
Fast Approximate Counting of Cycles
Keren Censor-Hillel # Ñ

Department of Computer Science, Technion, Haifa, Israel

Tomer Even #

Department of Computer Science, Technion, Haifa, Israel

Virginia Vassilevska Williams #

Massachusetts Institute of Technology, Cambridge, MA, USA

Abstract
We consider the problem of approximate counting of triangles and longer fixed length cycles in directed
graphs. For triangles, Tětek [ICALP’22] gave an algorithm that returns a (1 ± ε)-approximation
in Õ(nω/tω−2) time, where t is the unknown number of triangles in the given n node graph and
ω < 2.372 is the matrix multiplication exponent. We obtain an improved algorithm whose running
time is, within polylogarithmic factors the same as that for multiplying an n × n/t matrix by an
n/t × n matrix. We then extend our framework to obtain the first nontrivial (1 ± ε)-approximation
algorithms for the number of h-cycles in a graph, for any constant h ≥ 3. Our running time is

Õ
(
MM

(
n, n/t1/(h−2), n

))
, the time to multiply n × n

t1/(h−2) by n

t1/(h−2) × n matrices.

Finally, we show that under popular fine-grained hypotheses, this running time is optimal.

2012 ACM Subject Classification Mathematics of computing → Approximation algorithms; Math-
ematics of computing → Graph algorithms

Keywords and phrases Approximate triangle counting, Approximate cycle counting Fast matrix
multiplication, Fast rectangular matrix multiplication

Digital Object Identifier 10.4230/LIPIcs.ICALP.2024.37

Category Track A: Algorithms, Complexity and Games

Funding Keren Censor-Hillel: The research is supported in part by the Israel Science Foundation
(grant 529/23).
Virginia Vassilevska Williams: Supported by NSF Grant CCF-2330048, BSF Grant 2020356, and a
Simons Investigator Award.

Acknowledgements We would like to thank the anonymous reviewers for their invaluable feedback
and for identifying a technical issue in a previous version of our paper.

1 Introduction

Detecting small subgraph patterns inside a large graph is a fundamental computational task
with many applications. Research in this domain has flourished, leading to fast algorithms
for many tractable versions of the subgraph isomorphism problem: given a fixed (constant
size) graph H, detect whether a large graph G contains H as a subgraph, list all copies of H

in G, count the copies (exactly or approximately) and more.
The topic of this paper is the fast estimation of the number of copies of a pattern H

in a graph G. One of the most studied patterns H is the triangle whose detection, listing
and approximate counting has become a prime testing ground for ideas in classic graph
algorithms [25, 3, 30, 8, 31], sublinear and distributed algorithms [24, 23, 20, 22, 21, 12,
15, 26, 19, 33, 11, 13, 14], streaming [10, 6, 5, 27, 28], parallel [7, 29, 32] algorithms and
more. This is largely because triangles are arguably the simplest subgraph patterns and
moreover, often algorithms for the triangle version of the (detection, counting or listing)
problem formally lead to algorithms for other patterns as well (see Nešetril and Poljak [30]).

EA
T

C
S

© Keren Censor-Hillel, Tomer Even, and Virginia Vassilevska Williams;
licensed under Creative Commons License CC-BY 4.0

51st International Colloquium on Automata, Languages, and Programming (ICALP 2024).
Editors: Karl Bringmann, Martin Grohe, Gabriele Puppis, and Ola Svensson;
Article No. 37; pp. 37:1–37:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:ckeren@cs.technion.ac.il
http://ckeren.net.technion.ac.il/
https://orcid.org/0000-0003-4395-5205
mailto:tomer.even@campus.technion.ac.il
mailto:virgi@mit.edu
https://orcid.org/0000-0003-4844-2863
https://doi.org/10.4230/LIPIcs.ICALP.2024.37
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

37:2 Fast Approximate Counting of Cycles

Detecting and finding a triangle, and counting the number of triangles in an n-vertex
graph can all be reduced to fast matrix multiplication [25], and the fastest algorithm for these
versions has running time O(nω), where ω is the exponent of square matrix multiplication,
currently ω ≤ 2.371552 [35]. It is also believed that even detecting a triangle requires nω−o(1)

time, due to known fine-grained reductions that show that Boolean matrix multiplication
and triangle detection are equivalent, at least for combinatorial algorithms [34].

Obtaining an approximate count t̂ to the number of triangles t in an n-node graph such
that (1 − ε)t ≤ t̂ ≤ (1 + ε)t for an arbitrarily small constant ε > 0 can be used to detect
whether a graph has a triangle, as the algorithm would be able to distinguish between t = 0
and t = 1. Thus, it is plausible that when the number of triangles is O(1), nω−o(1) time is
needed to obtain an approximate triangle count.

When the number of triangles t in G is large, however, a simpler sampling approach
can obtain a good estimate of t: repeatedly sample a triple of vertices and check whether
they form a triangle; in expectation O(n3/t) samples are sufficient to get a constant factor
approximation.

The best known algorithm for approximately counting triangles is by Tětek [33], with
running time Õ(nω/tω−2). When t becomes constant, the running time becomes Õ(nω),
which is believed to be optimal, as we mentioned earlier. When t becomes Θ(n), the running
time is the same as the naïve sampling algorithm, Õ(n2). This quadratic running time is
provably necessary even for randomized algorithms (see [21]). Nevertheless, it is unclear
whether Õ(nω/tω−2) time is needed for all values of t between O(1) and Ω(n).

Is there a faster algorithm for approximate triangle counting
when the triangle count is in [Ω(1), O(n)]?

As triangle counting is an important special case of fixed subgraph isomorphism counting,
a natural question is, what is the fastest algorithm for approximately counting arbitrary
subgraphs H?

Dell, Lapinskas and Meeks [18] provide a general reduction from approximate H counting
to detecting a “colorful” H in an n-node, m-edge graph, so that a T (n, m) time detection
algorithm can be converted into an Õ(ε−2T (n, m)) time (1±ε)-approximation algorithm. For
many patterns 1 such as triangles and k-cliques or directed h-cycles, the colorful and normal
versions of the detection problems are equivalent (e.g. via color-coding [2] and layering).
While the detection running time is provably necessary to approximately count when the
number of copies of the pattern is constant, similarly to the case of triangles, when the
number of copies t is large, faster sampling algorithms are possible. Unfortunately, the
reduction of [18] doesn’t seem easy to extend to provide runtime savings that grow with t.
Thus, we ask:

What is the best approximate counting algorithm for subgraph patterns H

with running time depending on the number t of copies of H?

As triangles are also cycles, one special case of the above question is when H is a cycle
on h vertices.

1 This equivalence is not true in general: detecting cycles of fixed even length is believed to be compu-
tationally easier than detecting colorful even cycles which are known to be equivalent to the directed
version of the problem.

K. Censor-Hillel, T. Even, and V. Vassilevska Williams 37:3

1.1 Our Contribution

The main result of our paper is a new algorithm for approximating the number of h-cycles in
a given directed graph, for any constant h ≥ 3, together with a conditional lower bound from
a fine-grained hypothesis, showing that the running time of our algorithm is likely tight.

Our main theorem is:

▶ Theorem 1 (Approximating the Number of h-Cycles). Let G be a given graph with n vertices
and let h ≥ 3 be a fixed integer. There is a randomized algorithm that outputs an approximation
t̂ for the number t of h-cycles in G such that Pr

[
(1− ε)t ≤ t̂ ≤ (1 + ε)t

]
≥ 1 − 1/n2, for

any constant ε > 0. The running time is bounded by Õ
(
MM

(
n, n/t1/(h−2), n

))
, the fastest

running time to multiply an n× n/t1/(h−2) matrix by an n/t1/(h−2) × n matrix.

As long as ω > 2, the running time in the theorem is always upper-bounded by
Õ

(
nω/t

ω−2
(h−2)(1−α) + n2

)
, where ω ≤ 2.371552 is the square matrix multiplication expo-

nent mentioned earlier and α ≥ 0.321334 [35] is the largest real number such that one can
multiply n×nα by nα×n matrices in n2+o(1) time.2 It is easy to see that for any value ω > 2,
our Õ

(
nω/t

ω−2
1−α

)
time for triangles is faster than the previous state of the art Õ

(
nω/tω−2)

for approximate counting of triangles [33] for all t between Ω(1) and O(n), answering our
first question in the introduction. Figure 1 plots our two running times for approximate
triangle counting together with Tětek’s algorithm, naive sampling and the O(nω) time exact
counting algorithm.

0.0 0.2 0.4 0.6 0.8 1.0

logn(t) where t is the number of triangles in G

2.0

2.2

2.4

2.6

2.8

3.0

lo
g
n
(t

im
e)

Sampling

Matrix Multiplication

[Tět22]

[ELRS17] Lower Bound

New (Simplified)

New

New (Conditional Hardness)

Figure 1 A comparison between our new run-
ning times for approximate triangle counting
with prior work, together with the lower bounds,
both conditional and unconditional.

Method Runtime

Sampling n3/t

Matrix Multiplication nω

[33] nω/tω−2

[21] Lower Bound n2

New (Simplified) nω/t(ω−2)/(1−α)

New MM(n, n, n/t)
New (Conditional Hardness) MM(n, n, n/t)

Figure 2 Comparative Runtime Analysis.

We obtain our algorithm via a simplification and generalization of Tětek’s approach
that allows us to both obtain an improved running time for triangles, but also to get faster
algorithms for longer cycles. The approach can also extend to other patterns; we leave this
as future work.

Our algorithm for longer cycles is arguably the first non-trivial algorithm for the problem
with a negative dependence on the number of cycles t. To our knowledge, prior to our work
the only approximate counting algorithms for h-cycles for h > 3 in directed graphs (or in

2 We use MM (a, b, c) to denote the time complexity of multiplying two matrices with dimensions a × b
and b × c.

ICALP 2024

37:4 Fast Approximate Counting of Cycles

undirected graphs when h is odd3) were to either use naive random sampling resulting in an
O(n4/t) time or to approximate the answer in the best h-cycle detection time, O(nω) (e.g.
via [18]), a running time that does not depend on t.

We complement our algorithms for approximately counting h-cycles with a tight conditional
lower bound under a popular fine-grained hypothesis. The k-Clique Hypothesis of fine-grained
complexity (e.g. [1, 4, 9, 16]) postulates that the current fastest algorithms for detecting a
k-clique in a graph (for constant k ≥ 3) are optimal, up to no(1) factors. We formulate a
natural hypothesis about the complexity of triangle detection in unbalanced tripartite graphs
that is motivated by and in part implied by the k-Clique Hypothesis. Then we show, under
that hypothesis:

▶ Theorem 2. Under fine-grained hypotheses, in the word-RAM model with O(log n) bit
words, for any constant integer h ≥ 3, any randomized algorithm that, when given an n node
directed graph G, can distinguish between G being h-cycle-free and containing ≥ t h-cycles
needs MM

(
n, n/t1/(h−2), n

)1−o(1) time. The same result holds for undirected graphs as well
whenever h is odd.

As any algorithm that can approximate the number t of h-cycles multiplicatively, can
distinguish between 0 and t h-cycles, we get that our algorithm running times are essentially
tight. We present our lower bound for triangles in Figure 1 as a dotted line. Together with
the lower bound by [21], our lower bound shows that our algorithm is (conditionally) optimal
for all values of t. Due to space considerations, the lower bound proof is deferred to the full
version.

Similarly to Tětek’s algorithm, our algorithms for approximate h-cycle counting can be
used to obtain improved h-cycle counting algorithms for sparse graphs, where the running
time is measured in terms of the number of edges m. In particular, for triangles, one can
simply substitute our new algorithm in terms of n in Tětek’s argument [33] to obtain an
approximate counting algorithm that runs in time Õ

(
m2ω/(ω+1)/t

2(ω−1)
ω+1 + α(ω−2)

(1−α)(ω+1)

)
. This

running time is always faster than Tětek’s Õ
(

m2ω/(ω+1)/t
2(ω−1)

ω+1

)
for any ω > 2. One can

similarly adapt the algorithms of Yuster and Zwick [37] and their analysis in [17] to obtain
approximate counting algorithms for longer cycles. We leave this to future work.

1.2 Technical Overview
To frame our technical contribution, we first briefly overview the approach of [33]. The
latter gives a randomized approximate counting algorithm for triangles, in time Õ

(
nω/tω−2)

.
In a nutshell, the algorithm finds a subset of vertices S that contains all Λ-heavy vertices
and no Λ/polylog (n)-light vertices – a vertex is called Λ-heavy if it participates in at least
Λ triangles, and otherwise it is called Λ-light. Then, the algorithm approximately counts
the number of Λ-heavy triangles, which are triangles with at least one heavy vertex. The
algorithm then continues by sampling subsets of vertices from the set V − S, where each
vertex is kept independently uniformly at random with some probability, and processing the
sampled graphs by recursion.

3 The detection problem for even h-cycles in undirected graphs is known to be much easier than that
for odd cycles, and for directed graphs, as for every even constant integer h, an O(n2) time algorithm
was developed by Yuster and Zwick [36]. Meanwhile, directed h-cycles and undirected odd h-cycles are
believed to require nω−o(1) time to detect.

K. Censor-Hillel, T. Even, and V. Vassilevska Williams 37:5

Our technical contribution consists of three parts: (I) We simplify the above recursive
approach, (II) we improve upon the component that finds heavy vertices, and (III) we
improve upon the component that counts the number of cycles that contain heavy vertices.
A compelling aspect of our technique is that it applies to any constant-length cycle. In what
follows, we overview each of these aspects.

I. The Recursive Template. In [33], each recursive invocation triggers seven further recursive
calls and takes the median of their return values. As the depth of the recursion increases,
the algorithm needs to use a precision parameter that becomes exponentially tighter.

In contrast, our algorithm initiates only a single recursive call. This allows us to avoid
having to compute the median of several subcalls, which makes it easier to apply standard
amplification tools. In particular, it allows us to fix the precision parameter.

In addition, by reducing the recursive tree to a “path”, we simplify the analysis of the
running time.

A prime feature of our simplification of the recursion is that it allows us to present it
as a template for approximate subgraph counting for any fixed subgraph H, provided one
designs the two black boxes (one for finding a superset S of the Λ-heavy vertices with no
Λ/polylog (n)-light vertices, and another for approximately counting the number of copies of
H that intersect the set S).

For triangles, our improvement comes from simplifying the recursion and implementing the
black box that finds heavy vertices faster, using rectangular matrix multiplication. Crucially,
our implementations of these black boxes are general, in the sense that they apply to constant
length h-cycle. Specifically, we find the set S in time Õ

(
MM

(
n, n/Λ1/(h−2), n

))
. For such

S, we find an (1 + ϵ) approximation for the number of copies of H that intersect S in time
Õ

(
n2/ε3)

, which is independent of Λ and of the cardinality of S.

II. Finding the Heavy Vertices. The algorithm in [33] finds Λ-heavy vertices by sampling
a subset of vertices uniformly at random, and using matrix multiplication to detect triangles
inside the induced sampled subgraph. This takes Õ

(
nω/Λω−2)

time, by Õ
(
Λ2)

repetitions
of multiplying n/Λ× n/Λ matrices.

At the heart of our approach for finding the heavy vertices lies non-uniform sampling, and
computing the product of rectangular matrices rather than square ones. We obtain a running
time of Õ

(
MM

(
n, n/Λ1/(h−2), n

))
= Õ (nω/Λγh) for h-cycles, where γh ≜ ω−2

(1−α)(h−2) . This
comes from multiplying an n × n/Λ1/(h−2) matrix by an n/Λ1/(h−2) × n matrix. In [35]
it was shown that α ≥ 0.321334, and therefore ω−2

1−α ≥ 1.47(ω − 2), which establishes that
our algorithm is never slower, and is faster (if ω > 2), where the gap increases with Λ (for
sufficiently large Λ, the folklore naïve sampling algorithm is superior).

Our starting point for finding the heavy vertices is the color-coding technique of [2], which
is widely employed for detecting h-cycles for h = O (1). This technique colors the vertices
using h colors uniformly independently at random and looks for colorful h-cycles, which are
h-cycles with exactly one vertex of each color. This restriction allows for faster detection
but suffers some probability of missing h-cycles that are colored out of order, which can be
overcome with sufficiently large probability by repeating this process.

To find colorful h-cycles, we utilize matrix multiplication. However, we do so in a refined
manner. Rather than considering all vertices, we sample a subset of vertices from each color
class in a nonuniform manner. To illustrate this, consider the task of finding Λ-heavy vertices
w.r.t. triangles. We assign a random color to each vertex, and denote the three color classes
by V1, V2, V3. We focus on identifying the Λ-heavy vertices within V1. Fix some i ∈ [log Λ].

ICALP 2024

37:6 Fast Approximate Counting of Cycles

We sample each vertex from V2 with probability 2i/Λ, and we sample each vertex from V3
with probability 1/2i. Let Hi denote the induced graph obtained by all vertices from V1
and the sampled vertices from V2 and V3, where we also direct edges from Vj to Vj+1 mod 3
and discard monochromatic edges. We show that for every Λ-heavy vertex v, there exists
an index i ∈ [log Λ] such that v is in a triangle in Hi with some probability at least pheavy,
where 1/pheavy = Õ (1). On the other hand, for Λ/polylog (n)-light vertex u, we show that
for every i ∈ [log Λ], the vertex v is in a triangle in Hi with probability at most pheavy/2.
Therefore, we can distinguish between these cases. Checking whether v is in a triangle in Hi

can be done in Õ (MM (n, n, n/Λ)) time. Using amplification, we approximate the probability
that v is in a triangle in Hi for every v ∈ V1, and thus distinguish heavy vertices from lighter
ones.

We generalize our approach for h-cycles by coloring the vertices with h colors, and
directing edges and discarding monochromatic edges, as for triangles. We also discard edges
between non-consecutive color classes. To find Λ-heavy vertices in the first color class, we
sample in a nonuniform manner a subset of vertices from the j-th color class for 2 ≤ j ≤ h,
where the product of the sampling probabilities of the color classes should be at most 1/Λ,
as for triangles. Let H denote the obtained random induced subgraph. The running time of
computing the exact number of h-cycles each vertex in H participates in, which is dominated
by the size of the smallest color class in H, becomes Õ

(
MM

(
n, n, n/Λ1/(h−2)))

. To see
why, consider an h-partite graph G with n vertices in each part. Suppose G has a vertex
v ∈ V1 with a neighbor u ∈ V2, such that all h-cycles that intersect v, also intersect the edge
(u, v). Now, suppose each vertex set Vj , for 3 ≤ j ≤ h has a subset Wj of Λ1/(h−2) vertices,
such that any h-tuple of the form (v, u, w3, w4, . . . , wh) is an h-cycle in G, where wj ∈ Wj

for 3 ≤ j ≤ h. This implies that v is Λ-heavy. Note that if we keep each vertex from the
j-th color class with a probability of o(1/Λ1/(h−2)), we are unlikely to sample any vertex
from Wj , and therefore we fail to learn that v is Λ-heavy. On the other hand, if we sample
vertices from each class with probability Ω

(
1/Λ1/(h−2)), the smallest color class is of size

Ω
(
n/Λ1/(h−2)).

III. Counting the Heavy Copies. Given a graph G and a subset of vertices S, where each
vertex in S participates in at least a and at most b copies of h-cycles for h = O (1), we show
how to compute a (1 + ϵ) approximation for the number of h-cycles that intersect the set S,
in time Õ

(
n2b/εa

)
. In particular, the runtime is independent of size of the set S.

Consider a naïve approach, which approximates the average number of h-cycles that a
vertex from S intersects, and let us see why it fails to provide a good approximation for the
total number of h-cycles intersecting S. Suppose h = 3 and |S| = 3 and each vertex v ∈ S

participates in exactly one triangle in G. Based solely on the number of triangles in which a
vertex participates, it is impossible to distinguish the case where the set S intersects one
triangle in G from the case in which it intersects three triangles in G. The issue here is
double counting, as we did not avoid counting the same cycle more than once. For triangles,
this obstacle can be avoided by replacing G with a tripartite graph G′, where each of the
three parts is a copy of V , and for each edge in G there are six edges in G′, one for every
ordered pair of parts. It is easy to see that every triangle in G corresponds to six triangles
in G′, and thus an estimate on G′ directly gives an estimate on G. That is, we sample a
subset F of vertices from S, and for each copy v′ of v ∈ F in the, say, first part of in the
tri-partition G′, we compute the number of triangles that go through it in G′. This avoids
double counting, because each triangle in G′ intersects copies of the set F from the first part
at most once (as vertices in the same part form an independent set and hence cannot be in

K. Censor-Hillel, T. Even, and V. Vassilevska Williams 37:7

the same triangle). To summarize, restricting to triangles would significantly simplify this
part to a single Chernoff inequality for independent random variables. The source of this
simplicity is that triangles are cliques. However, larger cycles are not cliques. If we simply
repeat every vertex h times to create a new graph G′ as in the triangle case, we could create
h-cycles in G′ that do not correspond to h-cycles in G: every closed walk of length h would
become an h-cycle. As in [2], we use color-coding to overcome this, and this necessitates a
more careful probabilistic analysis .

First, we sample a subset of vertices from S and for each sampled vertex v we approximate
the number of h-cycles which go through v (and therefore intersect the set S). The crux
of our algorithm is that in order to approximate the above, we approximate the number of
h-cycles which go through v and intersect the set S exactly k times, for each 1 ≤ k ≤ h. The
summation of these approximations yields our final result, and it naturally avoids the pitfall
of double-counting.

To approximate the number of h-cycles intersecting the set S exactly k times for some
k, we color the graph with h − 1 colors and color vertex v with the color h. This ensures
that any colorful h-cycle intersects v. Then, we choose k− 1 color classes from the first h− 1
classes, and retain only vertices of S within those classes. For the remaining color classes, we
keep only vertices that are not in S. The color class h is fixed and always contains only v.
This promises that each colorful h-cycle with v in this auxiliary graph intersects S exactly
k times. The number of ways to choose exactly k − 1 color classes that keep only vertices
from S is

(
h−1
k−1

)
. We compute the number of h-cycles in each such auxiliary graph. We prove

that the expectation of this number is some fixed constant multiplicative factor off from the
number of h-cycles intersecting v and S exactly k times. Finally, we prove that the variance
of this random variable is suitably bounded. Therefore, conducting this process Õ (b/(aε))
times enables us to obtain an (1 ± ε) approximation for its expectation by Chebyshev’s
inequality. We compute the number of h-cycles in this auxiliary graph using rectangular
matrix multiplication. Since the auxiliary graph is h-partite and one part contains only a
single vertex, we get a running time of MM (n, n, 1) = Õ

(
n2)

. Thus, we achieve our claimed
running time of Õ

(
n2b/εa

)
.

We mention that we invoke this procedure on the set of vertices given by the previous
component of finding heavy vertices, which is called upon in every recursion step. A crucial
observation that we make is that not only does this set contain all Λ-heavy vertices and no
Λ/polylog (n)-light vertices, but rather we also know that it does not contain (2hΛ)-heavy
vertices, because those are handled during previous steps of the recursion. This means that
we invoke this procedure for a, b that differ only by polylog (n) and ε2 factors, and thus we
effectively get a running time of Õ

(
n2/ε3)

for counting h-cycles through Λ-heavy vertices.

Roadmap. Section 2 contains our template for the recursion, and proves its correctness for
any graph H given implementations of two black boxes, one that finds heavy vertices and
another that counts the copies of H that contain heavy vertices. Section 3 proves the running
time that our template obtains for h-cycles, given the running times of implementations of
the two black boxes. We implement our black boxes for h-cycles in Sections 4 and 5. Missing
proofs, as well as our hardness result, appear in the full version.

1.3 Preliminaries
Let G be a graph on n vertices. Let H be a fixed graph with h = O (1) vertices. For a
subgraph G′ ⊆ G, and a subset of vertices S, denote by tG′(S) number of copies of H in G′

which intersect S. Denote by τ = τG′ the maximal number of copies of H in G′ in which a

ICALP 2024

37:8 Fast Approximate Counting of Cycles

vertex participates. We say that a vertex v is Λ-heavy (in G) if tG(v) ≥ Λ, and otherwise it
is Λ-light. We say that a copy C of H is Λ-heavy if C contains at least one Λ-heavy vertex.
Let G be a graph and p some parameter that could depend on G. We denote by G[p] a
random induced subgraph of G obtained by keeping each vertex from G independently with
probability p. We use t(1± ε) to denote the closed interval [t(1− ε), t(1 + ε)]. We say that a
value t̂ = t(1± ε) if t̂ ∈ [t(1− ε), t(1 + ε)]. We assume that ε ∈ (0, 1/2], which might depend
on n. If ε is bigger, our algorithm assumes ε ≤ 1/2. Finally, all logarithms in this paper are
base 2.

▶ Definition 3 (Fast Matrix Multiplication Definitions). We denote the time it takes to compute
the product of two matrices of dimension na × nb and nb × nc by either MM

(
na, nb, nc

)
or nω(a,b,c). We also abuse the notation and write ω = ω(1, 1, 1), and ω(k) = ω(1, k, 1).
Note that for any permutation π : [3]→ [3] we have ω(x1, x2, x3) = ω(xπ(1), xπ(2), xπ(3)) . In
addition to ω, we will also use α to be the largest real number such that n by nα by n matrix
multiplication can be done in n2+o(1) time.

2 The Recursive Template

Organization. In this section, we present an algorithm for approximating the number of
copies of a graph H in a graph G, denoted by t, which builds upon two black boxes. The first
black box, called Find9Heavy, takes a graph H and a parameter Λ as input and computes
a superset of the Λ-heavy vertices, excluding any Λ/polylog (n)-light vertices. We denote
the computed superset of heaviest vertices as S. The second black box, called Count9Heavy,
is used to compute an approximation for the number of heavy-copies of H in G, which is
the set of all copies that contain at least one vertex from S. Our algorithm for subgraph
approximate counting that uses the specified black boxes consists of two parts: a doubling
algorithm called Doubling9Template, and a recursive algorithm called Template, which is the
main focus of this section.

The Template Algorithm. The Templateε′ (G, Λ) algorithm takes two parameters: a graph
G and a heaviness threshold Λ. The output of the algorithm is a value t̂, which, with a
probability of at least 2/3, is within the range t± (t · ε′ + Λ · polylog (n) /ε′), where ε′ is the
fixed precision parameter of the algorithm.

We next explain how the recursive Template algorithm works. The algorithm does the
following. (1) Find the heaviest vertices using the Find9Heavy black box, and denote this set
by VΛ. (2) Compute an approximation to the number of heavy copies of H, i.e., copies of H
with at least one vertex from VΛ, using the Count9Heavy black box, and denote the output
by t̂Λ. (3) Let H = G[V (G)− VΛ], and let F ← H[p]. That is, F is an induced subgraph of
H, where each vertex from H joins F independently with probability p. (4) Make a recursive
call to Templateε′

(
H, Λ · p|H|) and let t̂H denote its output. (5) Return t̂Λ + t̂H/p|H|. The

analysis of the probability that the algorithm produces a good approximation appears in the
proof of Lemma 7. The running time of the algorithm depends on the implementation of the
black boxes. In the next section, we analyze the running time of the algorithm for the case
where H is a cycle.

The Doubling-Template Algorithm. The Doubling9Template algorithm is a doubling al-
gorithm, which starts with an initial guess for t, denoted by W0 = n|H|. This is the maximal
number of copies of H an n vertex graph can contain (h! ·

(
n
|H|

)
≤ n|H|). The algorithm then

makes Õ (1) calls to Templateε′ (G, Λ0), where Λ0 ← W · ε2/8Q, where Q = 8 log4(n), and

K. Censor-Hillel, T. Even, and V. Vassilevska Williams 37:9

computes their median, which we denote by t̂0. If t̂0 ≥ W0 the doubling algorithm stops and
outputs t̂0 as its approximation for t. Otherwise, the guess for the value of t is decreased by
a factor of 2. The main point here is that the smaller the value of Λ given to the recursive
algorithm is, the better approximation we get, while simultaneously increasing the running
time. The guess W is a guess for the highest heaviness threshold the algorithm can start
with to output a good approximation, and not an actual guess for the value of t (although
both quantities are related).

Formally, the black boxes that we assume are the following.

Find9Heavy(G, Λ)

Input: A graph G, some parameter Λ.
Output: A subset VΛ of vertices, such that with probability at least 1− 1

n4 , ∀v ∈ V (G):
1. If tG(v) ≥ Λ, then v ∈ VΛ.
2. If tG(v) ≤ Λ/(log n)h2

, then v /∈ VΛ.

Count9Heavyε′(G, VΛ, a, b)

Input: A graph G, a precision parameter ε′, a subset of vertices VΛ, and two real numbers
0 < a ≤ b, such that ∀v ∈ VΛ we have tG(v) ∈ [a, b].

Output: t̂Λ which satisfies Pr
[
t̂Λ = tG(VΛ)(1± ε′)

]
≥ 1− 1

n4 .

It should be noted that Count9Heavy cannot be applied to the entire graph, as it might
contain a vertex v with tG(v) = 0. Moreover, even if all vertices have tG(v) > 0, employing
this black box on the entire graph might result in slower running time. Indeed, in our
implementation of the black box, the runtime is contingent on the ratio b/a. Therefore, we
only employ this black box with b/a = O(1/ε2).

Algorithm 1 Templateε′ (G, Λ).

Input: A graph G = (V, E), a heaviness threshold Λ, and a precision parameter ε′.

1 VΛ ← Find9Heavy(G, Λ) ; ▷ VΛ is a superset of Λ-heavy vertices in G

with no Λ/(log n)h2
-light vertices

2 aΛ ← Λ
(log n)h2 , bΛ ← Λ · 8Q

ε2 ; ▷ Q = 8 log4(n)

3 t̂Λ ← Count9Heavyε′(G, VΛ, aΛ, bΛ) ; ▷ t̂Λ is a (1± ε′) approximation for
tG(VΛ) (the number of copies of H intersecting VΛ)

4 if Λ ≤ 1 then return t̂Λ;
5 H ← G[V − VΛ];
6 p← 1/2; ▷ We keep p instead of 1/2 for readability
7 F ← H[p] ; ▷ F is a random subgraph of H

8 t̂F ← Templateε′

(
F, Λ · ph

)
;

9 return t̂Λ + t̂F /ph;

The depth of the recursion in Templateε′ (G, Λ) is at most log1/ph(Λ) + 1. Since we will
only call this algorithm with Λ ≤ |V (G)|h, we can conclude that the depth of the recursion
is at most log n + 1. The guarantees for the template are given in the following lemma.

ICALP 2024

37:10 Fast Approximate Counting of Cycles

▶ Lemma 4 (Guarantees for the Template Algorithm). For every ε ∈ (0, 1/2] and every
Λ ≥ τG · ε2

8Q , we have Pr
[
Templateε′ (G, Λ) = tG(1± ε

2)± Λ · log4(n)
2ε

]
≥ 2

3 , where ε′ = ε
4 log n .

Algorithm 2 Doubling9Template (G, ε).

Input: A graph G = (V, E) with tG copies of H and a precision parameter ε ≤ 1/2.
Output: t̂, which is a (1± ε) approximation for t w.h.p.

1 ε′ ← ε
4 log n , W← nh , Q← 8 log4(n) , Λ←W · ε2/Q

2 for i = 0 to i = h log n do
3 t̂i ← Median

[
Templateε′

(
G, Λ/2i

)
, 400 log n

]
; ▷ t̂i is the median of

400 log n independent executions of Templateε′

(
G, Λ/2i

)
.

4 if t̂i ≥W/2i then return t̂i ;
5 return Exact deterministic count of tG.

▶ Lemma 5 (Guarantees for the Doubling9Template Algorithm). Let G be a graph with n

vertices and tG copies of H. Fix some ε > 0 that may depend on n. Let t̂ denote the output
of Doubling9Template (G, ε) (specified in Algorithm 2). Then, Pr

[
t̂ = t(1± ε)

]
≥ 1− 1/n2 .

The main result that we prove in this section is Lemma 5. We prove it using Lemma 4.
First, we use amplification, to show that the event specified in Lemma 4 occurs with high
probability, and not only with probability at least 2/3. The rest assumes that this event
always occurs. We then use case analysis on Λ/2i.
1. For i such that Λ/2i ≥ 4tG, we show that t̂i < Λ/2i w.h.p., meaning the doubling

algorithm does not stop for such i w.h.p., and makes another iteration with a refined
initial heaviness threshold.

2. For i such that Λ/2i ≤ 4tG, we show that t̂i = tG(1± ε) w.h.p.
3. For i such that Λ/2i ≤ tG/2, we show that t̂i ≥ Λ/2i w.h.p., which means the algorithm

stops as soon as Λ/2i ≤ tG/2 w.h.p.
To summarize, the doubling algorithm always stops (by the third property). It does not stop
when Λ/2i ≥ 4tG w.h.p. Therefore, when it does stop we have that Λ/2i ≤ 4tG, and then it
obtains a (1± ε) approximation for tG.

To prove Lemma 4, we state and prove a more refined version of the guarantees of the
template algorithm. We need the following definition to restate it.

▶ Definition 6 (D̂ (Λ)). We define the depth of the call Templateε′ (F, Λ) as D̂ (Λ) =
max

{
0,

⌈
log1/ph(Λ)

⌉}
.

We assume Λ ≤ (h!) ·
(

n
h

)
≤ nh, and therefore that D̂ (Λ) ≤ log n + 1.

▶ Lemma 7 (Induction Hypothesis). Given a graph G and ε, we set p = 1/2, and ε′ = ε
4 log n .

Then, for any Λ ≥ τG · ε2

8Q , and any K = o(n) that could depend on n, D̂ (Λ) and p, we have

Pr
[
Templateε′ (G, Λ) = tG(1± ε′)D̂(Λ) ± 2D̂ (Λ) K · Λ/ε′

]
≥ 1− 4hD̂ (Λ) /(Kph) .

Proof Sketch. We prove using induction on the depth of the recursion. We skip the proof of
the base case and state the induction hypothesis. The full proof appears in the full version.

K. Censor-Hillel, T. Even, and V. Vassilevska Williams 37:11

Step. We first define some notation and events. We have three graphs F ⊆ H ⊆ G, where
G is the input graph, H is an induced subgraph of G without the Λ-heavy vertices, and
F is a random induced graph of H obtained by keeping each vertex of H independently
with probability p. Let t̂G denote the output of Templateε′ (G, Λ), and let t̂F denote the
output of Templateε′

(
F, Λ · ph

)
. We use tΛ to denote tG(VΛ), and let t̂Λ denote the output

of Count9Heavyε′(G, VΛ). Note that D̂ (Λ) ≥ D̂(Λph) + 1 (unless D̂ (Λ) = 0, in which case
D̂ (Λ) = D̂(Λph) = 0).

Intuition. We compute two values, t̂Λ and t̂F . We then output t̂ = t̂Λ + t̂F /ph as an
approximation for tG. By the black box guarantees, we have that t̂Λ is a good approximation
for tΛ. What is left is to show that t̂F /ph is a good approximation for tH . We split this
into two parts. First, we show that tF /ph is “close” to the value of tH . Next, we use the
induction hypothesis, to show that t̂F is a good approximation of tF . We need to show that
the “composition” of these approximations is also good. Let EFind9Heavy denote the event
that all calls made to the Find9Heavy black box produce a valid output. That is, the event
that VΛ contains a superset of the Λ-heavy vertices, without any Λ/(log n)h2

n-light vertices.
We prove the correctness of the algorithm under the assumption that EFind9Heavy
occurs. We define:
1. E1 ≜ {t̂Λ = tΛ(1± ε′)}. The heavy copies of H are approximated correctly.
2. E2 ≜ {t̂F = tF (1± ε′)D̂(Λph)± 2D̂(Λph) ·K · (Λ · ph)/ε′}. This is the event in the induction

hypothesis.
3. E3 ≜ {tF /ph = tH(1± ε′)± K · Λ/ε′}. This is a concentration bound on tF .
4. E4 ≜ {t̂F /ph = tH(1± ε′)D̂(Λ) ± 2D̂ (Λ) K · Λ/ε′}. This event contains E2 ∩ E3.
5. E5 ≜ {t̂G = tG(1± ε′)D̂(Λ) ± 2D̂ (Λ) K · Λ/ε′}. This is the event specified in Lemma 7.

Lemma 7 requires us to show that Pr [E5] ≥ 1− 4hD̂(Λ)
Kph . We show this by proving that E1∩

E2 ∩E3 ⊆ E5, which implies that it is sufficient to prove that Pr [EFind9Heavy ∩ E1 ∩ E2 ∩ E3] ≥
1− 4hD̂(Λ)

Kph . To show the latter, we show that Pr [EFind9Heavy ∩ E1 ∩ E2] ≥ 1− 4hD̂(Λph)+2
Kph and

that Pr [E3] ≥ 1 − h+1
Kph . Summing up the two error probabilities in the above expressions

gives the desired result. ◀

3 Application: Approximating the Number of h-Cycles

In this section, we analyze the running time of the recursive and doubling algorithm, when
the counted subgraph is an h-cycle for h = O (1). For this task, we assume the black boxes
can be implemented in specific runtime, as stated in the following lemma which is proven in
the next sections.

▶ Lemma 8. Let G be a graph with n vertices, let H be an h-cycle for some h = O (1), and
let ε′ be some parameter. Then, each call to Find9Heavy(G, Λ) can be implemented in time
Õ

(
MM

(
n, n, n

Λ1/(h−2)

))
and each call to Count9Heavyε′(G, VΛ, aΛ, bΛ) can be implemented

in time Õ
(

MM (n, n, 1) · bΛ
aΛ·ε

)
= Õ

(
n2 · bΛ

aΛ·ε

)
.

▶ Theorem 1 (Approximating the Number of h-Cycles). Let G be a given graph with n vertices
and let h ≥ 3 be a fixed integer. There is a randomized algorithm that outputs an approximation
t̂ for the number t of h-cycles in G such that Pr

[
(1− ε)t ≤ t̂ ≤ (1 + ε)t

]
≥ 1 − 1/n2, for

any constant ε > 0. The running time is bounded by Õ
(
MM

(
n, n/t1/(h−2), n

))
, the fastest

running time to multiply an n× n/t1/(h−2) matrix by an n/t1/(h−2) × n matrix.

ICALP 2024

37:12 Fast Approximate Counting of Cycles

Proof Sketch. Consider the Doubling9Template (G, ε). Its correctness follows from Lemma 5.
We analyze its running time. We prove that given Lemma 8, the running time of the recursive
algorithm Templateε′ (G, Λ) is bounded by Õ

(
MM

(
n, n, n

Λ1/(h−2)

)
+ n2

ε3

)
with probability at

least 1 − exp(− log2 n). Then, we show that the complexity of the doubling algorithm is
bounded by Õ

(1
ε3 ·MM

(
n, n, n

t1/(h−2)

))
with probability at least 1 − 1

n3 . The full details
appear in the full version. Here we give a sketch of why the running time of Templateε′ (G, Λ)
is bounded by Õ

(
MM

(
n, n, n

Λ1/(h−2)

)
+ n2

ε3

)
with probability at least 1− exp(− log2 n).

We unroll the recursion of the algorithm: it makes a single call to Find9Heavy, then a single
call to Count9Heavyε′ , and then a recursive call. The algorithm’s runtime can be analyzed
by bounding {Find9Heavy(Gk, Λk)}r

k=0, and {Count9Heavyε′(Gk, VΛk
, aΛk

, bΛk
)}r

k=0, where
r is the recursion depth and Gk denotes the input graph for the k-th call of the recursive
algorithm, where G0 = G. Let Λk = Λ0 · pkh denote the heaviness threshold, and let VΛk

denote the set of Λk-heavy vertices in the k-th iteration. We bound the running time
of the k-th call to each of the black boxes. We prove in the full version that the total
running time for all calls to the Count9Heavyε′ black-box is Õ

(
n2/ε3)

. Next, we bound the
running time of the k-th call to the Find9Heavy black-box. Note that for any k, the call
Find9Heavy(Gk, Λk) takes Õ(MM

(
|V (Gk)|, |V (Gk)|, |V (Gk)|/Λ1/(h−2)

k

)
) by Lemma 8. We

use Chernoff’s inequality to show that the number of vertices in Gk is Õ
(
max

{
1, npk

})
,

thus we can replace |V (Gk)| by npk in the above expression.
The crux is that the running time of the first call to Find9Heavy also ap-

plies to subsequent calls. This is because MM
(

npk, npk, npk/
(
Λ · phk

)1/(h−2)
)
≤

MM
(
n, n, n

Λ1/(h−2) · pk·(3−h/(h−2))) ≤ MM
(
n, n, n/Λ1/(h−2)), where the first inequality is

a simple observation that we prove in the full version, and the second inequality follows
since 3 − h/(h − 2) = 2h−3

h−2 is non-negative for h ≥ 3 and therefore pk·(3−h/(h−2)) ≤ 1.
We conclude that the running time of each call in {Find9Heavy(Gk, Λk)}r

k=0 is at most
r · O

(
MM

(
n, n, n/Λ1/(h−2)))

. As r ≤ log n, we get that all calls take a total of
Õ

(
MM

(
n, n, n/Λ1/(h−2)))

time.
This completes the proof, as all calls to the Find9Heavy black box and the Count9Heavyε′

black box take at most Õ
(
MM

(
n, n, n/Λ1/(h−2)) + n2/ε3)

time in total. ◀

4 Implementing the Black Box Count9Heavyε

In this section, we implement Count9Heavyε. We prove the second part of Lemma 8, stated
next.

▶ Theorem 9. There is an algorithm that implements the Count9Heavyε(G, S, a, b) black box,
when H is an h-cycles, for h = O (1), in time Õ

(
n2 · b

a·ε
)
.

For this entire section, the graph G is fixed, and the set S is a fixed subset of vertices,
where for every v ∈ S we have tG(v) ∈ [a, b]. We emphasize that a is only a lower bound
on minv∈S tG(v) and b is only an upper bound on maxv∈S tG(v). Denote Nk ≜ |S|/k. As
explained in the introduction, it is insufficient to sample a few vertices from S, estimate tG(v)
for each one, and apply a concentration bound to compute tG(S). Formally, this approach
fails because

∑
v∈S tG(v) ̸= tG(S) due to possible double counting. We overcome this issue

by sampling a small subset of vertices S′ ⊆ S, and then, for every v ∈ S′ we approximate
the number of copies of H which intersect v and exactly i additional vertices from S for
0 ≤ i ≤ h− 1. This will allow us to estimate the number of multiple countings and therefore
get an estimation of tG(S).

K. Censor-Hillel, T. Even, and V. Vassilevska Williams 37:13

That is, the key ingredient of our approach for approximating t̂ as required by
Count9Heavyε is to approximate the number of cycles that intersect S in exactly k ver-
tices. To this end, we define the following.

▶ Definition 10. Let C denote the set of copies of H in G. For U ⊆ V , define C(U) ≜
{C ∈ C | C ∩ U ̸= ∅}. Denote t ≜ |C| and t(U) ≜ |C(U)|. In general, we replace the symbol C
by t, to denote the cardinality of a set. Let Ck denote the set of copies C ∈ C with |C ∩ S| = k.
Let Ck(v) ≜ Ck ∩ C(v). Let tk =

∣∣Ck
∣∣.

The following lemma shows that we can efficiently approximate tk.

▶ Lemma 11 (Algorithm Approxtk). There exists a randomized algorithm Approxtk with
the following characteristics. The input is a graph G, a set S, a precision parameter δ,
a parameter k ∈ [h], and a tuple (a, b), such that for every v ∈ S we have tG(v) ∈ [a, b].
The algorithm produces an output t̂k which satisfies Pr

[
t̂k = tk ± tG(S) · δ

]
≥ 1− 1

n4 . The
running time of the algorithm is bounded by Õ

(
n2 · b

a ·
1
δ

)
.

Approximating tk directly leads to Theorem 9 because
∑

k∈[h] tk = tG(S). A formal proof
appears in the full version. To approximate tk as required by Lemma 11, we find a value
whose expectation is tk and whose variance is at most O

(
(Nk · b)2

)
(recall that Nk = |S|/k).

We can do this efficiently, as follows.

▶ Lemma 12 (Algorithm ApproxE[tk]). There is a randomized algorithm ApproxE[tk] whose
input is G, S, δ and k. Note that unlike Approxtk , the algorithm ApproxE[tk] does not require
a and b as part of its input parameters. ApproxE[tk] computes a value X such that E [X] = tk

and Var [X] ≤ C · (Nk · b)2, where C is a constant. The running time of the algorithm is
bounded by Õ

(
n2)

.

The reason that Lemma 12 is helpful is that we can run the algorithm it provides r times
and take the median of means of these invocations. A formal proof of Lemma 11 appears in
the full version. To get a sample X with E [X] = tk and Var [X] ≤ C · (b ·Nk)2 as needed
by Lemma 12, we find samples Yv with E [Yv] = tk(v) and Var [Yv] ≤ C · b2. We can do this
efficiently, as follows.

▶ Lemma 13. There is a randomized algorithm ApproxE[vertex9tk] whose input is G, S, δ, k

and a vertex v ∈ S. Unlike ApproxE[tk], ApproxE[vertex9tk] additionally takes a vertex v ∈ S as
input. ApproxE[vertex9tk] computes a value Yv such that E [Yv] = tk(v) and Var [Yv] ≤ C · b2,
where C is a constant. The running time of the algorithm is bounded by Õ

(
n2)

.

The reason that Lemma 13 is helpful is that we can sample a vertex v uniformly at random
from S, and get, using Lemma 13, an unbiased estimator for the number of copies of H which
contains v, and intersect S exactly k times, i.e., tk(v). By the law of total expectation, we get
that the expected value of this quantity, is equal to 1

|S|
∑

u∈S E
[
tk(u)

]
= tk/Nk. Therefore,

we get an unbiased estimator for tk up to a known value Nk. A formal proof of Lemma 12
appears in the full version.

To prove Lemma 13, we utilize the color-coding technique introduced by [2]. The high
level approach of the technique is to randomly color vertices with h colors and detect colorful
h-cycles that are ordered by, say, increasing colors. This additional structure allows for faster
detection, at the cost of some probability of missing h-cycles that are colored out of order,
which is overcome by repeated experiments.

ICALP 2024

37:14 Fast Approximate Counting of Cycles

A pertinent question arises: why are the algorithms ApproxE[tk], ApproxE[vertex9tk] neces-
sary? Why not just choose a random coloring, compute the number of colorful copies of
H intersecting a set S exactly k times, and apply Chebyshev’s inequality to conclude that
repeating this process Õ

(
n2 · b

aδ

)
times suffices for a good approximation of tk? The answer

lies in the execution time of the matrix multiplication algorithm for counting colorful copies,
which is dominated by the sizes of the largest, second largest, and smallest color classes.
Roughly speaking, the smaller the product of these sizes, the faster the algorithm runs. Under
random coloring, color classes each have a size of Ω(n) with high probability. Conversely,
ApproxE[vertex9tk] produces a color class containing just a single vertex, which significantly
improves the running time in the worst case, compared to the approach which does not use
the algorithms ApproxE[tk], ApproxE[vertex9tk]. We need the following definitions to explain
how color-coding works, and how the algorithm ApproxE[vertex9tk] uses rectangular matrix
multiplication.

▶ Definition 14. Fix some coloring φ : V → [ℓ] for some ℓ ∈ N (ℓ will usually be h). Let
Cφ denote the set of all copies C ∈ C, such that φ(C) = [ℓ]. If C ∈ Cφ, we say that C is
φ-colorful. Also define Cφ(v) = Cφ ∩ C(v), tφ ≜ |Cφ|, and tφ(v) ≜ |Cφ(v)|. Let Ck

φ ≜ Ck ∩ Cφ.
That is, Ck

φ is the set of copies of H in G, where each such copy is colorful w.r.t. φ, and
additionally intersects the set S exactly k times. Let tk

φ =
∣∣Ck

φ

∣∣.
Let A, B be two finite sets. We say that a function φ : A→ B is a random coloring, if

the value of each a ∈ A is set to some value b ∈ B, where b is chosen uniformly at random
from B and independently of values chosen for other elements in A.

Let φ : V → [h]. For i ∈ [h], we denote by φ−1(i) the set of all vertices v with φ(v) = i,
and call this set the i-th color class. Assume without loss of generality that the color classes
are sorted according their cardinalities, in a non-decreasing order. That is, for every i < h

we have
∣∣φ−1(i)

∣∣ ≥ ∣∣φ−1(i + 1)
∣∣.

The last part of the above definition is used to quantify the complexity of computing tk
φ as a

function of the sizes of the color classes that the coloring φ induces, as follows.

▶ Lemma 15. Let (φ1, φ2, φh) denote the cardinality of the largest, second largest, and
smallest color classes, respectively. For any fixed k ∈ [h], there is a deterministic algorithm
for computing

{
tk
φ(v)

}
v∈V

in time O
(
(h!)2 · h2 ·MM (φ1, φ2, φh)

)
.

Next, we explain how to implement the algorithm ApproxE[vertex9tk] given that we can
compute the number tk

φ of colorful copies of H. The algorithm works as follows. It colors
each vertex with a random color from the set [h− 1]. It then recolors the input vertex by
a new color h. Let φ denote this coloring. The algorithm then computes tk

φ and outputs
tk
φ/q for some constant q such that E [tφ/q] = tk(v). We prove in the full version that the

expectation and variance of this output satisfy the claimed requirements.
We are left with proving Lemma 15, which is the final step in the implementation of

the algorithm ApproxE[vertex9tk]. To prove it, we reduce the problem of computing tk
φ to the

problem of computing tφ on an auxiliary graph, in which every h-cycle is colorful and also
intersects the set S exactly k times. We construct the auxiliary graph by randomly coloring
the vertices with h colors, then selecting k color classes and keeping only vertices from S in
them, while discarding the rest of the vertices in those classes. For the remaining h− k color
classes, we retain only vertices that are not part of S. We get a graph in which each color
class is either contained in S or disjoint from S. This reduces the problem of computing tk

φ

on the auxiliary graph, to computing tφ on it. The next claim addresses the running time
of computing tφ (on the auxiliary graph) instead of computing tk

φ, and is the final missing
piece for the proof of Theorem 9.

K. Censor-Hillel, T. Even, and V. Vassilevska Williams 37:15

▷ Claim 16. Let G be a graph and let σ ≜ (U1, . . . , Uh) be an (ordered) sequence of
disjoint subsets of vertices of V (G). Let tσ

G denote the number of copies C ∈ CG where
C = (v1, v2, . . . , vh) and vi ∈ Ui for every i ∈ [h]. Let U(1), U(2), U(h) denote the cardinality
of the largest, second largest, and smallest subset, respectively. Then, there is a deterministic
algorithm that outputs {tσ

G(v)}v∈V in time O
(
h2 ·MM

(
U(1), U(2), U(h)

))
.

Proof of Claim 16. We assume without loss of generality that |U1| = U(h), i.e., that U1 is the
smallest set. We first explain how to compute {tσ

G(v)}v∈U1
, and then we generalize this for

Uj for any j ∈ [h].
Let A denote the adjacency matrix of G. For X, Y ⊆ V (G) let A[X, Y] denote the

submatrix containing all rows v for v ∈ X and all columns u for u ∈ Y . Combinatorially,
define a new directed graph H ′ with vertex set X ∪ Y , and a directed edge (x, y) between a
pair of vertices x ∈ X and y ∈ Y if and only if (x, y) is an edge in G. Note that A[X, Y]
is exactly the adjacency matrix of the new graph H ′. Define B0 ≜ I|U1|, and for 0 ≤ i < h,
define Aσ

i ≜ A[Ui, Ui+1] and Bσ
i ≜ Bi−1 · Ai. We compute Bσ

i for 0 ≤ i < h. Note that
Bσ

i [x, y] denotes the number of paths with i edges between a vertex x ∈ U1, and a vertex
y ∈ Ui+1, which are of the form (x, u2, u3, . . . , ui−1, y) where uj ∈ Uj for 2 ≤ j < i. Let
Ah ≜ A[Uh, U1]. After computing Bh, we compute M = Bσ

h · Aσ
h and return all entries on

the diagonal of M . Note that for v ∈ U1, we have that M [v, v] = tσ
G(v).

The generalization to other values j ∈ [h] has only a small modification and appears in
the full version.

Running Time. In the i-th iteration, for 1 ≤ i ≤ h, we compute the product of the
matrices Bi−1 with the matrix Ai. Let a′, b′ denote the dimensions of Ai. The dimensions
of Bi−1 are U(h), a′, and therefore the running time is MM

(
a′, b′, U(h)

)
. Without loss of

generality, we can assume b′ ≤ a′, because MM (a′, b′, X) = MM (X, b′, a′) for any a′, b′, X.
We also have a′ ≤ U(1) and b′ ≤ U(2). This bounds the time for the i-th iteration by
O

(
h2 ·MM

(
a′, b′, U(h)

))
≤ O

(
h2 ·MM

(
U(1), U(2), U(h)

))
, which proves the claim. ◁

5 Implementing the Find-Heavy Black Box

In this section, we prove the first part of Lemma 8, as is specified in the following theorem.

▶ Theorem 17. There is an algorithm that implements the Find9Heavy(G, Λ) black box when
H is an h-cycle with h = O (1), in time Õ

(
MM

(
n, n, n/Λ1/(h−2)))

.

An algorithm for Theorem 17 is given a graph G and a heaviness threshold Λ, and needs to
output a superset of the Λ-heavy vertices, which contains no Λ/(log n)h2

-light vertices. Our
algorithm works as follows. The algorithm selects a vector P = (p1, . . . , ph), where pi ∈ [0, 1]
for i ∈ [h], which we explain shortly how to select. The algorithm then samples a uniform
coloring φ for the vertices, and keeps each vertex of the i-th color class with probability pi.
We emphasize that not all vertices are kept with the same probability. Let F denote the
obtained graph. If v is in at least one φ-colorful cycle in F , we say that v is P -discovered. We
can find all P -discovered vertices over F using Lemma 15. For every vertex v ∈ V , let v[P]
denote the probability that v is P -discovered. The randomness is taken over the choice of the
coloring and the sampling of vertices. We call this experiment the P -discovery experiment.
We repeat this P -discovery experiment k times. If v is P -discovered more than kτ times,
where τ is a threshold we set later, then P adds v into the set of heavy vertices. In this case,
we say that v is P -added to the set of heavy vertices.

ICALP 2024

37:16 Fast Approximate Counting of Cycles

The final step of our algorithm is choosing a vector P , or rather a set of vectors P, and
then performing the P -discovery experiment with each vector in the set k times. Before
specifying how we should choose P, k, and τ , we state the properties we hope to achieve.

(1) Each vector P ∈ P induces a graph F , such that invoking Lemma 15 for computing
the set of P -discovered vertices, takes Õ

(
MM

(
n, n, n/Λ1/(h−2)))

time. (2) Each vertex with
tG(v) ≥ Λ has at least one P ∈ P that P -adds v to the set of heavy vertices, w.h.p. (3) Any
vertex v with tG(v) ≤ Λ/(log n)h2

is w.h.p. not P -added to the heavy vertex set for any
P ∈ P . (4) The set P has only Õ (1) vectors, allowing us to avoid repeating this experiment
too many times.

The set of all vectors we will use is as follows. We take a (finite) subset of the all vectors
(p1, . . . , ph) ∈ [0, 1]h which satisfy

∏
i∈[h] pi ≤ Õ (1/Λ). That is, all such vectors for which

pi ∈ {2−j | 0 ≤ j ≤ log(Λ) + 1} for i ∈ [h]. We denote this set of vectors by Producth(Λ).
Note that |Producth(Λ)| ≤ (log(Λ) + 2)h = Õ (1), where the last inequality follows because
Λ ≤ nh, since no vertex in G participates in more than nh copies of any h-vertex graph (that
is, if the input was Λ > nh, the algorithm could simply output an empty set). This means
that log(Λ) ≤ h log n = Õ (1). This proves Property (4) above.

The rest of the section proves that this set satisfies Properties (1)–(3). We first prove
the first property, stating that for each P ∈ Producth(Λ), the P -discovery experiment can be
implemented in the desired time.

▶ Lemma 18. Let G be a graph with n vertices and let Λ be some positive number. Let
P = (p1, . . . , ph) be a vector in [0, 1]h with

∏h
i=1 pi = Õ

(1
Λ

)
. Let F be the (random) graph

obtained in a P -discovery experiment. Then, we can find all the P -discovered vertices in
time Õ

(
MM

(
n, n, n · Λ−1/(h−2)))

, w.h.p.

Proof Sketch. The proof is included in the full version, and we provide the proof sketch
here. Fix some P ∈ [0, 1]h where P = (p1, . . . , ph), and

∏h
i=1 pi ≤ 1/X, for X ≥ 1. Assume

without loss of generality that pi ≥ pj for i > j. This implies that p1 is the largest
coordinate. Let F be the random graph, and let F1, F2, Fh denote the sizes of the first,
second, and h color classes in F . First, note that we can use Lemma 15 to compute the
set of discovered vertices in time O (MM (F1, F2, Fh)). We analyze the running time of the
algorithm specified in Lemma 15 on the random graph F . Using a standard Chernoff’s
inequality, we can get that O (MM (F1, F2, Fh)) = Õ (MM (np1, np2, nph)) w.h.p. The crux
of the algorithm is the following inequalities MM (np1, np2, nph) ≤ MM (n, n, n · (p1p2ph)) ≤
MM

(
n, n, n/X1/(h−2)) , which completes the proof by setting X ← Λ. The first inequality is

proved in the full version. The second inequality reduces to solving the following optimization
task. Maximize p1 · p2 · ph, under the constraints pi ≥ pi+1, and

∏
i∈[h] pi = 1/X. The proof

is also in the full version, where we show that an optimal value is obtained when p1 = p2 = 1
and pi = X1/(h−2), which completes the proof sketch. ◀

It remains to prove Properties (2)− (3). For this, we prove that each Λ · (2h log(n))h+1-
heavy vertex v, has a vector P ∈ Producth(Λ) for which v[P] = Ω (1). On the other hand, for
every Λ/ log n-light vertex v, and any vector P ∈ Producth(Λ), we have v[P] = O (1/ log n),
and therefore, we can distinguish between the two. The full details appear in the full version.

The upper bound on v[P] for light vertex uses Markov’s inequality. For the rest of this
section we prove the statement on heavy vertices, by induction on h, for which the base case
is h = 3. The intuition for the proof is as follows. Consider the base case of triangles. Let
Vi denote the i-th color class. Consider finding the heavy vertices in the first color class.
Consider all vectors Pi = (1, 2−i, 2i/Λ), for 0 ≤ i ≤ log(Λ) + 1. These vectors form a subset
of Producth(Λ). Fix some Λ-heavy vertex v ∈ V1. We want to prove that for at least one

K. Censor-Hillel, T. Even, and V. Vassilevska Williams 37:17

i ∈ [log(Λ)] we have v[Pi] ≥ Ω (1). Our choice for the vectors is designed to deal with the
following two extreme cases. The first case is that every C ∈ Cφ(v) intersects one specific
vertex u ∈ V2. For this case, the vector P0 = (1, 1, 1

Λ) is the right choice for discovering v

because it maximizes the probability we hit u and a common neighbor of v and u, under the
constraint that the sampling probability p1 · p2 · p3 ≤ 1/Λ. The second case is that among
each of V2 ∩N(v) and V3 ∩N(v), there are

√
Λ vertices that are connected as a complete

bipartite graph (contained in V2 × V3). For this case, the vector Pi for i = log(Λ)/2 is the
right choice for discovering v, because Pi = (1, 1√

Λ
, 1√

Λ
). For a larger h, the “hard” case

is the following generalization of the above. From each color class Vi for i ∈ {3, . . . , h} we
take k = Λ1/(h−2) vertices and connect them by a complete (h− 2)-partite graph. We then
take v ∈ V1 and u ∈ V2, we add an edge between v and u, and we connect v to all the
aforementioned k vertices from Vh and we connect u to all the aforementioned k vertices
from V3. The vector (1, 1, 1

k , . . . , 1
k) is the right choice for this case.

Roughly speaking, we show the set Producth(Λ) gradually shifts from handling one
extreme case to another, and therefore “covers” all cases in between, which are the different
ways to split vertices in h-cycles into h pieces whose product of sizes is Λ.

We need a final technical step before presenting the proof. First, we construct an h-partite
graph which is easier to work with. For this, we sample uniform h coloring of the vertices of
G. For i ∈ [h] let Vi denote the set of vertices colored in the i-th color. For every i ∈ [h]
we keep only edges between the vertices of Vi and Vi+1 mod h, and direct those edges from
Vi to Vi+1. Let Gφ denote the obtained directed graph. We emphasize that tGφ

(v) ≤ tφ(v),
as the latter counts all colorful cycles in which v participates in, whereas the former counts
only colorful cycles with edges between Vi and Vi+1 in which v participates in. We prove
that a heavy vertex will be P discovered in Gφ, with probability at least Ω (1), by some
P ∈ Producth(Λ), whereas light vertices will only be discovered with probability O (1/ log n).
In other words, since the gap between the heavy and light vertices is sufficiently large, we
can still distinguish between the two in Gφ.

The rest of this section is dedicated to proving the following proposition.

▶ Proposition 19. Fix a vertex v, and an h-coloring of the vertices of G. Suppose tGφ
(v) ≥

Λ · (2h log(n))(h−1)2 . Then, there exists a vector P ∈ Producth(Λ) such that the probability
that v gets P -discovered in Gφ is at least (1− 1/e)h−1.

Due to space considerations, we prove here only the base case where the induction step is
deferred to the full version.

Proof of Proposition 19. We prove this by induction on h. We start with the base case,
that is, h = 3. We fix some h-coloring φ. Recall that we denote the i-th color class by Vi.
Consider a vertex v ∈ V1 with tGφ(π)(v) ≥ Λ · (2h log(n))4 To simplify the notation, we use
G′ = Gφ. We will prove that there exists a vector P ∈ Producth(Λ), such that the probability
that the vertex v is P -discovered over G′ is at least (1− 1/e)2. Let K0 = log(Λ) + 1. We
consider a subset of vectors in Producth(Λ) of the form Pi = (1, pi, qi), for i ∈ {0, 1, . . . , K0},
where pi ≜ 2−i , qi ≜ 2i

Λ . We partition V2 into classes as follows. For k ∈ {1, 2, . . . , K0}, let
Qk = {u ∈ V2 | |CG′(v) ∩ CG′(u)| ∈ [1/qk, 2/qk)} , Q0 = {u ∈ V2 | |CG′(v) ∩ CG′(u)| ≥ 1/q0} .

In words, u ∈ Qk if and only if the number of 3-cycles in G′ that contain both v and u is
at least 1/qk and less than 2/qk. The set Q0 consists of all vertices u ∈ V2, such that the
number of 3-cycles in G′ that contain both v and u is at least 1/q0 = Λ. We claim that
there exists k ∈ {0, 1, . . . , K0} such that |Qk| ≥ 1/pk. The proof appears in the full version.
We next show that for such k, we have v[Pk] ≥ (1− 1/e)h−1 which completes the proof of
the base case. Fix k ∈ {0, 1, . . . , K0} where |Qk| ≥ 1/pk. For any non-empty subset S ⊆ Qk,

ICALP 2024

37:18 Fast Approximate Counting of Cycles

let E1(S) denote the event that {Qk ∩ V2[pk] = S}. That is, E1(S) denote the event that
during the Pk-discovery experiment, the set of vertices that were sampled from V2 ∩Qk is
exactly the set S. Let R(S) denote the subset of vertices in V3 which participate in a 3-cycle
(in G′) that contains v and some additional vertex from S. Let E2(S) denote the event
that {V3[qk] ∩R(S) ̸= ∅}. That is, E2(S) denotes the event that during the Pk-discovery
experiment, the set of vertices that were sampled from V3 ∩ R(S) is not empty. Next, we
show that

v[Pk] ≥
∑

S:∅⊊S⊆Qk

Pr [E1(S) ∩ E2(S)] ≥ (1− 1/e)2 . (1)

For every fixed S ⊆ Qk, which is not empty, the events E1(S) and E2(S) are independent,
since E1(S) addresses sampling vertices from V2, while E2(S) addresses sampling vertices
from V3, where the two samples are independent of each other. Also note that E1(S) ∩ E2(S)
is contained in the event that v is Pk-discovered, and since the events {E1(S)}S⊆Qk

are
disjoint, so are the events {E1(S) ∩ E2(S)}S⊆Qk

. Therefore, the event that v is Pk-discovered,
contains the union of the following disjoint events {

⋃
S:∅⊊S⊆Qk

E1(S) ∩ E2(S)}. We get

v[Pk] ≥ Pr[
⋃

S:∅⊊S⊆Qk

E1(S) ∩ E2(S)] =
∑

S:∅⊊S⊆Qk

Pr [E1(S) ∩ E2(S)]

=
∑

S:∅⊊S⊆Qk

Pr [E1(S)] Pr [E2(S)] .

To complete the proof, we need to show that (1)
∑

S:∅⊊S⊆Qk
E1(S) ≥ 1− 1/e, and (2) that

for every S ⊆ Qk, which is not empty, we have E2(S) ≥ 1− 1/e. The first claim follows as∑
S:∅⊊S⊆Qk

E1(S) = Pr [Qk[pk] ̸= ∅] = 1− (1− pk)|Qk| ≥ 1− 1/e ,

where the inequalities hold for the following reasons. The first two equalities follows from
definition, and the last inequality follows from the assumption that |Qk| ≥ 1/pk.

The second claim follows as every non-empty subset S ⊆ Qk satisfies |R(S)| ≥ 1/qk. To
see this, fix some vertex u ∈ S. We have R(u) ⊆ R(S), and |R(u)| ≥ 1/qk because u ∈ Qk.
Therefore, for any such S, we have

Pr [E2(S)] = Pr [R(S)[qk] ̸= ∅] = 1− (1− qk)|R(S)| ≥ 1− (1− qk)1/qk ≥ 1− 1/e .

This completes the proof of Equation (1). The rest of the proof appears in the full version. ◀

References
1 Amir Abboud, Arturs Backurs, and Virginia Vassilevska Williams. If the current clique

algorithms are optimal, so is valiant’s parser. SIAM J. Comput., 47(6):2527–2555, 2018.
2 Noga Alon, Raphael Yuster, and Uri Zwick. Color-coding. Journal of the ACM (JACM),

42(4):844–856, 1995.
3 Noga Alon, Raphael Yuster, and Uri Zwick. Finding and counting given length cycles.

Algorithmica, 17(3):209–223, 1997.
4 Arturs Backurs and Christos Tzamos. Improving viterbi is hard: Better runtimes imply faster

clique algorithms. In Proceedings of the 34th International Conference on Machine Learning
(ICML), pages 311–321, 2017.

5 Ziv Bar-Yossef, Ravi Kumar, and D. Sivakumar. Reductions in streaming algorithms, with
an application to counting triangles in graphs. In David Eppstein, editor, Proceedings of the
Thirteenth Annual ACM-SIAM Symposium on Discrete Algorithms, January 6-8, 2002, San
Francisco, CA, USA, pages 623–632. ACM/SIAM, 2002.

K. Censor-Hillel, T. Even, and V. Vassilevska Williams 37:19

6 Luca Becchetti, Paolo Boldi, Carlos Castillo, and Aristides Gionis. Efficient algorithms for
large-scale local triangle counting. ACM Trans. Knowl. Discov. Data, 4(3):13:1–13:28, 2010.

7 Amartya Shankha Biswas, Talya Eden, Quanquan C. Liu, Ronitt Rubinfeld, and Slobodan
Mitrovic. Massively parallel algorithms for small subgraph counting. In Amit Chakrabarti and
Chaitanya Swamy, editors, Approximation, Randomization, and Combinatorial Optimization.
Algorithms and Techniques, APPROX/RANDOM 2022, September 19-21, 2022, University
of Illinois, Urbana-Champaign, USA (Virtual Conference), volume 245 of LIPIcs, pages
39:1–39:28. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPIcs.
APPROX/RANDOM.2022.39.

8 Andreas Björklund, Rasmus Pagh, Virginia Vassilevska Williams, and Uri Zwick. Listing
triangles. In Javier Esparza, Pierre Fraigniaud, Thore Husfeldt, and Elias Koutsoupias, editors,
Automata, Languages, and Programming – 41st International Colloquium, ICALP 2014,
Copenhagen, Denmark, July 8-11, 2014, Proceedings, Part I, volume 8572 of Lecture Notes in
Computer Science, pages 223–234. Springer, 2014. doi:10.1007/978-3-662-43948-7_19.

9 Karl Bringmann and Philip Wellnitz. Clique-based lower bounds for parsing tree-adjoining
grammars. In Proceedings of the 28th Annual Symposium on Combinatorial Pattern Matching
(CPM), pages 12:1–12:14, 2017.

10 Luciana S. Buriol, Gereon Frahling, Stefano Leonardi, Alberto Marchetti-Spaccamela, and
Christian Sohler. Counting triangles in data streams. In Stijn Vansummeren, editor, Proceedings
of the Twenty-Fifth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database
Systems, June 26-28, 2006, Chicago, Illinois, USA, pages 253–262. ACM, 2006.

11 Keren Censor-Hillel, Dean Leitersdorf, and Elia Turner. Sparse matrix multiplication and
triangle listing in the congested clique model. Theoretical Computer Science, 809:45–60, 2020.

12 Keren Censor-Hillel, Dean Leitersdorf, and David Vulakh. Deterministic near-optimal distrib-
uted listing of cliques. In Proceedings of the 2022 ACM Symposium on Principles of Distributed
Computing, pages 271–280, 2022.

13 Yi-Jun Chang, Seth Pettie, Thatchaphol Saranurak, and Hengjie Zhang. Near-optimal
distributed triangle enumeration via expander decompositions. Journal of the ACM (JACM),
68(3):1–36, 2021.

14 Yi-Jun Chang and Thatchaphol Saranurak. Deterministic distributed expander decomposition
and routing with applications in distributed derandomization. In Sandy Irani, editor, 61st IEEE
Annual Symposium on Foundations of Computer Science, FOCS 2020, Durham, NC, USA,
November 16-19, 2020, pages 377–388. IEEE, 2020. doi:10.1109/FOCS46700.2020.00043.

15 Artur Czumaj and Christian Konrad. Detecting cliques in congest networks. Distributed
Computing, 33(6):533–543, 2020.

16 Mina Dalirrooyfard, Surya Mathialagan, Virginia Vassilevska Williams, and Yinzhan Xu.
Listing cliques from smaller cliques. CoRR, 2023. arXiv:2307.15871.

17 Mina Dalirrooyfard, Thuy-Duong Vuong, and Virginia Vassilevska Williams. Graph pattern
detection: Hardness for all induced patterns and faster noninduced cycles. SIAM J. Comput.,
50(5):1627–1662, 2021.

18 Holger Dell, John Lapinskas, and Kitty Meeks. Approximately counting and sampling small
witnesses using a colorful decision oracle. SIAM J. Comput., 51(4):849–899, 2022.

19 Danny Dolev, Christoph Lenzen, and Shir Peled. “tri, tri again”: finding triangles and small
subgraphs in a distributed setting. In Distributed Computing: 26th International Symposium,
DISC 2012, Salvador, Brazil, October 16-18, 2012. Proceedings 26, pages 195–209. Springer,
2012.

20 Talya Eden, Nimrod Fiat, Orr Fischer, Fabian Kuhn, and Rotem Oshman. Sublinear-time
distributed algorithms for detecting small cliques and even cycles. Distributed Computing,
pages 1–28, 2022.

21 Talya Eden, Amit Levi, Dana Ron, and C Seshadhri. Approximately counting triangles in
sublinear time. SIAM Journal on Computing, 46(5):1603–1646, 2017.

ICALP 2024

https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2022.39
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2022.39
https://doi.org/10.1007/978-3-662-43948-7_19
https://doi.org/10.1109/FOCS46700.2020.00043
https://arxiv.org/abs/2307.15871

37:20 Fast Approximate Counting of Cycles

22 Talya Eden, Dana Ron, and Will Rosenbaum. Almost optimal bounds for sublinear-time
sampling of k-cliques in bounded arboricity graphs. In Mikolaj Bojanczyk, Emanuela Merelli,
and David P. Woodruff, editors, 49th International Colloquium on Automata, Languages,
and Programming, ICALP 2022, July 4-8, 2022, Paris, France, volume 229 of LIPIcs, pages
56:1–56:19. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2022.

23 Talya Eden, Dana Ron, and C. Seshadhri. On approximating the number of k-cliques in
sublinear time. In Ilias Diakonikolas, David Kempe, and Monika Henzinger, editors, Proceedings
of the 50th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2018, Los
Angeles, CA, USA, June 25-29, 2018, pages 722–734. ACM, 2018.

24 Mira Gonen, Dana Ron, and Yuval Shavitt. Counting stars and other small subgraphs in
sublinear-time. SIAM J. Discret. Math., 25(3):1365–1411, 2011.

25 Alon Itai and Michael Rodeh. Finding a minimum circuit in a graph. In Proceedings of the
ninth annual ACM symposium on Theory of computing, pages 1–10, 1977.

26 Taisuke Izumi and François Le Gall. Triangle finding and listing in congest networks. In
Proceedings of the ACM Symposium on Principles of Distributed Computing, pages 381–389,
2017.

27 Hossein Jowhari and Mohammad Ghodsi. New streaming algorithms for counting triangles in
graphs. In Lusheng Wang, editor, Computing and Combinatorics, 11th Annual International
Conference, COCOON 2005, Kunming, China, August 16-29, 2005, Proceedings, volume 3595
of Lecture Notes in Computer Science, pages 710–716. Springer, 2005.

28 Daniel M. Kane, Kurt Mehlhorn, Thomas Sauerwald, and He Sun. Counting arbitrary
subgraphs in data streams. In Artur Czumaj, Kurt Mehlhorn, Andrew M. Pitts, and Roger
Wattenhofer, editors, Automata, Languages, and Programming – 39th International Colloquium,
ICALP 2012, Warwick, UK, July 9-13, 2012, Proceedings, Part II, volume 7392 of Lecture
Notes in Computer Science, pages 598–609. Springer, 2012.

29 Tamara G. Kolda, Ali Pinar, Todd D. Plantenga, C. Seshadhri, and Christine Task. Counting
triangles in massive graphs with mapreduce. SIAM J. Sci. Comput., 36(5), 2014.

30 Jaroslav Nešetřil and Svatopluk Poljak. On the complexity of the subgraph problem. Comment.
Math. Univ. Carol., 26(2):415–419, 1985.

31 Mihai Puatracscu. Towards polynomial lower bounds for dynamic problems. In Leonard J.
Schulman, editor, Proceedings of the 42nd ACM Symposium on Theory of Computing, STOC
2010, Cambridge, Massachusetts, USA, 5-8 June 2010, pages 603–610. ACM, 2010.

32 Kanat Tangwongsan, A. Pavan, and Srikanta Tirthapura. Parallel triangle counting in massive
streaming graphs. In Qi He, Arun Iyengar, Wolfgang Nejdl, Jian Pei, and Rajeev Rastogi,
editors, 22nd ACM International Conference on Information and Knowledge Management,
CIKM’13, San Francisco, CA, USA, October 27 – November 1, 2013, pages 781–786. ACM,
2013.

33 Jakub Tětek. Approximate triangle counting via sampling and fast matrix multiplication. In
49th International Colloquium on Automata, Languages, and Programming (ICALP 2022).
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2022.

34 Virginia Vassilevska Williams and R. Ryan Williams. Subcubic equivalences between path,
matrix, and triangle problems. J. ACM, 65(5):27:1–27:38, 2018.

35 Virginia Vassilevska Williams, Yinzhan Xu, Zixuan Xu, and Renfei Zhou. New bounds for
matrix multiplication: from alpha to omega. In Proc. SODA, page to appear, 2024.

36 Raphael Yuster and Uri Zwick. Finding even cycles even faster. SIAM J. Discret. Math.,
10(2):209–222, 1997.

37 Raphael Yuster and Uri Zwick. Detecting short directed cycles using rectangular matrix
multiplication and dynamic programming. In J. Ian Munro, editor, Proceedings of the Fifteenth
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2004, New Orleans, Louisiana,
USA, January 11-14, 2004, pages 254–260. SIAM, 2004.

	1 Introduction
	1.1 Our Contribution
	1.2 Technical Overview
	1.3 Preliminaries

	2 The Recursive Template
	3 Application: Approximating the Number of h-Cycles
	4 Implementing the Black Box Count-Heavy_{epsilon}
	5 Implementing the Find-Heavy Black Box

