, we split 7 into three subpaths:

7[s,t] = (s, z] o vy, va] o Ty, t].
Let

¢1:= {7 e ' | wlv,va]N7' # 0} and ¢g := {7’ € ' | (w[s,z] o w[y, t]) N7’ # O}

27:17
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By our assumption in Case 2, it follows that ¢; = 1 and ¢2 = ¢ — 1. Since |Es5| can be
upper bounded by the inequality

|Es| < |Es N E(w[vy, va])| + [Es N E(ns, x] o wly, t])| + 2,
we immediately obtain the recurrence

(@) < f(p1) + f(p2) +2 < F(1) + flp— 1) + 2.

Taking our results from Case 1 and Case 2 together, we obtain the recurrence relation

1) < max{f(i)+ f(¢—1)+2, fA)+ fl¢—1)+2} ¢>land1<i<¢o
=2 b =1

Applying this recurrence < ¢ times, we find that

f(@) <9 f(1) +2¢ < 49.

Finally, since k < [II'| < n'/? and we defined f so that f(k) equals the largest possible value
of |E3|, we conclude that

|E3| < f(k) < f(n'/?) = O(n'/?).

Since the edges in E3 C E\ E’ are labeled independently at random, we may apply a Chernoff
bound as in Proposition 21 to argue that x(E3) = O(n'/*1log'/? n) with high probability. <

We have shown that with high probability, the discrepancy of our edge labeling is
O(n1/4 logl/2 n) for By, Eo, and E3, so we conclude that the total discrepancy of 7 is
O(n'/* logl/ 2 n). A straightforward extension of this argument implies identical bounds for
hereditary discrepancy. We defer this proof to the full version of our paper [9].

4 Conclusion and Open Problems

This paper reported new bounds on the hereditary discrepancy of set systems of unique
shortest paths in graphs. An open problem is to improve our edge discrepancy upper
bound in directed graphs. Standard techniques in discrepancy theory imply an upper bound
of min{O(m'/4), 0(DY/?)} for this problem, leaving a gap with our Q(n'/4/\/logn) lower
bound when m = w(n). Unfortunately, we were not able to extend our low-discrepancy
edge and vertex coloring arguments for undirected graphs to the directed setting, due to the
pathological example in Figure 4.

@ @ @ o>
L ' @

Figure 4 An example in directed graphs that demonstrates how coloring unique shortest paths
with alternating colors can fail to imply low discrepancy.
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