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Abstract
The access lemma (Sleator and Tarjan, JACM 1985) is a property of binary search trees (BSTs) that
implies interesting consequences such as static optimality, static finger, and working set property
on any access sequence X = (x1, x2, . . . , xm). However, there are known corollaries of the dynamic
optimality that cannot be derived via the access lemma, such as the dynamic finger, and any
o(log n)-competitive ratio to the optimal BST where n is the number of keys.

In this paper, we introduce the group access bound that can be defined with respect to a reference
group access tree. Group access bounds generalize the access lemma and imply properties that are
far stronger than those implied by the classical access lemma. For each of the following results, there
is a group access tree whose group access bound
1. Is O(

√
log n)-competitive to the optimal BST.

2. Achieves the k-finger bound with an additive term of O(m log k log log n) (randomized) when
the reference tree is an almost complete binary tree.

3. Satisfies the unified bound with an additive term of O(m log log n).
4. Matches the unified bound with a time window k with an additive term of O(m log k log log n)

(randomized).

Furthermore, we prove the simulation theorem: For every group access tree, there is an online
BST algorithm that is O(1)-competitive with its group access bound. In particular, any new group
access bound will automatically imply a new BST algorithm achieving the same bound. Thereby, we
obtain an improved k-finger bound (reference tree is an almost complete binary tree), an improved
unified bound with a time window k, and matching the best-known bound for Unified bound in the
BST model. Since any dynamically optimal BST must achieve the group access bounds, we believe
our results provide a new direction towards proving o(log n)-competitiveness of the Splay tree and
Greedy, two prime candidates for the dynamic optimality conjecture.
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38:2 The Group Access Bounds for Binary Search Trees

1 Introduction

In the amortized analysis of a self-adjusting binary search tree (BST), the access lemma [32]
is perhaps the most fundamental property of a BST algorithm that allows us to prove the
competitiveness against many performance benchmarks, including temporal and spatial
locality. If a BST algorithm satisfies the access lemma, then, by plugging in appropriate
parameters, the algorithm also satisfies many interesting corollaries of the dynamic optimality
conjecture including, for example, balance theorem [32], static optimality [32, 20], static
finger property [32], working set property [32], and key-independent optimality [19]. For
example, Splay tree [32], Greedy [14, 30], and Multi-splay tree [34] are all known to satisfy
the access lemma [32, 20, 34].

Despite these many applications, several strong BST properties cannot be implied via
the access lemma, including “non-trivial” competitiveness, k-finger property (or even the
(weaker) dynamic finger property [13]), and the unified bound [24, 17]. For completeness, we
discuss each one of them in turn.

Competitiveness. Dynamic optimality conjecture [32] postulates that there is an online
binary search tree (BST) on n keys whose cost to perform a search (access) sequence
(x1, . . . , xm) ∈ {1, 2, . . . , n}m (including the cost to adjust the internal structure in between
the sequence) is at most that of the offline optimum up to a constant factor. We say that a
BST algorithm is f(n)-competitive if its total cost is, at most, the cost of the offline optimum
up to a factor of f(n). A BST algorithm is dynamically optimal if it is O(1)-competitive.

Splay tree [32] and Greedy [14] are widely regarded as the prime candidates for dynamic
optimality conjecture. However, the best-known competitiveness of both the algorithms
remains O(log n), which can be shown from the access lemma or (via static optimality) using
any balanced trees. The access lemma cannot be used to prove o(log n)-competitive (for
example, we cannot even derive the sequential access theorem [33] via the access lemma). In
contrast, there are BST algorithms with O(log log n)-competitiveness. In [15], the authors
presented the first O(log log n)-competitive binary search tree, which they call Tango Trees.
Several subsequent results provided alternate O(log log n)-competitive algorithms [21, 35, 3,
11]. Despite achieving the best-known competitive ratios, the fact that these algorithms do
not satisfy many corollaries of the dynamic optimality conjecture makes them less promising
than Splay and Greedy.

k-Finger Bound. Several notions of finger bounds [32, 13, 26] have been introduced to
capture the “locality” of input sequences. The strongest finger bound, called k-Finger bound,
was motivated by the connection between BSTs and the k-server problem [8]. It has still
remained unclear whether any online BST algorithm achieves this property.

We define k-Finger bound as follows. Assume we have an almost complete binary tree
where each leaf represents a distinct key from {1, . . . n}. This tree is called the reference tree.
Assume that there are k-fingers stationed at k arbitrary leaves in the reference tree.

▶ Definition 1 (k-Finger Bound). When a key xt is searched at time t, we must move one
finger from its current position to the node containing xt. The cost of the search is the
number of nodes on the unique path connecting the finger’s source to its destination. We
define Fk(X) as the minimum, overall finger movement strategies distance traversed by the
fingers to process the sequence X when the reference tree is an almost complete binary tree.

The classical access lemma cannot imply the k-finger property even when k = 1 (called
the lazy finger bound [26], which generalizes the dynamic finger bound [13]). Nonetheless,
it is possible to prove a non-trivial bound w.r.t. k-Finger using different techniques. In [8],
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the authors claimed the existence of an online BST algorithm with cost O((log k)7Fk(X)).
However, this claim has an error since the algorithm employs Lee’s [29] k-server result, which
the author has retracted. Instead of Lee’s result, we can use the k-server result of Koutsoupias
and Papadimitriou [27], (2k − 1)-competitive. By using [8], it implies that an online BST
algorithm exists with a running time of O(kFk(X)). This is a relatively large gap when
compared with the best achievable offline BST bound of O(log k)F k(X) [8]; in fact, whether
there exists a BST whose cost is additive in the k-finger bound, that is O(F k(X) + m log k),
has remained open.

Unified Bound. To describe the unified bound, we should first understand the working
set bound [25, 32] and the dynamic finger bound [13, 32, 26]. If xt is a search key, then the
working set bound requires xt to be searched in amortized time O(log Ws(xt)), where Ws(xt)
is the number of distinct keys searched since the last search of xt. The working set bound is
based on temporal locality and implies many more bounds, such as the static finger bound,
the static optimality bound, etc. The dynamic finger bound states that the amortized time
to search xt is O(log |xt − xt−1| + 2). The dynamic finger bound is based on spatial locality.

The unified bound [24] implies both the working set and the dynamic finger.

▶ Definition 2. The unified bound can be defined as Ub(X) =
∑m

t=2 log(mint′<t{t − t′ +
|xt − xt′ | + 2}).

The unified bound is stronger than both the working set and the dynamic finger, as it suggests
that it is in-expensive to search a key that is close to a recently searched key. It is true
that the access lemma cannot prove the unified bound, although there are data structures
that satisfy the unified bound. Iacono [24] gave a comparison-based data structure called
the unified structure that achieves the unified bound. In [1], the authors gave a dynamic
comparison-based data structure that achieves the unified bound. Derryberry and Sleator [17]
designed the first BST algorithm called Skip-Splay tree that nearly achieves the unified bound
with its running time of O(Ub(X) + m log log n). In [4], the authors modified Skip-Splay
using layered working-set trees to get amortized O(Ub(xi) + log log n) time, where xi is a
search key at time i. In Derryberry’s thesis [18], Cache trees were introduced as the first BST
algorithm aiming to achieve the Unified bound. However, this assertion was later questioned
by Sleator in [31]. The question of whether a BST algorithm can truly achieve the Unified
bound remains open and intriguing.

Unified Bound with time window. In the unified bound, for each xt, we find a key xt′ that
minimizes the term (t − t′ + |xt − xt′ | + 2) where t′ < t. We can add another condition that
t′ should be one of the last k searched keys before time t. Thus, t′ comes from some time
window. We call this variant Unified Bound with a time window. We formally define it as
follows.

▶ Definition 3. Given an integer k, the unified bound with a time window is

Ubk(X) =
m∑

t=2
log

(
min

t′∈[t−k...t−1]
{t − t′ + |xt − xt′ | + 2}

)
.

This bound can be seen as “interpolating” between the dynamic finger and the unified
bounds: When k = 1, Ubk(X) is the dynamic finger bound, and when k = m, Ubm(X) is
the unified bound. For k = 1, we know that both Splay tree and Greedy satisfy the dynamic
finger bound. The authors of [8], showed a relation between Ubk(X) and Opt(X), i.e,

ICALP 2024



38:4 The Group Access Bounds for Binary Search Trees

Opt(X) ≤ β(k)Ubk(X)

where β(·) is some fixed (super exponentially growing) function.
In sum, the access lemma is an intrinsic property of a BST which implies nice properties

but cannot seem to imply any of the aforementioned properties.

1.1 Our New Concept: The Group Access Bounds
The main conceptual contribution of this paper is to introduce the group access bounds that
generalize the bound from the access lemma. Informally, the access lemma states that the
amortized cost to access xt at time is O

(
log W

w(xt)

)
, where w(xt) is the weight of xt and W

is the sum of weights of all the keys in the BST.
We give an informal definition of the group access bounds (see Section 3 for the formal

definitions). Denote [n] = {1, . . . , n}. The key gadget to describe our bound is the notion of
group access tree, which captures a hierarchical partition of [n] until singletons are obtained.
That is, in a group access tree T , each node v ∈ V (T ) is associated with an “interval”
Iv ⊆ [n] (consecutive integers). The root r ∈ V (T ) has Ir = [n], if a node v has children
v1, . . . , vk, then we have that {Iv1 , . . . , Ivk

} forms a partition of Iv. This process continues
until each leaf v ∈ V (T ) is associated with a singleton. Note that the tree does not have to
be binary. See Figure 1 for illustration.

Figure 1 Examples of two group access trees. Each represents a hierarchical partition of [n] until
singletons are obtained. When a group access tree is a star (LHS), our bound is simply the access
lemma.

Let w be a positive weight function that assigns a real-valued weight to each node in
T . We define the cost to access the tree T w.r.t. the weight function w as follows. For any
edge (u, v) where u is the parent of v, the cost on (u, v) is log W (u)

w(v) where W (u) is the total
weight of all the children of u. The access cost of a key a ∈ [n], denoted as costT ,w(a), is
defined as the total cost of all the edges in the path Pa from the root to the leaf containing
a in the group access tree T . That is,

costT ,w(a) =
∑

(u,v)∈Pa

log W (u)
w(v) .

Some readers may have observed the similarity between our cost function and that of the
access lemma. Indeed, one can show that it generalizes the access lemma.

▶ Observation 4. If the group access tree T is a star, then the access a ∈ [n] on T gives the
same (amortized) cost as the access lemma on the same weight function.

Intuitively, the group access bound offers a “search tree” (which is not necessarily binary)
where the cost of searching a is the sum of the cost of the edges on the search path Pa.
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Let W = (w(1), . . . , w(m)) be a sequence of weight functions. The total cost of the group
access tree T on an access sequence X = (x1, . . . , xm) , where xt ∈ [n] for all t, is

costT ,W(X) =
∑

t

costT ,w(t)(xt).

Similar to the access lemma, the weight functions should change in a controllable manner
in order to be meaningful (e.g., the weight functions for the working set bound are changed
in a structured way in the access lemma). Here, we introduce the notion of locally bounded
weight families. We say that a sequence of weight functions W = (w(1), . . . , w(m)) is locally
bounded if for all t, the weight increase from time t to t + 1 can happen only at the nodes in
the path from root to xt in the group access tree T .

Given an input sequence X = (x1, . . . , xm), the group access bound GAB(T , X) w.r.t. a
group access tree T is

GAB(T , X) = min
W locally bounded

costT ,W(X).

1.2 Our Technical Results: Deriving BST Bounds from GAB
We show that the cost of the group access tree (with respect to certain weight functions) is
competitive against many strong BST bounds that are not known via the access lemma. We
say a group access bound is randomized if the group access tree T is obtained by a random
process that iteratively partitions [n] until singletons are obtained.

▶ Theorem 5. For each of the following bounds, there exists deterministic group access
trees T1, T3 and randomized group access trees T2, T4 such that for all access sequences
X = (x1, . . . , xm) where xt ∈ [n] for all t,
1. GAB(T1, X) = O(

√
log n) · Opt(X) where Opt(X) is the cost of offline optimal BST on

X.
2. GAB(T2, X) = O(Fk(X) + m log k log log n) (randomized). That is, it is competitive with

k-finger up to an additive term when the reference tree is an almost complete binary tree.
3. GAB(T3, X) = O(Ub(X) + m log log n). That is, it is competitive with the unified bound

up to an additive term.
4. GAB(T4, X) = O(Ubk(X) + m log k log log n) (randomized). That is, it is competitive

with unified bound with a time window up to an additive term.
The group access tree for the second and the fourth bound can be efficiently constructed from
a probability distribution.

It is not immediately clear that these group access bounds can be realized by BST
algorithms. We show that every group access tree T can be simulated by an online BST
algorithm. Let A be a BST algorithm. We denote costA(X) to be the cost of algorithm A
running on a sequence X = (x1, . . . , xm).

▶ Theorem 6 (Simulation Theorem). For any group access tree T , there exists an online BST
algorithm A such that for any sufficiently long access sequence X , costA(X) = O(GAB(T , X)).
Furthermore, if the group access tree T is randomized, then A is randomized, where the
competitive ratio is measured in the oblivious adversary model.

The Simulation Theorem (Theorem 6) signifies that one can prove new BST bounds by
just proving the existence of a group access tree along with locally bounded weight families.

ICALP 2024



38:6 The Group Access Bounds for Binary Search Trees

Table 1 Summary of the new bounds that can be derived via the group access bound. The first
two columns show the best-known results prior to this paper. Asymptotic notations (Big-Oh and
Big-Omega) are hidden for brevity.

Offline Upper Online Upper Our new bounds
OPT OPT log log n [15] OPT log log n [15] OPT

√
log n

F k F k(X) log k [8] kF k(X) [8] F k(X) + m log k log log n

UB UB(X) + m log log n [17] UB(X) + m log log n [17] UB(X) + m log log n

UBk β(k)UBk(X) [8] β(k)UBk(X) [8] UBk(X) + m log k log log n

1.3 Significance of our results
Beyond the access lemma, group access bounds serve as the first step towards providing
a unified framework for proving binary search tree bounds systematically. To resolve the
dynamic optimality conjecture, a candidate algorithm must satisfy all dynamic optimality
corollaries simultaneously, and we believe group access bounds are the starting point for this.

Apart from the competitiveness result, the results we present here either match the
best-known bounds (such as unified bound) or provide an improvement upon even the
best-known offline algorithms (k-finger bound when reference tree is an almost complete
binary tree and unified bound with bounded time window) in the BST model.

We remark that even though our competitive ratio does not match the O(log log n)
best-known factor, what we prove is more general where any BST algorithm satisfying the
GAB will automatically be O(

√
log n)- competitive. The BST algorithm we present here

is called Ggreedy, a very similar algorithm to Greedy – a prime candidate for dynamic
optimality. Ggreedy resembles Greedy and inherits its conceptual simplicity. Even after a
lot of work in this area [20, 26, 5, 7, 6, 8, 11, 22, 23, 17, 28, 9], only the trivial bound for
Greedy is known: Greedy(X) = O(log n) Opt(X) for all possible X. Thus, Greedy is
O(log n)-competitive. Our result raises some hope of proving o(log n)-competitive ratio for
Greedy by showing that Greedy satisfies the group access bound.

We illustrate the power of the group access bound by deriving two new BST bounds that
have not been known for even offline BST algorithms.

▶ Corollary 7. For each of the following items, there is a randomized online BST algorithm
A such that the expected cost for any search sequence X = (x1, . . . , xm) where xt ∈ [n] for
all t,

costA(X) = O(Fk(X) + m log k log log n), and
costA(X) = O(Ubk(X) + m log k log log n).

The algorithms are randomized because the group access trees are chosen based on a
probability distribution. The bound O(F k(X) + m log k log log n) gives an improvement from
the best known online BST that costs O(kF k(X)) in [8] and improves upon the offline bound
O(log k)F k(X) for some range of parameter k when the reference tree is an almost complete
binary tree.

From such an improvement, we can derive a new “pattern-avoiding” bound for BSTs. We
say that a sequence contains another sequence (or pattern) π if it contains a subsequence
that is order-isomorphic to π.

▶ Corollary 8. Let X ∈ [n]m be a sequence that does not contain the pattern (k, k − 1, . . . , 1).
Then there exists a randomized BST that accesses X with cost O(nk + m log k log log n).
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This bound improves the best-known online algorithm [9] that gives a bound of O(mk2)
and the best-known bound on the offline optimum O(mk) [8] for some range of parameters
when the reference tree used to calculate F k(X) is an almost complete binary tree.

The unified bound obtained in this paper matches the best-known bound of O(Ub(X) +
m log log n) by Derryberry and Sleator [17]. In fact, we show that we can use the analysis
of [17] as a black box once we obtain the group access tree for Unified bound.

We do expect more applications of the group access bounds in binary search trees since
group access bounds are generic and yet (unlike the dynamic optimality conjecture) maintain
a certain flavor of being “static” (since T is still fixed). We show that this static component
can be algorithmically leveraged. We believe that our bound offers a “bridge” between the
relatively static access lemma to the dynamic optimality conjecture, which requires a full
understanding of dynamic BSTs.

Contribution to potential function analysis. Another interesting aspect of our work is that
once the group access bound is formulated, the proof relies solely on the use of the standard
Sum-of-logs potential function, which in general, does not seem sufficient to prove any strong
bounds beyond the access lemma. We show that by “augmenting” the access lemma with a
group access tree, a natural and standard sum-of-logs potential function immediately provides
significantly stronger BST bounds.

In general, designing a potential function for analyzing a given algorithm is a highly
innovative but rather ad-hoc task. Our work suggests that the sum-of-logs potential function
on the group access tree might be a good candidate for proving that Greedy or Splay is
O(

√
log n)-competitive.

Combining BSTs. In [16], the authors showed that different BSTs with well-known bounds
can be combined into a single BST that achieves all the properties of the combined BSTs.
For example, Tango trees and Skip-Splay trees can be combined to get a BST, which is
O(log log n)-competitive and achieves the Unified bound with an additive term of O(log log n).
The combined BST from their approach, however, results in a different BST algorithm. Our
group access bounds offer another way to combine known BST bounds, as we have illustrated
in the above discussion, while retaining the original algorithm, e.g., proving that Splay
satisfies the group access bound implies that Splay itself possesses all the nice properties
derived from GAB.

1.4 Concluding Remarks
We propose the group access bound – a far-reaching extension of the standard access lemma
and present applications in deriving new and unifying old bounds. Some of our bounds even
improve the best-known upper bound on the offline optimum on some range of parameters.

An immediate (and perhaps most interesting) open question is whether Greedy or Splay
satisfies the group access bound via the sum-of-logs potential function. We believe that
this question is very concrete (since it involves a specific potential function), so proving or
refuting it would not be beyond our reach.

Developing further understanding and finding more applications of our group access
bounds are interesting directions. For instance, what are other BST bounds that can be
implied by the group access bounds? Can we show that GAB(T , X) ≤ O(OPT(X)) for some
(distribution of) group access tree T ? Can one derive a non-trivial result about more general
pattern-avoiding bounds [6, 23, 10, 12]? It was shown that optimal BST takes linear time
for a pattern of bounded length [2]. Can we design a BST algorithm with a running time
O(Fk(X) + m log k) for any sequence X of length m where the k-finger bound is calculated
on any arbitrary reference tree?

ICALP 2024



38:8 The Group Access Bounds for Binary Search Trees

There are also open questions to settle the complexity of specific BST bounds both in
the online and offline settings. Most notably, is there any BST data structure that satisfies
the unified bound?

1.5 Organization
We introduce notation and terminology in Section 2. We formalize the description of the
group access bounds in Section 3. We prove O(

√
log n)-competitiveness in Section 4. Owing

to space limitations, the k-finger bound, unified bound and unified bound with a time
window can be found in the full version of the paper. To prove the Simulation theorem
(Theorem 6), we first define an algorithm, called Ggreedy, that simulates the group access
tree in Section 5. We derive the group access lemma in Section 6 and finally prove the
Simulation theorem (See to the full version of the paper). Certain proofs and sections are
removed which can be found in the full version of the paper.

2 Preliminaries

Let X = (x1, x2, . . . , xm) be a sequence of m accesses where each access is from the set
{1, 2, ..., n}. This sequence can be represented as points in the plane, that is, Xp = {(xt, t) :
t ∈ [m]} ⊆ R2. Imagine these points on a plane with an origin and X-Y axis. Since both
the coordinates of a point are positive, all points lie in the first quadrant. The positive
x-axis represents the key space, and the y-axis represents time. For any two points p, q in a
point-set P , if they are not in the same horizontal or vertical line, we can form a rectangle
□pq. A rectangle □pq is said to be arborally satisfied if ∃r ∈ P \ {p, q} such that r lies in
□pq. [14] introduced us to the following beautiful problem:

▶ Definition 9 (Arborally Satisfied Set). Given a point set Xp, find a point set Y such that
|Xp ∪ Y | is minimum and every pair of points in Xp ∪ Y is arborally satisfied.

[14] showed that finding the best BST execution for a sequence X is equivalent to finding
the minimum cardinality set Y such that Xp ∪ Y is arborally satisfied.

▶ Lemma 10 (See Lemma 2.3 in [14]). Let A be an online algorithm that outputs an arborally
satisfied set on any input representing X. Then, there is an online BST algorithm A′ such
that the cost of A′ is asymptotically equal to the cost of A, where the cost of A is the number
of points added by A plus the size of X.

At time t, we say that xt is an access key. An algorithm adds (or touches) points while
processing a key with the aim of making the final point set arborally satisfied. For a point p,
denote p.x and p.y as its x-coordinate and y-coordinate, respectively. Note that p.x denotes
a key, and p.y denotes the time when the point p was added.

Let q be a key. When we say that Greedy (or any other algorithm) adds a point at key
q at time t, it means that Greedy adds a point at coordinates (q, t). Given two points p1
and p2, p2 lies to the right of p1 if p2.x > p1.x, else it lies to the left of p1. For brevity, we
will avoid using ceil and floor notation for various parameters used in this paper.

3 The Group Access Bound

In this section, we describe the group access bound, which generalizes the access lemma. The
concept of group access bound consists of two ingredients:
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Hierarchical partition: An interval partition of [n] is a partition π such that each
set S ∈ π is an interval (i.e. consecutive integers). Let π be an interval partition of
[n]. We say that π is a refinement of another partition π′ if for all S ∈ π and S′ ∈ π′,
we have S ⊆ S′ or S ∩ S′ = ∅. For instance {{1, 2}, {3, 4}, {5, 6}} is a refinement of
{{1, 2, 3, 4}, {5, 6}}.
A hierarchical partition is a sequence of partitions P = {π0, π1, . . . , πk} such that (i) for
all i, πi+1 is a refinement of πi, (ii) π0= {[n]} and (iii) πk = {{i}}i∈[n] (singletons). Given
such P , each interval (set) in πi is referred to as a group. The sets in πi are called level-i
groups for P.
A hierarchical partition P has a natural corresponding tree T where each node in V (T )
corresponds to a group. The root of T is [n] (the group in π0). Level-i of the tree
contains nodes that have 1-to-1 correspondence with sets in πi. Moreover, there is an
edge connecting S ∈ πi to S′ ∈ πi+1 if S′ ⊆ S.
Weight functions: Given a canonical hierarchical partition P, a P-weight function is
an assignment of positive real values to nodes in V (T ), i.e., w : V (T ) → R>0.

We use the term group access tree to denote a hierarchical partition P (as well as its
corresponding tree T ). See Figure 2 for illustration.

1 2 3 4 n



ଵ

ଶ



………….

………….

………….

Figure 2 An illustration of group access tree.

▶ Definition 11 (Group given a key). Let P (or T ) be a group access tree and let p ∈ [n] be a
key. Then, for each j, we use gj(p) to denote the (unique) level-j group S ∈ πj in which p

lies.

▶ Definition 12 (Level j groups of a group). Given a level-(j − 1) group (interval) g, denote
by CG(g) the set of children groups in level j that are contained in g, i.e., CG(g) = {g′ ∈ πj :
g′ ⊆ g}. These are exactly the same as the groups that are children of node g ∈ V (T ).

We are now ready to define the access cost in the group access tree. When accessing key
a ∈ [n] in the group access tree T and P-weight w, denote by T (a) the path from root to a

in the tree T ; in particular, this path contains T (a) = (g0(a), g1(a), . . . , gk(a) = {a}). The
cost incurred on edge e = (gj−1(a), gj(a)) is

ce(T , w, a) = log
(

W j

w(gj(a))

)
where W j =

∑
g′∈CG(gj−1(a)) w(g′). The total access cost is c(T , w, a) =

∑
e∈T (a) ce(T , w, a).

Notice that this access cost is very similar to the access lemma cost. In fact, one can show
that it generalizes the access lemma:
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▶ Observation 13. The access lemma corresponds to the cost c(T , w, a) when T is a star.

In this way, our group access bound can be seen as an attempt to strengthen the standard
access lemma by introducing hierarchical partitioning. As in the access lemma, the interesting
application to BSTs happens when the changes of weights are “controllable” (e.g., in the
working set bound). We introduce the concept of locally bounded weight families W to
capture this property.

▶ Definition 14. The weight family W is locally bounded if for all time t, for every group
g ̸∈ T (xt), we have wt+1(g) ≤ wt(g). This means that the weight can increase only when
g ∈ T (xt).

We are interested in the total access cost on a sequence X = (x1, . . . , xm) ∈ [n]m where
the group access trees are allowed weight changes over time, that is, we are given a sequence
of weight functions W = {w1, . . . , wm} where wt denotes the weight function at time t.

The group access bound w.r.t. (T , X) is:

GAB(T , X) = min
W locally bounded

∑
t∈[m]

c(T , wt, xt).

Note that the use of “minimum” in the definition of group access bound serves to select
the weight family with the lowest weight among multiple locally bounded weight families.

Our main contribution is in showing that the group access bound is competitive to many
strong bounds in the binary search tree model. We say that the group access bound is
(α, β)-competitive to function f : [n]m → R if there exists a group access tree T such that
GAB(T , X) ≤ αf(X) + β|X|.

▶ Theorem 15. The group access bound is (O(
√

log n), O(1))-competitive to OPT.

The group access bound can also be used by allowing randomization in choosing the hier-
archical partition P . We say that the group access bound is randomized (α, β)-competitive
to function f : [n]m → R if there is an efficiently computable distribution D that samples T
such that

ET ∼D[GAB(T , X)] ≤ αf(X) + β|X|.

▶ Theorem 16. The group access bound is (randomized) (O(1), O(log k log log n))-competitive
to the k-finger bound when the reference tree is an almost complete binary tree.

▶ Theorem 17. The group access bound is (O(1), O(log log n))-competitive to the unified
bound.

▶ Theorem 18. The group access bound is (randomized) (O(1), O(log k log log n))-competitive
to the unified bound with a time window of size k.

We say that a BST algorithm A satisfies the group access bound w.r.t. group access
tree T if the cost of the algorithm is at most O(GAB(T , X)) for all input sequence X.

▶ Proposition 19. If a BST algorithm satisfies the group access bound and the group access
bound is (α, β)-competitive to function f , then the cost of the BST algorithm on any sequence
X is at most O(α · f(X) + β|X|).

We will later show that a family of BST algorithms (named Ggreedy) satisfies the group
access bound and possesses all the aforementioned properties.
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4 (O(
√

log n), O(1))-competitiveness

In this section, we prove Theorem 15. We will define the appropriate group access tree so
that the group access bound is upper bounded by (O(

√
log n), O(1)) · OPT(X).

Group access tree

Define the partition P inductively as follows. Let M = 2
√

log n. First π0 = {[n]}. Given πi,
we define πi+1 by, for each interval S ∈ πi, partitioning S into S1, S2, . . . , SM equal-sized
intervals and adding them into πi+1. This would give us a group access tree where each
non-leaf node has M children and its height is at most h = O(

√
log n).

Weight function

Given a sequence X = (x1, x2, . . . , xm), we define a weight function W which is locally
bounded and such that c(T , W, X) =

∑
t c(T , W, xt) ≤ O(

√
log n) · (OPT(X) + m). This

will give us the desired result. Our weight function uses the notion of last access.

▶ Definition 20. Consider time t and the group g = gj−1(xt). Let t′ < t be the last time
before t at which g is on the search path T (xt). We say that a child g1 ∈ CG(g) is last
accessed (child) group of g at time t if the edge (g, g1) is on search path T (xt′).

Remark that each group can have at most one child in T that is the last access group.
Now, we are ready to define the weight function:

wt(g) =
{

M if g is the last accessed group of its parent
1 otherwise

It is easy to verify that this family of weight functions W is locally bounded (there is
only one key whose weight can increase between time t and (t + 1)).

▶ Lemma 21. Consider edge e = (gj−1(xt), gj(xt)). We have

ce(T , W, xt) =
{

O(log M) if gj(xt) is not the last accessed group of gj−1(xt)
O(1) otherwise

Proof. By definition, W j =
∑

g′∈CG(gj−1(xt)) wt(g′) ≤ 2M because there is only one group in
CG(gj−1(xt)) with weight M (the last accessed group) and there can be at most M groups
with weight 1.

We analyze the cost in two cases: If g = gj(xt) is the last accessed group, then we have
ce(T , W, xt) ≤ log(W j/wt(g)) ≤ log(2M/M) = O(1). Otherwise, if gj(xt) is not the last
accessed group, then we have log(2M) ≤ O(log M). ◀

Cost analysis

Consider the search path T (xt). Denote by γt the number of groups on T (xt) that are
not the last accessed group of its parents. The cost c(T , wt, xt) =

∑
e∈T (xt) ce(T , wt, xt),

and from the above lemma, the cost is at most O(log M) · γt + O(h) ≤ O(
√

log n)(γt + 1).
Therefore, the total cost is O(

√
log n) · (

∑
t γt + m). The sum of γt will be upper bounded

by the Wilber bound.
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The Wilber bound. Wilber [36] gave two lower bounds on the running time of any BST
on a sequence X. These bounds are known as Wilber1 and Wilber2.1 We now describe
Wilber1(X). Let R be a leaf-oriented (keys at the leaves) binary search tree, and for
each a ∈ [n], denote by R(a) the search path in R of key a. When searching a sequence
X in R, for each node v ∈ V (R), the preferred child of node v at time t (denoted by
Preferred-Childt(v)) is the child of v on the last search path in R at time t. If node
v is not on the search path R(xt), we know that the preferred child cannot change, i.e.,
Preferred-Childt(v) = Preferred-Childt−1(v).

The Wilber bound with respect to R at time t and node v is:

Wilber1t
R(v) =

{
1 if Preferred-Childt(v) ̸= Preferred-Childt−1(v)
0 otherwise

The total Wilber bound of a sequence X is Wilber1R(X) =
∑

t

∑
v Wilber1t

R(v). The
Wilber bound is defined as the maximum, overall reference BST R, of Wilber1R(X).

▶ Lemma 22. We have that
∑

t γt ≤ O(Wilber1(X))

Proof. It is sufficient to define a reference tree R that allows us to charge the cost of
∑

t γt

to Wilber1R(X). Notice that our group access tree T is not a binary search tree. However,
it can be naturally extended into a binary search tree R as follows: We process the non-leaf
nodes in V (T ) in a non-decreasing order of distance from the root. When a group g ∈ V (T )
is processed, we remove the edges from g to its children. Let Tg be an arbitrary BST rooted
at g and leave CG(g); we add the tree Tg in place of the deleted edges (See Figure 3). After
all vertices are processed, it is straightforward to see that the resulting tree is a (leaf-oriented)
BST.

Now we claim that
∑

t γt can be upper bounded by Wilber1R(X). Recall that γt is the
number of groups on the search path T (xt) that are not last accessed. Let Gt ⊆ V (T (xt))
be those groups on the search path that are not last accessed. For each such group g1 ∈ Gt,
let g be its parent, so we know that the last time g was on the search path, some other group
g2 ∈ CG(g) was instead chosen. Notice that the search paths R(g1) and R(g2) also visit g

but branch away at some vertex b inside Tg (it could be that b = g). This would imply that
Preferred-Childt(b) ̸= Preferred-Childt−1(b) and therefore Wilber1t

R(b) = 1. This
implies that γt ≤

∑
v Wilber1t

R(v) and hence the lemma. ◀

The lemma implies that the total group access bound is at most

O(
√

log n)(Wilber1(X) + m) ≤ O(
√

log n) · (OPT(X)).

See the full version of the paper for sections related to the k-finger bound, Unified bound,
and Unified bound with a time window.

5 Ggreedy algorithm

This section will define a new BST algorithm named Ggreedy, which satisfies the group
access bound. The Ggreedy algorithm is very similar to Greedy. Therefore, we first
describe the Greedy algorithm and then provide some intuition about the Ggreedy
algorithm before describing it formally.

1 They can also be derived using an elegant geometric language of [14].
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𝕘

𝑇𝕘

Figure 3 An example of g and Tg.

Given a search sequence X = {x1, x2, . . . , xm}, intuitively the Greedy algorithm works
as follows:
At time t, the Greedy algorithm performs a horizontal line sweep of the points at y = t. By
induction, we can assume that all the pairs of the points below the line y = t are arborally
satisfied. So, at time t, we find all the rectangles with one endpoint xt and the other endpoint
q, where q is a point below the sweep line. If the rectangle □xtq is not arborally satisfied,
then add a point at the corner of the rectangle □xtq on the sweep line to make it arborally
satisfied. See Algorithm 2 for the formal definition of Greedy (Figure 4b illustrates the
execution of Greedy).

Algorithm 1 AddPoints(A,xt).

1 foreach □xtq in A do
2 Add a point at (q.x, xt.y)
3 end

Algorithm 2 Processing Greedy at time t.

1 Let A be the set of all the arborally
unsatisfied rectangles with one endpoint as
xt and another endpoint below the line
y = t;

2 AddPoints(A, xt);

We will now try to provide some intuition (motivation) behind the Ggreedy algorithm.
While analyzing the Greedy algorithm, we observed that if we can partition the keys into
groups (containing consecutive keys) and treat these groups as keys, then we can apply the
Greedy algorithm to this new set of keys. We can then recursively do this within each
group, making the analysis easy.

As an example, we can divide the key space into three groups, say from [1, . . . , n/3], [n/3+
1, . . . , 2n/3] and [2n/3 + 1, . . . , n] which we can represent as keys k1, k2 and k3. We can now
run the Greedy algorithm on this set of keys. When a key in the range [n/3 + 1, . . . , 2n/3]
is searched at time t, we can assume that the key k2 is searched and perform the Greedy
algorithm accordingly on the keys k1, k2 and k3. We can recursively do this procedure inside
each group. To separate the groups and to ensure that the resultant point set is arborally
satisfied, we add points at the boundaries of the groups.

One can observe that the recursive partition of the keys corresponds to a group access
tree. An astute reader can see that Ggreedy is not a single algorithm but a family of BST
algorithms, which depends on the group access tree.
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1 2 3 4 5 6 7 8 9 10
(a) Ggreedy.

1 2 3 4 5 6 7 8 9 10
(b) Greedy.

Figure 4 Ggreedy(on level 1) vs Greedy on a sequence (6, 2, 3, 9, 10, 4, 5, 8, 1, 2). There are
three groups {[1 . . . 4], [4 . . . 7], [7 . . . 10]} in level 1, recursively we can define groups within each
group. Red points are the searched keys. (a) Light blue points are added at the boundary of a group
g = g1(xt). Black points are added to make Ggreedy arborally satisfied with other groups in level
1 (b) Blue points are added to make Greedy arborally satisfied.

We are now ready to define the Ggreedy algorithm. Pick a group access tree T . Let g

be a group at any level in the group access tree. The group g contains a set of consecutive
keys at the leaves of T . The group g has two end keys, which we denote as the boundary
keys of the group.

▶ Definition 23 (Boundary of a group). Let g be a group that contains consecutive keys
(a, a+1, a+2, . . . , b), then left(g) = a is called the left boundary key of the group g. Similarly,
right(g) = b is called the right boundary key. Together, they are called the boundary keys of
the group g.

In Greedy, we access a search key xt at time t, but in Ggreedy, when a key is searched
at time t, we access a group per level of the group access tree T . We define the access of a
group as follows:

▶ Definition 24 (Accessed group at time t in level j). A group g is said to be accessed at time
t in level j if g = gj(xt).

▶ Definition 25 (Accessed boundary key at time t in level j). The boundary keys of a group
are accessed at time t in level j when the group g is accessed at time t in level j. We denote
the boundary key access by adding points at the two boundaries of the group g at time t in
level j.

While accessing a key in Greedy at time t, the algorithm touches keys to form an arborally
satisfied set. Similarly, in Ggreedy, when a group is accessed at time t, we might touch
other groups. We define a touch group in Ggreedy as follows:

▶ Definition 26 (Touched group at time t in level j). A group g is said to be touched at time
t in level j if one of the boundary keys of g is touched.

▶ Remark 27. An accessed group is also a touch group at time t in level j, where both the
boundary keys are touched.

Similar to the definition of unsatisfied rectangle for Greedy, we define an unsatisfied group
in Ggreedy as follows:
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▶ Definition 28 (Unsatisfied group at time t in level j). A group g1 is said to be unsatisfied
at time t in level j if one of the boundary keys of g1 forms an unsatisfied rectangle with the
boundary keys of g = gj(xt) at time t. We denote the unsatisfied group by □g1g.

Let g1 be a group at time t in level j, which is unsatisfied when the group g is accessed.
We touch g1 at time t in level j to make it an arborally satisfied group.

Let us now informally describe the Ggreedy algorithm. When a key xt is accessed at
time t, we access one group per level in the group access tree T . While accessing the group
g = gj(xt) in level j, we find all the unsatisfied groups in level j which lie inside the group
gj−1(xt) and make them arborally satisfied. We recursively do this for level j + 1 and so
on. The Ggreedy algorithm can be viewed as if we are applying the Greedy algorithm
on groups at each level of the group access tree T . Hence the name, Greedy on groups or
Ggreedy.

We now describe the Ggreedy algorithm formally (See Algorithm 4).

Algorithm 3 Touchgroups(A,g,j).

1 Touch g in level j;
2 foreach □g1g in A do
3 Touch g1 in level j;
4 end

Algorithm 4 Processing of Ggreedy at
time t.

1 foreach j = 1 to k do
2 Let Aj be the set of all arborally

unsatisfied groups in level j when
accessing g = gj(xt);

3 Touchgroups(Aj , g, j);
4 end

In the above algorithm, at iteration j, we first add points at left(gj(xt)) and right(gj(xt))
(same as touching group gj(xt)). Then, we process all the arborally unsatisfied groups with
one endpoint as gj(xt) and the other endpoint inside the group gj−1(xt) (See Figure 4a for
the execution of Ggreedy on level 1).

▶ Observation 29. Although the Ggreedy algorithm is very similar to Greedy, it is not
a candidate for dynamic optimality conjecture because of the inherent cost of the groups at
each level in the group access tree T .

We will now try to bound the number of groups touched by Ggreedy in iteration j of
Algorithm 4. Let us give it a special notation:

▶ Definition 30. Let Tj(t) be the set of groups touched by Ggreedy in the j-th iteration of
Algorithm 4 at time t.

Touching a group is the same as touching the group’s boundary key(s). Therefore, we
consider the boundary keys of the group for the rest of this section to provide better-detailed
proofs. We now show some essential properties of Tj(t).

▶ Lemma 31. Tj(t) only contains points that are at the boundaries of level j groups that lie
inside gj−1(xt).

For proof, refer to the full version.
An immediate corollary of the above lemma is:

▶ Corollary 32. Let p be a point that lies strictly inside gj−1(xt). If Ggreedy adds p at
time t then xt lies in gj(p).
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We will now show that Ggreedy outputs an arborally satisfied set. Let us assume that
we are processing xt. We can visualize Ggreedy as running Greedy first on the level
1 group. This execution is the same as Greedy. Then, we add points at the boundary
of g1(xt). This is the first step when we deviate from the Greedy algorithm. Once we
have added the boundary points, we again run Greedy on level 2 groups, and the process
continues. One may feel that touching the boundary keys may create some unsatisfied
rectangles. But in the following lemma, we show that this is not the case.

▶ Lemma 33. Ggreedy outputs an arborally satisfied set on any input representing X.

The proof can be found in the full version of the paper.
In the next section, we generalize the access lemma, which have been proved for the Splay

tree and Greedy [33, 20]. Let us define a notation before we move to the next section.

▶ Definition 34. Let T̂j(t) denote the amortized number of groups touched by Ggreedy in
the j-th iteration of Algorithm 4 at time t.

6 The Group Access Lemma

In this section, we introduce the group access lemma, which is a generalization of the access
lemma and show that the Ggreedy algorithm satisfies it.

Consider the group access tree T . When a BST algorithm A accesses xt at time t, after
the access, it adjusts itself to A′. Let g1 = gj(xt) be the group that contains xt. Let Φj

t be a
potential function that depends on the state of the algorithm with respect to the groups at
level j in T . Define Φt =

∑
j Φj

t . Define the group access lemma as follows:

▶ Definition 35 (Group Access Lemma). A BST algorithm A satisfies the group access lemma
if the amortized cost to access xt at time t in level j is:

T̂j(t) ≤ O

(
log W j

wt−1(g1)

)
+ Φj

t−1 − Φj
t

The amortized cost of the algorithm A at time t can be denoted as:

T̂ (A, xt) =
∑

j

T̂j(t)

and the amortized cost of the algorithm A on the access sequence X can be defined as:

T̂ (A, X) =
∑

t

T̂ (A, xt).

With the definition of the group access lemma in hand, we will now show that Ggreedy
satisfies the group access lemma.

Please refer to the full version of the paper for the proof that Ggreedy satisfies the
group access lemma and the simulation theorem.
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