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Abstract
We give a randomized algorithm that approximates the number of independent sets in a dense,
regular bipartite graph – in the language of approximate counting, we give an FPRAS for #BIS
on the class of dense, regular bipartite graphs. Efficient counting algorithms typically apply to
“high-temperature” problems on bounded-degree graphs, and our contribution is a notable exception
as it applies to dense graphs in a low-temperature setting. Our methods give a counting-focused
complement to the long line of work in combinatorial optimization showing that CSPs such as
Max-Cut and Unique Games are easy on dense graphs via spectral arguments.

Our contributions include a novel extension of the method of graph containers that differs
considerably from other recent low-temperature algorithms. The additional key insights come from
spectral graph theory and have previously been successful in approximation algorithms. As a result,
we can overcome some limitations that seem inherent to the aforementioned class of algorithms. In
particular, we exploit the fact that dense, regular graphs exhibit a kind of small-set expansion (i.e.,
bounded threshold rank), which, via subspace enumeration, lets us enumerate small cuts efficiently.
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1 Introduction

Exactly computing the number i(G) of independent sets in a graph G is #P-hard, even when
restricted to bipartite graphs [41]. In the general case, approximating i(G) (to within, say, a
constant factor) is NP-hard, even when restricted to d-regular graphs with d ≥ 6 [20, 46, 45].
Restricted to bipartite graphs the problem of counting independent sets is known as #BIS,
and the prospect of hardness of approximation is less clear because finding a maximum
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35:2 A Spectral Approach to Approximately Counting Independent Sets

independent set can be done in polynomial time. Under polynomial-time approximation-
preserving reductions, many natural counting problems are equivalent to #BIS [17], and the
complexity of approximating #BIS has received a lot of attention. Existing approximation
algorithms for #BIS include “high-temperature” algorithms that work when degrees on one
side of the bipartition are small [38], “low-temperature” algorithms that require additional
assumptions such as expansion [11, 29] or unbalanced degrees [8], and exponential-time
algorithms that are nonetheless faster than algorithms for the general, non-bipartite case [24].
The description of these methods in terms of temperature is due to a common generalization
in terms of weighted counting and strong connections to statistical physics, where counting
(weighted) independent sets corresponds to computing the partition function of the hard-core
model.

The idea that Max-CSP optimization problems such as Max-Cut and Unique Games
should be easy to approximate on dense graphs – perhaps because they have good expansion
properties – is well-established [3, 18, 19]. Many of the techniques that apply to dense or
expanding graphs have been generalized in interesting directions. In particular, spectral
methods give good results in both dense graphs and expanders, and in many cases can be
extended to more refined structural properties such as small-set expansion and threshold rank
to great effect. Most of the prominent approaches to Max-CSPs relevant to this work fall into
three categories: algorithmic regularity lemmas which began with Frieze and Kannan [19] and
were extended to threshold rank by Oveis Gharan and Trevisan [39]; convex hierarchies and
correlation rounding [4, 6, 25]; and the spectral technique of subspace enumeration due to
Kolla and Tulsiani [36, 37]. Prior to these developments were several algorithms demonstrating
that counting problems on dense graphs admit efficient approximation algorithms [1, 16, 33],
though these results do not apply to counting independent sets.

An analogous theme in approximate counting is to obtain algorithms on expander graphs
or random graphs [7, 10, 21, 26, 29]. Despite superficial similarity to the aforementioned work
on Max-CSPs in the sense that these works give algorithms for dense or expanding instances,
there is relatively little work establishing any common underlying phenomenon that makes
Max-CSP problems and counting problems easy on dense or expanding graphs. A notable
exception is due to Risteski [42], who connected the work on correlation rounding and convex
hierarchies [6] to the broad and well-studied problem of approximating partition functions.
His approach is also known as the variational method. Regularity methods and correlation
rounding do provide some evidence of structure common to these problems; for example,
Coja–Oghlan and various coauthors have developed a range of regularity lemmas and applied
them to both Max-CSPs and spin models on random graphs [5, 13, 14], and Coja–Oghlan
and Perkins independently discovered correlation rounding in the context of Gibbs measures
and partition functions [15]. Counting independent sets is not typically one of the examples
studied, though occasionally this is more for convenience than for fundamental reasons.

In the specific context of #BIS, connections to Max-CSP research are even more scarce.
The polymer approach of Jenssen, Keevash and Perkins [29] is a major algorithmic break-
through for #BIS which shows that several prominent #BIS-hard problems can be approx-
imated in polynomial time on bounded-degree expander graphs (and thus random d-regular
graphs for d = O(1)). Further refinements of the method broaden the range of problems
covered [21, 26], provide faster algorithms based on rapid mixing of Markov chains known as
polymer dynamics [11], or weaken the structural properties required by applying container
theorems to combinatorial enumeration problems that arise in the method [10, 32]. None
of these developments give polynomial-time algorithms in dense graphs, however. Carlson,
Davies, and Kolla [9] applied the polymer method to approximate the Potts model partition
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function on (bounded-degree) graphs with bounded threshold rank, but the conditions their
analysis requires are prohibitively restrictive, and it is unclear whether their techniques can
be applied to #BIS. While Risteski’s approach has been extended and improved [28, 35],
results are stated for spin models with soft constraints such as the Ising and Potts models,
and the approximation guarantees degrade in the presence of the hard constraints that are
inherent to independent sets.

1.1 Main result

We specifically address the superficial similarities between algorithms for Max-CSPs and
counting independent sets by giving an algorithm for approximately counting independent
sets in dense, regular bipartite graphs which combines the highly successful techniques of
polymer models, subspace enumeration, and container theorems for the enumeration of
independent sets in bipartite graphs. Our approximation guarantee is of the strong type
typically sought in approximate counting. We say that a relative ϵ-approximation of a real
number x is a real number y such that e−ϵ ≤ x/y ≤ eϵ, and a fully polynomial randomized
approximation scheme (FPRAS) for a counting problem is an algorithm that with probability
at least 3/4 outputs a relative ϵ-approximation to the solution in time polynomial in the
instance size and 1/ϵ.

▶ Theorem 1. For each δ ∈ (0, 1) there is an FPRAS for #BIS on the class of d-regular
bipartite graphs G with d = ⌊δ|V (G)|/2⌋.

We use spectral methods and subspace enumeration to enumerate small cuts in d-regular
bipartite graphs via an ϵ-net of the vector space spanned by small eigenvalues of the
Laplacian matrix of the graph, influenced by the use of these methods in combinatorial
optimization [2, 36, 37] and approximate counting. Some of our analysis builds upon the
perturbative approach of [27, 29] and an important refinement of this method due to Jenssen
and Perkins [30] (and with Potukuchi [31]) that uses graph container lemmas of the type
developed by Sapozhenko [43, 44]. While container theorems for independent sets have
been used to control enumeration problems that arise in establishing the convergence of the
cluster expansion [30, 31, 32], and these have inspired container-like theorems for controlling
analogous enumeration problems [10], our addition of subspace enumeration here has a
different purpose.

In terms of running time, our result improves upon the dense case of an algorithm of
Jenssen, Perkins, and Potukuchi [32] which runs in subexponential time on d-regular bipartite
graphs for all d ≥ ω(1). In the case d = Θ(n) their algorithm takes time exp(Ω(log4 n)), and
our contribution works for any accuracy parameter ϵ, which is not given by the methods
in [32]. The improvement stems from incorporating the spectral techniques mentioned
above, which lets us sidestep algorithmic cluster expansion. That is, our spectral techniques
overcome an obstacle in the algorithm of [32] related to polynomial accuracy: we can achieve
arbitrary accuracy without resorting to a naive enumeration of polymers (which in this
setting are connected subgraphs of the square of the instance).

An interesting question posed in [32] is whether #BIS admits a general subexponential-
time algorithm. One of our technical contributions is to show that a perspective on graph
spectra involving higher-order eigenvalues and eigenvectors advances our understanding of
#BIS.
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35:4 A Spectral Approach to Approximately Counting Independent Sets

2 Overview

Fix δ > 0 and for d = ⌊δn⌋, a bipartite graph G = (X ∪ Y, E) on 2n vertices. Let ϵ > 0 and
note that we allow ϵ to depend on n.

Our proof begins with the well-known observation that to enumerate independent sets
in a bipartite graph it suffices to enumerate deviations from the “ideal” independent set X.
That is, we have the identity

i(G) =
∑

A⊆X

2|Y \N(A)| (1)

because, for a fixed A ⊆ X, any vertex of Y \N(A) can be added to A without spanning
an edge. There is a similar formula for i(G) based on enumerating deviations from Y . An
important achievement of [29] is to give a rigorous proof that in bipartite graphs with strong
expansion, typical independent sets are small deviations from either X or Y . Intuitively, we
see a hint of this idea in equation (1) as when G is an expander we expect that N(A)≫ |A|
and so the terms on the right-hand side are small unless |A| is small. Given this, one might
hope to obtain an algorithm provided one can solve the problem of efficiently enumerate
the small deviations and quantifing their contributions to i(G). This is done in [29] by
approximating i(G) with the sum of two polymer models, and brute force enumeration of
terms in the cluster expansion for these models.

If the bipartite graph is not an expander, then large deviations from X and Y must be
handled. For example, in a 2n-vertex disjoint union of complete d-regular bipartite graphs, a
significant number of independent sets intersect both X and Y on Ω(n) vertices. To extend
the algorithm to all bipartite graphs, using an idea from [32] we can separate contributions
from expanding and non-expanding pieces of the deviation A. The first step is to break
A ⊆ X in the sum in (1) into pieces with disjoint neighborhoods. We say that a subset
A ⊆ X is polymer2 if it is connected in the square G2 of G, and note that any A ⊆ X admits
a unique partition into polymers which have disjoint neighborhoods. We call the polymers
in this partition the components of A and denote the set of components of A by K(A). We
say that two polymers are compatible if their neighborhoods are disjoint, and that a set or
tuple of polymers is compatible if the polymers in it are pairwise compatible. Thus, subsets
A ⊆ X correspond to compatible sets of polymers via the unique partition into polymers
with disjoint neighborhoods.

▷ Claim 2.

i(G) =
∑
k≥0

1
k!

∑
(A1,...,Ak) s.t.

each Ai is a polymer and
(A1, . . . , Ak) compatible

2
∣∣Y \

⋃k

j=1
N(Aj)

∣∣
. (2)

Proof. The claim follows from the correspondence between subsets A ⊆ X and sets of
compatible polymers given by A 7→ K(A). By convention, we sum over compatible tuples of
polymers which leads to the term 1/k! to account for the permutations of each tuple. We
use the fact that compatible polymers have disjoint neighborhoods for the correspondence of
the summands. ◁

The closure [A] of a subset A ⊆ X is [A] := {x ∈ X : N(x) ⊆ N(A)}, and we say that A

is closed if A = [A]. Note that A is closed if and only if each component of A is closed. A
subset A ⊆ X is called t-expanding if |N(A)| = |[A]|+ t, and (in a slight abuse of terminology

2 In related works the term “2-linked” is used for the property of being connected in G2.
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that we hope the reader permits) t-contracting if |N(A)| < |[A]|+ t. For a fixed t0 that we
determine later, we split the sum over polymers in (2) according to t0-contraction. To do
this, for each subset A ⊆ X, let XA = X \N(N(A)) and YA = Y \N(A). Let PA be the set
of polymers which are subsets of XA and define

Ξ(A) :=
∑
k≥0

1
k!

∑
(B1,...,Bk) s.t.

Bi ∈ PA is not t0-contracting
and (B1, . . . , Bk) compatible

2−
∑k

i=1
|N(Bi)|,

where the inner sum is over compatible k-tuples of polymers, each of which is not t0-contracting
(equivalently, t-expanding for some t ≥ t0).

▷ Claim 3.

i(G) =
∑
k≥0

1
k!

∑
(A1,...,Ak) s.t.

each Ai is a t0-contracting polymer
and (A1, . . . , Ak) compatible

2
∣∣Y \⋃k

j=1 N(Aj)
∣∣
· Ξ

(⋃k
j=1 Aj

)
. (3)

Proof. From Claim 2 we can split the sum over tuples of polymers into a sum over tuples
of t0-contracting polymers and tuples of non-t0-contracting polymers. The idea is to first
sum over tuples (A1, . . . , Ak) of t0-contracting polymers and then use the fact that for
A =

⋃k
j=1 Aj the quantity Ξ(A) contains a sum over the ways to extend this tuple to one

containing non-t0-contracting polymers and the summand is the additional contribution that
each such extension makes. The definition of PA means that any Bi ∈ PA is compatible with
each component of A. With a little care, one can check that the permutaions of the tuples
are correctly taken into account and the claim follows. ◁

A further refinement of the expression for i(G) groups t0-contracting polymers according
to their neighborhoods. The motivation for this is that two subsets A ⊆ X and B ⊆ X (each
corresponding to the union of some compatible tuple of t0-contracting polymers) have the
same contribution in the sum if N(A) = N(B) because this implies that Ξ(A) = Ξ(B). For
a subset A ⊆ X write

D(A) :=
∏

A′∈K(A)

∣∣{B′ ⊆ A′ : B′ is a polymer and N(B′) = N(A′)}
∣∣.

The quantity D(A) counts the number of subsets B of A such that N(B) = N(A) and which
are formed by choosing for each component A′ of A, a subset B′ ⊆ A′ which is a polymer.
Note that if A′ is t0-contracting then so is any polymer B′ ⊆ A′ with N(B′) = N(A′). For
convenience, we define A to be the set of all A ⊆ X with closed, t0-contracting components.

▷ Claim 4.

i(G) =
∑
A∈A
D(A) · 2|Y \N(A)| · Ξ(A), (4)

Proof. From Claim 3 we can restrict the sum over tuples of t0-contracting polymers to
closed t0-contracting polymers provided, for each compatible tuple (A1, . . . , Ak) of closed
t0-contracting polymers, we multiply their contribution to the sum by a term counting the
number of ways of getting that contribution with polymers that are not necessarily closed.
Identifying compatible tuples of closed polymers with their union, i.e. setting A =

⋃k
j=1 Aj ,

the contribution to the sum from A is 2|Y \N(A)| ·Ξ(A). The term D(A) is exactly the number

ICALP 2024



35:6 A Spectral Approach to Approximately Counting Independent Sets

of ways of getting this contribution. The claim follows from the conversion of the sum back
into one over suitable subsets of X, namely those in A, instead of a sum over compatible
tuples of polymers. ◁

Now that we have a suitable expression (4) for i(G), we can describe how our algorithm
approximates i(G). Our algorithm simply enumerates the sets A ∈ A, approximates each
D(A) term, and uses the fact (which we must prove) that 1 is a good approximation of each
Ξ(A) to approximate i(G). Given these subroutines, computing the sum (4) is straightforward.
The analysis of our algorithm thus splits into three separate components. Recall that the
input is a d-regular bipartite graph G on 2n vertices such that for some constant δ > 0 we
have d = ⌊δn⌋, and an approximation error ϵ. We set t0 = C log(n/ϵ), where C = C(δ) is
large enough, and the correctness and running time of our algorithm follows from the results
below. Note that for this choice of t0 an exponential such as 4t0 is polynomial in n and 1/ϵ.

▶ Lemma 5. For t0 ≤ 2−8d, the set A = {A ⊆ X : A closed and t0-contracting} has size at
most nO(1/δ) · 4t0 and can be enumerated in the same time.

The proof of this lemma uses subspace enumeration to find small cuts in G, and then for
each such small cut enumerates the sets A ∈ A which are close to the cut. See Section 4.

▶ Lemma 6. Let A ⊆ X be a closed t0-contracting polymer. Then for ϵ′, ρ′ > 0 there
is a randomized algorithm running in time polynomial in n, 1/ϵ′ and log(1/ρ′) that with
probability at least 1−ρ′ outputs a relative ϵ′-approximation to the number of polymers B ⊆ A

such that N(B) = N(A).

This lemma uses straightforward estimation of an expectation by repeated sampling, and
is very similar to the analogous result in [32]. The proof is in Section 5. We use the lemma in
each component of the sets A ∈ A in the claim below. This claim requires an upper bound
on t0, but this is a small technical detail as the only way to violate this bound is to choose
an error parameter ϵ so small that one has time for brute force because an FPRAS can take
time polynomial in 1/ϵ, see Section 3 where we use the claim.

▷ Claim 7. Suppose that t0 ≤ d/2. Then each set A ∈ A has at most 2/δ = O(1)
components, and for ϵ′, ρ′ > 0 there is a randomized algorithm running in time polynomial
in n, 1/ϵ′ and log(1/ρ′) that, given a set A ∈ A as input, with probability 1− ρ′ obtains an
ϵ′-approximation of D(A).

Proof. Any t0-contracting set must have size at least d − t0, and in the case t0 ≤ d/2 we
have d− t0 ≥ d/2 and hence each A ∈ A has at least 2n/d = 2/δ components.

Observe that if A ∈ A has ℓ components then running the algorithm of Lemma 6 on each
component with error parameter ϵ′/ℓ and probability parameter ρ′/ℓ yields, with probability
at least 1−ρ′, a relative ϵ-approximation to D(A) in time polynomial in n, ℓ/ϵ′ and log(ℓ/ρ′).
When t0 ≤ d/2 we have the upper bound ℓ = O(1) from above and the claim follows. ◁

▶ Lemma 8. Let A ∈ A, then 1 ≤ Ξ(A) ≤ eϵ/2.

This result means that 1 is a relative ϵ/2-approximation for each of the Ξ(A) terms
appearing in (4). The proof is based on graph container methods due to Sapozhenko [43,
44], which have since been refined, [23, 22, 34, 40], and their application to algorithmic
counting [30, 31, 32]. We give the proof in Section 6.
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3 The algorithm and proof of Theorem 1

Input A ⌊δn⌋-regular bipartite graph G = (X ∪ Y, E) on 2n vertices and an approximation
error ϵ > 0.

Output A relative ϵ-approximation i′ of i(G).

Recall that C = C(δ) is a large enough constant, and that t0 = C log(n/ϵ). In the
following proof, implicit constants in the O(·) notation and implicit polynomials are allowed
to depend on δ but not ϵ. If ϵ ≤ n exp(−d/(28C)) then we can afford to run a brute force
algorithm that computes i(G) exactly in time eO(n) and the running time is still polynomial
in 1/ϵ. Otherwise, we note that for all large enough n we have d− 27t0 ≥ d/2 and run the
following algorithm. For convenience, we assume that ϵ ≤ 1 and simply run the algorithm
for ϵ = 1 if the given ϵ is larger.

First, construct the set A, which can be done in time (n/ϵ)O(1) by Lemma 5. Note also
that |A| is polynomial in n and 1/ϵ. Then, for each A ∈ A compute an ϵ/2-approximation
D̃A of DA with the algorithm of Claim 7 and probability parameter ρ′ = 3/(4|A|). Then
log(1/ρ′) is polynomial in log n and log(1/ϵ) so the running time of this step is polynomial in
n and 1/ϵ. By a union bound, with probability at least 3/4 we get the desired approximation
in each application of the claim, and thus a valid relative ϵ/2-approximation D̃A of each DA.
Then output i′ =

∑
A∈A D̃A2|Y \N(A)|. By Lemma 8 and the analysis above, the output is a

valid ϵ-approximation of i(G) obtained in time (n/ϵ)O(1), thus proving Theorem 1.

4 Subspace enumeration and contracting sets

The proof of Lemma 5 has two parts. First, we show how to enumerate small cuts using
subspace enumeration. For related results see [2, 36, 37]. We use the term cut to mean a
subset of V = X ∪ Y , and the value |∇(C)| of a cut C is the number of edges with precisely
one endpoint in C. Subspace enumeration involves what is commonly called an ϵ-net of a
subset U ′ of a vector space, which is a collection of points such that U ′ is contained in the
union of the balls of radius ϵ around each point. Since we reserve ϵ for the error parameter
in our algorithm, our nets are ξ-nets.

▶ Lemma 9. Let G = (V, E) be a d-regular bipartite graph on N = 2n vertices. There is a
set Ccut ⊆ 2V such that |Ccut| ≤ nO(n/d) and Ccut has the following property. For all t ≥ 1
and cuts S ⊆ V with value |∇(S)| ≤ td, there is some C ∈ Ccut such that |S △ C| ≤ 32t and
|∇(C)| ≤ 33td. Moreover, the set Ccut can be constructed in time nO(n/d).

Proof. Let d = λ1 ≥ · · · ≥ λN = −d be the spectrum of the adjacency matrix A of G. The
facts that λ1 = d = −λN and that the spectrum of A is symmetric about zero are standard,
see e.g. [12]. Let k be such that A has precisely 2k eigenvalues of absolute value at least d/2.
Counting closed walks of length two gives

Tr(A2) = Nd =
N∑

i=1
λ2

i ≥ kd2/2,

and hence k ≤ 4n/d.
Let L = dI −A be the Laplacian matrix of G and let e1, . . . , eN be an orthonormal basis

of eigenvectors of L such that ei has eigenvalue µi with 0 = µ1 ≤ · · · ≤ µN = 2d. By the
definition of k, it must be the case that µk+1 > d/2. Let U be the span of e1, . . . ek, and U⊥

be the orthogonal complement of U . For ξ =
√

2, we require an efficient construction of a
ξ-net E ⊆ U covering all vectors of L2-norm at most

√
n in U . For example, we can take

ICALP 2024



35:8 A Spectral Approach to Approximately Counting Independent Sets

E :=
{

p =
k∑

i=1
xiei : x1, . . . , xk ∈ (ξ/

√
k) · Z, ∥p∥ ≤

√
n

}
,

yielding |E| ≤ (2
√

nk/ξ)k. Then every vector in U with L2-norm at most
√

n lies at most
distance ξ from a vector in E .

The algorithm to construct Ccut is as follows. Start with Ccut = ∅ and for each point
p ∈ E , form p′ by rounding each coordinate of p to {0, 1} (breaking ties with 1/2 7→ 1) and
add the vertex subset with indicator vector p′ to Ccut.

We now show that Ccut has the desired properties. By the construction of Ccut and E we
have |Ccut| ≤ |E| ≤ nO(n/d). To establish the other property of Ccut, let t ≥ 1 and consider
an arbitrary subset S ⊆ V with |∇(S)| ≤ td. Let s be the indicator vector of the set S and
write this vector in the eigenbasis of L as s =

∑N
i=1 siei. Let u =

∑k
i=1 siei be the projection

of s onto U and let p be the point in E closest to u. Indicator vectors of subsets of V have
L2-norm at most

√
n, and hence ∥u− p∥ ≤ ξ.

Without considering our need for an efficient construction, the idea is that because ∇(S)
is small we know that s is an indicator vector close to its projection u onto U . Thus, if we
form Ccut as the union of all sets whose indicator vectors are close to vectors in U , each set
S of interest has an indicator vector that lies within a distance twice the definition of “close”
to a set in C.

To make the above sketch efficient, we replace U with the ξ-net E . Note that

td ≥ |∇(S)| = sTLs =
N∑

i=1
µis

2
i ≥

d

2

N∑
i=k+1

s2
i .

But
∑N

i=k+1 s2
i = ∥s−u∥2, so we have the bound ∥s−u∥ ≤

√
2t. Then we immediately have

∥s− p∥ ≤
√

2t + ξ from the triangle inequality. Let p′ be obtained from p by rounding each
coordinate to {0, 1}, breaking ties with 1/2 7→ 1, and let C ⊆ V be the set whose indicator
vector is p′. We have |S△C| = ∥s−p′∥2 and we bound the latter with the triangle inequality.
In particular, s is an indicator vector of distance at most

√
2t + ξ from p and p′ must be the

closest indicator vector to p, hence ∥p− p′∥ ≤
√

2t + ξ. Then ∥s− p∥ ≤ 2(
√

2t + ξ), and
because t ≥ 1 and ξ =

√
2 we have

|S △ C| ≤ 4
(√

t + ξ
)2
≤ 32t.

It remains to bound the value of the cut |∇(C)|, and the desired bound follows from the
observation that

|∇(C)| ≤ |∇(S)|+ d|S △ C| ≤ td + 32td = 33td. ◀

Lemma 9 tells us that there is an efficient construction of a collection Ccut of cuts such
that any small cut S must be close to a cut in Ccut in Hamming distance. We now show that
given a small cut S we can enumerate the sets A ∈ A which are close to S. For this to be
useful, it must be that each A ∈ A is close to some small cut, and we give the details of this
later.

▶ Lemma 10. Fix any c ≥ 1 and let t ≤ d
8c . Given a cut C with value at most td, there

are at most 4t closed t-contracting subsets A ⊆ X such that |A △ (C ∩ X)| ≤ ct and
|N(A)△ (C ∩ Y )| ≤ ct. Moreover, these sets A can be enumerated in time 4t · nO(1).
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Proof. Let A′ := C ∩X and W ′ := C ∩ Y . By the fact that G is d-regular, |E(A′, W ′)| ≤
d min{|A′|, |W ′|} and hence |∇(C)| ≥ d max

{
|W ′| − |A′|, |A′| − |W ′|

}
. By assumption, we

have |∇(C)| ≤ td and therefore
∣∣|W ′| − |A′|

∣∣ ≤ t.
Set

SX :=
{

v ∈ X \A′ : |N(v) \W ′| ≤ 3ct
}

, and
SY :=

{
v ∈W ′ : |N(v) ∩A′| ≤ ct

}
,

so that SX ⊆ X consists of vertices in X \A′ with almost all of their neighbors in W ′ and
SY ⊆ Y consists of vertices in W ′ with almost all of their neighbors in X \A′. We have the
following claims.

▷ Claim 11. For any closed t-contracting subset A ⊆ X such that |A△A′| ≤ ct, A\A′ ⊆ SX .

Proof. Suppose for contradiction that there is a vertex v ∈ A \A′ such that

|N(v) \W ′| > 3ct.

We derive the contradiction using the facts that |∇(A ∩A′)| = d|A ∩A′| and that any of the
edges in ∇(A ∩ A′) not incident to W ′ contribute to the value of the cut C. These facts
imply that |E(A ∩A′, W ′)| ≥ d|A ∩A′| − t · d, and hence

|N(A ∩A′) ∩W ′| ≥ |A ∩A′| − t.

Then because A is closed and non-expanding,

|A|+ t ≥ |N(A)| ≥ |N((A ∩A′) ∪ {v})|
> |N((A ∩A′) ∪ {v}) ∩W ′|+ 3ct

≥ |A ∩A′|+ 2ct ≥ |A|+ ct,

which is a contradiction because there is a strict inequality in the chain and c ≥ 1. ◁

▷ Claim 12. For any t-contracting subset A ⊆ X such that |A△A′| ≤ ct, W ′\N(A∩A′) ⊆ SY .

Proof. We note that for each vertex v in W ′ \N(A ∩A′), we have that

N(v) ∩A′ ⊆ A′ \A.

Since |A′ \A| ≤ ct, it follows that |N(v) ∩A′| ≤ ct. ◁

We can now complete the proof of the lemma. Using the degree constraints in the
definitions of SX and SY , we have

td ≥ |∇(C)|
≥ |SX |(d− 3ct) + |SY |(d− ct)
≥ (d/2) · (|SX |+ |SY |)

where the last inequality uses t < d
8c . As a result, we have

|SX |+ |SY | ≤ 2t.

Putting Claim 11 and Claim 12 together, we have that each closed t-contracting sets A

with |A△A′|, |N(A)△W ′| ≤ ct must be of the form

A = [(A′ \N(S′
Y )) ∪ S′

X ]

for some subsets S′
Y ⊆ SY and S′

X ⊆ SX . Thus, the total number of such A is at most
2|SX |+|SY | ≤ 4t. Since we are given the cut C, SX and SY can be found in time polynomial
in n as required. ◀
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With these ingredients we can proof Lemma 5, which we recall states that A can be
enumerated in time nO(1/δ)4t0 .

Proof of Lemma 5. Since d = ⌊δn⌋, we construct Ccut as in Lemma 9 in time nO(1/δ). We
then choose c = 32 and enumerate for each C ∈ Ccut, every closed t0-contracting subset A

with |A△(C∩X)| ≤ 32t0 and |N(A)△(C∩Y )| ≤ 32t0 using Lemma 10. We are done if every
A ∈ A appears in this enumeration process, as the running times combine to give the required
nO(1/δ)4t0 . This holds because each A ∈ A is closed and t0-contracting and hence setting
SA = A ∪N(A), by a double counting argument, we have |∇(SA)| = d|N(A)| − d|A| ≤ t0d.
So each A ∈ A corresponds to a cut of value at most t0d and hence some C ∈ Ccut has
|SA △ C| ≤ 32t0 by Lemma 9. ◀

5 Approximating the number of covers

For convenience, we restate Lemma 6 here.

▶ Lemma 6. Let A ⊆ X be a closed t0-contracting polymer. Then for ϵ′, ρ′ > 0 there
is a randomized algorithm running in time polynomial in n, 1/ϵ′ and log(1/ρ′) that with
probability at least 1−ρ′ outputs a relative ϵ′-approximation to the number of polymers B ⊆ A

such that N(B) = N(A).

Proof. The method is exactly the same as [32, Lem. 17], but in our setting with d = ⌊δn⌋
the resulting algorithm runs in time polynomial in n.

Let |A| = a, N(A) = W have size |W | = w, and let W ′ = {v ∈ W : |N(v) ∩ A| ≤ d/2}
have size |W ′| = w′. Let

D = {B ⊆ A : N(B) = W and B is a polymer}

be the set whose size we wish to estimate.
By [32, Cor. 10], there is a polymer A′ ⊆ A of size at most

2a

d
log d + 2w

d
+ 2(w − a) ≤ 2

δ
(1 + log n) + 2t0

such that N(A′) = W . Then |D| ≥ 2a−( 2
δ (1+log n)+2t0), because any subset of A which

contains A′ is a polymer. Now |D| can be estimated to relative error ϵ′ with probability at
least 1− ρ by sampling

1
(ϵ′)2 log(1/ρ)nO(1/δ)4t0

subsets of A uniformly at random, and this can be proved with a suitable application of the
Chernoff bound. ◀

6 Enumerative lemmas

In this section we prove Lemma 8 which states that for A ∈ A we have 1 ≤ ΞA ≤ eϵ/2.

Proof of Lemma 8. For the proof, we fix an arbitrary A ∈ A. The terms in the sum giving
ΞA are non-negative, and the lower bound comes from the term k = 0 which contributes
1. For the upper bound, we use recent results on graph containers and adapt them to our
purposes.
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Recall that a polymer is a 2-linked subset B ⊆ X and that the function ΞA involves a
sum over tuples of non-t0-contracting polymers. For convenience, we define G(w, t) to be the
set of t-expanding polymers with neighborhood size w,

G(w, t) = {B ⊆ X, polymer : |N(B)| = w, |N(B)| − |[B]| = t}.

In terms of this notation, we have

ΞA =
∑
k≥0

∑
{B1,...,Bk}∈PA compatible

s.t. each Bi not t0-contracting

2−
∑k

i=1
|N(Bi)| (5)

≤
∑
k≥0

1
k!

∑
t≥t0

∑
w≥0
|G(w, t)|2−w

k

, (6)

where we drop the requirement on the tuples of being compatible and relax the requirement
that the Bi are subsets of XA to being subsets of X, and hence have an upper bound. To
proceed, we require upper bounds on |G(w, t)| and split into two cases according to t. The
following result is proved in the rest of this section and Appendix A.

▶ Lemma 13. There is an absolute constant γ > 0 such that for t0 ≤ t, and any integer w,

|G(w, t)| ≤ 2w−γt.

With this lemma in hand, and because each neighborhood size w that we see is in [1, n],
there is an absolute constant γ > 0 such that

ΞA ≤
∑
k≥0

1
k!

∑
t≥t0

n2−γt

k

(7)

=
∑
k≥0

1
k!

(
n

2−γt0

1− 2−γ

)k

= exp
(

n
2−γt0

1− 2−γ

)
. (8)

This at most the required eϵ/2 provided that

t0 ≥
1
γ

log2

(
2

1− 2−γ

n

ϵ

)
,

which our choice t0 = C log(n/ϵ) satisfies for all large enough constants C = C(δ). ◀

Before we proceed with the proof of Lemma 13, we would like to remark out that one of
the main contributions of this paper is to handle the case when t is small.

Proof of Lemma 13. We first take care of the case when t ≥ log4 n. For each v ∈ V , let us
define

G′(v, w, t) = {A ∈ G(w, t) : v ∈ A}.

First, we observe that log2 d · t
d ≤ log2 n · n

δn ≪ log4 n. Lemma 4 in [32] gives us that there
is a constant c such that for each v, G′(v, w, t) ≤ 2w−ct. Thus, we have

|G(w, t)| ≤
∑

v

|G′(v, w, t)| ≤ n · 2n−ct ≤ 2n−ct/2

for n large enough.
Before we address the case when t0 ≤ t < log4 n, let us set up some additional notation.

Given a vertex v ∈ V and a subset S ⊆ V , we write dS(v) for the number of neighbors of v

in S.
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▶ Definition 14 (Essential subset). For a subset A ⊆ X, we write W = N(A) and Ws =
{

y ∈
W : dA(y) ≥ s

}
. We say that F is an essential set for A if W ⊇ F ⊇Wd/2 and N(F ) ⊇ [A].

It may be useful to consider such an F an approximation for the neighborhood W = N(A).

▶ Definition 15 (Container). We call a tuple (S′, T ′) ∈ 2X × 2Y a γ′-container for a subset
A ⊆ X that is t-contracting, with neighborhood W = N(A) if
1. S′ ⊇ [A] and Wd/2 ⊆ T ′ ⊆W ,
2. dY \T ′(v) ≤ γ′t for each v ∈ S′, and
3. dS′(v) ≤ γ′t for each v ∈ Y \ T ′.
The following two results show the existence of containers and bound the number of sets for
which a given container is a γ′-container.

▶ Lemma 16. For any γ′ > 0 and any set F ⊆ Y , there is a set Cind ⊆ 2X × 2Y of size at
most nO(1/γ′) such that any A ⊆ X for which F is an essential set, has a γ′-container in
Cind.

▶ Lemma 17. There is an absolute constant γ′′ > 0 such that the following holds.
For any γ′ > 0, w < n, t < log4 n, and tuple (S′, T ′) ∈ Cind, there are at most 2w−γ′′t

sets A ∈ G(w, t) such that (S′, T ′), and is a γ′-container for A.

Since the proofs of these results are small modifications of existing container results,
e.g. [40], we defer their proofs to Appendix A. We are now ready to handle the case of small t

as follows. Consider an integer t ∈ [t0, log4 n] and a set A ∈ G(w, t). Define SA := [A]∪N(A).
As in the proof of Lemma 5, we have that |∇(SA)| = d|N(A)| − d|[A]| = td. By Lemma 9,
there is a cut C ∈ Ccut such that g := |SA △ C| ≤ O(t). Let A′ := C ∩X and W ′ := C ∩ Y .

Consider the set W ′
g = {u ∈ Y : dA′(u) > g}. We have the following two claims.

▷ Claim 18. W ⊇W ′
g ⊇Wd/2.

Proof. Consider a vertex u ∈Wd/2. We have

dA′(u) ≥ dA(u)− |A \A′| ≥ d/2− |L△ L′| ≥ d/2− g > g,

where the last inequality holds since d = ⌊δn⌋ and g = O(log4 n). Therefore u ∈ W ′
g.

Moreover, consider a vertex u ∈W ′
g. We have

dA(u) ≥ dA′(u)− |A′ \A| > g − |L△ L′| > 0,

and hence u ∈W . ◁

▷ Claim 19. A ⊆ N(W ′
g).

Proof. Suppose otherwise, i.e. there is a vertex u ∈ A such that for each vertex v ∈ N(u) we
have dA′(v) ≤ g. For any such v, we have

dA(v) ≤ dA′(v) + |A \A′| ≤ dA′(v) + |L△ L′| ≤ 2g.

This gives us that

t · d = |E(W, X \A)| ≥ |E(N(u), W \A)| ≥ d(d− 2g),

contradicting the assumptions that d = ⌊δn⌋ and t and g are both O(log4 n). ◁
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Claims 18 and 19 show that W ′
g is an essential set for A. The set A ∈ G(w, t) may be

constructed by
1. choosing the appropriate cut C in the set Ccut constructed in Lemma 9,
2. constructing the essential subset W ′

g for it as above,
3. using Lemma 16 to obtain a γ′-container of A, where γ′ is the absolute constant of

Lemma 17, and finally
4. reconstructing A from the γ′-container with Lemma 17.
There are nO(1/δ) choices for L′ in the first step, a unique construction of W ′

g for the second,
nO(1/γ′) possible containers in the third step, and 2w−γ′′t ways for the final step. In total
there are

2w−γ′′t+O(1/γ′+1/δ) log n ≤ 2w−γ′′t/2

such sets A ∈ G(w, t). The last inequality comes from our assumption that t ≥ t0 for our
choice of t0 = C(δ) log(n/ϵ) ≥ C log(n) (because wlog ϵ ≤ 1) satisfying

t0 ≥ Ω
(

log n

γ′′

(
1
γ′ + 1

δ

))
. ◀

7 Concluding remarks and future directions

1. Naturally, a next goal is to understand the power and limitations of the methods presented,
especially in conjunction with existing cluster expansion methods. More specifically, we
are curious about the following two questions:
a. Can this spectral point of view help with our understanding of independent sets in a

larger class of bipartite graphs?
b. To what extent do these methods help in reducing the computation needed to implement

algorithmic cluster expansion?
In this context, the problem of approximating the number of independent sets in small-set
expanders feels within striking distance.

2. Our next remark concerns Lemma 9. As mentioned before, similar results have had
other applications in optimization and Unique Games [2, 36, 37], though we take a subtly
different viewpoint worth noting: we seek to approximate all cuts in the graph, not just
small ones. In any case, we find the lemma interesting in its own right and conjecture
something stronger.
▶ Conjecture 20. Lemma 9 holds with |Ccut| ≤ 2O(n/d).
If true, this would be best possible, as evidenced by a disjoint union of 1/δ components.
Setting t = 0 in this case gives exactly 21/δ cuts of size 0.

3. Finally, we leave open the problem of making our algorithm deterministic. At the moment,
the only step where randomness is used is Lemma 6.
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A Deferred proofs

A.1 Proof of Lemma 16
We restate the result for convenience.
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Cind.
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|N(A)| − |[A]|. Consider the following algorithm

initialize T ′ ← F

while ∃ v ∈ [A] s.t. dW \T ′(v) > γ′t, pick such a v do
T ′ ← T ′ ∪N(v)

end while
initialize S′ ← {v ∈ X : dY \T ′(v) ≤ γ′t}
while ∃ v ∈ Y \W s.t. dS′(v) > γ′t, pick such a v do

S′ ← S′ \N(v)
end while
T ′ ← T ′ ∪ {v ∈ Y : dS(v) > γ′t}
return (S′, T ′)
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The lemma follows provided we can show that (S′, T ′) as given by the algorithm above is
a γ′-container for A by establishing properties 1–3, and provided we can show a good enough
bound on the total number of outputs (S′, T ′) which can occur for a fixed F as A varies.

To prove that the output (S′, T ′) is a γ′-container of A, we first show that S′ ⊇ [A] and
Wd/2 ⊆ T ′ ⊆W , establishing 1. Since F is an essential subset for A, we initialize T ′ ← F ,
and T ′ can then only grow, we have Wd/2 ⊆ T ′. Clearly, T ′ ⊆ W at the end of the first
while loop. After the second initialize statement, we have that each vertex v ∈ [A] satisfies
dW \T ′(v) ≤ dY \T ′(v) ≤ γ′t. Therefore, S′ ⊇ A at the end of this line. This property is
maintained during the second while loop since we only delete N(v) from S for v ̸∈W . This
also means that in the penultimate line, all vertices added to T ′ are from W . Thus T ′ ⊆W

is also maintained at the end of the algorithm. Next, we prove 3. At the beginning of the
second loop, every v ∈ S′ satisfies dY \T ′(v) ≤ γ′t. Since vertices are only removed from S and
added to T ′ after this point, this property is preserved till the end. Finally, to prove 2 note
that the penultimate line of the algorithm ensures that every v ∈ Y \ T satisfies dS(v) ≤ γ′t.

To bound the number of possible outputs for a fixed F , note that before the start of the
first loop we have |W \ T ′| ≤ O(t). Each step in the first loop of the algorithm removes γt

vertices from W \ T ′. Therefore, this loop runs at most O(1/γ′) times. Next, each step in
the second loop removes at least γ′t vertices from S \ [A]. Immediately after the second
initialize statement, we have

dt ≥ |E(S′ \ [A], T ′)| ≥ (d− γ′t)|S′ \ [A]|.

As a result, |S′ \ [A]| = O(t). So the second loop runs for at most 1/γ′ steps. The output is
determined by the set of O(1/γ′) vertices chosen in both loops, so the number of possible
outputs for the algorithm for a given F is at most nO(1/γ′). ◀

A.2 Proof of Lemma 17
We restate the result for convenience.

▶ Lemma 17. There is an absolute constant γ′′ > 0 such that the following holds.
For any γ′ > 0, w < n, t < log4 n, and tuple (S′, T ′) ∈ Cind, there are at most 2w−γ′′t

sets A ∈ G(w, t) such that (S′, T ′), and is a γ′-container for A.

We need the following lemma

▶ Lemma 21. Let (S′, T ′) be a γ′-container for a set A ∈ G(w, t). Then |S′| ≤ |T ′|.

Proof. Let us denote W = N(A). First, we observe that |E(S′, W )| ≤ d|T ′|+ γ′t|W \ T ′|
by 3. We also have that |E(S′, W )| ≥ d|[A]|+ |S′ \ [A]|(d− γ′t) = d|S′| − γ′t|S′ \ [A]| by 1
and 2. Combining these inequalities, we have

|S′| ≤ |T ′|+ γ′t(|S′ \ [A]|+ |W \ |T ′||)
d

. (9)

Since T ′ ⊇Wd/2, we have that |W \ T ′| ≤ O(t) and

td = |E(W, X \ [A])| ≥
∑

v∈S′\[A]

dT ′(v) ≥ |S′ \ [A]|(d− γ′t)

which gives |S′ \ [A]| = O(t). So (9) implies

|S′| ≤ |T ′|+ O

(
γ′t2

d

)
.

Since t ≤ log4 n, d = ⌊δn⌋, and |S′| and |T ′| are both integers, we have that |S′| ≤ |T ′|. ◀
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We finish the proof using the following lemma from [40], whose proof we reproduce for
clarity.

▶ Lemma 22 ([40], Lemma 11). There is an absolute constant γ′′ > 0 such that the following
holds.

For any tuple (S′, T ′) ∈ 2X × 2Y such that |S′| ≤ |T ′|, there are at most 2w−γ′′t sets
A ∈ G(w, t) such that [A] ⊆ S′ and T ′ ⊆ N(A).

To be precise, in [40] the graph in question is the d-dimensional hypercube and additional
hypotheses are stated, namely w − t < n/4 and w > d4. These play no role in the proof,
however, and it extends verbatim to the result stated above.

Proof. Throughout, we denote W = N(A), and let α > 0 be a constant that will be
determined later.

If |S′| < w − αt, then A is among the possible 2w−αt subsets of S′. Suppose otherwise,
that |S′| > w − αt. Let A∗ ∈ G(w, t) such that (S′, T ′) is a γ′-container for A∗ and let
W ∗ = N(A∗). We have that [A] is completely determined by W \W ∗ and W ∗ \W . Since
W ∗ \W ⊆W ∗ \ T , and

|W ∗ \ T ′| ≤ |W ∗| − |T ′| = |W | − |T ′| ≤ |W | − |S′| ≤ αt,

there are at most 2αt choices for W ∗ \W . Next, for each vertex in W \W ∗, we choose a
neighbor in A \A∗ ⊆ S′ \A∗. Observe that W \W ∗ = N(A \A∗) \W ∗. Since

|W \W ∗| ≤ |W \ F | = |W | − |F | ≤ |W | − |S′| ≤ αt,

and

|S′ \A∗| ≤ |S′| − |A∗| = |S′| − |A| ≤ |T ′| − |A| ≤ |W | − |A| = t.

Therefore, the number of choices for W \W ∗ is at most(
t

αt

)
≤ 2H(α)t.

Once we have [A], there are at most 2w−t possibilities for A. Thus the total number of
choices is at most

2w−t+t(α+H(α)).

Choosing e.g., α = 0.17 allows one to choose γ′′ = 0.17. ◀
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