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Abstract
Given a graph G = (V, E), a set T ⊆ V , and an integer b, the Steiner Tree problem asks whether
G has a connected subgraph H with at most b vertices that spans all of T . This work presents a
3k · nO(1) time one-sided Monte-Carlo algorithm for solving Steiner Tree when additionally a
clique-expression of width k is provided. Known lower bounds for less expressive parameters imply
that this dependence on the clique-width of G is optimal assuming the Strong Exponential-Time
Hypothesis (SETH). Indeed our work establishes that the parameter dependence of Steiner Tree
is the same for any graph parameter between cutwidth and clique-width, assuming SETH.

Our work contributes to the program of determining the exact parameterized complexity of
fundamental hard problems relative to structural graph parameters such as treewidth, which was
initiated by Lokshtanov et al. [SODA 2011 & TALG 2018] and which by now has seen a plethora of
results. Since the cut-and-count framework of Cygan et al. [FOCS 2011 & TALG 2022], connectivity
problems have played a key role in this program as they pose many challenges for developing tight
upper and lower bounds. Recently, Hegerfeld and Kratsch [ESA 2023] gave the first application of
the cut-and-count technique to problems parameterized by clique-width and obtained tight bounds
for Connected Dominating Set and Connected Vertex Cover, leaving open the complexity
of other benchmark connectivity problems such as Steiner Tree and Feedback Vertex Set.

Our algorithm for Steiner Tree does not follow the cut-and-count technique and instead works
with the connectivity patterns of partial solutions. As a first technical contribution we identify a
special family of so-called complete patterns that has strong (existential) representation properties,
and using these at least one solution will be preserved. Furthermore, there is a family of 3k basis
patterns that (parity) represents the complete patterns, i.e., it has the same number of solutions
modulo two. Our main technical contribution, a new technique called “isolating a representative,”
allows us to leverage both forms of representation (existential and parity). Both complete patterns
and isolation of a representative will likely be applicable to other (connectivity) problems.
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1 Introduction

This work presents a 3k ·nO(1) time one-sided Monte-Carlo algorithm for Steiner Tree[cw],
i.e., Steiner Tree parameterized by clique-width.1 Under the Strong Exponential-Time
Hypothesis (SETH)2 this dependence on the clique-width is optimal, i.e., time (3 − ε)k · nO(1)

1 Given a graph G = (V, E), a set T ⊆ V of terminals, a number b, and a k-clique-expression of G, with k

being the parameter, is there a connected subgraph H of G with at most b vertices that spans all of T ?
2 SETH posits that for each c < 2 there is q ∈ N such that q-CNF SAT cannot be solved in time O(cn).
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is known to be impossible [15]. Our algorithm relies on a new technique, called isolating a
representative, that allows it to employ both counting modulo two and reduction to a specific
smaller family of representative partial solutions. Implicitly, it thus works with a reduced
compatibility matrix of GF (2)-rank 3k, rather than the full matrix of GF (2)-rank 4k, which
is key for obtaining the claimed tight running time.

Our work fits into the program of determining the exact complexity of parameterized
problems (modulo SETH), especially relative to width parameters like treewidth, which was
initiated by Lokshtanov et al. [35, 36]. Since their work, there has been a plethora of such tight
bounds relative to treewidth, see, e.g., [7, 13, 12, 14, 40, 26, 37, 41, 18, 22, 32, 21], but also
relative to other parameters such as cutwidth [45, 30, 37, 44, 24, 4], modular treewidth [34, 28],
and clique-width [29, 13, 31, 34, 23, 27]. An important breakthrough was made by Cygan et
al. [15, 17], who were the first to obtain tight complexity bounds for connectivity problems
such as Steiner Tree, Connected Vertex Cover, and Feedback Vertex Set (all
parameterized by treewidth). In particular, their novel cut-and-count paradigm led to the
surprising result that many of these problems admit O∗(ctw) time (randomized) dynamic
programming (DP) algorithms. Intuitively, this is done by counting cuts of relaxed solutions
modulo two and relying on cancellation of disconnected solutions. Note that this makes such
algorithms inherently probabilistic as they rely on the isolation lemma to reduce, with high
probability, to the case that there is a unique solution of minimum weight. In this way, they
are able to reduce decision to counting modulo two.

The exact complexity of Steiner Tree[cw] is a natural and important question: Steiner
Tree is central among connectivity problems, which have been key benchmarks in the exact
complexity program. Clique-width is a well-studied graph parameter that, in particular, also
allows to capture structure present in dense graphs (unlike treewidth and cutwidth etc.). So
far, there are only two results regarding exact complexity (modulo SETH) of connectivity
problems relative to clique-width: Hegerfeld and Kratsch [27] showed tight bounds of
6k · nO(1) for Connected Vertex Cover[cw] and 5k · nO(1) for Connected Dominating
Set[cw], with both algorithms relying on cut-and-count. They explicitly leave open the
exact complexities of Steiner Tree[cw], Connected Odd Cycle Transversal[cw],
and Feedback Vertex Set[cw] as not being within range of their techniques. For the
latter, the algorithm for Feedback Vertex Set[tw] [17] counts edges outside the tentative
feedback vertex set to ensure that no cycles remain, but this seems infeasible relative to
clique-width (cf. [1, 2]). For the former two, it is mentioned that their approach via cut-and-
count would give time 4k · nO(1) for Steiner Tree[cw] and time 14k · nO(1) for Connected
Odd Cycle Transversal[cw]. However, matching lower bounds were not in sight, as
current lower bound methods rely on sufficiently large triangular submatrices inside certain
compatibility matrices that correspond to the problem, which were lacking. Indeed, it is this
gap between upper and lower bound that our technique allows us to close.

Our result and techniques. Formally, our result for Steiner Tree[cw] reads as follows.

▶ Theorem 1. There is a one-sided error Monte Carlo algorithm (no false positives) that,
given a graph G = (V, E), a set of terminals T ⊆ V , a number b, and a k-clique-expression of
G, takes time 3k · nO(1) and determines, with high probability, whether a connected subgraph
H of G of exactly b vertices exists that spans all of T .

Since the clique-width of any graph G is at most its pathwidth plus two (folklore), i.e.,
cw(G) ≤ pw(G)+2, the lower bound for Steiner Tree[pw] [15] rules out time (3−ε)k ·nO(1)

for Steiner Tree[cw]. In fact, recent work of Bojikian et al. [4] shows that the same lower
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Table 1 Tight complexity bounds (modulo SETH) for a selection of (connectivity) problems
relative to cutwidth, treewidth, modular-treewidth, and clique-width. (Table adapted from [27].)

cutwidth treewidth modular-tw clique-width

q-Coloring O∗(2k) O∗(qk) O∗(
(

q
⌊q/2⌋

)k) O∗((2q − 2)k)
Vertex Cover O∗(2k) O∗(2k) O∗(2k) O∗(2k)
Connected Vertex Cover O∗(2k) O∗(3k) O∗(5k) O∗(6k)
Connected Dominating Set O∗(3k) O∗(4k) O∗(4k) O∗(5k)
Steiner Tree O∗(3k) O∗(3k) O∗(3k) O∗(3k)
Feedback Vertex Set O∗(2k) O∗(3k) O∗(5k) ?
Connected Odd Cycle Transversal O∗(4k) O∗(4k) ? ?

References [4, 30, 45] [16, 17, 36] [28, 34] [27, 34]

bound already holds relative to cutwidth. Thus, for all parameters between cutwidth and
clique-width we get the same tight dependence of 3k · nO(1) for solving Steiner Tree, which
contrasts the growing dependence exhibited by most other problems (see Table 1).

Our algorithm does not apply cut-and-count, i.e., counting consistent cuts of relaxed
partial solutions. Instead, it works with the connectivity patterns of partial solutions for the
graphs that correspond to parts of the given k-clique-expression. Roughly, a connectivity
pattern indicates how the connected components of a partial solution connect the different
label classes, noting that several components may intersect the same label class. Of course,
the full set of possible patterns is much too large to be of use for us. Instead, we identify a
family of patterns, called complete patterns, that are representative for the class of all patterns
in a strong and constructive sense: For each pattern p there is a set Rp = {q1, . . . , qℓ} of
complete patterns that together completes into exactly the same set of solutions as p does.
Moreover, we identify a subfamily of 3k basis patterns such that for each complete pattern
there is a set of basis patterns that completes into the same number modulo two of solutions;
again, this necessitates randomization through the use of the isolation lemma to guarantee
existence of a unique minimum weight solution.

Now, if we simply combine these two means of representation, namely existential and
modulo two, we will not end up with a correct algorithm: Existential representation makes
no guarantee about the number, and hence the parity, of representations, even if there is a
unique global solution. This is where our technique of isolating a representative comes in:
When a step in the DP creates a partial solution whose connectivity pattern p is not complete,
then each representing complete pattern has its weight increased by a globally set random
weight (with four weights per DP step sufficing for our algorithm). In this way, a unique
minimum weight representation is isolated with high probability. Combined with the usual
setup of isolating a unique solution of minimum weight (and fast convolution), this allows
our algorithm to count modulo two the partial solutions relative to the 3k basis patterns and
arrive at the correct answer with high probability. Overall, we have two applications of the
isolation lemma, once for isolating a solution and once for isolating a representation of the
solution. This makes our algorithm inherently probabilistic, though with low error bounds,
and it may fail (like preceding work) by returning a false negative when either isolation fails.
Success chance (of this one-sided error algorithm) can be boosted in the usual way.

Our approach can be easily generalized to solve the vertex-weighted version of this
problem, when weights are bounded polynomially by the size of the graph, in the obvious
way with weights replacing cardinalities of partial solutions. This contrasts the status of the
edge-weighted version of this problem, which can be easily seen to be para-NP-hard when
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parameterized by clique-width: One can reduce any instance of the unweighted Steiner Tree
problem to the edge-weighted version of this problem on a complete graph (of clique-width 2)
by assigning weight one to existing edges, and some large weight to all other edges.

Related work. It has been observed that many results on exact parameterized complexity
are closely related to properties of certain matrices that are related to the problem in question
and the considered graph structure, and this was recently surveyed by Nederlof [39]: E.g.,
methods such as cut-and-count rely on low-rank factorizations of the corresponding matrices.
Since cut-and-count works modulo two, i.e., over GF (2), and since it can be verified that the
relevant matrix for Steiner Tree[cw] has GF (2)-rank (at least) 4k, this makes it unlikely
that a pure cut-and-count approach could succeed in getting time 3k · nO(1). (Indeed, it
was this fact combined with the intuition that current lower bound techniques would not
stretch further than the (3 − ε)k · nO(1), known already relative to pathwidth, that motivated
the present work.) This leaves open the possibility that the same time bound of 3k · nO(1)

could be obtained by working over a different field and/or studying the support rank3 of the
matrix (cf. [39]). So far, there are few results that obtain tight complexity bounds that do
not coincide with the rank of the corresponding matrices [30, 4].

Clique-width was introduced by Courcelle and Olariu [11] building on work of Courcelle
et al. [9] and it is similar to the NLC-width of Wanke [46]. Courcelle et al. [10] showed that
every graph problem expressible in MSO1 logic (monadic second order logic of graphs with
quantification over vertex sets but not edge sets) can be solved in linear time for graphs
with a given k-clique-expression, i.e., in time f(k) · n, though the function f depends on
the formula capturing the problem and may be non-elementary (cf. [33]), so likely far from
being tight. This tractability is not restricted to MSO1-expressible problems but many other
important problems are solvable in time f(cw) · nO(1) or at least time nf(cw) (see, e.g., [19]).
Nevertheless, some problems, like Disjoint Paths, are NP-complete on graphs of bounded
clique-width, while being solvable in time f(k) · nO(1) with respect to treewidth (cf. [25]).
The first single-exponential time algorithms for connectivity problems parameterized by
clique-width were given by Bergougnoux and Kanté [1, 2], e.g., Steiner Tree, Connected
Dominating Set, and Connected Vertex Cover each in time 2O(cw) · n, but building
on the rank-based approach these bounds are likely not tight.

The main drawback of clique-width lies in the difficulty of finding good expressions, i.e.,
good bounds on the clique-width of given graphs, in reasonable time. Fellows et al. [20]
showed that it is NP-complete to determine, on input of graph G and integer k, whether
the clique-width of G is at most k. It is open, however, whether for each fixed value of
k there is an efficient algorithm for recognizing graphs of clique-width at most k; such
algorithms are known only for k ≤ 3 [8]. In particular, there is neither an FPT-algorithm for
Clique-Width[k] known, nor is it known to be W[1]-hard with respect to k. The arguably
best way for using low clique-width is an exponential-ratio FPT-algorithm due to Seymour
and Oum [43] (made faster by Oum [42]). That being said, better algorithms for computing
clique-width are still possible, and there may be variants of clique-width that give similar
complexity (used as parameters) but are easier to compute.

Organization. In Section 3 we introduce connectivity patterns and provide related notation.
In Section 4 we show how to represent partial solutions through patterns. In Section 5 we
show that one can represent arbitrary patterns using complete patterns only. In Section 6 we

3 The smallest rank of any matrix with the same zero vs. non-zero pattern over any field, so this is only
interesting for fields other than GF (2).



N. Bojikian and S. Kratsch 29:5

show that one can count complete patterns by reducing them a smaller family of patterns.
In Section 7 we show how to count these families efficiently, providing the main algorithm of
this paper. Finally, we conclude with final thoughts in Section 8.

2 Preliminaries

In this work we deal with undirected graphs only. Given a natural number k, we denote by
[k] = {1, 2, . . . k} the set of natural numbers smaller than or equal to k, and [k]0 = [k] ∪ {0}.
A labeled graph is a graph G = (V, E) together with a labeling function lab: V → N. We
usually omit the function lab and assume that it is given implicitly when defining a labeled
graph G. We say that G is k-labeled, if it holds that lab(v) ≤ k for all v ∈ V . We define a
clique-expression µ as a well-formed expression that consists only of the following operations
on labeled graphs:

Create vertex i(v) for i ∈ N. This operation constructs a graph containing a single vertex
and assigns label i to this vertex.
The union operation G1 ⊎ G2. The constructed graph consists of the disjoint union of
the labeled graphs G1 and G2.
The relabel operation ρi→j(G) for i, j ∈ N. This operations changes the labels of all
vertices in G labeled i to the label j.
The join operation ηi,j(G) for i, j ∈ N, i ̸= j. The constructed graph results from G by
adding all edges between the vertices labeled i and the vertices labeled j, i.e.

ηi,j(G) = (V, E ∪ {{u, v} : lab(u) = i ∧ lab(v) = j}).

We denote the graph resulting from a clique-expression µ by Gµ, and the constructed labeling
function by labµ. We associate with a clique-expression µ a syntax tree Tµ (we omit the
symbol µ when clear from the context) in the natural way, and associate with each node
x ∈ V (T ) the corresponding operation. For x ∈ V (T ), the subtree rooted at x induces
a subexpression µx. We define Gx = Gµx , Vx = V (Gx), Ex = E(Gx) and labx = labµx .
Finally, we say that a clique-expression µ is a k-expression if Gx is a k-labeled graph for
all x ∈ V (T ). We define the clique-width of a graph G (denoted by cw(G)) as the smallest
value k such that there exists a k-expression µ with Gµ isomorphic to G. We can assume
without loss of generality, that any given k-expression defining a graph G = (V, E) uses at
most O(|V |) union operations, and at most O(|V |k2) unary operations [1, 11].

We define the Steiner Tree problem as follows: Given an undirected graph G = (V, E),
a terminal set T ⊆ V and some value b ∈ N, asked is whether there exists a set of vertices
S ⊆ V of size at most b, such that T ⊆ S and G[S] is connected. For k ∈ N, and f some
computable function, we denote by O∗(f(k)) the running time f(k) poly(n), where n is the
size of the input.

Let F be a field, and let S be some set. For a vector T ∈ FS , and some value x ∈ S, we
denote by T [x] the element of T indexed by x. In general, we will only deal with binary
vectors, i.e. F = GF(2). By 0S we denote the vector T with T [x] = 0 for all x ∈ S. We
omit the subscript S when clear from the context. For two sets S, T , let M ∈ FS×T be some
matrix, whose rows are indexed by S and columns by T . We denote by M [s, t] the element
of M indexed by s and t.

For some integer k, given sets S1, T1, . . . , Sk, Tk, let Mi ∈ FSi×Ti for each i ∈ [k].
We define the Kronecker product of M1, . . . Mk as the matrix M = M1 ⊗ · · · ⊗ Mk ∈
F(S1×···×Sk)×(T1×···×Tk), where for si ∈ Si and ti ∈ Ti for all i ∈ [k],

M [(s1, . . . , sk), (t1, . . . , tk)] =
∏

i∈[k]

Mi[si, ti].

It is well-known that rk(M1 ⊗ · · · ⊗ Mk) = rk(M1) · rk(M2) · · · · rk(Mk).

ICALP 2024
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Given two sets S, T , we denote by S△T the symmetric difference of S and T . It holds by
a simple counting argument that |S△T | ≡2 |S| + |T |. Given a finite set U , the power-set of
U (denoted by 2U ) is the set of all subsets of U . A partition is a family of pairwise disjoint
subsets of U that span all its elements.

A lattice is a partial order (L, ⪯) over a set L, such that any two elements have a greatest
lower bound (called meet), and a least upper bound (called join). We call two lattices
isomorphic, if the underlying orders are isomorphic.

Let f : U → V be a mapping between two sets U and V , and x /∈ U a new element. Let
i ∈ V . We define the extension f |x7→i : U ∪ {x} → V of f in the natural way. We also define
the disjoint union of two mappings defined over two disjoint sets in the natural way.

Let U, V be two sets, and f : Uk → V a mapping. Given sets S1, . . . Sk ⊆ U , we define

f(S1, . . . Sk) = {f(s1, . . . sk) : (s1, . . . sk) ∈ S1 × S2 × . . . Sk}.

For a set S ⊆ V we also define

f−1(S) = {(s1, . . . sk) ∈ S1 × S2 × . . . Sk : f(s1, . . . sk) ∈ S}.

An exception to this notation, is when we explicitly mention that f : U → V is a weight
function, and V ⊆ Z. In this case, for some set S ⊆ U we define f(S) =

∑
u∈S f(u), where

we compute the sum over Z.
Given a logical expression ρ, we denote by [ρ] the Iverson bracket of ρ. We refer the

reader to the full version [5] for formal definitions of all mentioned notation.

3 Connectivity patterns

3.1 Definition and terminology
Along this work, let U be some totally ordered ground set. In this section we define the
main structures we build this paper on, we call them patterns. A pattern, as we shall see,
represents the state of a partial solution, and carries enough information to extend it to a
solution over the whole graph.

▶ Definition 2. Let 0 be an element not in U . A pattern p is a subset of the power-set of
U ∪ {0}, such that there exists exactly one set of p containing the element 0. With P(U) we
denote the family of all patterns over U . We omit U when clear from the context. By Zp ∈ p

we denote the only set of p containing the element 0, and we call it the zero-set of p.
Given a pattern p ∈ P, we define label(p) ⊆ U as the set of all labels in U occurring in p,

and with singleton(p) ⊆ U the set of all labels in U appearing as singletons in p, i.e.

label(p) =
⋃
S∈p

S \ {0}, and singleton(p) =
{

u : {u} ∈ p ∧ u ̸= 0
}

.

▶ Definition 3. We define a more concise way to write patterns, that we use quite often
along this paper. For a pattern p = {{u1

1, . . . , u1
r1

}, . . . , {uℓ
1, . . . , uℓ

rℓ
}}, we write

p = [u1
1u1

2 . . . u1
r1

, . . . , uℓ
1 . . . uℓ

rℓ
],

where we use square brackets to enclose the pattern, we do not use any separator between the
elements of the same set, and separate different sets with comas. We also sometimes omit
the symbol 0 when it appears as a singleton.

When we use this notation, we assume that each element is represented by a single symbol.
Hence, such patterns admit a unique interpretation. For example, both [12] and [0, 12] denote
the pattern {{0}, {1, 2}}, while the pattern {{0, 10}} cannot be written in this concise way.
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Now we introduce pattern operations. These operations will allow us to extend families
of patterns over the syntax tree of a clique-expression to build larger solutions recursively.
We define these operations in a similar way to the operations on partitions defined in [3].

▶ Definition 4. Let p, q ∈ P. We define the following operations:

Join: r = p ⊔ q. Let ∼I= {(S, T ) : S ∈ p ∧ T ∈ q ∧ S ∩ T ≠ ∅} be a relation over p ∪ q,
and ∼T

I be its reflexive, transitive and symmetric closure. Let R be the equivalence
classes of ∼T

I , then r = {
⋃

S∈P
S : P ∈ R}.

Relabel: r = pi→j , for i, j ∈ U , where r results from p by replacing i with j in each set of p.
Union: r = p ⊕ q, where r = (p \ {Zp}) ∪ (q \ {Zq}) ∪ {Zp ∪ Zq}.

▶ Definition 5. For i, j ∈ U, i ̸= j, we define the operation □i,jp for p ∈ P as

□i,jp =
{

p : {i, j} ̸⊆ label(p),
p ⊔ [ij] : otherwise.

This combines all sets containing the labels i or j into one set, if both labels appear in p.

▶ Definition 6. Let p, q ∈ P. We say that p and q are consistent (denoted by p ∼ q), if for
r = p ⊔ q it holds that r = {Zr} contains the zero-set only, i.e. the join operation merges
all sets into one set only. We say that a pattern p dominates another pattern q (denoted by
p ≥ q), if it holds for all patterns r ∈ P that q ∼ r implies p ∼ r.

3.2 Characteristics of patterns
In the full version of this paper we introduce the notion of alternating walks between two
patterns. Using this notion, we provide a new characterization of the join operation, upon
which, we prove a multitude of properties of patterns. We use these properties to prove
domination and consistency results on manipulated and derived patterns. In particular, this
allows us to correctly reduce the states of a dynamic programming solution keeping the
transitions correct. We present these properties here and refer the reader to the full version
for a formal proof.

▶ Lemma 7. Let p, q, r ∈ P be arbitrary patterns, and i, j ∈ U two arbitrary labels, with
i ̸= j. Then all the following is true:
1. It holds that □i,jp ≥ p

2. If {i, j} ⊆ label(p), then p ⊔ [ij] ∼ q if and only if p ∼ q ⊕ [ij, i, j].
3. If singleton(p) \ label(q) ̸= ∅, then p ̸∼ q.
4. For S ∈ p, and u ∈ S, let S′ = S \ {u}, and p′ = (p \ {S}) ∪ {S′}. It holds that p ≥ p′.
5. For S ∈ p, S′ ⊆ S, and p′ = p ∪ {S′}, it holds that p ≥ p′.
6. If p ∼ q holds, then it must hold that label(p) = label(q) and singleton(p) = singleton(q).
7. Let q′ be the pattern that results from q by removing all labels in label(q) \ label(p) from

each set of q. Then p ∼ q if and only if p ∼ q′.

▶ Definition 8. Given a pattern p ∈ P and two different labels i, j ∈ U . We define the
operation p′ = pj↶i over patterns, where p′ results from p by removing the label i from all
sets, and then adding i to each set that contains the label j, i.e.

pj↶i =
⋃
S∈p
j /∈S

S \ {i} ∪
⋃
S∈p
j∈S

S ∪ {i}.

ICALP 2024
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▶ Lemma 9. For all p, q, r ∈ P the following two equivalences hold
1. It holds that p ⊔ q ∼ r if and only if p ∼ q ⊔ r.
2. For i, j ∈ U with i ̸= j, it holds that pi→j ∼ q if and only if p ∼ qj↶i.

▶ Lemma 10. Given two patterns p, q ∈ P(U). Let U ′ be a new label set disjoint from U and
ρ a one-to-one mapping from U to U ′. Let q′ be the pattern resulting from q by relabeling
u to ρ(u) for each u ∈ U . Then it holds for each pattern r ∈ P(U) that p ⊕ q ∼ r if and
only if p ∼ q′ ⊔ r′ for r′ ∈ P(U ∪ U ′) the pattern resulting from r by adding ρ(u) to each set
containing u for each u ∈ U .

4 Partial solutions as patterns

From now on, let (G, T, b) be the given instance of the Steiner Tree problem, for some
graph G = (V, E), a set of terminals T ⊆ V , and b ∈ N. Let n = |V | and m = |E|. Let µ

be a k-expression of G for some value k ∈ N. We fix U = [k]. Let T be the corresponding
syntax tree, and r its root. We also fix a value W ∈ N, and a weight function w : V → [W ].
Both will be chosen later. Let v0 ∈ T be an arbitrary but fixed terminal vertex. For a node
x ∈ V (T ), we define Tx = T ∩ Vx.

▶ Definition 11. Let x ∈ V (T ). We call a set S ⊆ Vx where Tx ⊆ S a partial solution. Each
partial solution defines a pattern p = px(S) over Gx as follows: Let C1, . . . Cℓ be the connected
components of Gx[S]. For i ∈ [ℓ], let Si = labx(Ci) be the set of all labels appearing in Ci.
If v0 /∈ S, we define p =

{
S1, . . . , Sℓ

}
∪

{
{0}

}
. Otherwise, assume that v0 ∈ Cℓ (otherwise

swap Cℓ and the component containing v0). We define p =
{

S1, . . . , Sℓ−1
}

∪
{

Sℓ ∪ {0}
}

.
That means the zero-set is defined by the component containing v0 if v0 ∈ S, or as a singleton
otherwise. We call px(S) the pattern corresponding to S in Gx. We denote by p(S) the
pattern pr(S) corresponding to a partial solution S in the whole graph G.

▶ Lemma 12. Given a set S ⊆ V such that T ⊆ S, it holds that S is a Steiner tree in G, if
and only if p(S) consists of one set only.

We refer the reader to the full version for a formal proof. Now we define families of partial
solutions that allow to build recursive formulas for a dynamic programming scheme over T .

▶ Definition 13. For x ∈ V (T ), b ∈ [b]0, c ∈ [n · W ]0, we define the family Sx [b, c] ⊆ P of
patterns corresponding to partial solutions of cardinality b and weight c over Gx as

Sx [b, c] = {p ∈ P : ∃S ⊆ Vx, where Tx ⊆ S ∧ px(S) = p ∧ |S| = b ∧ w(S) = c}.

From now on, we always assume that x ∈ V (T ), b ∈ [b]0, and c ∈ [n · W ]0. We skip
repeating this to avoid redundancy.

▶ Lemma 14. The families Sx can be built recursively over the nodes of T in a bottom-up
manner using the operations defined in Definition 4 and Definition 5.

Proof. We sketch the recursive definitions of Sx for different types of nodes x ∈ V (T ), and
refer to the full version for a complete proof of correctness.

For a create node µx = i(v) (a leaf of T ), let c = w(v). Let p = [0, i] if v ̸= v0, and
p = [0i] otherwise. Then we set Sx [1, c] = {p}. We set Sx [0, 0] to {[0]}, if v /∈ T , and to ∅
otherwise. For all other values of b and c, we set Sx [b, c] = ∅. We define Sx for the other
cases as follows:
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Join node µx = ηi,j(µx′ ), then Sx [b, c] = □i,j

(
Sx′ [b, c]

)
,

Relabel node µx = ρi→j(µx′ ), then Sx [b, c] =
(
Sx′ [b, c]

)
i→j

,
Union node µx = µx1 ⊎ µx2 , then Sx [b, c] =

⋃
b1+b2=b
c1+c2=c

(
Sx1 [b1, c1] ⊕ Sx2 [b2, c2]

)
.

◀

▶ Lemma 15. The graph G admits a Steiner tree of size b and weight c, if and only if there
exists a pattern p ∈ Sr

[
b, c

]
with p ∼ [0].

This lemma follows from Lemma 12 (see the full version for a proof). So far, we can
solve the Steiner Tree problem by defining a dynamic programming over T that computes
all families Sx

[
b, c

]
for all values of b and c. However, since there exist approximately 22k

different patterns over k labels, we seek to reduce the family of all patterns into a family of
representing patterns in a sense that allow us to apply the dynamic programming scheme
over the resulting families.

5 Pattern representation

Now we define a special family of patterns (called complete patterns), and show that we can
represent any family of patterns by a family of complete patterns only.

5.1 Representation and complete patterns
▶ Definition 16. Given two families S, R ⊆ P, we say that R represents S, if for each q ∈ P

the following holds: there exists a pattern p ∈ S such that p ∼ q if and only if there exists a
pattern p′ ∈ R such that p′ ∼ q. Given a family R ⊆ P, and a pattern p ∈ P, we say that R
represents p if R represents {p}.

Clearly, it holds that representation is an equivalence relation. In the full version, we define
the notion of representation-preserving operations, and show that the operations defined in
Definition 4 preserve representation. This allows to restrict a dynamic programming scheme
to representing families, preserving the correctness of the transitions.

▶ Definition 17. A pattern p ∈ P is complete, if label(p) = singleton(p), i.e. a pattern p

is complete, if each label of p appears as a singleton in p as well. We denote by PC(U) the
family of all complete patterns over U .

▶ Lemma 18. For all p, q ∈ PC the following holds: p ∼ q implies that label(p) = label(q).

We refer to the full version for a proof.

▶ Definition 19. Let p ∈ P. For i ∈ U , we define the operations fix(p, i) and forget(p, i) as

fix(p, i) = p ∪
{

{i}
}

,and forget(p, i) =
{

S \ {i} : S ∈ p
}

,

if i ∈ label(p) \ singleton(p). Otherwise, we define fix(p, j) = forget(p, j) = p. We say that
p′ = fix(p, i) results from p by fixing the label i, and p′′ = forget(p, i) results from p by
forgetting the label i. Given a pattern p ∈ P, we define inc(p) = label(p) \ singleton(p).

▶ Definition 20. Given a pattern p ∈ P. Let ℓ = | inc(p)|, and i1, . . . iℓ be the elements of
inc(p) in an increasing order. Let R0 = {p}, and Rj = forget(Rj−1, ij) ∪ fix(Rj−1, ij) for all
j ∈ [ℓ]. We define the family Rp = Rℓ and call it a complete representation of p.
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The following lemmas show that Rp represents p, which proves that any set of patterns
admits a representation of complete patterns only. We refer to the full version for proofs.

▶ Lemma 21. Let p ∈ P, and i ∈ U . It holds that {fix(p, i), forget(p, i)} represents p.

▶ Lemma 22. It holds for all p ∈ P that Rp ⊆ PC , |Rp| ≤ 2| inc(p)|, and Rp represents p.

▶ Corollary 23. Let S ⊆ P. Then the family R =
⋃

p∈S Rp ⊆ PC represents S.

▶ Observation 24. It holds that the family of complete patterns is closed under both relabel
operation i → j for all i, j ∈ U , and union operation ⊕. On the other hand, it holds for
i, j ∈ U, i ≠ j, R ⊆ PC , R′ = □i,jR and for each p ∈ R′ that inc(p) ∈ {∅, {i, j}}. If
inc(p) = {i, j}, then Rp contains at most four patterns, that result from p by fixing or
forgetting either labels independently.

5.2 Counting representations
▶ Definition 25. Let Op : Pk → P be a k-ary pattern operation. We define the operation
△

Op :
(
2P

)k → 2P over subsets of P as
△

Op(S1, . . . , Sk) = △
(p1,...,pk)∈
S1×···×Sk

{Op(p1, . . . , sk)}, for all

S1, . . . , Sk ⊆ P, and we call it the exclusive version of Op. We compare this operation to
the notion Op(S1, . . . , Sk) given by the union over all resulting patterns from the operation.

Given two sets of patterns S1, S2 ⊆ P, we define S1
△
⊔ S2, S1

△
⊕ S2, S1

i
△→j

and
△
□i,jS1 as the

exclusive version of join, union, relabel and □i,j of S1 (and S2) respectively.

The following lemma can be proven by a simple counting argument. We refer to the full
version for a formal proof.

▶ Lemma 26. Let Op : Pk → P be a k-ary pattern operation, and S1, . . . Sk ⊆ P. It holds
for q ∈ P, that

|{p ∈
△

Op(S1, . . . Sk) : p ∼ q}| ≡2 |{(p1, . . . pk) ∈ S1 × · · · × Sk : Op(p1, . . . pk) ∼ q}|

As we have already mentioned, for p ∈ PC , and p′ = □i,jp, it holds that either Rp′ = p′,
or Rp′ contains four patterns that result from p′ by either forgetting or fixing both labels i

and j independently. We can enumerate these patterns as follows:

▶ Definition 27. We define a new operation called actions Ac: P× [4] → P as follows: Given
p ∈ P, if p ∈ PC , we define Ac(p, ℓ) = p, for all ℓ ∈ [4]. For inc(p) = {i}, we define

Ac(p, 1) = fix(p, i),
Ac(p, 2) = forget(p, i).

We set Ac(p, 3) and Ac(p, 4) to undefined in this case. If inc(p) = {i, j} for i < j, we define
Ac(p, 1) = fix(fix(p, i), j),
Ac(p, 2) = forget(fix(p, i), j),
Ac(p, 3) = fix(forget(p, i), j),
Ac(p, 4) = forget(forget(p, i), j).

In all other cases we set Ac(p, ℓ) to be undefined for all ℓ ∈ [4].

Using this enumeration, we can assign to each action at a create or a join node in the
subtree of Tx a weight, which defines a different weight to each pattern in a complete pattern
representation of the patterns in Sx

[
b, c

]
.
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▶ Definition 28. For x ∈ V (T ) let π : V (Tx) → [4] be some mapping, such that π(x′) ∈ [2]
whenever x′ is a create node, and π(x′) = 1 whenever x′ is a union node or a relabel node.
We call π an action sequence. Let D ∈ N be some value that will be fixed later, and let
d : V (T ) × [4] → [D] be a weight function. We define the weight of π as

d(π) =
∑

x′∈V (Tx),
x′ is a join or create node

d
(
x′, π(x′)

)
.

Given a partial solution S ⊆ Vx where Tx ⊆ S, the action sequence π defines a pattern
pπ

S, that can be defined recursively over Tx, where for a create node i(v), let v be the
vertex introduced at this node. If v /∈ S, then we set pπ

S = [0]. Otherwise, we set pπ
S =

Ac(px({v}), π(x)). For a relabel or union node, pπ
S results by applying the corresponding

operation on the patterns resulting at the children of x in the natural way. For a join node
µx = ηi,j(µx′), let p′ = □i,jpπ′

S , where π′ is the restriction of π to the nodes in V (Tx′). We
set pπ

S = Ac(p′, π(x)). We say that π is an action sequence generating the pattern pπ
S from S

in Gx.

The proof of the following lemma follows by induction over T using transitivity of
representation. We refer the reader to the full version for more details.

▶ Lemma 29. Given a node x ∈ V (T ), and a partial solution S ⊆ Vx, where Tx ⊆ S. Let Πx

be the set of all action sequences at x. Let P S
x = {pπ

S : π ∈ Π}. Then P S
x represents px(S).

▶ Definition 30. For x ∈ V (T ), b ∈ [n], c ∈ [n · W ], d ∈ [|V (T )| · D], we define the families
Dx

[
b, c, d

]
as follows:

Create node i(v), let c = w(v). For ℓ ∈ [2], we set Dx [1, c, d(x, ℓ)] =
{

Ac
(
px({v}), ℓ

)}
,

and set Dx [0, 0, d(x, ℓ)] to {[0]} if v /∈ T , or to ∅ otherwise. For all other values of b, c

and d, we set Dx

[
b, c, d

]
= ∅.

Relabel node µx = ρi→j(µx′), then Dx

[
b, c, d

]
=

(
Dx′

[
b, c, d

] )
i

△→j
.

Union node µx = µx1 ⊎µx2 , then Dx

[
b, c, d

]
= △b1+b2=b

c1+c2=c

d1+d2=d

(
Dx1 [b1, c1, d1]

△
⊕Dx2 [b2, c2, d2]

)
.

Join node µx = ηi,j(µx′), we define the families D′
x

[
b, c, d

]
=

△
□i,j

(
Dx′

[
b, c, d

] )
. Now we

set Dx

[
b, c, d

]
= △

ℓ∈[4]

△
Ac

(
D′

x

[
b, c, d − d(x, ℓ)

]
, i

)
.

The following lemma shows that the families Dx correctly count action sequences. A
formal proof of the lemma and the corollary following it can be found in the full version.

▶ Lemma 31. For x ∈ V (T ), and all values b, c and d, it holds for p ∈ PC that p ∈ Dx

[
b, c, d

]
if and only if there exist odd many pairs (S, π) where S ⊆ Vx with Tx ⊆ S, |S| = b, w(S) = c

and π is an action sequence of weight d generating p from S in Gx.

▶ Corollary 32. If G does not admit a Steiner tree of size b, then it holds for all values
c ∈ [W · n], d ∈ [D · |V (T )|] that [0] /∈ Dr

[
b, c, d

]
.

5.3 Isolation Lemma
Now we fix W = (2 +

√
2)|V |, and D = 4(2 +

√
2)|V (T )|. We choose w ∈ [W ]V and

d ∈ [D]V (T )×[4] uniformly and independently at random. We use the isolation lemma to
show that, if a Steiner tree of size b exists, then there exist two positive integers c and d,
such that, with high probability, there exists a unique solution S of size b and weight c, and
a unique action sequence of weight d that generates the pattern [0] from S.
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▶ Definition 33. A function ω : U → Z isolates a set family F ⊆ 2U if there exists a unique
S′ ∈ F with ω(S′) = minS∈F ω(S).

▶ Lemma 34 ([38, 17]). Let F ⊆ 2U be a set family over a universe U with |F| > 0, and let
N > |U | be an integer. For each u ∈ U , choose a weight ω(u) ∈ {1, 2, . . . N} uniformly and
independently at random. Then it holds that P [ω isolates F ] ≥ 1 − |U |/N .

We use the following lemmas to show that, if a solution exists, then, with high probability,
there exists a unique minimum weight representation of a minimum weight solution. We
refer the reader to the full version for a formal proof.

▶ Lemma 35. If a Steiner tree of size b exists, let c be the smallest weight of such a tree.
Then there exists a unique Steiner tree of size b and weight c with probability at least 1− 1

2+
√

2 .

▶ Lemma 36. Let S be a Steiner tree in G, and π be a minimum weight action sequence
generating [0] from S in G. Then π is unique with probability at least 1 − 1

2+
√

2 .

▶ Lemma 37. If G admits a Steiner tree of size b, then with probability at least 1/2 it holds
that [0] ∈ Dr

[
b, c, d

]
for some values of c and d.

6 Parity-representation

Now we define a new kind of representation, called the parity-representation. This allows to
count complete patterns (modulo 2) that are consistent with a specific pattern.

▶ Definition 38. We define the family of CS-patterns PCS(U) ⊆ PC(U) as the family of
complete patterns containing only a zero-set and singletons, i.e.

PCS(U) =
{{

X ∪ {0}
}

∪
{

{u} : u ∈ Y
}

: X ⊆ Y ⊆ U
}

.

▶ Observation 39. For each ground set U it holds that |PCS(U)| = 3|U |.

▶ Observation 40. For p, q ∈ PCS and all i, j ∈ U , it holds that pi→j , p ⊕ q ∈ PCS.

▶ Definition 41. Given two sets of patterns D, C ⊆ P, we say that C parity-represents D,
if and only if for each q ∈ PC it holds

|{p ∈ C : p ∼ q}| ≡2 |{p ∈ D : p ∼ q}|.

For a set of patterns C ⊆ P and a single pattern p ∈ P, we say that C parity-represents p if
it holds that C parity-represents {p}.

▶ Observation 42. Parity-representation is an equivalence relation.

Now we show how to build a concrete parity-representation of an arbitrary complete
pattern using CS-patterns only. We refer the reader to the full version for formal proofs.

▶ Lemma 43. Given a pattern p ∈ PC \PCS. Let S ∈ p \ {Zp} be an inclusion-wise minimal
set, such that |S| > 1. Let A = AS

p be the family of patterns defined from p as follows
AS

p =
{

(p \ {Zp, S}) ∪ (Zp ∪ S′) : S′ ⊂ S
}

. Then A parity-represents of p.

▶ Lemma 44. Given a complete pattern p ∈ PC . Let S1, . . . Sr be the sets in p such that
Si ̸= Zp and |Si| ≥ 2 for each i ∈ [r]. Let A0 = {p}. For i ∈ [r], we define Ai = △q∈Ai−1

ASi
q .

Let Ap = Ar. Then it holds that Ap ⊆ PCS, and that it parity-represents p.
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▶ Corollary 45. For each family of complete patterns D ⊆ PC , there exists a family of
CS-patterns C ⊆ PCS that parity-represents D.

Similar to pattern representation, in the full version of this paper we define the notion of
parity-representation-preserving operations. We show that all defined operations (including
actions and symmetric difference) preserve parity-representation. This allows to restrict a
dynamic programming algorithm to a parity-representation of the underlying families.

Now we define families of partial solutions over PCS that parity-represent the families
Dx

[
b, c, d

]
. In the next section, we show that we can efficiently compute these families, and

hence, solve the decision version of the Steiner Tree problem with high probability.

▶ Definition 46. For p ∈ PC let Ap be the set defined in Lemma 44. We define the operator
Ac∗ : P × 4 → 2PCS as Ac∗(p, ℓ) = AAc(p,ℓ) if Ac(p, ℓ) ∈ PC or as undefined otherwise. We

denote the exclusive version of Ac∗ by
△

Ac∗.

▶ Definition 47. For x ∈ V (T ), b ∈ [n], c ∈ [n · W ], d ∈ [|V (T )| · D], we define the families
Cx

[
b, c, d

]
as follows: For a create, relabel or union nodes x, we define the families Cx in

an analogous way to Dx, where we replace each C with D in the definition. For a join node
µx = ηi,j(µx′), we define the families

C′
x

[
b, c, d

]
=

△
□i,j

(
Cx′

[
b, c, d

] )
,and set Cx

[
b, c, d

]
= △

ℓ∈[4]

△
Ac∗(

C′
x

[
b, c, d − d(x, ℓ)

]
, ℓ

)
.

In the full version, we show that Cx

[
b, c, d

]
parity-represents Dx

[
b, c, d

]
for all x ∈ V (T )

and all values b, c, d. The following corollary follows

▶ Corollary 48. It holds for all values b, c, d that [0] ∈ Cr

[
b, c, d

]
⇐⇒ [0] ∈ Dr

[
b, c, d

]
.

7 Algorithm

In this section, we define the final dynamic programming table that computes Cx

[
b, c, d

]
for

x ∈ V (T ) and all values b, c and d in time O∗(3k).

▶ Definition 49. For all x ∈ V (T ) and all values b ∈ [k]0, c ∈ [|V | ·W ]0 and d ∈ [|V (T )| ·D]0,
we define the vectors T = T

[
x, b, c, d

]
∈ {0, 1}PCS as follows:

Create node i(v). Let p = [0, i] if v ̸= v0, and p = [0i] otherwise. First we initialize
T [x, b, c, d] = 0 for all values b, c, d. Now we set T [x, 0, 0, 0][[0]] = [v /∈ T ], and for ℓ ∈ [2]
we set T [x, 1, w(v), d(x, ℓ)][Ac(p, ℓ)] = 1.
Relabel node µx = ρi→j(µx′), we define T

[
x, b, c, d

]
[p] =

∑
q∈PCS
qi→j=p

T
[
x′, b, c, d

]
[q].

Join node µx = ηi,j(µx′). For all values b, c, d, we define T ′[x, b, c, d
]

∈ {0, 1}P as

T ′[x, b, c, d
]
[p] =

∑
q∈PCS ,
□ijq=p

T
[
x′, b, c, d

]
[q],

for all patterns p ∈ P. Now for all p ∈ PCS we set

T
[
x, b, c, d

]
[p] =

∑
ℓ∈[4]

∑
q∈P,

p∈Ac∗(q,ℓ)

T ′ [
x, b, c, d − d(x, ℓ)

]
[q].

ICALP 2024



29:14 A Tight Monte-Carlo Algorithm for Steiner Tree Parameterized by Clique-Width

Union node µx = µx1 ⊎ µx2 . For all p ∈ PCS, we define

T
[
x, b, c, d

]
[p] =

∑
b1+b2=b
c1+c2=c

d1+d2=d

∑
p1,p2∈PCS
p1⊕p2=p

T [x1, b1, c1, d1][p1] · T [x2, b2, c2, d2][p2].

The following lemmas show the correctness of the algorithm (proof in the full version).

▶ Lemma 50. It holds that T
[
x, b, c, d

]
[p] =

[
p ∈ Cx

[
b, c, d

]]
for all x, b, c, d, and p ∈ PCS.

▶ Corollary 51. It holds for all b, c, d that T
[
r, b, c, d

]
[[0]] ≡2 1 ⇐⇒ [0] ∈ Dr

[
b, c, d

]
.

Although computing the tables T
[
x, b, c, d

]
for a union node x in the naive way yields a

running time polynomial in |PCS |2 which exceeds the bound we seek by far, we make use of
a result by Hegerfeld and Kratsch [27] to compute convolutions over lattices more efficiently.

▶ Definition 52. Given a lattice (L, ⪯), and two tables A, B : L → F for some field F, we
define the join-product (or ∨-product) A ⊗L B as follows: for each x ∈ L we define

A ⊗L B(x) =
∑

y,z∈L
y∨z=x

A(y) · B(z).

To avoid unnecessary notation, we state a modified, more restrictive version of the
mentioned result by Hegerfeld and Kratsch [27, Corollary A.10], and refer the reader to the
full version for an exact statement and background definitions.

▶ Corollary 53. Let (L, ⪯) be a finite lattice such that the join operation over L can be
computed in polynomial time. Let k be a natural number. Given two tables A, B : Lk → Z2,
the ∨-product A ⊗Lk B can be computed in time O∗(|L|k).

▶ Definition 54. We define a new ordering ⪯CS over PCS where p1 ⪯CS p2, if for each
i ∈ U it holds that i ∈ Zp1 if i ∈ Zp2 and i ∈ label(p1) if i ∈ label(p2).

▶ Observation 55. The join operation over the lattice (PCS , ⪯CS) is given by p ∨ q = r,
where Zr = Zp ∪ Zq and label(r) = label(p) ∪ label(q). This corresponds exactly to the union
operation over CS-patterns r = p ⊕ q. Hence, it holds for a union node that

T
[
x, b, c, d

]
=

∑
b1+b2=b
c1+c2=c

d1+d2=d

T [x′, b1, c1, d1] ⊗PCS
T [x′′, b2, c2, d2].

In the full version, we show that the lattice (PCS(U), ⪯CS) is isomorphic to the lattice
Lk, where L = ({1, 2, 3}, ≤) is defined in the natural way. Using Corollary 53, it follows that
T

[
x, b, c, d

]
for a union node x can be computed in time O∗(3k). The following lemma states

that this is indeed the case for all nodes x of T . We refer the reader to the full version for
formal proofs.

▶ Lemma 56. The families T
[
x, b, c, d

]
for all x ∈ V (T ) and all values b, c, d can be computed

in time O∗(3k).

Now we are ready to prove the main theorem of this work (Theorem 1).
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Proof (Theorem 1). The algorithm first computes all families T
[
x, b, c, d

]
for all x ∈ V (T )

and all values of b, c, d. The algorithm states that there exists a Steiner tree of size b, if and
only if there exist two values c, d with T

[
r, b, c, d

]
[[0]] = 1.

By Lemma 56, we can compute all families T
[
x, b, c, d

]
in time O∗(3k). By Lemma 50, it

holds for all values b, c, d that

T
[
r, b, c, d

]
[[0]] ≡2 1 ⇐⇒ [0] ∈ Dr

[
b, c, d

]
.

By Corollary 32 it holds that if no Steiner tree of size b exists, then the algorithm will always
return false. On the other hand if a Steiner tree of size b exists, by choosing W = (2+

√
2)|V |,

and D = 4(2 +
√

2)|V (T )|, and by choosing both function w ∈ [W ]V , and d ∈ [D]V (T )×[4]

uniformly and independently at random, it holds by Lemma 37 that the algorithm will
correctly decide the existence of such a tree with probability at least one half. ◀

8 Conclusion

We have presented a 3k · nO(1) time one-sided Monte-Carlo algorithm for Steiner Tree[cw].
Under the Strong Exponential-Time Hypothesis, lower bounds for Steiner Tree relative to
less expressive parameters [15, 4] rule out time (3 − ε)k · nO(1), and show that this parameter
dependence is optimal for all parameters between cutwidth and clique-width.

Rather than using cut-and-count, which is the go-to technique for connectivity problems,
our algorithm works with connectivity patterns. Two technical contributions, make this work:
The family of complete connectivity patterns has strong existential representation properties,
so that each connectivity pattern has an explicit existential replacement by complete patterns.
This avoids spending more time for getting the representative partial solutions (such as for
Gaussian elimination in the rank-based approach [3]). The second technical contribution, the
technique of isolating a representative, allows to combine this with working via a 3k-sized
family of basis patterns, that represents complete patterns modulo two. We expect that both
techniques will be of use for settling the complexity of other (connectivity) problems.

Very recently, the present authors announced a tight bound of 12k · nO(1) (modulo SETH)
for Connected Odd Cycle Transversal[cw] [6].
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