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Abstract

We provide polynomial-time reductions between three search problems from three distinct areas:
the P-matrix linear complementarity problem (P-LCP), finding the sink of a unique sink orienta-
tion (USO), and a variant of the α-Ham Sandwich problem. For all three settings, we show that
“two choices are enough”, meaning that the general non-binary version of the problem can be reduced
in polynomial time to the binary version. This specifically means that generalized P-LCPs are
equivalent to P-LCPs, and grid USOs are equivalent to cube USOs. These results are obtained by
showing that both the P-LCP and our α-Ham Sandwich variant are equivalent to a new problem we
introduce, P-Lin-Bellman. This problem can be seen as a new tool for formulating problems as
P-LCPs.
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Figure 1 Red: Reductions we show in this paper. Black: Existing reductions and trivial inclusions.

In this paper we study three search problems from three distinct areas: the problem
of solving a P-matrix linear complementarity problem (P-LCP), an algebraic problem, the
problem of finding the sink of a unique sink orientation (USO), a combinatorial problem,
and a variant of the α-Ham Sandwich problem, a geometric problem. Our results are a suite
of reductions between these problems, which are shown in Figure 1.

There are two main themes for these reductions.
Two choices are enough. For all three settings, the problems can be restricted to
variants in which all choices are binary. In all three cases we show that the general
non-binary problem can be reduced in polynomial time to the binary version.
A new tool for working with P-LCPs. We introduce the P-Lin-Bellman problem,
which serves as a crucial intermediate problem for our reductions with P-LCPs, and
provides a new tool for showing equivalence to the P-LCP problem.

We now describe each of the three problems and our results.

P-Matrix LCPs. In the Linear Complementarity Problem (LCP), we are given an n × n

matrix M and an n-dimensional vector q, and we are asked to find two n-dimensional
vectors w, z such that w = Mz + q, both w and z are non-negative, and w and z satisfy the
complementarity condition of wT z = 0. In general, there is no guarantee that an LCP has a
solution. However, if M is promised to be a P-matrix, that is, all its principal minors are
positive, then the LCP problem always has a unique solution for every possible q [19], and
we call this the P-LCP problem.

The P-LCP problem is important because many optimization problems reduce to it, for
example, Linear Programming [12, 16] and Strictly Convex Quadratic Programming [5, 20],
and solving a Simple Stochastic Game (SSG) [11, 23]. However, the complexity status
of the P-LCP remains a major open question. The P-LCP problem is not known to be
polynomial-time solvable, but NP-hardness (in the sense that an oracle for it could be used
to solve SAT in polynomial time) would imply NP = co-NP [18].

The P-LCP problem naturally encodes problems that have two choices. This property
arises from the complementarity condition, where for each index i, one must choose either
wi = 0 or zi = 0. Thus the problem can be seen as making one of two choices for each of the
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n possible dimensions of w and z. For example, this means that the direct encoding of a
Simple Stochastic Game as a P-LCP [16] only works for binary games, in which each vertex
has exactly two outgoing edges, and for each vertex the choice between the two outgoing
edges is encoded by choosing between wi and zi.

To directly encode a non-binary SSG one must instead turn to generalized LCPs, which
allow for more than two choices in the complementarity condition [23]. Generalized LCPs,
which were defined by Habetler and Szanc [15], also have a P-matrix version, which we will
refer to as P-GLCP.

Two choices are enough for P-LCPs. Our first main result is to show that P-GLCP and
P-LCP are polynomial-time equivalent problems. Every P-LCP is a P-GLCP by definition,
so our contribution is to give a polynomial-time reduction from P-GLCP to P-LCP, meaning
that any problem that can be formulated as a P-GLCP can also be efficiently recast as a
P-LCP. Such a result was already claimed in 1995, but later a counterexample to a crucial
step in the proof was found by the same author [6, 7].

To show this result we draw inspiration from the world of infinite games. SSGs are a
special case of stochastic discounted games (SDGs), which are known to be reducible in
polynomial-time to the P-LCP problem [16, 17]. This reduction first writes down a system
of Bellman equations for the game, which are a system of linear equations using min and max
operations. These equations are then formulated as a P-LCP using the complementarity
condition to encode the min and max operations.

We introduce a generalization of the Bellman equations for SDGs, which we call P-Lin-
Bellman. We show that the existing reduction from SDGs to P-LCP continues to work
for P-Lin-Bellman, and we show that we can polynomial-time reduce P-LCP to P-Lin-
Bellman. Thus, we obtain a Bellman-equation type problem that is equivalent to P-LCP.

Then we use P-Lin-Bellman as a tool to reduce P-GLCP to P-LCP. Specifically we show
that a P-GLCP can be reduced to P-Lin-Bellman. Here our use of P-Lin-Bellman as an
intermediary shows its usefulness: while it is not at all clear how one can reduce P-GLCP
to P-LCP directly, when both problems are formulated as P-Lin-Bellman instances, their
equivalence essentially boils down to the fact that max(a, b, c) = max(a, max(b, c)).

Unique Sink Orientations. A Unique Sink Orientation (USO) is an orientation of the
n-dimensional hypercube such that every subcube contains a unique sink. An example of an
USO can be found in Figure 2. The goal is to find the unique sink of the entire hypercube.
USOs were introduced by Stickney and Watson [22] as a combinatorial abstraction of the
candidate solutions of the P-LCP and have been studied ever since Szabó and Welzl formally
defined them in 2001 [24].

Figure 2 A 3-dimensional USO. The marked vertex denotes its unique global sink.

USOs have received much attention because many problems are known to reduce to them.
This includes linear programming and more generally convex quadratic programming, simple
stochastic games, and finding the smallest enclosing ball of given points.

ICALP 2024
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As with P-LCPs, USOs naturally capture problems in which there are two choices. Each
dimension of the cube allows us to pick between one of two faces, and thus each vertex of
the cube is the result of making n binary choices. To remove this restriction, prior work has
studied unique sink orientations of products of complete graphs [10], which the literature
somewhat confusingly calls grid USOs. For example, as with P-LCP, the direct reduction
from SSGs to USOs only works for binary games, while a direct reduction from non-binary
games yields a grid USO.

Two choices are enough for USOs. Our second main result is to show that grid USOs
and cube USOs are polynomial-time equivalent problems. Every cube USO is a grid USO by
definition, so our contribution is to provide a polynomial-time reduction from grid USOs to
cube USOs. Despite many researchers suspecting that grid USOs are a strict generalization
of cube USOs, our result shows that at least in the promise setting, the two problems
are computationally equivalent. For the reduction we embed a k-regular grid into a (also
k-regular) k-cube. The main challenge to overcome is that the k-cube contains many more
vertices and significantly more edges. These edges need to be oriented in such a way to be
consistent with the orientation of the grid, and this orientation also needs to be computable
locally, i.e., without looking at the whole orientation of the grid.

It should be noted that while P-LCP is known to reduce to cube USOs, and P-GLCP is
known to reduce to grid USOs, neither of our “two choices is enough” results imply each other.
This is because there is no known reduction from an USO-type problem to an LCP-type
problem.

Equivalence between P-LCP and Colorful Tangent Problems. The Ham Sandwich theorem
is a classical theorem in computational geometry: given d sets of points in Rd, we can find
a hyperplane that simultaneously bisects all of the sets. Steiger and Zhao [21] have shown
that in a restricted input setting we can not only bisect, but cut off arbitrary fractions
of each point set. This is the so-called α-Ham Sandwich theorem: if the point sets are
well-separated, then for each vector α there exists a unique choice of one point per set, such
that the hyperplane spanned by these points has exactly αi of the points from set i above.
The α-Ham Sandwich problem asks to determine this unique choice of one point per set.

In this paper, we consider a restricted variant of the α-Ham Sandwich problem. Firstly,
we slightly strengthen the assumption of well-separation to strong well-separation. Secondly
we restrict the input vector α such that each entry takes either be the minimum or maximum
possible value. This means that for every point set, either all points of the set must lie above,
or all below the desired α-cut. Thus, the α-cuts we search for are tangents to all the point
sets. Combining the assumption of strong well-separation and the solutions being tangents,
we call this problem SWS-Colorful-Tangent. We also consider the binary variant of the
problem, which we call SWS-2P-Colorful-Tangent, where we restrict the size of each
point set to 2; finding an α-cut then corresponds to a series of binary choices, one per set.

Here our contribution is to show that SWS-Colorful-Tangent is polynomial-time
equivalent to the P-LCP problem. Our new intermediate problem P-Lin-Bellman plays
a crucial role in this result: we give a polynomial-time reduction from SWS-Colorful-
Tangent to P-Lin-Bellman, and a polynomial-time reduction from P-Lin-Bellman
to SWS-2P-Colorful-Tangent. This also shows that two choices are enough for this
problem as well.

For these reductions, we consider the point-hyperplane dual of the colorful tangent
problems. In the dual, every input point becomes a hyperplane, and the solution we search
for is a point lying on one hyperplane of each color, and lying either above or below all
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other hyperplanes. This can be encoded in the min and max operations of the P-Lin-
Bellman problem. This demonstrates the usefulness of P-Lin-Bellman as an intermediate
problem, since it has allowed us to show what is – to the best of our knowledge – the first
polynomial-time equivalence between P-LCP and another problem.

Related Work. All problems we consider in this paper are promise search problems which
lie in the complexity class PromiseUEOPL [2, 3], which is the promise setting analogue of the
class UEOPL (short for Unique End of Potential Line) [9]. The latter has recently attracted
the attention of many researchers trying to further the understanding of the hierarchy of
total search problem classes, with a breakthrough result separating UEOPL from EOPL [14].
There is only one known natural1 complete problem for UEOPL, called One Permutation
Discrete Contraction (OPDC). OPDC also admits a natural binary variant, and it has
already been shown implicitly that the binary variant is polynomial-time equivalent to the
general variant [9]. Our reductions may help in finding another natural UEOPL-complete
problem, even though our results for now only hold in the promise setting.

2 A New Intermediate Problem: P-Lin-Bellman

Our new P-Lin-Bellman problem is motivated by discounted games. A stochastic discounted
game (SDG) is defined by a set of states S, which are partitioned into SMax and SMin, a set
of actions A, a transition function p : S × A × S → R, a reward function r : S × A → R, and
a discount factor λ. The value of a SDG is known to be the solution to the following system
of Bellman equations. For each state s we have an equation

xs =
{

maxa∈A

(
r(s, a) + λ ·

∑
s′∈S p(s, a, s′) · xs′

)
if s ∈ SMax,

mina∈A

(
r(s, a) + λ ·

∑
s′∈S p(s, a, s′) · xs′

)
if s ∈ SMin.

Prior work has shown that, if the game is binary, meaning that |A| = 2, then these Bellman
equations can be formulated as a P-LCP [17, 16].

For our purposes, we are interested in the format of these equations. Note that each
equation is a max or min over affine functions of the other variables. We capture this idea in
the following generalized definition.

▶ Definition 1. A Lin-Bellman system G = (L, R, q, S) is defined by two matrices L, R ∈
Rn×n, a vector q ∈ Rn, and a set S ⊆ {1, 2, . . . , n}. These inputs define the following system
of equations over a vector of variables x ∈ Rn:

xi =
{

max(
∑

1≤j≤n Lijxj + qi,
∑

1≤j≤n Rijxj) if i ∈ S,
min(

∑
1≤j≤n Lijxj + qi,

∑
1≤j≤n Rijxj) if i ̸∈ S.

(1)

Observe that this definition captures systems of equations in which a min or max operation
is taken over two affine expressions in the other variables. Note that here we have included
the additive q term only in the first of the two expressions (the second is thus linear), whereas
the SDG equations have additive terms in all of the affine expressions. This is because, for
our reductions, we do not need the second additive term. Otherwise, this definition captures
the style of Bellman equations that are used in SDGs and other infinite games.

1 By natural we mean a problem that is not a variant of the Unique End of Potential Line problem which
naturally characterizes the class.

ICALP 2024
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We say that x ∈ Rn is a solution of a Lin-Bellman system G if Equation (1) is satisfied
for all i. In general, however, such an x may not exist or may not be unique. To get a
problem that is equivalent to P-LCP, we need a restriction that ensures that the problem
always has a unique solution, like the P-matrix restriction on the LCP problem.

To make sure that a unique solution exists, we introduce a promise to yield the promise
problem P-Lin-Bellman. As the promise we guarantee the same property that is implied
by the promise of the P-LCP: For every q′ ∈ Rn, the given Lin-Bellman system shall have
a unique solution. We use the following restriction.

▶ Definition 2. P-Lin-Bellman
Input: A Lin-Bellman system G = (L, R, q, S).
Promise: The Lin-Bellman system (L, R, q′, S) has a unique solution for every q′ ∈ Rn.
Output: A solution x ∈ Rn of G.

This promise insists that the linear equations not only have a unique solution for the
given vector q, but that they also have a unique solution no matter what vector q is given.
This is analogous to a property from SDGs: an SDG has a unique solution no matter the
rewards for the actions, and this corresponds to the additive q vector in the problem above.

Similarly to the LCP, where unique solutions for any right-hand side q imply that
the matrix M is a P-matrix (and vice versa), this promise of P-Lin-Bellman implies
something about the involved matrices. However, for P-Lin-Bellman we do not have a
full characterization of the systems (L, R, ·, S) that fulfill the promise. We only have the
following rather weak necessary condition (proven in the full version of the paper), which is
however useful for several of our reductions.

▶ Lemma 3. In any P-Lin-Bellman instance, R − I is invertible.

Since P-Lin-Bellman is so similar to the P-LCP, we will prove the equivalence of
P-LCP and P-Lin-Bellman first, in the next section.

3 Linear Complementarity Problems

We begin by giving the definitions of the (binary) linear complementarity problems.

▶ Definition 4. LCP(M, q)
Input: An n × n matrix M and a vector q ∈ Rn.
Output: Two vectors w, z ∈ Rn such that

w = Mz + q,
w, z ≥ 0, and
wT · z = 0.

We are particularly interested in the case where the input matrix M is a P-matrix.

▶ Definition 5. An n × n matrix M is a P-matrix if every principal minor of M is positive.

One particularly interesting feature of the P-matrix Linear Complementarity Problem is
that it always has a unique solution.

▶ Theorem 6 ([5]). M is a P-matrix if and only if LCP(M, q) has a unique solution for
every q ∈ Rn.

There are two problems associated with P-matrix LCPs. The first problem is a total
search problem in which we must either solve the LCP, or show that the input matrix M is
not a P-matrix by producing a non-positive principal minor of M . The second problem is a
promise problem, where the promise is that the input is a P-matrix.
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▶ Definition 7. P-LCP(M, q)
Input: An n × n matrix M and a vector q ∈ Rn.
Promise: M is a P-matrix.
Output: Two vectors w, z ∈ Rn that are solutions of LCP(M, q).

In the next two sections, we will show that P-Lin-Bellman and P-LCP are equivalent
under polynomial-time many-one reductions.

3.1 P-LCP to P-Lin-Bellman
Let M ∈ Rn×n and q ∈ Rn be an instance of P-LCP. We will build a P-Lin-Bellman
instance G(M, q) in the following way. For each i in the range 1 ≤ i ≤ n, we set

xi = min((Mx + x)i + qi, 2xi). (2)

In other words, we set L = M + I, R = 2I, and S = ∅. We first show that every solution of
G(M, q) corresponds to a solution of the LCP. We do not need to use any properties of the
P-matrix in this part of the proof.

▶ Lemma 8. A vector z ∈ Rn is a solution of the Lin-Bellman system G(M, q) if and only
if z and w = Mz + q are a solution of LCP(M, q).

Proof. If z solves Equation (2) then we have min(Mz + z + q, 2z) − z = 0, and hence that
min(Mz + q, z) = 0. This implies that both z and w are non-negative:

z ≥ min(Mz + q, z) = 0,

w = Mz + q ≥ min(Mz + q, z) = 0.

Moreover, since min(Mz + q, z) = 0, the complementarity condition also holds. Hence w and
z are a solution of the LCP.

In the other direction, if w and z are solutions of the LCP, then we argue that z must be
a solution of G(M, q). This is because any solution of the LCP satisfies min(Mz + q, z) = 0
due to the complementarity condition, and so we must have that z solves Equation (2). ◀

Next we show that the promise of P-Lin-Bellman is also satisfied.

▶ Lemma 9. If M is a P-matrix, then G(M, q) satisfies the promise of P-Lin-Bellman.

Proof. We must show that the Lin-Bellman system G(M, q′) has a unique solution for
every q′. This follows from Lemma 8, which shows that G(M, q′) has a unique solution if
and only if the LCP defined by M and q′ has a unique solution, which follows from the fact
that M is a P-matrix. ◀

3.2 P-Lin-Bellman to P-LCP
For this direction, we follow and generalize the approach used by Jurdziński and Savani [17].
Suppose that we have a P-Lin-Bellman instance defined by G = (L, R, q, S).

The reduction is based on the idea of simulating the operation x = max(a, b) by introducing
two non-negative slack variables w and z:

x − w = a, x − z = b, w, z ≥ 0, w · z = 0.

ICALP 2024
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Since w and z are both non-negative, any solution to the system of equations above must
satisfy x ≥ max(a, b). Moreover, since the complementarity condition insists that either
w = 0 or z = 0, we have that x = max(a, b).

An operation x = min(a, b) can likewise be simulated by

x + w = a, x + z = b, w, z ≥ 0, w · z = 0.

We use this technique to rewrite the system of equations given in (1) in the following
way. For each i in 1 ≤ i ≤ n we have the following.

xi + wi =
∑

1≤j≤n

Lij · xj + qi, if i ̸∈ S (3)

xi − wi =
∑

1≤j≤n

Lij · xj + qi, if i ∈ S (4)

xi + zi =
∑

1≤j≤n

Rij · xj , if i ̸∈ S (5)

xi − zi =
∑

1≤j≤n

Rij · xj , if i ∈ S (6)

wi, zi ≥ 0 (7)
wi · zi = 0. (8)

We have already argued that this will correctly simulate the max and min operations in
Equation (1), and so we have the following lemma.

▶ Lemma 10. x ∈ Rn is a solution of G if and only if x is a solution of the system defined
by Equations (3)–(8).

We shall now reformulate Equations (3)–(8) as an LCP. To achieve this we first introduce
some helpful notation: For every n × n matrix A, we define Â in the following way. For each
i, j ∈ {1, 2, . . . , n} we let

Âij :=
{

Aij if i ∈ S,
−Aij if i ̸∈ S.

Equations (3)–(6) can be rewritten as the following matrix equations:

Îx = w + L̂x + Îq,

Îx = z + R̂x,

Eliminating x yields (Î − L̂)(Î − R̂)−1z = w + Îq, which is equivalent to w = Mz + q′ for

M = (Î − L̂)(Î − R̂)−1, q′ = −Îq.

We rely here on the fact that by Lemma 3, R − I and thus also (Î − R̂) is invertible. We
have so far shown the following lemma.

▶ Lemma 11. A vector x ∈ Rn is a solution of G if and only if there are vectors w, z such
that w, z are a solution of LCP(M, q) and x, w, and z are a solution of Equations (3)–(8).

To show that M is a P matrix, we must show that LCP(M, q′′) has a unique solution for
every q′′ ∈ Rn. By Lemma 11, this holds if and only if G(L, R, q′′, S) has a unique solution
for every q′′, which holds due to the P-Lin-Bellman promise. Our reduction is thus correct,
and we have established our first main result:

▶ Theorem 12. P-Lin-Bellman and P-LCP are equivalent under polynomial-time many-
one reductions.
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3.3 P-matrix Generalized LCP to P-LCP
Generalized LCPs were originally introduced by Cottle and Dantzig [4]. A generalized LCP
instance is defined by a vertical block matrix M , and a vertical block vector q where

M =


M1
M2

...
Mn

 q =


q1
q2
...

qn


Each matrix Mi has dimensionality bi × n, while each vector qi has bi dimensions. Thus, if
N =

∑
i bi, we have that M ∈ RN×n and q ∈ RN . Given a vertical block vector x with n

blocks, we use xj
i to refer to the jth element of the ith block of x.

Given such an M and q, the generalized linear complementarity problem (GLCP) is to
find vectors w ∈ RN and z ∈ Rn such that

w = Mz + q,
w ≥ 0,
z ≥ 0, and
zi ·

∏bi

j=1 wj
i = 0 for all i.

Given a tuple p = (p1, p2, . . . , pn) such that each pi lies in the range 1 ≤ i ≤ bi, the
representative submatrix of M defined by p is given by M(p) ∈ Rn×n and is constructed by
selecting row pi from each block-matrix Mi. We then say that M is a P-matrix if all of its
representative submatrices are P-matrices.

We define the P-matrix GLCP (P-GLCP) as a promise problem, analogously to the
P-LCP: The input is a GLCP instance (M, q) with the promise that M is a P-matrix. This
promise again guarantees unique solutions:

▶ Theorem 13 (Habetler, Szanc [15]). A vertical block matrix M is a P-matrix if and only
if the GLCP instance (M, q′) has a unique solution for every q′ ∈ RN .

We are now ready to show our reduction of P-GLCP to P-Lin-Bellman.

▶ Lemma 14. There is a poly-time many-one reduction from P-GLCP to P-Lin-Bellman.

Proof. We can turn a P-matrix GLCP instance into a P-Lin-Bellman instance in much
the same way as we did for P-LCPs in Section 3.1. For each i in the range 1 ≤ i ≤ n we set

zi = min
(

min
{

(Mz + q)j
i + zi : 1 ≤ j ≤ bi

}
, 2zi

)
. (9)

We claim that any solution of the system of equations defined above yields a solution of
the GLCP. In any solution to the system we have

min
(

min
{

(Mz + q)j
i : 1 ≤ j ≤ bi

}
, zi

)
= 0.

So if we set wj
i = (Mz + q)j

i then we have the following non-negativities

wj
i = (Mz + q)j

i ≥ min
(

min
{

(Mz + q)j
i : 1 ≤ j ≤ bi

}
, zi

)
= 0.

zi ≥ min
(

min
{

(Mz + q)j
i : 1 ≤ j ≤ bi

}
, zi

)
= 0.

We can also see that the complementarity condition is satisfied, since either zi = 0 or wj
i = 0

for some j.

ICALP 2024
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To write this as a Lin-Bellman system, we must carefully write Equation (9) using
two-input min operations. We will introduce a variable xj

i for each i in the range 1 ≤ i ≤ n

and each j in the range 1 ≤ j ≤ bi. We use x1 to denote the vector (x1
1, x1

2, . . . , x1
n). For

each i, and each j in the range 1 ≤ j < bi we use the following.

xj
i = min

(
(Mx1 + q)j

i + x1
i , xj+1

i

)
(10)

We also use the following when j = bi.

xbi
i = min

(
(Mx1 + q)bi

i + x1
i , 2x1

i

)
(11)

Let G = (L, R, q, S) denote the resulting Lin-Bellman system. It is now easy to see that
on the one hand, for every solution x of G the vectors z := x1 and w with wj

i = (Mz + q)j
i

form a solution of the input P-matrix GLCP. On the other hand, from any solution to
the GLCP we can extract the vector x1 := z. Given this vector x1 there is only one way
to extend this to an assignment for all xj

i that is a solution to G. We thus get a one-to-
one correspondence between solutions to G and solutions to the GLCP. Since the GLCP
defined by M is promised to have a unique solution for every q′, this thus implies that the
Lin-Bellman system G′ = (L, R, q′, S) also has a unique solution for every q′. Thus, this is
indeed a P-Lin-Bellman instance. ◀

Combining this with the previously proven Theorem 12, we get the following corollary:

▶ Corollary 15. P-GLCP and P-LCP are polynomial-time equivalent.

4 Colorful Tangents and P-Lin-Bellman

Let us start by introducing the definitions and prior results on the α-Ham Sandwich theorem.

▶ Definition 16. A family of point sets P1 = {p1,1, . . . , p1,s1}, P2, . . . , Pd ⊂ Rd is said to be
well-separated if for any non-empty index set I ⊂ [d], there exists a hyperplane h such that h

separates the points in
⋃

i∈I Pi from those in
⋃

i∈[d]\I Pi.

In the setting of well-separated point sets, the classical Ham Sandwich theorem can be
strengthened to the more modern α-Ham Sandwich theorem due to Steiger and Zhao [21],
for which we need the definition of an (α1, . . . , αd)-cut:

▶ Definition 17. Given positive integers αi ≤ |Pi| for all i ∈ [d], an (α1, . . . , αd)-cut is a
hyperplane h such that h ∩ Pi ̸= ∅ and |h+ ∩ Pi| = αi for all i ∈ [d].

In this definition and in the rest of this section, h+ and h− denote the two closed halfspaces
bounded by a hyperplane h. When h is a colorful hyperplane (i.e., a hyperplane containing a
colorful point set, which is a set {p1, . . . , pd} with pi ∈ Pi), its positive side is determined by
the orientation of the points pi ∈ Pi spanning it.

▶ Theorem 18 (α-Ham Sandwich theorem [21]). Given d point sets P1, . . . , Pd ⊂ Rd that
are well-separated and in weak general position2, for every (α1, . . . , αd) where 1 ≤ αi ≤ |Pi|,
there exists a unique (α1, . . . , αd)-cut.

2 Weak general position is a weaker version of general position. We will not go further into this since we
will always ensure classical general position when invoking this theorem.
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The α-Ham Sandwich theorem guarantees us existence and uniqueness of an (α1, . . . , αd)-
cut, and it is thus not too surprising that the problem of finding such a cut is contained in
UEOPL [3].

In this section, we wish to show equivalence of this problem to P-Lin-Bellman, however,
we only manage this with some slight changes. Firstly, we wish to drop the assumption of
weak general position, since it is not easily guaranteed when reducing from P-Lin-Bellman.
Because of this we need to weaken the definition of (α1, . . . , αd)-cuts accordingly:

▶ Definition 19. Given a well-separated family of point sets P1, . . . , Pd ⊂ Rd and (α1, . . . , αd)
such that 1 ≤ αi ≤ |Pi|, a hyperplane h is an (α1, . . . , αd)-cut if for all i ∈ [d], h ∩ Pi ̸= ∅
and |(h+ \ h) ∩ Pi| + 1 ≤ αi ≤ |h+ ∩ Pi|.

In other words, we allow a hyperplane to contain more than one point per color, and all
the additional points may be “counted” for either side of the hyperplane. Note that even
without any general position assumption, the affine hull of every colorful set of points must
have dimension at least d − 1, and thus span a unique hyperplane (see the full version of the
paper). We further show in the full version that every colorful subset of points on the same
hyperplane h must be oriented the same way, and thus h+ is uniquely defined even without
the weak general position assumption.

Note that the α-Ham Sandwich theorem (Theorem 18) generalizes directly to the setting
where the assumption of weak general position is dropped and Definition 17 is replaced by
Definition 19.

▶ Theorem 20. Given a well-separated family of point sets P1, P2, . . . , Pd ⊂ Rd and
(α1, . . . , αd) for 1 ≤ αi ≤ |Pi|, there exists a unique hyperplane h that is an (α1, . . . , αd)-cut
according to Definition 19.

Proof. This simply follows from perturbing the points and applying Theorem 18. ◀

Secondly, we have to strengthen well-separation to strong well-separation. We illustrate
well-separation and strong well-separation in Figure 3.

▶ Definition 21. A family of point sets P1 = {p1,1, . . . , p1,s1}, P2, . . . , Pd ⊂ Rd is said to be
strongly well-separated if the point sets P ′

1, . . . , P ′
d obtained by projecting P1, . . . , Pd to the

hyperplane spanned by p1,1, . . . , pd,1 are well-separated.

p1,1

p2,1

p1,1

p2,1

Figure 3 The point sets (dots) on the left are well-separated but not strongly well-separated,
since their projections (circles) are not well-separated. The point sets on the right are strongly
well-separated.
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We are now ready to introduce the problem we wish to study.

▶ Definition 22. SWS-Colorful-Tangent(P1, . . . , Pd, α1, . . . , αd)
Input: d point sets P1, . . . , Pd ⊂ Rd and a vector (α1, . . . , αd), where αi ∈ {1, |Pi|}.
Promise: The point sets P1, . . . , Pd are strongly well-separated.
Output: An (α1, . . . , αd)-cut.
We depart from the Ham Sandwich name for this problem since for αi ∈ {1, |Pi|}, the α-“cuts”
are really just colorful tangent hyperplanes, as can be seen in Figure 4.

α = (3, 1)
α = (1, 4)

α = (3, 4) α = (1, 1)

Figure 4 Two well-separated point sets and the solution α-cuts to all four possible α-vectors.
Note that the positive side of a colorful line is considered to be the right side when orienting the line
from the red point to the blue point.

Similarly to P-GLCP and its binary variant P-LCP, we also define SWS-2P-Colorful-
Tangent as the restriction of SWS-Colorful-Tangent to inputs where |Pi| = 2 for all
i ∈ [d]. We now wish to prove these two problems polynomial-time equivalent to P-Lin-
Bellman. To achieve this, we reduce SWS-Colorful-Tangent to P-Lin-Bellman, and
P-Lin-Bellman to SWS-2P-Colorful-Tangent, with the reduction by inclusion from
SWS-2P-Colorful-Tangent to SWS-Colorful-Tangent closing the cycle.

For our reductions, we will use the concept of point-hyperplane duality, as described by
Edelsbrunner in [8, p.13]. Point-hyperplane duality is a bijective mapping from all points
in Rd to all non-vertical hyperplanes in Rd. A point p = (p1, . . . , pd) is mapped to the
hyperplane p∗ = {x ∈ Rd | 2p1x1 + . . . 2pd−1xd−1 − xd = pd}. The hyperplane p∗ is called
the dual of p, and for a non-vertical hyperplane h, its dual h∗ is the unique point p such that
p∗ = h.

Point-hyperplane duality has the nice properties of incidence preservation and order
preservation: for any point p and non-vertical hyperplane h, we have that p ∈ h if and only
if h∗ ∈ p∗, and furthermore we have that p lies above h if and only if h∗ lies above p∗.

We are now ready to begin presenting our reductions. For all of these reductions, we use
the following crucial yet simple observation on strongly well-separated point sets:

▶ Observation 23. If a set of point sets P1, . . . , Pd is strongly well-separated, then every set
of point sets P ′

1, . . . , P ′
d obtained by moving points pi,j (j ̸= 1) orthogonally to the hyperplane

spanned by p1,1, . . . , pd,1 is also strongly well-separated.

The general idea of the reduction is to represent the linear inputs to a min or max
operation in a Lin-Bellman system by a point pi,1 and the affine inputs by a point pi,j

(j ̸= 1). As a warm-up, we first only reduce from the two-point version.
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▶ Lemma 24. SWS-2P-Colorful-Tangent poly-time reduces to P-Lin-Bellman.
Proof. We first linearly transform our point sets such that the plane through p1,1, . . . , pd,1 is
mapped to the horizontal plane {(x1, . . . , xd) ∈ Rd | xd = 0}. Without loss of generality, we
assume that after this transformation the colorful hyperplane h spanned by p1,1, . . . , pd,1 is
oriented upwards, i.e., its positive halfspace contains (0, . . . , 0, +∞).

Then, we apply point-hyperplane duality. Each point pi,j becomes a hyperplane hi,j = p∗
i,j ,

which can be described by some function hi,j : Rd → R such that a point x ∈ Rd lies strictly
above hi,j if hi,j(x) > 0, and on hi,j if hi,j(x) = 0. For the hyperplanes hi,1 dual to our
points pi,1, we furthermore have that they go through the origin, i.e., hi,j is a linear function
(and not only an affine function; it has no additive constant term).

Before applying duality, the desired (α1, . . . , αd)-cut hyperplane is a hyperplane h con-
taining at least one point p′

i per set Pi, such that the other point of Pi lies on or above h if
and only if αi = |Pi|, and on or below h if and only if αi = 1. In the dual, this now means
that we need to find a point p which lies on at least one of the hyperplanes hi,1, hi,2 for each i,
and such that it lies above (below) or on both of these hyperplanes if αi = |Pi| (αi = 1). This
can be described by the equations min{hi,1(x), hi,2(x)} = 0 if αi = |Pi| (and max instead
of min, otherwise). This can of course be rewritten as xi = min{hi,2(x) + xi, hi,1(x) + xi}.
Note again that the second input to this minimum is linear in x (there is no additive term).
With one such constraint each per point set Pi, we thus get a system of d equations over d

variables, which together form a Lin-Bellman system.
It remains to check whether this system is also a P-Lin-Bellman instance. We first see

that changing q simply corresponds to moving the hyperplanes hi,2 in a parallel fashion (i.e.,
without changing their normal vectors), which in the primal corresponds to moving them in
direction xd. By Observation 23 and Theorem 20, we always have unique (α1, . . . , αd)-cuts in
this modified family of point sets, and thus the Lin-Bellman instance has a unique solution
for all q′. ◀

▶ Theorem 25. SWS-Colorful-Tangent poly-time reduces to P-Lin-Bellman.
Proof (sketch). The proof works exactly the same way as the previous proof of Lemma 24.
The only difference is that the equations that need to be encoded are of the form

xi = min{hi,1(x) + xi, . . . , hi,|Pi|(x) + xi}, (12)

where still only hi,1(x) is guaranteed to be a linear function. To encode this as a Lin-Bellman
system, we apply the same trick as in the proof of Lemma 14 to split the multi-input minimum
into multiple two-input minima, with the remaining details found in the full version of the
paper. ◀

To complete our cycle of reductions, we need to reduce from P-Lin-Bellman to SWS-
2P-Colorful-Tangent. For this reduction we basically perform the process from the
proof of Lemma 24 in reverse. The details are found in the full version of the paper.
▶ Theorem 26. P-Lin-Bellman poly-time reduces to SWS-2P-Colorful-Tangent.

To end this section, we want to note that the assumption of strong well-separation is not
too strong, at least combinatorially:
▶ Theorem 27. For every family of well-separated point sets, there exists a family of strongly
well-separated point sets with the same combinatorial structure, i.e., the two families have
the exact same order type.

The proof can be found in the full version of the paper. Note that the proof is merely
existential and it is unlikely that the translation can be performed efficiently.
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5 Grid-USO and Cube-USO

We saw in the two previous sections that both P-GLCP and SWS-Colorful-Tangent can
be reduced to their respective “binary” variants, P-LCP and SWS-2P-Colorful-Tangent.
In this section we discuss grid USOs and cube USOs, which are a combinatorial framework
that can be used to model all the problems studied in the sections above as well as many
more algebraic and geometric problems. Similarly to the previous sections, cube USOs are a
restriction of grid USOs to the “binary” case.

5.1 Definitions
We define C as a d-dimensional hypercube. We say V (C) := {0, 1}d and {J, K} ∈ E(C) iff
|J ⊕ K| = 1, where ⊕ is the bit-wise xor operation (i.e., addition in Zd

2) and | · | counts the
number of 1-entries. For notational simplicity, in this section we use the same name both
for a bitvector in {0, 1}d and for the set of dimensions i ∈ [d] in which the vector is 1. For
example for J, K ∈ {0, 1}d we write J ⊆ K if for all i ∈ [d] with Ji = 1 we also have Ki = 1.

The orientation of the edges of the cube C is given by an orientation function O : V (C) →
{0, 1}d, where O(J)i = 0 means J has an incoming edge in dimension i and O(J)i = 1 is an
outgoing edge in dimension i.

▶ Definition 28. An orientation is a unique sink orientation (USO) if and only if every
induced subcube has a unique sink.

The common search problem version of this problem is to find the global sink of the cube,
given the function O as a boolean circuit. Note that it is co-NP-complete to test whether a
given orientation is USO [13]. We consider the promise version Cube-USO, which was one
of the first search problems proven to lie in the complexity class Promise-UEOPL [9].

▶ Definition 29. Cube-USO
Input: A circuit computing the orientation function O on a d-dimensional cube C.
Promise: O is a Unique Sink Orientation.
Output: A vertex J ∈ V (C) which is a sink, i.e., ∀i ∈ [d] : O(J)i = 0.

While the d-dimensional hypercube is the product of d copies of K2 (the complete
graph on two vertices), a grid graph is the product of complete graphs of arbitrary size: A
d-dimensional grid graph Γ is given by n1, . . . , nd ∈ N+:

V (Γ) := {0, . . . , n1} × · · · × {0, . . . , nd},

E(Γ) := {{v, w} | v, w ∈ V (Γ), ∃!i ∈ [d] : vi ̸= wi}.

We say the grid has d dimensions and each dimension i has ni + 1 directions.
The subgraph Γ′ of Γ induced by the vertices V (Γ′) = N1 × · · · × Nd for non-empty

Ni ⊆ {0, . . . , ni} is called an induced subgrid of Γ. Note that if for some i we have |Ni| = 1,
the induced subgrid loses a dimension. If |Ni| = 1 for all i ∈ [d] except one, we say that the
induced subgrid Γ′ is a simplex. A simplex is a complete graph Knj+1 for some j ∈ [d].

The orientation of a grid is given by the outmap function, which assigns each vertex a
binary vector that encodes whether its incident edges are incoming or outgoing. More formally,
the outmap function is a function σ : V (Γ) → {0, 1}n1+...+nd , where σ(v)n1+...+ni+j = 1
denotes that the edge from v to its j-th neighbor w in dimension i + 1 is outgoing, i.e.,
oriented from v to w. Note that any circuit computing σ has n1 + . . . + nd outputs, and is
thus of size Ω(n1 + . . . + nd).
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For notational convenience, we denote the entry of σ(v) relevant to the edge {v, w} by
σ(v, w). In other words, for each pair of vertices v, w such that {v, w} ∈ E(Γ), σ(v, w) = 1
iff the edge between v and w is oriented towards w.

▶ Definition 30 (Gärtner, Morris, Rüst [10]). An orientation of a grid graph is a unique sink
orientation (USO) if and only if every induced subgrid has a unique sink.

A unique sink orientation of a simplex with n vertices is equivalent to a permutation of n

elements, i.e. every unique sink orientation of one simplex can be given by a total order of its
vertices. The minimum element of the order is the source, the maximum element is the sink.

Since every cube is also a grid, the complexity of checking whether σ is USO is also
co-NP-hard. So again, we consider the promise search version of this problem:

▶ Definition 31. Grid-USO
Input: A d-dimensional grid Γ = (n1, . . . , nd) and a circuit computing its outmap σ.
Promise: σ is a Unique Sink Orientation.
Output: A sink, i.e. a vertex v ∈ V (Γ) s.t. ∀w ∈ V (Γ) with {v, w} ∈ E(Γ) : σ(v, w) = 0.

Just like Cube-USO, Grid-USO also lies in the search problem complexity class Promise-
UEOPL [1]. It is well known that P-LCP reduces to Cube-USO [22] and P-GLCP reduces
to Grid-USO [10]. Since SWS-2P-Colorful-Tangent and SWS-Colorful-Tangent
can both be reduced to P-LCP and P-GLCP respectively, they also reduce to Cube-USO
and Grid-USO respectively. However, we show a direct and straightforward reduction from
SWS-2P-Colorful-Tangent to Cube-USO, and from SWS-Colorful-Tangent to
Grid-USO. These direct reductions do not require strong well-separation, only classical
well-separation. The proof can be found in the full version of the paper.

▶ Lemma 32. Assuming general position of the input points, finding an α-cut in a well-
separated point set family P1, . . . , Pd ⊂ Rd for αi ∈ {1, |Pi|} can be reduced to Grid-USO in
polynomial time. The reduction goes to Cube-USO if for all i, |Pi| = 2.

▶ Remark 33. If we instead want to find an α′-cut for arbitrary α′, we can use the reduction
from Lemma 32 with α = (1, . . . , 1), but instead of searching for a sink in the resulting grid
USO Γ, we need to find a vertex with α′

i − 1 outgoing edges in each dimension i.
By [10, Theorem 2.14], this vertex is guaranteed to exist and to be unique. We call the

problem of searching for such a vertex α-Grid-USO. Note that α-Grid-USO is not known
to reduce to regular Grid-USO, nor is it known to lie in Promise-UEOPL (compared to
α-Ham Sandwich which does lie in Promise-UEOPL [3]).

5.2 Grid-USO to Cube-USO
In this section we show that every Grid-USO instance (Γ, σ) can be reduced to a Cube-USO
instance (C,O) in polynomial time such that given the global sink of O, we can derive the
global sink of σ in polynomial time.

We are given a d-dimensional grid Γ = (n1, . . . , nd) and turn it into a hypercube of
dimension n :=

∑
ni. Note that Γ is n-regular and so is C. For every dimension of the

grid spanned by ni + 1 directions, we assign a block of ni dimensions in C. For simplicity,
we index into the dimensions of the hypercube using double indices: for every bitstring
J ∈ {0, 1}n, we write Ji,j (where j ∈ [ni]) as a shorthand for Jj+

∑
l∈[i−1]

nl
.

Each vertex J ∈ V (C) is assigned a corresponding vertex in the grid Γ as follows: For
every grid dimension i ∈ [d], we assign J a color ji with

ji := max({0} ∪ {h | h ∈ [ni], Ji,h = 1}). (13)
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The tuple of colors (j1, . . . , jd) is the vertex in the grid that we associate with J . When
we orient J , we orient each block i of dimensions of C independently, according to the
corresponding simplex in dimension i in Γ that contains this vertex (j1, . . . , jd).

A single simplex of Γ with ni +1 directions is turned into an ni-cube as shown in Figure 5.
The vertex (0) of the simplex is mapped to the vertex 0ni , and all the other vertices of the
grid are mapped to its neighbors. We call these ni + 1 vertices the grid-vertices, all others
are called non-grid-vertices. The paths of length one and two between these grid-vertices
encode the orientation of the grid. This completely orients the grid-vertices. The rest of the
cube is oriented according to the colors of the non-grid-vertices; edges between vertices of
two different colors are oriented as the corresponding edge in the grid. Vertices of the same
color are oriented in such a way that in the subcube corresponding to all vertices of the same
color all the edges of the same dimension are oriented the same way. This orientation is
uniquely defined since the unique grid-vertex of this color is already completely oriented.

(0)

(1)

(2)

(3)

(4)

I4

0ni

I3

I2

I1

Figure 5 Example of placing grid-vertices (large) in the cube, coloring the non-grid-vertices
(small) and orienting the edges. Each edge of the grid becomes a path of length two between two
grid-vertices, see the red edges. Edges between vertices of different colors are oriented the same as
in the grid, see the blue edges. Each subcube of the same color is oriented in a uniform way.

To formalize this construction for the complete grid, we need to define a secondary color
j∗

i for each vertex J ∈ V (C) and each grid dimension i ∈ [d], which for all vertices with color
ji ̸= 0 corresponds to the color of the neighboring vertex of J in dimension (i, ji):

j∗
i := max({0} ∪ {h | h ∈ [ni] \ {ji}, Ji,h = 1}). (14)

The orientation O of the cube C is now defined as follows:

O(J)i,h :=


σ((j1, . . . , ji, . . . , jd), (j1, . . . , h, . . . jd)) ⊕ Ji,h for h < ji,

σ((j1, . . . , ji, . . . , jd), (j1, . . . , h, . . . jd)) for h > ji,

σ((j1, . . . , ji, . . . , jd), (j1, . . . , j∗
i , . . . jd)) for h = ji.

(15)

▶ Theorem 34. If σ is a unique sink orientation, then the orientation constructed by
Equation (15) is a unique sink orientation. A circuit computing O can be computed in
polynomial time. Given the sink of O, the sink of σ can be found in polynomial time.

The proof can be found in the full version of the paper.
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6 Open Questions

Total Search Problem Versions. All reductions we provided in this paper are between
the promise problem versions of the involved problems. It may be interesting to also find
reductions between the total search problem versions.

Missing Reductions. We were unable to show that finding an α-cut for arbitrary α is not
more difficult than finding it for αi ∈ {1, |Pi|}. There might thus be a difference in the
computational complexity of α-Ham-Sandwich and SWS-Colorful-Tangent. Similarly,
in Grid-USO, we also do not know whether it is not more difficult to find a vertex with a
specific refined index (which must also be unique) rather than searching for a sink. Note
that in the case of α-Ham-Sandwich, it is at least known that the problem is contained in
UEOPL. This is not known for α-Grid-USO.

Semantics of the Grid-USO to Cube-USO Reduction. On the levels of USOs, we do
not know the exact operations that the reductions from P-GLCP to P-LCP and SWS-
Colorful-Tangent to SWS-2P-Colorful-Tangent perform. It would be very in-
teresting to analyze whether these reductions actually perform the same operation as the
Grid-USO to Cube-USO reduction (Theorem 34), i.e., whether these reductions commute.
It would also be interesting to study whether the Grid-USO to Cube-USO preserves
realizability, i.e., whether if there exists a P-GLCP instance inducing a certain grid USO,
there also exists a P-LCP instance inducing the resulting cube USO.
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