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Abstract
A class of graphs admits an adjacency labeling scheme of size b(n), if the vertices in each of its
n-vertex graphs can be assigned binary strings (called labels) of length b(n) so that the adjacency of
two vertices can be determined solely from their labels.

We give bounds on the size of adjacency labels for every family of monotone (i.e., subgraph-
closed) classes with a “well-behaved” growth function between 2Ω(n log n) and 2O(n2−δ) for any δ > 0.
Specifically, we show that for any function f : N → R satisfying log n ⩽ f(n) ⩽ n1−δ for any fixed
δ > 0, and some sub-multiplicativity condition, there are monotone graph classes with growth
2O(nf(n)) that do not admit adjacency labels of size at most f(n) log n. On the other hand, any such
class does admit adjacency labels of size O(f(n) log n). Surprisingly this bound is a Θ(log n) factor
away from the information-theoretic bound of Ω(f(n)). Our bounds are tight upto constant factors,
and the special case when f = log implies that the recently-refuted Implicit Graph Conjecture
[Hatami and Hatami, FOCS 2022] also fails within monotone classes.

We further show that the Implicit Graph Conjecture holds for all monotone small classes. In
other words, any monotone class with growth rate at most n! cn for some constant c > 0, admits
adjacency labels of information-theoretic order optimal size. In fact, we show a more general result
that is of independent interest: any monotone small class of graphs has bounded degeneracy. We
conjecture that the Implicit Graph Conjecture holds for all hereditary small classes.
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31:2 Tight Bounds on Adjacency Labels for Monotone Graph Classes

1 Introduction

A class of graphs is a set of graphs which is closed under isomorphism. For a class of graphs
X we denote by Xn the set of graphs in X with vertex set [n]. The function n 7→ |Xn| is
called the speed of X . A coding of graphs is a representation of graphs by words in the
binary alphabet {0, 1}. One of the main considerations with graph representations is their
succinctness; clearly, any representation of n-vertex graphs in a class X would require at
least ⌈log |Xn|⌉ bits for some graphs in Xn.

Another consideration is whether the representation is global or local. Standard graph
representations, such as adjacency matrix or adjacency lists, are examples of global repres-
entations, where a graph is stored in a single data structure that needs to be accessed in
order to query some information about the graph, e.g., adjacency between a pair of vertices.
By contrast, in local graph representations, the encoding of a graph is distributed over
its vertices in such a way that the queries can be answered by looking only into the local
information associated with the vertices involved in the query. In this work we are concerned
with local graph representations for adjacency queries, i.e., queries that given two vertices
answer whether they are adjacent or not.

Let X be a class of graphs and b : N → N be a function. A b(n)-bit adjacency labeling
scheme (or simply b(n)-bit labeling scheme) for X is a pair (encoder, decoder) of algorithms
where for any n-vertex graph G ∈ Xn the encoder assigns binary strings, called labels, of
length b(n) to the vertices of G such that the adjacency between any pair of vertices can
be inferred by the decoder only from their labels. We note that the decoder depends on
the class X , but not on the graph G. The function b(·) is the size of the labeling scheme.
Adjacency labeling schemes were introduced by Kannan, Naor, and Rudich [24, 25], and
independently by Muller [28] in the late 1980s and have been actively studied since then.
Adjacency labeling schemes are closely related to induced universal graphs, which we will
refer to simply as universal graphs. For a function u : N → N, a universal graph sequence
or simply universal graph of size u(n) is a sequence of graphs (Un)n∈N such that for every
n ∈ N the graph Un has at most u(n) vertices and every n-vertex graph in X is an induced
subgraph of Un. It was observed in [25] that for a class of graphs the existence of a b(n)-bit
labeling scheme is equivalent to the existence of a universal graph of size 2b(n).

The binary word, obtained by concatenating labels of the vertices of a graph G ∈ Xn

assigned by an adjacency labeling scheme, uniquely determines graph G. Thus, a b(n)-bit
labeling scheme cannot represent more than 2nb(n) graphs on n vertices, and therefore, if
X admits a b(n)-bit labeling scheme, then |Xn| ⩽ 2nb(n). This implies a lower bound of
log |Xn|

n on the size b(n) of any adjacency labeling scheme for X . A natural and important
question is: which classes admit an adjacency labeling scheme of a size that matches this
information-theoretic lower bound?

We say that a graph class X admits an implicit representation, if it admits an information-
theoretic order optimal adjacency labeling scheme, i.e., if X has a b(n)-bit labeling scheme,
where b(n) = O(log |Xn|/n). Equivalently, X admits an implicit representation if X has a
universal graph of size exp(O(log |Xn|/n)). For example, the class A of all graphs admits an
implicit representation, because

|An| = 2(n
2) = 2Θ(n2) and b(n) = O

(
log |An|

n

)
= O(n),

and one can easily design an O(n)-bit labeling scheme for A, e.g., by assigning to each vertex
of a graph an (n + ⌈log n⌉)-bit label consisting of the row in an adjacency matrix of the graph
corresponding to the vertex and the index of that row; in fact, as we discuss below, the class
of all graphs admits an asymptotically optimal (1 + o(1))n/2-bit labeling scheme [3].
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However, not every class admits an implicit representation. The following example is due
to Muller [28] (see also [32]). Let Y be the class of graphs in which the number of edges does
not exceed the number of vertices. It is easy to estimate that |Yn| = 2O(n log n). To show that
this class does not admit an implicit representation, consider an arbitrary n-vertex graph
G. Obviously, G does not necessarily belong to Y, but after adding n2 − n isolated vertices
to G, we obtain a graph H on N = n2 vertices that belongs to Y. Now, if an O(log n)-bit
labeling scheme for Y existed, then the O(log N)-bit adjacency labels for H could be used as
O(log n)-bit adjacency labels for G. Since, G was chosen arbitrarily, this is in contradiction
with the lower bound of log |An|

n = Ω(n) on the size of any labeling scheme for the class A of
all graphs.

The crucial property used in the above example is that by adding isolated vertices to a
graph not in Y , one can obtain a graph in Y . Using more familiar terminology, one would say
that class Y is not hereditary, i.e., it is not closed under vertex removal or, equivalently, under
taking induced subgraphs. Many natural graph classes (e.g., forests, planar graphs, bipartite
graphs, geometric intersection graphs) are hereditary. It turns out that finding a hereditary
graph class that does not admit an implicit representation is a non-trivial question. The first
instance of this question was asked by Kannan, Naor, and Rudich [24] for factorial classes
(i.e., graph classes X with the speed |Xn| = 2O(n log n)), which was later stated by Spinrad [32]
in the form of a conjecture, that became known as the Implicit Graph Conjecture.

(IGC ): Any hereditary graph class of at most factorial speed admits an O(log n)-bit labeling
scheme.

This question remained open for over 30 years until a recent breakthrough by Hatami
and Hatami [23]. They showed that, for any δ > 0, there exists a hereditary factorial class
that does not admit a labeling scheme of size n1/2−δ, which is very far from the information-
theoretic lower bound of Ω(log n). This result leaves wide open the question of characterizing
factorial hereditary graph classes that admit an implicit representation (see e.g. [22] for more
discussion).

Factorial hereditary classes form an important family, as many classes of theoretical or
practical interest are factorial (e.g., forests, planar graphs, disk graphs, graphs of bounded
twin-width). However, as was noted by Spinrad [32], there is nothing that prevents one from
considering implicit representability of other hereditary graph classes. Spinrad [32] raised
this as the Generalized Implicit Graph Question, which we restate using the terminology of
our paper as follows.

▶ Question 1 ([32]). Which hereditary graph classes admit implicit representations?

The answer to this question is known for classes with |Xn| = 2Ω(n2), and for subfactorial
graph classes, i.e., classes X with |Xn| = 2o(n log n). Indeed, for the latter classes, it is known
that they have at most exponential speed, i.e., |Xn| = 2O(n) [2, 31], and also admit O(1)-bit
labeling schemes [30]. For the former classes, the O(n)-bit labeling scheme mentioned above
for the class A of all graphs is an order optimal labeling scheme. In fact, in this regime,
information-theoretic asymptotically optimal (up to the second-order term) labeling schemes
are available. For the class of all graphs, such results (in the language of universal graphs) were
available since 1965 [27, 6, 3]. For proper hereditary graph classes X with the speed 2Ω(n2), by
the Alekseev–Bollobás–Thomason theorem [1, 9], their speed is |Xn| = 2(1−1/k(X ))n2/2+o(n2),
where k(X ) is an integer greater than 1. Recently, Bonamy, Esperet, Groenland, and Scott
showed [10] that all such classes have asymptotically optimal adjacency labeling schemes of
size (1 − 1/k(X ))n/2 + o(n).

ICALP 2024



31:4 Tight Bounds on Adjacency Labels for Monotone Graph Classes

For the classes in the intermediate range, i.e., the classes with the speed between 2Ω(n log n)

and 2o(n2) the picture is much less understood (see Figure 1). Most known information
is concentrated on the lower extreme of the range, i.e., around factorial speed, which was
promoted by the Implicit Graph Conjecture. Factorial graph classes from certain families
are known to admit implicit representations: proper minor-closed graph classes [20], graph
classes of bounded degeneracy (equivalently, of bounded arboricity) [24], clique-width [15, 32]
(see also [7]), and twin-width [13] all admit implicit representations. The only lower bound
witnessing (non-constructively) factorial classes1 that do not admit an implicit representation
is the above-mentioned result by Hatami and Hatami [23]. A notable family of hereditary
graph classes where Question 1 remains open is the small graph classes, i.e., classes X with
|Xn| ⩽ n! cn for some constant c. These classes encompass only the bottom part of the
factorial layer and include proper minor-closed classes [8, 29], and more generally, classes of
bounded twin-width [13]. However, it is still unknown if all such classes admit an implicit
representation (see [12] for more details on implicit representation of small classes). Alon
showed [4] that every hereditary graph class X with |Xn| = 2o(n2) admits an n1−δ-bit labeling
scheme for some δ > 0.

1.1 Our contribution
In this paper, we study Question 1 for monotone graph classes, i.e., graph classes that are
closed under taking subgraphs. Monotone graph classes form a subfamily of hereditary graph
classes. Many interesting and natural classes are monotone, for example classes of bounded
chromatic number/index, bounded clique number, bounded genus, triangle free, and so on.
Together with some previous results mentioned in the introduction, the contribution of this
paper is to give a near complete resolution of Question 1 for monotone classes.

The degeneracy of a graph G is the minimum d such that every subgraph of G has a
vertex of degree at most d. We say that a class of graphs X has bounded degeneracy, if there
exists a constant d such that the degeneracy of every graph G ∈ X is at most d; otherwise,
we say that X has unbounded degeneracy. Our first main result shows that degeneracy is
bounded for monotone small classes.

▶ Theorem 2. Let X be a monotone small class. Then, X has bounded degeneracy.

Theorem 2 has wider reaching implications than just labeling schemes, and is of independ-
ent interest. In the context of Question 1, we obtain the following result from Theorem 2
and a classical labeling scheme for classes of bounded degeneracy [24] (see also Lemma 14).

▶ Theorem 3. Any monotone small class admits an implicit representation.

This answers Question 1 from [12] for monotone graph classes.
We now turn to monotone classes that are not small. Our next result shows that any

monotone class with non-decreasing speed admits a labeling scheme of size at most O(log n)
away from the information-theoretic lower bound.

▶ Proposition 4. Let f : R⩾0 → R⩾0 be a non-decreasing function. Then, any monotone
class of graphs X with speed |Xn| = 2O(nf(n)) admits an adjacency labeling scheme of size
O(f(n) log n).

1 This lower bound is sufficiently large to rule out the existence of implicit representations even for
hereditary classes of size 2Θ(n3/2−δ), for any fixed 0 < δ < 1/2.
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Hereditary ClassesSpeed |Xn|

Sub-Factorial

2o(n log n)

✓

[30]

Small

2Θ(n) · n!

?

Bounded
Twin-Width
✓[13]

Factorial

2Θ(n log n) LB: n1/2−δ [23]

Super-Factorial

2o(n2) UB: n1−δ [4]

Dense

2Θ(n2)

✓

[10]
Monotone

✗

LB/UB: log |Xn|
n · log n

[Theorem 5 & Proposition 4]

✗

LB/UB: log2 n

[Corollary 6]

✓ Theorem 3

Bounded
Degeneracy

✓ [25]

Minor-Closed
[20]

Figure 1 A ✓ indicates that all classes of the given type have an implicit representation, a ✗

shows that they do not, and a ? signals that the question is open. A ✓ is inherited by every
sub-region, a ✗ is inherited to the left of the marked region, and a ? only holds in that region. The
upper and lower bounds (UB and LB respectively) are stated up to constants which may depend
on the class. The dashed extension of the bounded degeneracy region illustrates its containment
of monotone small classes (Theorem 3).

This upper bound is an easy consequence of an estimation of the number of edges in
graphs from monotone classes combined with a standard labeling scheme for k-degenerate
graphs [24]. Our second main result shows that this upper bound is attained by some
monotone classes. Before stating the result formally we must briefly introduce a family
of non-decreasing functions we call “decent”. Roughly speaking, on some domain [s, ∞),
decent functions are sub-multiplicative, i.e., f(xy) ⩽ f(x)f(y), and moderate-growing, that
is log x ⩽ f(x) ⩽ x1−δ for some constant δ ∈ (0, 1), see Definition 16 for the formal definition
of decent functions.

▶ Theorem 5. Let f : R⩾0 → R⩾0 be a decent function. Then, there exists a monotone graph
class X with speed |Xn| = 2O(nf(n)) that does not admit a universal graph of size at most
2f(n) log n. Equivalently, X admits no adjacency labeling scheme of size at most f(n) log n.

Theorem 5 gives the existence of monotone classes requiring labels whose size is a
log n-factor above the information-theoretic lower bound. In particular, this shows that
Proposition 4 is tight. A special case of Theorem 5 (when f(x) = log x) implies that the
Implicit Graph Conjecture does not hold even for monotone graph classes. Combining this
observation with Proposition 4 gives the following result.

ICALP 2024



31:6 Tight Bounds on Adjacency Labels for Monotone Graph Classes

▶ Corollary 6. For any constant c > 0, there are factorial monotone classes that do not admit
a (c log2 n)-bit labeling scheme, while any factorial monotone class admits an O(log2 n)-bit
labeling scheme.

This result (more generally Theorem 5 and Proposition 4) gives the first example of
tight bounds for families of graph classes that do not admit information-theoretic order
optimal adjacency labeling schemes. Chandoo [14] observed that the proof of the refutation
of the IGC by Hatami and Hatami [23] implies that the family of factorial classes cannot be
“described” by a countable set of factorial classes. Using the same ideas, we establish the
following result from our proof for monotone classes.

▶ Theorem 7. Let f : R⩾0 → R⩾0 be any decent function, and X be any countable set of
graph classes, each with speed at most 2nf(n) log n. Then, there exists a monotone graph class
X of speed 2O(nf(n)) such that there does not exist a D ∈ X with X ⊆ D.

This shows that monotone classes are complex in the sense that they cannot be covered by
a countably infinite family of classes growing slightly faster, even if these classes are not
restricted to being hereditary (thus, also to being monotone).

1.2 Proof outline and techniques

Monotone small classes have bounded degeneracy and implicit representations

We establish Theorem 2 in the contrapositive: if a monotone class X has unbounded
degeneracy, then it is not small. To prove this we establish the following two intermediate
steps:

1. We first show that every graph of minimum degree d admits an induced subgraph with
minimum degree at least d that has a spanning tree of maximum degree at most d.

2. Next, we show that if G = Mon({G}), where G is any graph with minimum degree
d ⩾ 1000, then there exists a k ∈ N such that |Gk| ⩾ k! · 2kd/3.

To achieve this, we start from an induced graph H of G satisfying the previous item,
with k = |V (H)| and m = |E(H)|. Graph H can be shown to have at least 24m/5

pairwise non-isomorphic spanning subgraphs, due to its large minimum degree. Let
us denote by F this set of subgraphs. Crucially each member of F has at most 2m/10

automorphisms, due to the spanning tree of bounded maximum degree. We conclude
since |Gk| ⩾

∑
F ∈F

k!
aut(F ) .

Finally, to show the contrapositive of Theorem 2, we consider an arbitrary monotone class
X of unbounded degeneracy and assume that for some constant c we have |Xn| ⩽ n! cn for
every n ∈ N. Since X has unbounded degeneracy, it contains a graph G with arbitrarily
large minimum degree d. If we take d suitably large, then applying Step 2 to such a graph
yields a contradiction with the assumption of smallness of X .

Having established Theorem 2, any small monotone class X has bounded degeneracy.
Thus, Theorem 3 follows by applying a classical O(log n)-bit labeling scheme for classes of
bounded degeneracy [25], see Lemma 14 for a description of this scheme.
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Monotone classes that do not admit implicit representations

Recall that, roughly speaking2, a function f : R⩾0 → R⩾0 is decent if log x ⩽ f(x) ⩽ x1−δ

for some constant δ ∈ (0, 1), and f is sub-multiplicative, i.e., f(xy) ⩽ f(x) · f(y), for all
x, y in the domain. Our approach is inspired by the refutation of the IGC by Hatami and
Hatami [23]. Namely, for any decent function f , we expose so many monotone classes of
speed 2nf(n) that there are not enough universal graphs of size 2f(n) log n to capture all of
them. The approach involves several key ingredients:
1. Estimation of the number of sets of graphs of fixed cardinality representable by universal

graphs. A set of graphs M is representable by a universal graph U , if every graph in
M is an induced subgraph of U . A direct estimation shows that the number of sets of
cardinality kn := ⌈2

√
nf(n)⌉ of n-vertex graphs that are representable by a un-vertex

universal graph, with un := 2f(n) log n, is at most

2u2
n · unkn

n = 222f(n) log n+kn·nf(n) log n. (1)

2. Notion of f-good graphs. We will construct our monotone classes of speed 2nf(n) by
taking the monotone closure of an appropriately chosen set of graphs. The monotonicity
and the speed of target classes impose a natural restriction on the number of edges in
graphs that can be used in such constructions. To explain, let X be a monotone class
with |Xn| ⩽ 2nf(n). Since X is closed under taking subgraphs, if X contains an n-vertex
graph with m edges, then X contains at least 2m labeled n-vertex graphs. This, together
with the speed assumption, imply that for any G ∈ X and k, every subgraph of G on k

vertices contains at most kf(k) edges.
This restriction, however, is not strong enough for our purposes. Indeed, while each graph
with the above property contributes to the monotone closure an appropriate number of
subgraphs at every level (i.e., on every number of vertices), we build our desired classes
by taking the monotone closure of infinitely many of such graphs, and this can result
in some levels having too many graphs. To overcome this difficulty, we introduce the
notion of f -good graphs, which are n-vertex graphs in which the number of edges in every
k-vertex subgraph is at most kf(k) if k >

√
n, and at most kf(k)

log k if 2 ⩽ k ⩽
√

n. The
latter condition ensures that if we take the monotone closure of a set of f -good graphs,
then all sufficiently small subgraphs of any graph in this class belong to a fixed monotone
class of speed 2nf(n). Namely, the class of all n-vertex graphs in which very k-vertex
subgraph has at most kf(k)

log k edges for every 2 ⩽ k ⩽ n.
3. Construction of monotone classes of speed 2nf(n) from sets of f -good graphs. We show that

for any sequence (Mn)n∈N, where Mn is a set of f -good n-vertex graphs of cardinality kn,
the monotone closure Mon(∪n∈NMn) has speed at most 2nf(n).

4. Lower bound on the number of sets of cardinality kn of f -good n-vertex graphs. We show
that for any γ > 1, there exists some c := c(γ, δ) > 0 such that for every n ∈ N there
are at least 2(γδ/2−o(1))·nf(n) log n many unlabeled cf -good n-vertex graphs. Thus, the
number of sets of cardinality kn of cf -good n-vertex graphs is at least

2kn·(γδ/2−o(1))·nf(n) log n. (2)

2 The formal definition of decent (Definition 16) is more general and depends on three parameters δ, C, s.
For this proof sketch it suffices to work with the simplified (informal) definition above which only has
one parameter δ.

ICALP 2024
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By setting γ = 4/δ and recalling that kn = ⌈2
√

nf(n)⌉, we show that Equation (2) is
larger than Equation (1). Therefore, there exists a monotone class Mon(∪n∈NMn) of speed
2nf(n) that is not representable by a universal graph of size 2f(n) log n.

Many f -good graphs

A core step in the above approach is to show that for any γ > 1, there exists some c :=
c(γ, δ) > 0 such that the number of n-vertex cf -good graphs grows as 2(γδ/2−o(1))·nf(n) log n.
To do so, we show that a random graph Gn ∼ G(n, γf(n)/n) is cf -good with high probability
(w.h.p.). It is in this step that we really need to use the sub-multiplicativity property of
decent functions, as we need to relate the magnitude of f at two different parts of its domain.

In particular, to show that w.h.p. Gn is cf -good, we apply a first moment bound to show
there are no “large” k-vertex subgraphs of Gn with more than ckf(k) edges, and “small”
ones with more than ckf(k)/ log k edges. Observe that the number of edges ξ in a given
k-vertex subgraph has expectation

(
k
2
) γf(n)

n . Thus, for “large” subgraphs, the probability
that ξ is constant factor larger than ckf(k) decays with exponent ∝ −f(k) · ln nf(k)

kf(n) by
the Chernoff bound. From this we see that unless f(k)/f(n) > k/n, then the bound fails.
Sub-multiplicativity helps us here as it allows us to say f(n) = f(k · (n/k)) ⩽ f(k) · f(n/k),
moderate-growth then bounds the term f(n/k). A similar issue occurs for “small” subgraphs.

From the explanation above it may seem that needing such tight control over the ratio of
f(k) to f(n) for all k ⩽ n is an artifact of our proof, however some “smoothness” condition on
the function is necessary. To see this, consider a function f : N → R⩾0 such that f(n) = log n,
if n is odd, and f(n) =

√
n, if n is even. Then, for any c > 0, and large enough even n,

G(n, f(n)/n) will not be cf -good as the restriction on the subgraphs with odd number of
vertices is far too stringent. Sub-multiplicativity was the most natural and broad condition
we could find to combat this issue, and we show in Lemma 17 that many common functions
growing at a suitable rate satisfy this.

It would be interesting to see if sub-multiplicativity can be replaced with something more
general. We also used sub-multiplicativity in Step 3 above (which corresponds to Lemma 22)
to bound the speed of Mon(∪n∈NMn), however it is possible that some less stringent property
can be used there.

A matching upper bound on the size of adjacency labels

We show that for any non-decreasing function f : R⩾0 → R⩾0, any monotone class with speed
2O(nf(n)) admits an O(f(n) log n)-bit labeling scheme. This follows from an easy observation
that any such class is O(f(n))-degenerate, followed by the same standard O(k log n)-bit
labeling scheme for k-degenerate graphs used to prove Theorem 3. One consequence of this
upper bound is that our result on the “f -goodness” of a random graph (Theorem 18) is tight:
for any p ∈ ω(f(n)/n) and c ⩾ 0, a random graph Gn ∼ G(n, p) is not cf -good w.h.p.

1.3 Discussion
A natural question arising from our work is to characterize monotone classes that admit an
implicit representation. Motivated by the Implicit Graph Conjecture, of particular interest is
the case of factorial classes.

▶ Question 8. Which monotone factorial graph classes admit an O(log n)-bit labeling scheme?
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An analogous question is completely understood for constant-size adjacency sketches (a
probabilistic version of adjacency labeling schemes) that were studied in [18, 21, 22]. The
importance of constant-size adjacency sketches is that they can be derandomized to O(log n)-
bit adjacency labels [21, 22]. Thus, if a class admits constant-size adjacency sketches, then it
admits an O(log n)-bit labeling scheme. Though, the converse is not always true. Esperet,
Harms, and Kupavskii showed [16] that a monotone class admits constant-size adjacency
sketches if and only if it has bounded degeneracy. This result may suggest that bounded
degeneracy also characterizes monotone classes that admit O(log n)-bit labeling schemes.
This, however, is not the case, as the class of subgraphs of hypercubes is monotone, has
unbounded degeneracy, and admits an O(log n)-bit labeling scheme [17].

Recall that Question 1 (first raised in [32]), asks which hereditary graph classes admit
implicit representations. A prominent instance of Question 1 is whether every hereditary
small class admits an implicit representation. It was shown in [12] that for any κ > 0 there
is a monotone small class which does not admit a (κ log n)-bit labeling scheme; in particular,
some monotone small classes admit no information-theoretic asymptotically optimal labeling
scheme. One of our main results (Theorem 3) shows that every monotone class admits an
information-theoretic order optimal labeling scheme, i.e., an implicit representation. We
conjecture that the same holds for all hereditary small classes.

▶ Conjecture 9 (Small Implicit Graph Conjecture). Any hereditary small class admits an
implicit representation.

Conjecture 9 is also known to hold for classes of bounded twin-width [13].
We conclude this discussion with a more technical (yet natural) question of whether the

conditions (moderate-growth and sub-multiplicativity) of “decent” can be relaxed. Due to
the discussion under the heading “Many f -good graphs” in Section 1.2, the moderate-growth
condition is essentially necessary, and if one is to follow our method, some notion of global
“smoothness” is required to prove Theorem 18. However, it is not so clear to what extent the
sub-multiplicativity condition is necessary to achieve the required “smoothness”.

1.4 Organization
The rest of the paper is organized as follows. In Section 2, we cover some common notation
and definitions. In Section 3, we prove our first main result, namely, that any monotone small
class has bounded degeneracy, and therefore admits an implicit representation. Sections 4
and 5 are devoted to our second main result, namely, tight bounds on the size of adjacency
labeling schemes for monotone classes. In Section 4.1 we introduce two key concepts used in
the proofs. Firstly, we give the notion of f-good graphs, which are the building blocks for
the monotone classes used to prove the lower bounds. Secondly, we formally define decent
functions which describe the speeds of these monotone graph classes, before concluding
Section 4.1 with some natural examples of decent functions. In Section 4.2, we prove a
result about random graphs which is the main technical ingredient of our lower bounds. In
Section 5, we establish the lower and upper bounds on labeling schemes for monotone classes,
along with the result on the complexity of monotone graph classes.

2 Standard definitions and notation

We let [n] denote the set {1, . . . , n} of natural numbers, and use lnc x as a shorthand for
(ln x)c. We take R⩾0 to denote the set of non-negative real numbers. We use X ∼ D to
denote that the random variable X has distribution D. We say that a sequence of events
(An) holds with high probability (w.h.p.) if P [ An ] → 1 as n → ∞.
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We consider finite undirected graphs, without loops or multiple edges. Given a graph G,
we write V (G) for its vertex set, and E(G) for its edge set. A graph H is a subgraph of G

if V (H) ⊆ V (G) and E(H) ⊆ E(G). Thus, H can be obtained from G by vertex and edge
deletions. The graph H is an induced subgraph of G if V (H) ⊆ V (G), and E(H) consists
exactly of the edges in E(G) with both endpoints in V (H). In that case, H can be obtained
from G by vertex deletions only. In the usual way, for a set of vertices U ⊆ V (G), we denote
by G[U ] the induced subgraph of G with the set of vertices U . We denote by e(G) the
number of edges in G

When we refer to an n-vertex graph G as labeled, we mean that the vertex set of G is [n],
and we distinguish two different labeled graphs even if they are isomorphic. In contrast, if
we refer to G as unlabeled graph, its vertices are indistinguishable and two isomorphic graphs
correspond to the same unlabeled graph.

A graph class is hereditary if it is closed under taking induced subgraphs, and it is
monotone if it closed under taking subgraphs. For a set X of graphs we let Her(X ) denote
the hereditary closure of X , i.e., the inclusion-wise minimal hereditary class that contains
X ; and Mon(X ) denote the monotone closure of X , i.e., the minimal monotone class that
contains X .

3 Monotone small classes admit an implicit representation

In this section we show that any monotone small class admits an implicit representation.
To do so, we first establish (Theorem 2) that any small monotone classes has bounded
degeneracy. This result has a broader scope than just implicit representations, and is of
independent interest. For example, it generalizes the fact that monotone classes of bounded
twin-width have bounded degeneracy [13, (iv) ⇒ (iii) in Theorem 2.12]. The labeling scheme
for monotone small classes then follows from a classical labeling scheme for graphs of bounded
degeneracy, see Lemma 14.

We proceed with some notation and known auxiliary facts that we will employ in the
proof. Recall that for a class of graphs X , we denote by Xn the set of graphs in X with
vertex set [n]. We will denote by X u

n the set of unlabeled n-vertex graphs in X , i.e., the set of
isomorphism classes in Xn. Observe that for an unlabeled n-vertex graph G there are exactly

n!
aut(G) labeled graphs isomorphic to G, where aut(G) is the order of the automorphism group
of G. Thus we have

|Xn| =
∑

G∈X u
n

n!
aut(G) .

Let F be a spanning subgraph of a fixed labeled graph G. Thus, we recall, F is defined
by a subset of E(G). We denote by #Sub(F → G) the number of subgraphs of G isomorphic
to F , and by #Emb(F → G) the number of embeddings of F into G, i.e., the number of
permutations from Sn that map F to an isomorphic copy of F in G. Thus,

#Emb(F → G) = #Sub(F → G) · aut(F ).

We will use the following well known facts (see e.g. [26]).

▶ Lemma 10. Let F be a spanning subgraph of a graph G. Then

aut(G) ⩽ #Emb(F → G) = #Sub(F → G) · aut(F ).

▶ Lemma 11. Let G be a connected graph of maximum degree ∆. Then

aut(G) ⩽ n · ∆! · (∆ − 1)n−∆−1 ⩽ n∆n−1.
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We start with the following deceptively simple lemma.

▶ Lemma 12. Let G be a graph of minimum degree d. Then G has an induced subgraph H

of minimum degree at least d with a spanning tree of maximum degree at most d.

Proof. Let T be an inclusion-wise maximal tree among subgraphs of G with maximum
degree at most d. Let H be G[V (T )]. Note that any vertex v of H that has degree less than
d in T , has no neighbors among V (G) \ V (H) in G, as otherwise T could have been extended
by adding any neighbor of v from V (G) \ V (H), which would contradict the maximality of
T . Thus all neighbors of v are in V (H), which implies that the minimum degree of H is
at least d. ◀

We show next that if a graph has large minimum degree and a spanning tree of bounded
maximum degree, then it contains many pairwise non-isomorphic spanning connected sub-
graphs with a small number of automorphisms.

▶ Lemma 13. Let G be an n-vertex m-edge connected graph of minimum degree d ⩾ 1000, with
a spanning tree of maximum degree at most d. Then, G contains at least 24m/5 pairwise non-
isomorphic spanning connected subgraphs F with aut(F ) ⩽ 2m/10. Consequently, Mon({G})
contains at least n! · 2nd/3 graphs on vertex set [n].

Proof. Fix a spanning tree T of G of maximum degree at most d. Denote by F the family
of all subgraphs of G containing T . Then,

|F| = 2m−n+1 ⩾ 2m− 2m
d ⩾ 29m/10,

where we used the fact that n ⩽ 2m/d by the assumption on the minimum degree of G, and
the assumption d ⩾ 1000.

For a fixed graph F ∈ F , we will now estimate the number NF (F ) of graphs in F that are
isomorphic to F . This number is at most the number #Emb(T → G) = #Sub(T → G)·aut(T )
of embeddings of T into G. The number #Sub(T → G) of subgraphs of G isomorphic to T

is at most(
m

n − 1

)
⩽

(
m

2m/d

)
⩽

(
ed

2

)2m/d

⩽ 2m/20,

where the last inequality holds for every d ⩾ 1000. Recalling that the maximum degree of T is
at most d and using Lemma 11, we conclude that aut(T ) ⩽ ndn−1 ⩽ 22n log d. Consequently,

NF (F ) ⩽ #Emb(T → G) ⩽ 2m/20 · 22n log d ⩽ 2m/20+2(2m/d) log d ⩽ 2m/10, (3)

where again we used n ⩽ 2m/d and d ⩾ 1000. Note that the bound in (3) holds for any
F ∈ F . Thus, the number of pairwise non-isomorphic graphs in F is at least

|F|
maxF ∈F NF (F ) ⩾ 29m/10 · 2−m/10 = 24m/5.

Furthermore, for any F ∈ F , we have

aut(F ) ⩽ #Sub(T → F ) · aut(T ) ⩽ #Sub(T → G) · aut(T ) = #Emb(T → G) ⩽ 2m/10,

where we used Lemma 10, the fact that #Sub(T → F ) ⩽ #Sub(T → G), and (3).
Finally, the number of graphs with vertex set [n] isomorphic to a subgraph of G is at least∑
F ∈F

n!
aut(F ) ⩾ 24m/5 · n!

2m/10 = n! · 27m/10 ⩾ n! · 2dn/3,

where in the last inequality we used m ⩾ dn/2. ◀
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We can now prove the main result of this section.

▶ Theorem 2. Let X be a monotone small class. Then, X has bounded degeneracy.

Proof. To prove the theorem we will show the contrapositive, i.e., if a class X has unbounded
degeneracy, then it is not small. Suppose towards a contradiction that X has unbounded
degeneracy, but there exists a constant c, such that |Xn| ⩽ n! · cn holds for every n ∈ N.

Since X has unbounded degeneracy and is closed under taking subgraphs, for any positive
d, the class X contains a connected graph with minimum degree at least d. Fix any
d > max{1000, 3 log c}, and let G ∈ X be a connected graph of minimum degree at least d.
Let G = Mon({G}). By Lemmas 12 and 13, for some n ∈ N we have

|Gn| ⩾ n! · 2nd/3 > n! · 2n log c = n! · cn,

where the first strict inequality holds due to d > 3 log c. Since G ⊆ X , this is in contradiction
with the assumed upper bound on the number of labeled graphs in X . Thus X is not
small. ◀

The previous result is of independent interest, and provides some structural insight on
monotone small classes. To show that some property generally holds on small monotone
classes, one can now use their degeneracy. We give the first such application of Theorem 2.

▶ Theorem 3. Any monotone small class admits an implicit representation.

The relevance of Theorem 2 to labeling schemes should be clear from the following folklore
bound [25], which we recall for completeness.

▶ Lemma 14. The class of k-degenerate graphs has a (k + 1) · ⌈log n⌉-bit adjacency labeling
scheme.

Proof. For any k-degenerate graph G on n-vertices, we first order vertices so that each vertex
has at most k neighbors appearing after it in the ordering. This can be done greedily since
each subgraph has a vertex of degree at most k. One can then assign each vertex a label
consisting of its place in the order, followed by the places of the at most k neighbor vertices
following it in the ordering. ◀

Theorem 3 follows directly from Lemma 14 and Theorem 2.

4 Ingredients for the proof of the lower bound

This section contains many of the components needed to construct the classes used in the
proof of the lower bound (Theorem 5). In Section 4.1 we introduce several notions related to
subgraph density, which are then applied to random graphs in Section 4.2.

4.1 Good graphs and decent functions
Our first definition describes graphs which do not have overly dense subgraphs.

▶ Definition 15 (f -good). Let f : R⩾0 → R⩾0 be a function. An n-vertex graph G is f -good
if the number of edges in any subgraph on k vertices is bounded from above by{

k·f(k)
log k if 2 ⩽ k ⩽

√
n

k · f(k) if
√

n < k ⩽ n
.
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We observe that f -goodness is a monotone property, i.e., if a graph G is f -good, then
so is any of its subgraphs. Indeed, moving the threshold (between the first and the second,
more relaxed, upper bound) from

√
n down to a smaller value may only help in satisfying

these bounds.
The next definition gives a class of functions used to describe speeds of monotone classes,

where, for such a function f(n), we will consider classes of growth 2nf(n).

▶ Definition 16 ((δ, C, s)-decent). For constants δ ∈ (0, 1), C ⩾ 1 and s ⩾ 2, we say that a
non-decreasing function f : R⩾0 → R⩾0 is (δ, C, s)-decent if the following properties hold
(Moderate-growth): log x ⩽ f(x) ⩽ C · x1−δ holds for every x ∈ [s, ∞),
(Sub-multiplicativity): f(xy) ⩽ C · f(x) · f(y) holds for any x, y ∈ [s, ∞).

We say that a function f is decent if there exist some constants δ ∈ (0, 1), C ⩾ 1, and
s ⩾ 2 such that f is (δ, C, s)-decent. For any constant κ ⩾ 1, the function f(x) = κ log x is
decent; this captures factorial growth. We now give some other natural examples of decent
functions, due to space constraints a proof can be found in the full version [11].

▶ Lemma 17. For any fixed α > 0, β ⩾ 1, γ ⩾ 1 and d ∈ (0, 1), the following are decent:
(i) f(x) = αxd,
(ii) f(x) = exp

(
α · lnd x

)
,

(iii) f(x) = exp (β · lnγ(log x)),
(iv) f(x) = β · g(x), where g(x) is decent,
(v) f(x) = g(x) · h(x), where g(x), h(x) are decent and g(x) · h(x) is moderately-growing.

4.2 Growth of the number of edges in subgraphs of random graphs
The aim of this Section is to show that there are many graphs which are suitable for building
the classes we need to prove Theorem 5. We will achieve this using random graphs, where
G(n, p) denotes the distribution on n-vertex graphs where each edge is included independently
with probability p, see (for example) [19]. Our main result shows that random graphs are
suitable with high probably.

▶ Theorem 18. Let f : R⩾0 → R⩾0 be (δ, C, s)-decent for some constants δ ∈ (0, 1), C ⩾ 1,
and s ⩾ 2. Then, for any fixed γ > 1, there exists c := c(δ, C, s, γ) > 0 such that, for large n,

P [ G(n, γf(n)/n) is not (cf)-good ] ⩽ n−2.

To prove this we will utilize the following version of the Chernoff bound (see [5, Theorem
A.1.15]), where Bin(N, p) denotes the binomial distribution with parameters N and p.

▶ Lemma 19 (Chernoff bound). Let ξ ∼ Bin(N, p), µ = Np, and a, t > 0. Then,

P(ξ > (1 + a)µ) ⩽
(

ea

(1 + a)1+a

)µ

⩽ exp
(

−(1 + a)µ · ln 1 + a

e

)
.

Proof of Theorem 18. Let p := p(n) = γf(n)/n, and let c1, c2 be sufficiently large constants
(depending on γ) fixed later. Let E1,k (respectively E2,k) be the event that there are no
subgraphs of size k with more than c1kf(k)/ log k edges (respectively c2kf(k) edges). Observe
that if c = max{c1, c2,

(
s
2
)
}, then

{G(n, p) is not (cf)-good} ⊆

⌊
√

n⌋⋃
k=s

¬E1,k

 ∪

 n⋃
k=⌊

√
n⌋+1

¬E2,k

 . (4)
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Let k denote the number of vertices in a subgraph, and thus ξ ∼ Bin
((

k
2
)
, p

)
denotes

the number of edges in a given k-vertex subgraph. The expectation of ξ is

µ :=
(

k

2

)
p = γ

2 · k(k − 1)f(n)
n

.

On the other hand, the number of ways to select a k-vertex subgraph is(
n

k

)
⩽

(en

k

)k

= exp
(

k ln n

k
+ k

)
⩽ exp (2k ln n) . (5)

Our strategy will be to bound the probability of the events on the right-hand side of (4)
using the union and Chernoff bounds.

We begin by considering events of the form E2,k and thus can assume that ⌊
√

n⌋+1 ⩽ k ⩽ n.
Observe that since f is sub-multiplicative, non-decreasing, and moderately-growing, we have
f(k)
f(n) = f(k)

f
(

n
k · k

) ⩾
f(k)

C · f( n
k ) · f(k) ⩾

f(k)
C · f( sn

k ) · f(k) ⩾
f(k)

C2 · ( sn
k )1−δ · f(k) ⩾

k

C2s · n
. (6)

If we now fix

c2 = C2s · e2 · γ > 6, (7)

then by (6) we have
2c2nf(k)

eγ(k − 1)f(n) = 2C2se · nf(k)
(k − 1)f(n) ⩾

2ek

k − 1 > e. (8)

So, applying Chernoff bound (Lemma 19) with 1 + a = c2kf(k)
µ = 2c2nf(k)

γ(k−1)f(n) gives

P(ξ > c2kf(k)) ⩽ exp
(

−(1 + a)µ · ln 1 + a

e

)
= exp

(
−c2kf(k) · ln 2c2nf(k)

eγ(k − 1)f(n)

)
(8)
⩽ exp (−c2kf(k))
(7)
⩽ exp (−6kf(k)) . (9)

Thus, by (5), (9), the union bound, and as f(k) ⩾ log k > ln k, we have

P

 n⋃
k=⌊

√
n⌋+1

¬E2,k

 ⩽
n∑

k=⌊
√

n⌋+1

exp (2k ln n) · exp (−6kf(k)) ⩽
n∑

k=⌊
√

n⌋+1

k−k

⩽ exp(−
√

n). (10)

We now treat events of the form E1,k, and thus we can assume that s ⩽ k ⩽ ⌊
√

n⌋.
Observe that for any fixed constant d > 0 and sufficiently large n we have n2/3

k(log k)d ⩾ s as
k ⩽

√
n. Thus, by sub-multiplicativity, and moderate-growth we have

f

(
n2/3

(log k)d

)
= f

(
n2/3

k(log k)d
· k

)
⩽ C · f

(
n2/3

k(log k)d

)
· f (k)

⩽ C2 ·
(

n2/3

k(log k)d

)1−δ

· f(k)

⩽ C2 · n2/3

k(log k)d
· f(k).
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Similarly, by sub-multiplicativity and moderate-growth, we have

f(n) = f

(
n2/3

(log k)d
· n1/3(log k)d

)
⩽ C · f

(
n2/3

(log k)d

)
· f

(
n1/3(log k)d

)
⩽ C2 · f

(
n2/3

(log k)d

)
· n(1−δ)/3(log k)(1−δ)·d.

If we set d = 1/δ > 0 then the two bounds above give

f(k)
f(n) ⩾

f
(

n2/3

(log k)d

)
· k(log k)d

C2n2/3

C2 · f
(

n2/3

(log k)d

)
· n(1−δ)/3(log k)(1−δ)·d

= k(log k)δd

C4n1−δ/3 = k log k

C4n
· nδ/3. (11)

Foreseeing the need for the constant 15 later on, we now set

c1 = e · 15 · C4γ/δ. (12)

We now set 1 + a := c1kf(k)
µ·log k , which by (11) satisfies

1 + a = c1kf(k)
µ · log k

= 2c1nf(k)
γ(k − 1)f(n) log k

⩾
2c1k

γ(k − 1)C4 · nδ/3 > e · nδ/3. (13)

As before, Chernoff bound (Lemma 19) with this 1 + a gives

P
(

ξ >
c1kf(k)

log k

)
⩽ exp

(
−c1kf(k)

log k
· ln 1 + a

e

)
(13)
⩽ exp

(
−c1kf(k)

log k
· δ

3 ln n

)
. (14)

Recall that the bound f(k) ⩾ log k holds by moderate-growth. Applying this to (14) yields

P
(

ξ >
c1kf(k)

log k

)
⩽ exp

(
−c1k · δ

3 ln n

)
(12)
⩽ exp (−5k ln n) . (15)

Thus, by (5), (15), and the union bound,

P

⌊
√

n⌋⋃
k=s

¬E1,k

 ⩽
⌊
√

n⌋∑
k=s

exp (2k ln n) · exp (−5k ln n) ⩽
√

n · n−3s ⩽ n−5. (16)

The result follows by taking c = max{c1, c2,
(

s
2
)
}, (4), and the union bound over (10) and

(16). ◀

We now use Theorem 18 to prove Lemma 21, which bounds the number of cf -good graphs
from below. To prove Lemma 21, it is convenient to switch to an alternative model of random
graphs with a fixed number of edges. We let G(n, m) to denote the uniform distribution on
n-vertex graphs with m edges. The following lemma allows us to transfer results from one
graph model to another.

▶ Lemma 20. Let P be any graph property (i.e., graph class) and 0 ⩽ p ⩽ 1 satisfy p
(

n
2
)

→ ∞
and

(
n
2
)

− p
(

n
2
)

→ ∞ and m =
⌈
p
(

n
2
)⌉

. Then, for Gn ∼ G(n, m) and G′
n ∼ G(n, p), we have

P [ Gn ∈ P ] ⩽ 10
√

m · P [ G′
n ∈ P ] .
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Lemma 20 follows by a very minor adaption of [19, Lemma 3.2], the only difference is
a ceiling in the number of edges, which makes no difference in the proof.

▶ Lemma 21. Let f : R⩾0 → R⩾0 be (δ, C, s)-decent for some constants δ ∈ (0, 1), C ⩾ 1,
and s ⩾ 2. Then, for any fixed γ > 1, there exists some c := c(γ, δ, C, s) > 0 such that
for every n ∈ N there are at least 2(γδ/2−o(1))·nf(n) log n many unlabeled (cf)-good n-vertex
graphs.

Proof. Let m :=
⌈ γ(n−1)f(n)

2
⌉

and Gn ∼ G
(
n, m

)
. Observe that by Theorem 18 and

Lemma 20, there exists some fixed c > 0 such that for sufficiently large n

P [ Gn is (cf)-good ] ⩾ 1 − 10
√⌈ γ(n−1)f(n)

2
⌉

· n−2 = 1 − o(1). (17)

The number of labeled graphs in the support of G
(
n, m

)
is

((
n
2
)

m

)
=

( (
n
2
)⌈

γ(n−1)f(n)
2

⌉)
⩾

(
n

γf(n)

) γ(n−1)f(n)
2

= 2
γ
2 ·(n−1)f(n)·(log n−log(γf(n))).

By (17), a 1 − o(1) fraction of these labeled graphs are (cf)-good. Furthermore, there are at
most n! ⩽ nn labelings of a given unlabeled graph. Thus, the number of unlabeled n-vertex
(cf)-good graphs is bounded from below by

(1 − o(1)) · 1
nn

· 2
γ
2 ·(n−1)f(n)·(log n−log(γf(n))) = 2

γ
2 ·nf(n)·(log n−log(f(n))−O(1))

⩾ 2
γ
2 ·nf(n)·(log n−(1−δ) log(n)−O(1))

= 2(δγ/2−o(1))·nf(n) log n,

as claimed, since log n ⩽ f(n) ⩽ Cn1−δ by moderate-growth. ◀

5 Tight bounds on labeling schemes for monotone classes

We begin in Section 5.1 with a lemma which is useful for bounding the speed when constructing
monotone classes with no implicit representation. This is then used to prove our lower bound
in Section 5.2. Finally, in Section 5.3 we give a matching upper bound on labeling schemes
for monotone classes, this follows from [25] and included mainly for completeness.

5.1 Construction of monotone classes
We begin with a lemma showing that, for a decent function f , we can create monotone
classes from the union of many f -good graphs and still maintain control over the speed. The
proof follows the broad idea of [23, Claim 3.1].

▶ Lemma 22. Let f : R⩾0 → R⩾0 be (δ, C, s)-decent for some constants δ ∈ (0, 1), C ⩾ 1, and
s ⩾ 2. Let c > 0 be a constant, and, for every n ∈ N, let Mn be any set of (cf)-good unlabeled
n-vertex graphs satisfying |Mn| ⩽

⌈
2
√

nf(n)⌉. Then the speed of X := Mon(∪n∈NMn) is
2O(nf(n)).

Proof. Let Y := Her(∪n∈NMn). Note that X = Mon(Y). We first estimate the speed of
Y. For an n-vertex graph G ∈ Y, let N be the smallest integer such that G is an induced
subgraph of a graph H ∈ MN . We split the proof over two cases: (i): N ⩾ n2, and (ii):
N < n2.
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Case (i): Since H is a (cf)-good N -vertex graph and G is its n-vertex induced sub-
graph, where n ⩽

√
N , it follows from Definition 15 that G must have at most

g(n) := cnf(n)/ log n many edges. The number of such graphs is at most( (
n
2
)

g(n)

)
⩽

(
n2e

g(n)

)g(n)

= 2g(n)·log n2e
g(n) = 2c

nf(n)
log n ·log n2e

g(n) = 2O(nf(n)),

and so Y contains 2O(nf(n)) many n-vertex labeled graphs each of which is an induced
subgraph of a graph in MN for some N with n ⩽

√
N .

Case (ii): For this case, we simply use the fact that any H ∈ MN has at most Nn many
n-vertex induced subgraphs. Thus, the number of n-vertex labeled graphs in Y each of
which is an induced subgraph of a graph in MN for some N with N < n2 is bounded
from above by

n! ·
n2∑

N=n

Nn · |MN | ⩽ n! ·
n2∑

N=n

Nn ·
⌈
2
√

Nf(N)
⌉

⩽ n! · n2 · (n2)n ·
⌈
2
√

n2f(n2)
⌉

⩽ 2O(n log n) ·
⌈
2

√
Cnf(n)

⌉
= 2O(nf(n)),

where in the last inequality we used sub-multiplicativity of f , and in the final equality we
used the fact that f(x) ⩾ log x.

Thus, |Yn| = 2O(nf(n)). Now, since every n-vertex labeled graph in X is a subgraph of an
n-vertex labeled graph in Y, and, due to (cf)-goodness, every graph in Yn has at most
2cnf(n) n-vertex subgraphs, we conclude that |Xn| ⩽ |Yn| · 2cnf(n) = 2O(nf(n)). ◀

5.2 Lower bound
We can now show the main result of the paper, which we recall for convenience.

▶ Theorem 5. Let f : R⩾0 → R⩾0 be a decent function. Then, there exists a monotone graph
class X with speed |Xn| = 2O(nf(n)) that does not admit a universal graph of size at most
2f(n) log n. Equivalently, X admits no adjacency labeling scheme of size at most f(n) log n.

Proof. By assumption f : R⩾0 → R⩾0 is (δ, C, s)-decent for some constants δ ∈ (0, 1), C ⩾ 1,
and s ⩾ 2. We will construct a monotone class (via the probabilistic method) with the speed
2O(nf(n)) that does not admit a universal graph of size un := 2f(n) log n. Fix γ := 4/δ > 1
and let c := c(γ, δ, C, s) > 0 be the satisfying constant from Theorem 18 corresponding to
this choice of γ. Let kn :=

⌈
2
√

nf(n)
⌉
.

The number of distinct un-vertex graphs is at most 2u2
n and the number of n-vertex

induced subgraphs of a fixed un-vertex graph is at most
(

un

n

)
. Hence the number of collections

of kn graphs on n vertices that are induced subgraphs of a un-vertex (universal) graph is at
most

2u2
n ·

((
un

n

)
kn

)
⩽ 2u2

n · ukn·n
n . (18)

On the other hand, from Lemma 21, the number of different collections of n-vertex
(cf)-good graphs of cardinality kn is at least(

2(γδ/2−o(1))·nf(n) log n

kn

)
⩾

(
2(γδ/2−o(1))·nf(n) log n

kn

)kn

= 2kn·(γδ/2−o(1))·nf(n) log n, (19)
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as log kn = O(
√

nf(n)) = o(nf(n) log n). By taking logarithms, we can see that for
sufficiently large n the upper bound (18) is smaller than the lower bound (19). In particular,
taking the logarithm of (18) gives

log
(

2u2
n · ukn·n

n

)
= u2

n + kn · n log un

= 22f(n) log n + kn · nf(n) log n

= (1 + o(1)) · kn · nf(n) log n,

as kn :=
⌈
2
√

nf(n)
⌉

= ω(22f(n) log n). However, since γ = 4/δ, the logarithm of (19) is

log
(

2kn·(γδ/2−o(1))·nf(n) log n
)

= kn · (γδ/2 − o(1)) · nf(n) log n

= (2 − o(1)) · kn · nf(n) log n.

Thus, for any sufficiently large n, there exists a collection Mn of kn (cf)-good n-vertex
graphs that are not representable by any universal graph of size at most un = 2f(n) log n.
Consequently, by Lemma 22, the speed of X := Mon(∪nMn) is |Xn| = 2O(nf(n)) and X does
not admit a universal graph of size at most 2f(n) log n. ◀

5.3 Upper bound

In this section we prove the following upper bound on labeling schemes for monotone classes.

▶ Proposition 4. Let f : R⩾0 → R⩾0 be a non-decreasing function. Then, any monotone
class of graphs X with speed |Xn| = 2O(nf(n)) admits an adjacency labeling scheme of size
O(f(n) log n).

Proof. Let X be a monotone class with at most 2Cnf(n) labeled n-vertex graphs for every
n. If an n-vertex graph G ∈ X has m edges, then X contains at least 2m labeled n-vertex
graphs, as every subgraph of G also belongs to X due to monotonicity.

This implies that every n-vertex graph G in X contains at most Cnf(n) edges, and hence,
has a vertex of degree at most 2Cf(n). Due to monotonicity of f , the same is true for every
subgraph of G. Indeed, if H is a k-vertex subgraph of G, then, since H belongs to X , the
number of edges in H is at most Ckf(k) ⩽ Ckf(n), and therefore H has a vertex of degree
at most 2Cf(n). Thus, every n-vertex graph in X is 2Cf(n)-degenerate, and Lemma 14
implies that X admits a (2Cf(n) + 1) · ⌈log n⌉-bit labeling scheme. ◀

5.4 Complexity of monotone classes

The following result shows that monotone classes are complex in the sense that they cannot
be “described” by even a countable number of classes of a slightly larger speed. The proof of
this theorem follows the exact same idea as [14, Lemma 2.4], also see [12, Theorem 1.2] for
the proof of a similar theorem in the context of small classes.

▶ Theorem 7. Let f : R⩾0 → R⩾0 be any decent function, and X be any countable set of
graph classes, each with speed at most 2nf(n) log n. Then, there exists a monotone graph class
X of speed 2O(nf(n)) such that there does not exist a D ∈ X with X ⊆ D.
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Proof. Let X be a monotone class with at most 2Cnf(n) labeled n-vertex graphs for every
n. If an n-vertex graph G ∈ X has m edges, then X contains at least 2m labeled n-vertex
graphs, as every subgraph of G also belongs to X due to monotonicity.

This implies that every n-vertex graph G in X contains at most Cnf(n) edges, and hence,
has a vertex of degree at most 2Cf(n). Due to monotonicity of f , the same is true for every
subgraph of G. Indeed, if H is a k-vertex subgraph of G, then, since H belongs to X , the
number of edges in H is at most Ckf(k) ⩽ Ckf(n), and therefore H has a vertex of degree
at most 2Cf(n). Thus, every n-vertex graph in X is 2Cf(n)-degenerate, and Lemma 14
implies that X admits a (2Cf(n) + 1) · ⌈log n⌉-bit labeling scheme. ◀
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