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Abstract
It is known for many algorithmic problems that if a tree decomposition of width t is given in the
input, then the problem can be solved with exponential dependence on t. A line of research initiated
by Lokshtanov, Marx, and Saurabh [SODA 2011] produced lower bounds showing that in many
cases known algorithms already achieve the best possible exponential dependence on t, assuming the
Strong Exponential-Time Hypothesis (SETH). The main message of this paper is showing that the
same lower bounds can already be obtained in a much more restricted setting: informally, a graph
consisting of a block of t vertices connected to components of constant size already has the same
hardness as a general tree decomposition of width t.

Formally, a (σ, δ)-hub is a set Q of vertices such that every component of Q has size at most σ

and is adjacent to at most δ vertices of Q. We explore if the known tight lower bounds parameterized
by the width of the given tree decomposition remain valid if we parameterize by the size of the given
hub.

For every ε > 0, there are σ, δ > 0 such that Independent Set (equivalently Vertex Cover)
cannot be solved in time (2 − ε)p · n, even if a (σ, δ)-hub of size p is given in the input, assuming
the SETH. This matches the earlier tight lower bounds parameterized by width of the tree
decomposition. Similar tight bounds are obtained for Odd Cycle Transversal, Max Cut,
q-Coloring, and edge/vertex deletions versions of q-Coloring.
For every ε > 0, there are σ, δ > 0 such that △-Partition cannot be solved in time (2 − ε)p · n,
even if a (σ, δ)-hub of size p is given in the input, assuming the Set Cover Conjecture (SCC). In
fact, we prove that this statement is equivalent to the SCC, thus it is unlikely that this could be
proved assuming the SETH.
For Dominating Set, we can prove a non-tight lower bound ruling out (2−ε)p ·nO(1) algorithms,
assuming either the SETH or the SCC, but this does not match the 3p · nO(1) upper bound.

Thus our results reveal that, for many problems, the research on lower bounds on the dependence
on tree width was never really about tree decompositions, but the real source of hardness comes
from a much simpler structure.

Additionally, we study if the same lower bounds can be obtained if σ and δ are fixed universal
constants (not depending on ε). We show that lower bounds of this form are possible for Max Cut
and the edge-deletion version of q-Coloring, under the Max 3-Sat Hypothesis (M3SH). However,
no such lower bounds are possible for Independent Set, Odd Cycle Transversal, and the
vertex-deletion version of q-Coloring: better than brute force algorithms are possible for every
fixed (σ, δ).
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1 Introduction

Starting with the work of Lokshtanov, Marx, and Saurabh [24], there is a line of research
devoted to giving lower bounds on how the running time of parameterized algorithms
can depend on treewidth (or more precisely, on the width of a given tree decomposition)
[32, 31, 11, 7, 4, 19, 27, 8, 13, 28, 12]. The goal of this paper is to revisit the fundamental
results from [24] to point out that previous work could have considered a simpler parameter
to obtain stronger lower bounds in a more uniform way. Thus, in a sense, this line of research
was never really about treewidth; a fact that future work should take into account.

Suppose we want to solve some algorithmic problem on a graph G given with a tree
decomposition of width t. For many NP-hard problems, standard dynamic program techniques
or meta theorems such as Courcelle’s Theorem [5] show that the problem can be solved
in time f(t) · nO(1) for some computable function f [10, Chapter 7]. In many cases, the
running time is actually ct · nO(1) for some constant c > 1, where it is an obvious goal
to make the constant as small as possible. A line of work started by Lokshtanov, Marx,
and Saurabh [24] provides tight conditional lower bounds for many problems with known
ct · nO(1)-time algorithms. The lower bounds are based on the Strong Exponential-Time
Hypothesis, formulated by Impagliazzo, Paturi, and Zane [16, 17].

▶ Strong Exponential-Time Hypothesis (SETH). There is no ε > 0 such that for every k,
every n-variable instance of k-Sat can be solved in time (2 − ε)n · nO(1).

The goal of these results is to provide evidence that the base c of the exponent in the best
known ct · nO(1)-time algorithm is optimal: if a (c− ε)t · nO(1)-time algorithm exists for any
ε > 0, then SETH fails. The following theorem summarizes the basic results obtained by
Lokshtanov, Marx, and Saurabh [24].

▶ Theorem 1.1 ([24]). If there exists an ε > 0 such that
1. Independent Set can be solved in time (2 − ε)t · nO(1), or
2. Dominating Set can be solved in time (3 − ε)t · nO(1), or
3. Max Cut can be solved in time (2 − ε)t · nO(1), or
4. Odd Cycle Transversal can be solved in time (3 − ε)t · nO(1), or
5. q-Coloring can be solved in time (q − ε)t · nO(1) for some q ⩾ 3, or
6. Triangle Partition can be solved in time (2 − ε)t · nO(1),
on input an n-vertex graph G together with a tree decomposition of width at most t, then the
SETH fails.

Already in [24] it is pointed out that many of the lower bounds remain true even in the
more restricted setting where the input is not a tree decomposition, but a path decomposition.
This raises the following natural questions:

How much further can we restrict the input and still obtain the same lower bounds?
What is the real structural source of hardness in these results?

https://doi.org/10.4230/LIPIcs.ICALP.2024.34
https://doi.org/10.48550/arXiv.2402.07331


B. Can Esmer, J. Focke, D. Marx, and P. Rzążewski 34:3

In this paper, we show that many of these lower bounds remain true in a much more restricted
setting where a block of p vertices is connected to constant-size components. Additionally,
we demonstrate that our results are very close to being best possible, as further restrictions
of the structure of the graphs allow better algorithms.

We say that a set Q of vertices is a (σ, δ)-hub of G if every component of G−Q has at most
σ vertices and each such component is adjacent to at most δ vertices of Q in G1. Our goal is
to prove lower bounds parameterized by the size of a (σ, δ)-hub given in the input, where σ
and δ are treated as constants. One can observe that a (σ, δ)-hub of size p in G can be easily
turned into a tree decomposition of width less than p+σ, hence the treewidth of G is at most
p+ σ. Therefore, any lower bound parameterized by the size p of hub immediately implies a
lower bound parameterized by the width of the given tree decomposition. We systematically
go through the list of problems investigated by Lokshtanov, Marx, and Saurabh [24], to see
if the same lower bound can be obtained with this parameterization. Our results show that,
in most cases, the results remain valid under parameterization by hub size. However, new
insights, techniques and arguments are needed; in particular, we require different complexity
assumptions for some of the statements.

1.1 Coloring Problems and Relatives
Let us first consider the q-Coloring problem: given a graph G, the task is to find a coloring
of the vertices of G with q colors such that adjacent vertices receive different colors. Given
a (σ, δ)-hub Q of size p, we can try all possible q-colorings on Q and check if they can be
extented to every component of G − Q. Assuming σ and δ are constants, this leads to a
qp · nO(1) algorithm. Our first result shows that this is essentially best possible, assuming
the SETH; note that this result immediately implies Theorem 1.1(5).

▶ Theorem 1.2. Let q ⩾ 3 be an integer.
1. For every σ, δ ⩾ 1, q-Coloring on n-vertex graphs can be solved in time qp · nO(1) if a

(σ, δ)-hub of size p is given in the input.
2. For every ε > 0, there exist integers σ, δ ⩾ 1 such that if there is an algorithm solving in

time (q − ε)p · nO(1) every n-vertex instance of q-Coloring given with a (σ, δ)-hub of
size at most p, then the SETH fails.

The q-ColoringED problem is an edge-deletion optimization version of q-Coloring:
given a graph G, the task is to find a set X of edges of minimum size such that G \X has a
q-coloring. We show that qp · nO(1) running time is essentially optimal for this problem as
well.

▶ Theorem 1.3. Let q ⩾ 2 be an integer.
1. For every σ, δ ⩾ 1, q-ColoringED on n-vertex graphs can be solved in time qp · nO(1) if

a (σ, δ)-hub of size p is given in the input.
2. For every ε > 0, there exist integers σ, δ ⩾ 1 such that if there is an algorithm solving in

time (q − ε)p · nO(1) every n-vertex instance of q-ColoringED given with a (σ, δ)-hub
of size at most p, then the SETH fails.

1 This notion is related to component order connectivity, which is the size of the smallest set Q of
vertices such that deleting Q leaves components of size not larger than some predefined constant σ
[37, 33, 26, 3, 20, 22, 1, 14, 34, 6, 25]. Our definition has the additional constraint on the neighborhood
size of each component. As we often refer to the set Q itself (not only its smallest possible size) and we
want to make the constants σ, δ explicit, the terminology (σ, δ)-hub is grammatically more convenient
than trying to express the same using component order connectivity.

ICALP 2024
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For q ⩾ 3, the lower bound of Theorem 1.2 for q-Coloring immediately implies the same
lower bound for the more general problem q-ColoringED. Observe that for q = 2, the
q-ColoringED problem is equivalent to the Max Cut problem: deleting the minimum
number of edges to make the graph bipartite is equivalent to finding a bipartition with the
maximum number of edges going between the two classes. Thus the lower bound for Max
Cut is needed to complete the proof of Theorem 1.3.

Let us consider now the vertex-deletion version q-ColoringVD, where given a graph
G, the task is to find a set X of vertices of minimum size such that G−X has a q-coloring
(equivalently, we want to find a partial q-coloring on the maximum number of vertices).
For this problem, a brute force approach would need to consider (q + 1)p possibilities on a
(σ, δ)-hub of size p: each vertex can receive either one of the q colors, or be deleted.

▶ Theorem 1.4. Let q ⩾ 1 be an integer.
1. For every σ, δ ⩾ 1, q-ColoringVD on n-vertex graphs can be solved in time (q+1)p ·nO(1)

if a (σ, δ)-hub of size p is given in the input.
2. For every ε > 0, there exist integers σ, δ ⩾ 1 such that if there is an algorithm solving in

time (q+1−ε)p ·nO(1) every n-vertex instance of q-ColoringVD given with a (σ, δ)-hub
of size at most p, then the SETH fails.

Observe that Vertex Cover is equivalent to 1-ColoringVD and Odd Cycle Trans-
versal is equivalent to 2-ColoringVD. Furthermore, Independent Set and Vertex
Cover have the same time complexity (due to the well-known fact that minimum size of a
vertex cover plus the maximum size of an independent set is always equal to the number of
vertices). Thus the definition of q-ColoringVD gives a convenient unified formulation that
includes these fundamental problems.

1.2 Packing Problems
Given a graph G, the Triangle Partition (denoted by △-Partition for short) problem
asks for a partition of the vertex set into triangles. Triangle Packing (denoted by
△-Packing) is the more general problem where the task is to find a maximum-size collection
of vertex-disjoint triangles. Given a tree decomposition of width t, Theorem 1.1(6) shows
that 2t · nO(1) is essentially the best possible running time. It seems that the same lower
bound holds when parameterizing by the size of a hub, but the source of hardness is somehow
different. Instead of assuming the SETH, we prove this lower bound under the Set Cover
Conjecture (SCC) [9, 10]. In the d-Set Cover problem, we are given a universe U of
size n and a collection F of subsets of U , each with size at most d. The task is to find a
minimum-size collection of sets whose union covers the universe.

▶ Set Cover Conjecture (SCC). For all ε > 0, there exists d ⩾ 1 such that there is no
algorithm that solves every ⩽d-Set Cover instance (U,F) in time (2 − ε)n · nO(1) where
n = |U |.

We actually show that the lower bounds for △-Partition/△-Packing are equivalent to
the SCC.

▶ Theorem 1.5. The following three statements are equivalent:
The SCC is true.
For every ε > 0, there are σ, δ > 0 such that △-Partition on an n-vertex graph cannot
be solved in time (2 − ε)p · nO(1), even if the input contains a (σ, δ)-hub of size p.
For every ε > 0, there are σ, δ > 0 such that △-Packing on an n-vertex graph cannot be
solved in time (2 − ε)p · nO(1), even if the input contains a (σ, δ)-hub of size p.
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Ideally, one would like to prove lower bounds under the more established conjecture: the
SETH. However, Theorem 1.5 shows that it is no shortcoming of our technique that we
prove the lower bound based on the SCC instead. If we proved statement 2 or 3 under the
SETH, then this would prove that the SETH implies the SCC, resolving a longstanding open
question.

1.3 Dominating Set
Given an n-vertex graph with a tree decomposition of width t, a minimum dominating set
can be computed in time 3t · nO(1) using an algorithm based on fast subset convolution
[35, 36]. By Theorem 1.1 (2), this running time cannot be improved to (3 − ε)t ·nO(1) for any
ε > 0, assuming the SETH. Can we get a (3 − ε)p · nO(1) algorithm if a hub of size p is given
in the input? We currently have no answer to this question. In fact, we do not even have a
good guess whether or not such algorithms should be possible. What we do have are two
very simple weaker results that rule out (2 − ε)p · nO(1) algorithms, with one proof based on
the SETH and the other proof based on the SCC.

▶ Theorem 1.6. For every ε > 0, there are σ, δ > 0 such that Dominating Set on
an n-vertex graph with a (σ, δ)-hub of size p given in the input cannot be solved in time
(2 − ε)p · nO(1), unless both the SETH and the SCC fail.

Theorem 1.6 suggests that, if there is no (3 − ε)p · nO(1) time algorithm for Dominating
Set, then perhaps the matching lower bound needs a complexity assumption that is stronger
than both the SETH and the SCC.

1.4 Universal Constants for σ and δ?
The lower bounds in Theorems 1.2–1.6 are stated in a somewhat technical form: “for every
ε > 0, there are σ and δ such that. . .”. The statements would be simpler and more intuitive
if they were formulated in a setting where σ and δ are universal constants, say, 100. Can we
prove statements that show, for example, that there is no (2 − ε)p · nO(1) algorithm, where p
is the size of a (100, 100)-hub given in the input? The answer to this question is complicated.
For the vertex-deletion problem q-ColoringVD (which includes Vertex Cover and Odd
Cycle Transversal) there are actually better than brute force algorithms for fixed constant
values of σ and δ.

▶ Theorem 1.7. For every q ⩾ 3 and σ, δ > 0, there exists ε > 0 with the following property:
every instance (G,L) of q-ColoringVD with n vertices, given with a (σ, δ)-hub of size p,
can be solved in time (q + 1 − ε)p · nO(1).

Thus Theorem 1.7 explains why the formulation of Theorem 1.4 needs to quantify over σ
and δ, and cannot be stated for a fixed pair (σ, δ).

On the other hand, for the edge-deletion problem q-ColoringED (which includes Max
Cut), we can prove stronger lower bounds where σ and δ are universal constants. However,
we need a complexity assumption different from the SETH.

An instance of Max 3-Sat is a CNF formula φ with at most three literals in each clause.
We ask for the minimum number of clauses that need to be deleted in order to obtain a
satisfiable formula. Equivalently, we look for a valuation of the variables which violates
the minimum number of clauses. Clearly, an instance of Max 3-Sat with n variables can
be solved in time 2n · nO(1) by exhaustive search. It is a notorious problem whether this
running time can be significantly improved, i.e., whether there exists an ε > 0 such that
every n-variable instance of Max 3-Sat can be solved in time (2 − ε)n.

ICALP 2024
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▶ Max 3-Sat Hypothesis (M3SH). There is no ε > 0 such that every n-variable instance of
Max 3-Sat can be solved in time (2 − ε)n · nO(1).

Under this assumption, we can prove a lower bound where δ = 6 and σ is a constant
(depending only on q).

▶ Theorem 1.8. For every q ⩾ 2 there is an integer σ such that the following holds. For
every ε > 0, no algorithm solves every n-vertex instance of q-ColoringED that is given
with a (σ, 6)-hub of size p, in time (q − ε)p · nO(1), unless the M3SH fails.

For the case q = 2 we even show a slight improvement over Theorem 1.8 – in this case it
suffices to consider instances with a constant σ and δ = 4.

For △-Partition, we do not know if the lower bound of Theorem 1.5, ruling out
(2 − ε)p · nO(1) running time under the SCC, remains valid for some fixed universal σ and δ

independent of ε. Note that the proof of Theorem 1.5 provides a reduction from △-Partition
to d-Set Packing for some d. It is known that d-Set Packing over a universe of size n can
be solved in time (2 − ε)n · (n+m)O(1) with some ε > 0 depending on d [30, 21, 2]. However,
our reduction from △-Partition to d-Set Packing chooses d in a way that it cannot be
used to reduce the case of a fixed σ and δ to a d-Set Packing problem with fixed d. It
seems that we would need to understand if certain generalizations of d-Set Packing can
also be solved in time (2 − ε)n · (n+m)O(1) for fixed d. The simplest such problem would be
the generalization of d-Set Packing where the sets in the input are partitioned into pairs
and the solution is allowed to use at most one set from each pair.

1.5 Discussion
Given the amount of attention to algorithms on tree decompositions and the number of
nontrivial techniques that were developed to achieve the best known algorithms, it is a natural
question to ask if these algorithms are optimal. Even though understanding treewidth is
a very natural motivation for this line of research, the actual results turned out to be
less related to treewidth than one would assume initially: the lower bounds remain valid
even under more restricted conditions. Already the first paper on this topic [24] states the
lower bounds in a stronger form, as parameterized by pathwidth or by feedback vertex set
number (both of which are bounded below by treewidth). Some other results considered
parameters such as the size of a set Q where every component of G − Q is a path [18] or
has bounded treewidth [15]. However, our results show that none of these lower bounds got
to the fundamental reason why known algorithms on bounded-treewidth graphs cannot be
improved: Theorems 1.2–1.5 highlight that these algorithms are best possible already if we
consider a much more restricted problem setting where constant-sized gadgets are attached
to a set of hub vertices. Moreover, Theorems 1.2 and 1.4 are likely to be best possible: as we
have seen, for coloring and its vertex-deletion generalizations, σ and δ cannot be made a
constant independent from ε (Theorem 1.7). Therefore, one additional conceptual message
of our results is understanding where the hardness of solving problems on bounded-treewidth
graphs really stems from, by reaching the arguably most restricted setting in which the lower
bounds hold.

The success of Theorems 1.2–1.4 (for coloring problems and relatives) suggests that
possibly all the treewidth optimality results could be revisited and the same methodology
could be used to strengthen to parameterization by hub size. But the story is more complicated
than that. For example, for △-Packing, the ground truth appears to be that the lower
bound parameterized by width of the tree decomposition can be strengthened to a lower
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bound parameterized by hub size. However, proving the lower bound parameterized by hub
size requires a different proof technique, and we can do it only by assuming the SCC – and
for all we know this is an assumption orthogonal to the SETH. In fact, we showed that the
lower bound for △-Packing is equivalent to the SCC, making it unlikely that a simple proof
based on the SETH exists. For Dominating Set, we currently do not know how to obtain
tight bounds, highlighting that it is far from granted that all results parameterized by width
of tree decomposition can be easily turned into lower bounds parameterized by hub size.

Another important aspect of our results is the delicate way they have to be formulated,
with the values of σ and δ depending on ε. Theorem 1.8 shows that in some cases it is
possible to prove a stronger bound where σ and δ are universal constants, but this comes
at a cost of choosing a different complexity assumption (M3SH). Thus, there is a tradeoff
between the choice of the complexity assumption and the strength of the lower bound. In
general, it seems that the choice of complexity assumption can play a crucial role in these
kind of lower bounds parameterized by hub size. This has to be contrasted with the case of
parameterization by the width of the tree decomposition, where the known lower bounds are
obtained from the SETH (or its counting version).

It would be natural to try to obtain lower bounds parameterized by hub size for other
algorithmic problems as well. The lower bounds obtained in this paper for various fundamental
problems can serve as a starting point for such further results. Concerning the problems
studied in this paper, we leave two main open questions:

For Dominating Set, can we improve the lower bound of Theorem 1.6 to rule out
(3 − ε)p · nO(1) algorithms, under some reasonable assumption? Or is there perhaps an
algorithm beating this bound?
For △-Partition/△-Packing, can we improve the lower bound of Theorem 1.5 such
that σ and δ are universal constants? Or is it true perhaps that for every fixed σ and δ,
there is an algorithm solving these problems in time (2 − ε)p · nO(1) for some ε > 0?

2 Technical Overview

In this section, we overview some of the most important technical ideas in our results.

2.1 q-Coloring
The algorithmic statement in Theorem 1.2 is easily obtained via a simple branching procedure.
For the hardness part, we use a lower bound of Lampis [23] for constraint satisfaction problems
(CSP) as a starting point: for any ε > 0 and integer d, there is an integer r such that there
is no algorithm solving CSP on n variables of domain size d and r-ary constraints in time
(d− ε)n. Therefore, to prove Theorem 1.2 (2), we give a reduction that, given an n-variable
CSP instance where the variables are over [q] and the arity of constraints is some constant r,
creates an instance of q-Coloring having a hub of size roughly n.

First, we introduce a set of n main vertices in the hub, representing the variables of
the CSP instance. We would like to represent each r-ary constraint with a gadget that is
attached to a set S of r vertices. We will first allow our gadgets to use lists that specify to
which colors certain vertices are allowed to be mapped. In a second step we then remove
these lists.

A bit more formally, we say that an r-ary q-gadget is a graph J together with a list
assignment L : V (J) → 2[q] and r distinguished vertices x = (z1, . . . , zr) from J . The vertices
z1, . . . , zr are called portals. A list coloring of (J, L) is an assignment φ : V (J) → [q] that
respects the lists L, i.e., with φ(v) ∈ L(v) for all v ∈ V (J).

ICALP 2024



34:8 Fundamental Problems on Bounded-Treewidth Graphs

A construction by Jaffke and Jansen [18] gives a gadget that enforces that a set of vertices
forbids one prescribed coloring. We use this statement to construct a gadget extends precisely
the set of colorings that are allowed according to some relation.

▶ Proposition 2.1. Let q ⩾ 3 and r ⩾ 1 be integers, and let R ⊆ [q]r be a relation. Then
there exists an r-ary q-gadget F = (F,L, (z1, . . . , zr)) such that

the list of every vertex is contained in [q],
for each i ∈ r, it holds that L(zi) = [q],
{z1, . . . , zr} is an independent set,
for any ψ : {z1, . . . , zr} → [q], coloring vertices z1, . . . , zr according to ψ can be extended
to a list coloring of (F,L) if and only if (ψ(z1), . . . , ψ(zr)) ∈ R.
Then, by introducing one gadget per constraint and attaching it to the vertices of the

hub, from the qn possible behaviors of the hub vertices, only those can be extended to the
gadgets that correspond to a satisfying assignment of the CSP instance. Note that gadgets
are allowed to use lists and they model the relational constraints using list colorings. So the
final step to obtain a reduction to q-Coloring is to remove these lists. This can be done
using a standard construction, where a central clique of size q is used to model the q colors,
and a vertex v of the graph is adjacent to the ith vertex of the clique, whenever i /∈ L(v).

2.2 Vertex Deletion to q-Coloring
Similarly to q-Coloring, the algorithmic statement in Theorem 1.4 is easily obtained via
a simple branching procedure. However, for q-ColoringVD, we need to consider q + 1
possibilities at each vertex: assigning to it one of the q colors, or deleting it. This leads
to the running time (q + 1)p · nO(1). The hardness proof is also similar, but this time we
have to give a reduction that, given an n-variable CSP instance where the variables are over
[q+ 1] and the arity of constraints is some constant r, creates an instance of q-ColoringVD
having a hub of size roughly n. Intuitively, we are using deletion as the (q + 1)-st color: the
(q+ 1)n possibilities for these vertices in the q-ColoringVD problem (coloring with q colors
+ deletion) correspond to the (q + 1)n possible assignments of the CSP instance. To enforce
this interpretation, we attach to these vertices small gadgets representing each constraint.
We attach a large number of copies of each such gadget, which means that it makes no sense
for an optimum solution to delete vertices from these gadgets and hence deletions occur only
in the hub. This means that we can treat the vertices of the gadgets as “undeletable”.

We would like to use again the construction from Proposition 2.1 to create gadgets that
enforce that a set of vertices has one of the prescribed colorings/deletions. A gadget can
force the deletion of a vertex if its neighbors are colored using all q colors. However, there is
a fundamental limitation of this technique: deleting a vertex is always better than coloring
it. That is, a gadget cannot really force a set S of vertices to the color “red”: from the
viewpoint of the gadget, deleting some of them and coloring the rest red is equally good. In
other words, it is not true that every relation R ⊆ [q + 1]r can be represented by a gadget
that allows only these combinations of q colors + deletion on a set S of r vertices.

To get around this limitation, we use a grouping technique to have control over how
many vertices are deleted. Let us divide the n variables into M = n/b blocks B1, . . . , BM of
size b each. Let us guess the number fi of variables in Bi that receive the value q + 1 in a
hypothetical solution; that is, we expect fi deletions in block Bi of central vertices. Instead
of just attaching a gadget to a set S of at most r vertices, now each gadget is attached
to the at most r blocks containing S. Besides ensuring a combination of values on S that
satisfies the constraint, the gadget also ensures that each block Bi it is attached to has at
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least the guessed number fi of deletions. This way, if we have a solution with exactly
∑M

i=1 fi

deletions, then we know that it has exactly fi deletions in the i-th block. Therefore, if a
gadget forces the deletion of fi vertices of Bi and forces a coloring on the remaining vertices
of Bi, then we know that that block has exactly this behavior in the solution.

2.3 Edge Deletion to q-Coloring
Let us turn our attention to the edge-deletion version now. Similarly to the vertex-deletion
version, the algorithmic results are simple, thus we discuss only the hardness proofs here.
As starting point for all our reductions, we use a CSP problem with domain size q that
naturally generalizes Max 3-Sat: the task is to find an assignment of variables that satisfies
the maximum number of constraints. For q = 2, the hardness of this problem follows from
the SETH and the M3SH. For q ⩾ 3, we prove a new tight lower bound based on M3SH.

For q ⩾ 3, the lower bound of Theorem 1.3 (hardness of q-ColoringED under the SETH)
already follows from our result for finding a q-coloring without deletions (Theorem 1.2). So,
in order to complete the proof of Theorem 1.3, we give a reduction from the CSP problem
with q = 2 to 2-ColoringED (i.e., Max Cut), which shows hardness under SETH. As the
gadgets of Proposition 2.1 work only for q ⩾ 3, we need to design new gadgets using only 2
colors for this case.

The same reduction can be used to establish the lower bound from Theorem 1.8 (hardness
of q-ColoringED under the M3SH) in the q = 2 case. For the q ⩾ 3 case, we present a
reduction from the CSP problem with domain size q to q-ColoringED. Here we can once
again use the gadgets from Proposition 2.1.

In all cases, as the gadgets we design may use lists, we establish respective lower bounds
for the list coloring problem on the way. In a second step, we then show how to remove the
lists.

Max CSP – Hardness under the M3SH

For some positive integers d and r, we define Max (d,r)-CSP: Given v variables over a
q-element domain and a set of n relational constraints of arity 3, the task is to find an
assignment of the variables such that the maximum number of constraints are satisfied.
The problem can be solved in time qv · nO(1) by brute force. For q = 2, the problem is
clearly a generalization of Max 3-Sat, hence the M3SH immediately implies that there is
no (q − ε)v · nO(1) algorithm for any ε > 0. We show that the M3SH actually implies this for
any q ⩾ 2. This might also be a helpful tool for future work.

▶ Theorem 2.2. For d ⩾ 2 and any r ⩾ 3, there is no algorithm solving every n-variable
instance of Max (d,r)-CSP in time (d− ε)n · nO(1) for ε > 0, unless the M3SH fails.

In order to show Theorem 2.2, if q is a power of 2, then a simple grouping argument
works: for example, if q = 24 = 16, then each variable of the CSP instance can represent 4
variables of the Max 3-Sat instance, and hence it is clear that a (q − ε)v algorithm would
imply a (2 − ε)4v algorithm for a Max 3-Sat instance with 4v variables.

The argument is not that simple if q is not a power of 2, say q = 15. Then a variable
of that CSP instance cannot represent all 16 possibilities of 4 variables of the Max 3-Sat
instance, and using it to represent only 3 variables would be wasteful. We cannot use the
usual trick of grouping the CSP variables such that each group together represents a group of
Max 3-Sat variables: then each constraint representing a clause would need to involve not
only 3 variables, but 3 blocks of variables, making δ larger than 3. Instead, for each block
of 4 variables of the Max 3-Sat instance, we randomly choose 15 out of the 16 possible
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assignments, and use a single variable of the CSP instance to represent these possibilities.
An optimum solution of a 4v-variable Max 3-Sat instance “survives” this random selection
with probability (15/16)v. Thus a (15 − ε)v · nO(1) time algorithm for the CSP problem
would give a randomized (16/15)v · (15 − ε)v · nO(1) = (16 − ε′)v · nO(1) = (2 − ε′′)4v · nO(1)

time algorithm for Max 3-Sat, violating (a randomized version of) the M3SH. Furthermore,
we show in the full version that the argument can be derandomized using the logarithmic
integrality gap between integer and fractional covers in hypergraphs.

Realizing Relations using Lists

Recall that an r-ary q-gadget is a graph with lists in [q] and r specified portal vertices. For
our hardness proofs, we reduce from Max (q,r)-CSP, and we use gadgets to “model” the
relations in [q]r. We say that an r-ary q-gadget realizes a relation R ∈ [q]r if there is an
integer k such that (1) for each d ∈ R, if the portals are colored according to d, then it
requires precisely k edge deletions to extend this to a full list coloring of the gadget, and (2)
extending a state that is not in R requires strictly more than k edge deletions. We say that
such a gadget 1-realizes R, if for each state outside of R it takes precisely k+ 1 edge deletions
to extend this state. So, this is a stronger notion in the sense that now the violation cost
is the same for all tuples outside of R. Moreover, with a 1-realizer in hand, by identifying
copies of this gadget with the same portal vertices one can freely adjust the precise violation
cost – this works as long as the portals form an independent set and therefore no multiedges
are introduced in the copying process.

For our treatment of the case q ⩾ 3, we again use Proposition 2.1 to show that arbitrary
relations over a domain of size q can be realized. As Proposition 2.1 is for the decision problem
without deletions, it does not help for the case q = 2, i.e., for Max Cut/2-Coloring. In
this case, we need a different approach to show that every relation over a domain of size 2
can be realized. For 2-Coloring, a single edge is essentially a “Not Equals”-gadget as the
endpoints have to take different colors or otherwise the edge needs to be deleted. Starting
from this, we show how to model OR-relations of any arity. With these building blocks we
then obtain the following result.

▶ Theorem 2.3. For each r ⩾ 1, and R ⊆ [2]r, there is an r-ary 2-gadget that 1-realizes R.

Removing the Lists

Note that gadgets may use lists and therefore, on the way, we first obtain the following lower
bounds for the respective list coloring problems.

▶ Theorem 2.4. For every q ⩾ 2 and ε > 0, there are integers σ and δ such that if an
algorithm solves in time (q− ε)p ·nO(1) every n-vertex instance of List-q-ColoringED that
is given with a (σ, δ)-hub of size p, then the SETH fails.

▶ Theorem 2.5. For every q ⩾ 2, there is a constant σq such that, for every ε > 0, if an
algorithm solves in time (q− ε)p ·nO(1) every n-vertex instance of List-q-ColoringED that
is given with a (σq, 3)-hub of size p, then the M3SH fails.

In a second step, we show how to remove the lists by adding some additional object of
size roughly q (a central vertex or a q-clique for q = 2 or q ⩾ 3, respectively). This addition is
then considered to be part of the hub, thereby increasing the size of the hub by some constant.
However, this modification means that for the other gadgets the number of neighbors in the
hub increases slightly. This is irrelevant for the SETH-based lower bound, but it leads to a
slight increase in the universal constant δ that we obtain for our M3SH-based lower bounds
for the coloring problems without lists.
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2.4 Covering, Packing, and Partitioning
Theorem 1.5 gives lower bounds for △-Partition and △-Packing based on the Set Cover
Conjecture. This hypothesis was formulated in terms of the d-Set Cover problem. For
our purposes, it is convenient to consider slightly different covering/partitioning problems.
To facilitate our reductions and as a tool for future reductions of this type, we establish
equivalences between eight different covering type problems. Before we make this more
formal in Theorem 2.6, let us briefly introduce the corresponding problems.

First, we use =d-Set Cover and ⩽d-Set Cover to distinguish between the problem
for which the sets have size exactly d or at most d, respectively. For △-Partition, it is
more natural to start a reduction from the partitioning problems =d-Set Partition or
⩽d-Set Partition, in which the task is to find pairwise disjoint sets that cover the universe.
The ⩽d-Set Partition problem can be considered as a decision problem. However, we
can also consider the corresponding optimization problem in which the task is to minimize
the number of selected sets, and we use ⩽d-Set Partition (#Sets) to denote this
problem. Further variants are the optimization problems =d-Set Packing (#Sets) and
⩽d-Set Packing (#Sets), in which we need to select the maximum number of pairwise
disjoint sets. For ⩽ d-Set Packing, an equally natural goal is to maximize the total size
of the selected sets (for = d-Set Packing, this is of course equivalent to maximizing the
number of selected sets). So we use ⩽d-Set Packing (Union) to denote the packing
problem in which the union/total size of the selected sets is maximized.

Given the large number of variants of d-Set Cover, one may wonder how they are
related to each other. In particular, does the SCC imply lower bounds for these variants?
There are obvious reductions between some of these problems (e.g., from = d-Set Cover to
⩽ d-Set Cover) and there are also reductions that are not so straightforward. We fully
clarify this question by showing that choosing any of these problems in the definition of the
SCC leads to an equivalent statement. Thus in our proofs to follow we can choose whichever
form is most convenient for us. Knowing this equivalence could prove useful for future work
as well.

▶ Theorem 2.6. Suppose that for one of the problems below, it is true that for every ε > 0,
there is an integer d such that the problem cannot be solved in time (2 − ε)n · nO(1), where n
is the size of the universe. Then this holds for all the other problems as well. In particular,
any of these statements is equivalent to the SCC.
1. =d-Set Cover
2. =d-Set Partition
3. =d-Set Packing (#Sets)
4. ⩽d-Set Cover
5. ⩽d-Set Partition
6. ⩽d-Set Partition (#Sets)
7. ⩽d-Set Packing (#Sets)
8. ⩽d-Set Packing (Union)

To make the statements about relationships between the problems from the list in
Theorem 2.6 more concise, it will be convenient to introduce some shorthand notation. Let
A = {Ad}d⩾1 and B = {Bd}d⩾1 be two families of problems where Ad and Bd belong to the
list in Theorem 2.6. To shorten notation, we speak of an n-element instance if the universe
U of an instance has size n. We say that A is 2n-hard if the following lower bound holds

For each ε > 0 there is some d ⩾ 1 such that no algorithm solves Ad on all n-element
instances in time (2 − ε)n · nO(1).
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⩽∗-Set Partition (#Sets)

⩽∗-Set Cover

⩽∗-Set Packing (Union)

=∗-Set Cover

=∗-Set Partition

=∗-Set Packing (#Sets)

⩽∗-Set Packing (#Sets)

⩽∗-Set Partition

Figure 1 An overview of the proof of Theorem 2.6. An arrow from A to B indicates an implication
stating that if A is 2n-hard then B is 2n-hard as well. The details are in the full version.

Using this language, the SCC states that {⩽d-Set Cover}d⩾1 is 2n-hard. To establish
Theorem 2.6, we show reductions, stating that if A is 2n-hard then B is 2n-hard as well.
Spelled out this means:

Suppose for each ε > 0 there is some d ⩾ 1 such that no algorithm solves Ad on all
n-element instances in time (2 − ε)n · nO(1).

Then, for each ε > 0 there is some d′ ⩾ 1 such that no algorithm solves Bd′ on all
n-element instances in time (2 − ε)n · nO(1).

This shows that this is really a relationship between two classes of problems, and not
necessarily a relationship between Ad and Bd for the same value d. To make this distinction
explicit, we write =∗-Set Cover if we refer to the class of problems {=d-Set Cover}d⩾1.
We use analogous notation for the other problems on the list. For example, a simple
observation is that if =∗-Set Cover is 2n-hard then so is ⩽∗-Set Cover as the latter is a
generalization of the former. The reductions we use to prove Theorem 2.6 are illustrated in
Figure 1.

2.5 Triangle Partition and Triangle Packing
Now let us discuss the proof of Theorem 1.5 that can be found in the full version. The proof
consists of two main steps: (1) a reduction from =∗-Set Partition to △-Partition, and
(2) a reduction from △-Packing to ⩽∗-Set Packing (#Sets) (see Figure 2). Recall that
by Theorem 2.6, assuming the SCC, all of =∗-Set Partition, ⩽∗-Set Packing (#Sets),
and ⩽∗-Set Cover are 2n-hard. Finally, △-Partition trivially reduces to △-Packing, so
indeed, the statements in Theorem 1.5 are equivalent.

Reducing Set Partition to △-Partition

We start with step (1), i.e., reducing an instance (U,F) of =d-Set Partition to an equivalent
instance G of △-Partition. With a simple technical trick we can ensure that d is divisible
by 3.
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=∗-Set Partition 4-Partition

4-Packing≤∗-Set Packing (#Sets)

≤∗-Set Cover

(2)

(1)

(trivial)

Figure 2 An overview of the reductions in the proof of Theorem 1.5. The two dashed arrows
refer to 2n-hardness reductions from Theorem 2.6. To establish these two connections, note that we
actually utilize almost all the reductions shown in Figure 1. The arrows annotated with (1) and (2)
refer to another two reductions proved in the full version.

The main building block used in the reduction is the so-called △-eq gadget. For fixed d,
it is a graph with d designated vertices called portals. The gadget essentially has exactly two
triangle packings that cover all non-portal vertices:

one that also covers all portals (i.e., is actually a triangle partition), and
one that covers no portal.

Now the construction of G is simple: we introduce the set Q containing one vertex for
each element of U , and for each set S ∈ F we introduce a copy of the △-eq gadget whose
portals represent elements of S and are identified with corresponding vertices from Q. It
is straightforward to verify that there is F ′ ⊆ F that partitions U if and only if G has a
triangle partition: the sets from F ′ correspond to △-eq gadgets whose non-portal vertices are
covered in the first way. Note that Q is a (σ, d)-hub of G, where σ is the number of vertices
of the △-eq gadget, i.e., is a constant that depends only on d.

Reducing △-Packing to Set Packing.

Now let us consider a graph G given with a (σ, δ)-hub Q of size p, and an integer t. We
will show that a hypothetical fast algorithm for ⩽d-Set Packing (#Sets) can be used to
determine whether G has a triangle packing of size at least t.

For simplicity of exposition, assume that G has no triangles contained in Q; dealing with
such triangles is not difficult but would complicate the notation. We say that a component
C of G − Q is active in some triangle packing Π if there is a triangle in Π that intersects
both C and Q. Note that for any triangle packing there are at most p active components.

We would like to guess components that are active for some (unknown) solution Π.
However, this results in too many branches. We deal with it by employing color-coding and
reducing the problem to its auxiliary precolored variant. Suppose for a moment that we are
given a coloring ψ of components of G−Q into p/c colors, where c is a large constant, with
a promise that at most c components in each color are active in Π.

For a color i ∈ [p/c], let Ci denote the set of components of G−Q colored i by ψ. The
contribution of the color i to Π is the number of triangles that intersect vertices in components
from Ci. Note that the size of Π is the sum of contributions of all color (since we assumed
that there are no triangles contained in Q). What can be said about the contribution of i?
Certainly picking a maximum triangle packing in the graph consisting only of components
from Ci is a lower bound. Let Xi denote the number of triangles in such a triangle packing
and note that Xi can be computed in polynomial time as each component of G − Q is of
constant size. Moreover, for each active component C ∈ Ci, there are at most σ triangles that
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intersect both C and Q (as each of them has to use a distinct vertex from C). As, by the
promise on ψ, there are at most c active components in Ci, we observe that the contribution
of i is at most Xi + cσ. We exhaustively guess the contribution of each color by guessing the
offset qi against Xi; it gives a constant number of options per color. We reject guesses where
the total contribution of all colors, i.e., the number of all triangles packed, is less than t.

For each color i, we enumerate all sets S ⊆ Q that are candidates for these vertices of Q
that form triangles with vertices from components of Ci; call such sets i-valid. An i-valid set
S must satisfy the following two conditions. First, the size of S is at most 2cσ, as there are
at most cσ vertices in active components from Ci and each such vertex belongs to a triangle
with at most two vertices from Q. Second, there exists a triangle packing ΠS in the graph
induced by S together with components of Ci such that

at most c elements from Ci are active in ΠS (this follows from the promise on ψ), and
the number of triangles in ΠS is at least Xi + qi (by our guess of qi).

It is not difficult to verify that i-valid sets can be enumerated in polynomial time, where the
degree of the polynomial depends on c and σ.

Now we are ready to construct an instance (U,F , p/c) of ⩽d-Set Packing (#Sets).
The universe U is Q ∪ {ai | i ∈ [p/c]}, i.e., it consists of the hub of G and one extra vertex
per color. For each i-valid set S, we include in F the set S ∪ {ai}. Again, one can verify
that F contains p/c pairwise disjoint sets if and only if G has a packing of t triangles that
agree both with ψ and with the guessed values of qi’s.

By adjusting c, we can ensure that the whole algorithm works in time (2−ε′)p · |V (G)|O(1),
for some ε′ > 0, provided that we have a fast algorithm for ⩽d-Set Packing (#Sets).

The only thing left is to argue how we obtain the coloring ψ satisfying the promise.
Here we use splitters introduced by Naor, Schulman, and Srinivasan [29]. Informally, a
splitter is a family of colorings of a “large set” X , such that for each “small subset” Y ⊆ X
there is a coloring that splits Y evenly. In our setting, the “large set” X is the set of all
components of G − Q and the “small subset” Y is the set of all active components with
respect to some fixed (but unknown) solution; recall that there are at most p such active
components. Since our colorings use p/c colors, we are sure that there is some ψ for which at
most p

p/c = c components in each color are active. Calling the result of Naor, Schulman, and
Srinivasan [29], we can find a small splitter Ψ, and then just exhaustively try every coloring
ψ ∈ Ψ. Again, carefully adjusting the constants, we can ensure that the overall running time
is (2 − ε)p · |V (G)|O(1), for some ε > 0.
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