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—— Abstract

A fundamental concept related to strings is that of repetitions. It has been extensively studied
in many versions, from both purely combinatorial and algorithmic angles. One of the most basic
questions is how many distinct squares, i.e., distinct strings of the form UU, a string of length n can
contain as fragments. It turns out that this is always O(n), and the bound cannot be improved to
sublinear in n [Fraenkel and Simpson, JCTA 1998].

Several similar questions about repetitions in strings have been considered, and by now we seem
to have a good understanding of their repetitive structure. For higher-dimensional strings, the basic
concept of periodicity has been successfully extended and applied to design efficient algorithms —
it is inherently more complex than for regular strings. Extending the notion of repetitions and
understanding the repetitive structure of higher-dimensional strings is however far from complete.

Quartics were introduced by Apostolico and Brimkov [TCS 2000] as analogues of squares in
two dimensions. Charalampopoulos, Radoszewski, Rytter, Waleni, and Zuba [ESA 2020] proved
that the number of distinct quartics in an n x n 2D string is O(n2 log? n) and that they can be
computed in O(n?log®n) time. Gawrychowski, Ghazawi, and Landau [SPTIRE 2021] constructed an
infinite family of n x n 2D strings with Q(n?logn) distinct quartics. This brings the challenge of
determining asymptotically tight bounds. Here, we settle both the combinatorial and the algorithmic
aspects of this question: the number of distinct quartics in an n X n 2D string is (Q(n2 logn) and
they can be computed in the worst-case optimal O(n2 logn) time.

As expected, our solution heavily exploits the periodic structure implied by occurrences of
quartics. However, the two-dimensional nature of the problem introduces some technical challenges.
Somewhat surprisingly, we overcome the final challenge for the combinatorial bound using a result
of Marcus and Tardos [JCTA 2004] for permutation avoidance on matrices.
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1 Introduction

Repetitions are a staple topic of both combinatorics on words [22] and algorithms on
strings [33]. In both areas, the classical objects of study are linear sequences of characters
from a finite alphabet. Depending on whether we are more interested in their combinatorial
properties or designing efficient algorithms for them, it is customary to call such sequences
words or strings, respectively. In this paper, we use the latter convention.

Perhaps the most natural example of a repetition in a string is a square, that is, a string
of the form UU, also known as a “tandem repeat” in the biological literature [53]. The basic
question concerning squares is whether any of the fragments of a string of length n is a
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square, and, if so, what is the number of such fragments. The origins of this question can be
traced back to Thue [75], who constructed an infinite string over a ternary alphabet that
contains no squares. Thus, we can construct arbitrarily long square-free strings over such
alphabets. The next question is what is the largest possible number of fragments that are
squares. However, any even-length fragment of a” is a square. One way to make the question
non-trivial is to only consider the primitively rooted squares, meaning that U is not a power
of another string. This decreases the possible number of occurrences to O(nlogn), which is
asymptotically tight [30]. Another way is to only consider distinct squares.

Fraenkel and Simpson [46] showed that any string of length n contains at most 2n distinct
squares and constructed an infinite family of strings such that each string S in this family
contains |S| — @(\/E) distinct squares. For many years, it was conjectured that the upper
bound should be at most n. After a series of simplifications and improvements [41,57,58,65,74],
the conjecture was finally proven by Brlek and Li [24], who showed an upper bound of
n — o + 1, where o is the size of the alphabet. The same authors [25] also showed an upper
bound of n — O(logn). On the algorithmic side, Apostolico and Preparata [16], Main and
Lorentz [67] and Crochemore [30] showed how to find a compact representation of all squares
(in particular, test square-freeness) in a string of length n in O(nlogn) time. Specifically,
such a representation stores all distinct squares. To obtain a faster algorithm for finding only
the distinct squares, one needs to restrict the size of the alphabet. For constant alphabets,
Gusfield and Stoye [54] designed an O(n) time algorithm. This was later generalized to the
more general case of an integer alphabet (that can be sorted in linear time) [20,36]. The
complexity of testing square-freeness over general ordered and unordered alphabets of size o
was very recently settled by Ellert and Fischer [43] providing a linear time algorithm, and
Ellert et al. [44] providing an O(nlog o) time algorithm, respectively; this problem has been
also studied in the parallel [13,14,37,38] and the online settings [55,63,64,66]. Thus, by
now we seem to have obtained a rather good understanding of both the combinatorial and
the algorithmic properties of distinct squares. We stress that, while these properties are
interesting on their own, and naturally the combinatorial bound was used to design efficient
enumeration algorithms [21, 54], they were also crucial in designing efficient algorithms
and data structures for other problems. For example, the Maximal Augmented Suffix Tree
(MAST) introduced by Apostolico and Preparata [17] which enables counting the maximum
number of non-overlapping occurrences uses O(n) space due to the linear upper bound on
the number of distinct squares (as observed by Brodal et al. [26]). The same applies to the
construction time and the space of the Cover Suffix Tree (CST) [61,71].

Arguably, linear sequences are not always best suited to model the objects that we
would like to study. A natural extension is to consider rectangular arrays of characters
from a finite alphabet, which can be seen as 2D strings. Possible applications in image
processing [72] sparked interest in designing algorithms for searching in 2D strings already in
the late 1970s [18,23]. This turned out to be significantly more challenging than searching
in 1D strings: both versions were studied already in the 70s, but while for 1D strings an
alphabet-independent linear-time algorithm had been soon found [60], achieving the same
goal for 2D strings took till the 90s [3,39,47]. Extensions of this basic problem such as
approximate searching [9,29], indexing [28,49, 50], searching in smaller space [32], scaled
searching [6, 7], searching in random 2D strings [59], dictionary searching [8, 56, 69], and
searching in compressed 2D strings [1,4,11] have been also considered.

The combinatorial structure of 2D strings seems to be significantly more involved than that
of 1D strings. As a prime example, the basic tool used in algorithms and combinatorics on
1D strings is periodicity. We say that p is a period of a 1D string S[1..n] when S[i] = S[i+ p]
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foralli=1,2,...,n — p. The set of all periods is very structured due to a classical result
of Fine and Wilf [45] according to which for any two periods p, ¢ such that p + ¢ < n,
the greatest common divisor of p and ¢ is also a period. The natural way to extend this
notion to 2D strings is to define (z,y) to be a period of a 2D string S[1..n][1..n] when
Slj] = Sli+][j+y] forall i =1,2,...,n—2x and j = 1,2,...,n — y. This notion was
introduced by Amir and Benson [2], who provided a detailed study based on classifying 2D
strings into four periodicity classes. This classification was later crucial in designing solutions
for pattern matching, namely, an alphabet-independent linear-time algorithms [39,47] and
alphabet-independent optimal parallel algorithms [5,31].

The rich combinatorial structure of 2D strings brings the challenge of finding the right
generalization of the concept of repetitions. Apostolico and Brimkov [12] introduced two
notions of repetitions in 2D strings that can be seen as natural analogues of squares in 1D
strings. A tandem W12 (or W?21) consists of 2 occurrences of the same block W arranged
inalx2 (or2x 1) pattern. Next, a quartic W?? consists of 4 occurrences of the same
block W arranged in a 2 x 2 pattern. Note that Apostolico and Brimkov [12] additionally
required that W is primitive, meaning that it cannot be partitioned into non-overlapping
copies of another block. However, it is more natural to call such tandems and quartics
primitively rooted, as in [27]. Apostolico and Brimkov [12] showed asymptotically tight
bounds of O(n?logn) and O(n?log?n) for the number of primitively rooted tandems and
quartics, respectively. The former bound was later complemented with a worst-case optimal
O(n?logn)-time algorithm [15]. Finally, Amir, Landau, Marcus, and Sokol [10] introduced
the notion of maximal repetitions in 2D strings, as an analogue of so-called runs in 1D
strings.

Two tandems T = W2 and 77 = V12 are distinct when W # V. Similarly, two quartics
Q = W22 and Q' = V22 are distinct when W # V. It is easy to see that an n x n 2D
string contains O(n?) distinct tandems by applying the bound on the number of 1D distinct
squares on every horizontal slice of the 2D string. It is also not hard to show that this bound
is asymptotically tight, even over a binary alphabet [48]. Thus, tandems do not seem to be
the right generalization of squares, and we should rather focus on quartics.

Recently, Charalampopoulos, Radoszewski, Rytter, Walen, and Zuba [27] showed a non-
trivial upper bound of @(n?log®n) on the number of distinct quartics in an n x n 2D string,
and an algorithm that finds them in the same time complexity. At this point, it was quite
unclear to what extent distinct quartics suffer from the “curse of dimensionality”. Could it
be that, similarly to the number of distinct squares, their number is also linear in the size
of the input? Gawrychowski, Ghazawi, and Landau [48] very recently showed that this is
not the case, by constructing an infinite family of n x n 2D strings over a binary alphabet
containing Q(n?logn) distinct quartics. This shows that there is a qualitative difference
between distinct squares and distinct quartics, but leaves a significant gap between the lower
bound of Q(n?logn) and the upper bound of O(n?log®n) [27].

Our Results. Our contribution is twofold. First, we show an asymptotically tight bound
of O(n?logn) on the number of distinct quartics in an n x n 2D string. Thus, the “curse
of dimensionality” for this problem is a single logarithm for going from 1D to 2D. Second,
we show how to find all distinct quartics in worst-case optimal O(n?logn) time. We thus
resolve both the combinatorial and algorithmic complexity of distinct quartics.
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A notable difference of our algorithm from the previously fastest algorithm for computing
distinct quartics [27] is that the algorithm of [27] first finds all 2D runs® of the 2D string,
which are not even known to be O(n?logn), and then infers the quartics from those. We
manage to circumvent this, by focusing on some selected occurrences of 2D strings of the
form @Q%°, instead of considering all of them via 2D runs.

Overview of the Combinatorial Upper Bound. When bounding the number of distinct
squares, one begins with fixing the rightmost occurrence of every distinct square [46]. In two
dimensions, it is less clear what an extreme occurrence could mean. We simply say that it is
an occurrence at a position (4, j) such that there is no other occurrence at a different position
(7, 5") such that i’ > i and j' > j. Next, a standard trick used when working with strings is
to partition them into groups with length in [2¢..2971) for different integers a. Similarly
to previous work [27], we partition quartics into groups C(, ) with height in [27.. 20+1)
and width in [2°..2%%1) for pairs of integers (a,b). We begin with proving that, for any
position (i, 7), the set of extreme occurrences at (i,j) may have a non-empty intersection
with only O(logn) such groups. Next, we partition all quartics into thin and thick (note
that the meaning of thin and thick is slightly different than in the previous work [27]). More
specifically, a quartic @ is thick if and only if it can be partitioned into x X y occurrences
of a primitive 2D string R, i.e., Q@ = R*Y for some x,y > 5. Then, we show that for any
position (4,7) and group C,p), there can be at most 10 extreme occurrences of thin quartics
in C(,p) at position (4, ). Overall, we thus have only O(n?logn) distinct thin quartics.

The main part of our proof for the combinatorial upper bound is the analysis of the
number of distinct thick quartics. Our starting point is the observation (already present
in [27]) that this number can be upper bounded by the number of occurrences of 2D strings
of the form R%?, for primitive R, that participate in the partition of an extreme occurrence
of some quartic R*Y. To bound the number of such occurrences, we assign an occurrence of
R55 at position (i,7) to position (z,y) = (i + 2 - height(R), j + 2 - width(R)) and say that
this occurrence is anchored at position (z,y). Then, our goal is to show that the number
of occurrences assigned to every position is only O(logn). For a fixed position (4, j), this is
done by first arguing that the pairs (|log(height(R))], |log(width(R))]) are pairwise distinct
among occurrences of different R>® assigned to (4, 7). This requires a careful analysis of
the implied periodic structure and allows us to focus on bounding the number of such pairs.
What we do next is the main novelty of our approach for the combinatorial upper bound.
We treat the pairs as a set of points P C [1..m]%, where m = |logn|, and argue that, for
each (a,b) € P, the set of points of P that are strictly dominated by (a,b) can be partitioned
into at most two chains. Next, our goal is to upper bound the size of any set P with this
property by O(m). To this end, we leverage a result from extremal combinatorics, namely,
the proof of the Fiiredi-Hajnal conjecture by Marcus and Tardos [68]. This result states
that, if an m x m binary matrix M avoids a fixed permutation matrix P as a submatrix,
i.e., if P cannot be obtained by deleting some rows and columns of M and changing some
1s to Os, then M contains at most cp - m 1s, where cp is a constant if the size of P is a
constant. We reformulate the constraint on P to avoid the permutation matrix shown below
as a submatrix. Overall, this allows us to conclude that the number of extreme occurrences
of thick quartics is also O(n?logn).

L 9D runs are subarrays that are periodic both vertically and horizontally and cannot be extended without
any of the periods changing.
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A high-level description of our approach for the algorithmic part is provided in Section 4,
as it is best read after the full proof of the combinatorial upper bound.

Open Problem. An interesting follow-up question on repetitions in 2D strings is that of
settling the number of 2D runs that a 2D string can have. Charalampopoulos et al. [27]
proved an O(n? log? n) upper bound for the number of 2D runs that an n x n 2D string can
contain, while Gawrychowski et al. [48] constructed an infinite family of n x n 2D strings
(over a binary alphabet) with Q(n?logn) 2D runs. On the algorithms’ side, Amir et al. [10]
devised an algorithm that computes all 2D runs in an n x n 2D string in O(n? logn + |output|)
time, and is thus optimal. For 1D strings, after a long line of results [34,35,51,52,62, 70, 73]
the number of runs was shown to be less than n [19] and they can be computed in O(n)
time for strings over ordered alphabets [43] (see [19,62] for earlier algorithms for strings over
linear-time sortable alphabets).

2 Preliminaries

For integers 4, j € Z, we denote the set {k € Z:i < k < j} by either of [i..j], (1 —1..74+1),
[i..j+1),and (i—1..j].

Let us consider a string S = S[1]5[2] - - - S[n] of length |S| = n. For integers i < j in
[1..n], we denote the fragment S[i]--- S[j] by S[i..j]. A positive integer p < n is a period
of S if and only if S[i| = S[i + p| for all ¢ € [1..n — p]. The smallest period of S is called the
period of S and is denoted by per(S). A string is called periodic if and only if its period is at
most half its length. We will extensively use the following property of periods.

» Lemma 2.1 (Periodicity Lemma [45]). If p and q are periods of a string S and satisfy
p+q <|S|, then ged(p, q) is also a period of S.

We denote the concatenation of two strings U and V by UV. Further, for k € Z, we
denote the concatenation of k copies of U by UF. A string V that cannot be written as U*
for a string U and an integer k > 1 is called primitive. A string of the form UU is called a
square. A square UU is said to be primitively rooted if U is primitive. More generally, a
string of the form U” is called a k-th power, and it is said to be primitively rooted if U is
primitive. We extensively use the following property of squares.

» Lemma 2.2 (Three Squares Lemma [40]?). If squares U? and V2 are proper prefives of a
square W2, |U| < |V|, and U is primitive, then |U| + |V | < |W].

We next summarise some combinatorial properties of squares and higher powers.

» Proposition 2.3. Consider a string S and an integer a. At most two prefizes of S with
lengths from [2%..29FY) can be primitively rooted squares.

Proof. Assume that there are three such prefixes, and denote them by UU, V'V, WW  where
|U| < |V| < [W|. Since |UU|,|[VV|,|WW| € [2¢..2%"1)] we have |U| + |V| > |W/|, which
together with the primitivity of |U| leads to a contradiction. <

2 This formulation comes from [46].
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WI W | W|W|W
W I W | W|W|W

Figure 1 2D string W?? is shown for some 2D string W.

» Proposition 2.4. Consider a string S and an integer a. All prefizes of S with lengths in
[2%..29%Y) that are powers higher than 2 are of the form U* for the same primitive string U.

Proof. Assume that there are two such prefixes U* and V¢, where U is primitive, k, £ > 3,
and |U| < |V|. First, |V| is a period of Z := S[1..|U| + |V]]. Second, |V| < 2%T!/3 and
consequently |[U*~1| > |V, as otherwise we would have |U*| < k- |V|/(k —1) < 3|V|/2 < 2¢,
hence |U| is also a period of Z. We thus have that both |U| and |V are periods of Z. Then,
an application of Lemma 2.1 yields that ged(|U|, |V]) is a period of Z. But U is primitive so
ged(|U1,|V]) = |U|, and V hence is a power of U, a contradiction. <

A fragment S[i..j] of a string S is a run if and only if it is periodic and it cannot be
extended by a character in either direction with its period remaining unchanged.

An m x n 2D string A is simply a two-dimensional array with m rows and n columns,
where height(4) = m and width(A) = n. The position that lies on the i-th row and the j-th
column of A is position (¢, 7). We regard the top-left position of a 2D string as position (1, 1),
and the bottom-right position as position (m,n). That is, we index rows from top to bottom
and columns from left to right. We say that a 2D string P occurs at a position (i, j) of a 2D
string T if and only if the subarray (also called fragment) T'[i . .i+height(P))[j .. j+width(P))
of T equals P. We write ¥** to denote the set of all 2D strings over alphabet X.

A positive integer p is a horizontal period of a 2D string A such that width(A) > p if and
only if the j-th column of A is equal to the (j+p)-th column of A for all j € [1..width(A)—p].
The smallest horizontal period of A is the horizontal period of A. An integer ¢ is a (the)
vertical period of A if and only if ¢ is a (resp. the) horizontal period of the transpose of A.

It will be sometimes convenient to view a 2D string as a 1D metastring by viewing
each column (or row) as a metacharacter such that metacharacters are equal if and only
if the corresponding columns (resp. rows) are equal. Observe that the horizontal periods
(resp. vertical periods) of a 2D string A are in one-to-one correspondence with the periods of
the metastring obtained from A by viewing each column (resp. row) as a metacharacter.

For a 2D string W and z,y € Z,, we denote by W*¥ the 2D string that consists of
x X y copies of W; see Figure 1 for an illustration. A 2D string W is primitive if it cannot
be written as Y*? for any 2D string Y and a,b € Z, that are not both equal to 1. The
primitive root of a 2D string X is the unique primitive 2D string Y such that X = Y*? for
a,b € Z,. Note that the primitive root is indeed unique by the periodicity lemma applied to
the horizontal and vertical 1D metastrings obtained from X.

Model of computation. For our algorithm, we assume the standard word-RAM model of
computation with word-size Q(logn), where n is the size of the input.

3 The Combinatorial Bound

We consider an n x n 2D string A, whose entries are over an arbitrary alphabet . We say
that a fragment Afi..¢")[j..J’) is a quartic-fragment if and only if it equals some quartic Q;
further, we say that it is an extreme or bottom-right quartic-fragment if ) does not have
any occurrence at another position (¢”,3"”) with ¢ > ¢ and j” > j. We refer to such an
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occurrence of () as an extreme or bottom-right occurrence. We denote by BR(i, j) the set of
extreme quartic-fragments with top-left corner (i, 7). Further, we denote the union of all
BR(4,7) by BR. Observe that the distinct quartics in BR are exactly the distinct quartics
in A as every quartic that occurs in A has at least one extreme occurrence. Note that a
quartic may have ©(n) extreme occurrences; an example is provided in Figure 2.

R |O|lO|O|O|O|O|O
R Ikr|lO|O|O|O|O|O

R |k [k, |lOJO|O|O |O

Ll Ll Ll L (o) (o) o) (o]

G R = =R=]

G A G =R =]

R~ ]|o

o|lo|o|o|o|o|o|o

I

Figure 2 Consider an n x n 2D string A all of whose entries that lie weakly above the main
diagonal are equal to 0 and all of whose entries that lie strictly below the main diagonal are equal
to 1. The quartic that equals 0*2 has n — 2 extreme occurrences in A. This is illustrated for n = 8:
the bottom-right corners of extreme occurrences of said quartic are marked.

Let us consider a partition of the quartic-fragments of A into O(log2 n) canonical sets, such
that, for each (a,b) € [1..logn|]?, the canonical set C(, ) consists of all quartic-fragments
of A whose height is in [2?..2%*!) and whose width is in [20..20%1).3

» Lemma 3.1. For each position (i,j) of A, BR(i,j) has a non-empty intersection with
O(logn) canonical sets.

Proof. We say that the aspect ratio of a quartic @ is equal to 2 raised to the power
[log(height(Q))| — [log(width(Q))]. The aspect ratio of all quartic-fragments in a canonical
set Clap) is 20=b. Observe, that there are 2 - [logn| — 1 different possible values for the
aspect ratio of a quartic. For each d € [— [logn]| +1..[logn] — 1], let BRy(, j) be the subset
of BR(4,7) that contains exactly the elements of BR(i, j) with aspect ratio 2¢.

Next, we show that, for each d, we have at most two canonical sets contributing to
BR4(7, 7). Let us suppose towards a contradiction that we have three canonical sets C(q ),
Cla vy, and C(qr pry that contribute to BRy(i, j). In other words, there are quartic-fragments

Q € BRy(4,7) with height in [2¢..29F1) and width in [2°..20+1),

Q' € BRy(i,7) with height in [2¢"..2¢+1) and width in [20"..2V+1), and

Q" € BRy(i,j) with height in [2¢" .. 2" *+1) and width in [207.. 20" +1).

Since a—b=a' —b =a" —b" = d, we can assume without loss of generality that a < a’ < a”
and b < bV < b”. We thus have that a +1 < @’ and b+ 1 < b, which implies that Q
is fully contained in the top left quarter of @”. Thus, @ has an occurrence at position
(7 + height(Q")/2, j + width(Q")/2); see Figure 3. This contradicts our assumption that the
occurrence of @ at position (4,7) is an extreme occurrence.

Thus, O(log n) canonical sets contribute to BR(4, j): at most two for each aspect ratio. <

Henceforth, we call a quartic @ with primitive root P thick if Q@ = P*Y for x,y > 5 and
thin otherwise.

3 Throughout this work, logarithms have base 2.
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Figure 3 An illustration of the proof of Lemma 3.1 with quartics Q, Q’, and Q" drawn in red,
blue, and green, respectively.

» Lemma 3.2. For any position (i,5) of A and any pair (a,b) € [1..|logn]]?, Cla,p)NBR(i, j)
can contain at most 10 thin quartics.

Proof. The possible forms of thin quartics are P22, P%2* P22 p42r and P?Y4 for x > 1
and y > 1. We will consider each form separately.

First, we consider quartics of the form P%? in Cla,p) "BR(4,j). We analyse the fragment
Ali..n][j..j + 2% and treat it as a metastring by viewing rows as metacharacters. We
observe that each considered quartic defines a prefix of this string that is a square. Further,
all those squares need to be primitive, as otherwise P could be written as P = Q*-!, for some
k > 1, in contradiction with the primitivity of P. Thus, by Proposition 2.3 we have at most
two possible heights for the considered quartics. By a symmetric argument, we have at most
two possible widths, and so at most 4 quartics.

Second, we consider quartics of the form P?2% in C(a,py NBR(3, 7). By the same reasoning
as above, we have at most two possible heights for the considered quartics; let i by one of
them. We analyse the fragment Afi..i+ h)[j..n]| and treat it as a metastring by viewing
columns as metacharacters. Each considered quartic with height i corresponds to a prefix
that is a (2z)-th power, for some x > 1. By Proposition 2.4, all such prefixes are powers
of the same U; let U?* be the longest such prefix. Then, for any 2’ < x, the prefix U2’
also occurs at position (4, + |U|), so the occurrence at position (7, ) cannot be an extreme
occurrence. Therefore, for every possible height, we have at most one quartic, so at most 2
in total.

Third, we consider quartics of the form P*** for 2 > 1 in C(, ) N BR(7, j). We (again)
analyse the fragment A[i..n][j..j + 2°) and treat it as a metastring by viewing its rows as
metacharacters. We observe that each considered quartic defines a prefix that is a primitively
rooted fourth power there. Thus, by Proposition 2.4 we have at most one possible height,
and, by the same reasoning, as above at most one quartic.

Symmetric arguments bound the number of quartics of the forms P?¥2 and P?¥%. <«

» Lemma 3.3. The number of distinct thin quartics in A is O(n?logn).

Proof. For each position (i,7) of A, BR(4,7) has a non-empty intersection with at most
O(logn) canonical sets due to Lemma 3.1. Further, by Lemma 3.2, there are at most 10 thin
quartics in each such intersection. Since A has n? positions, the stated bound follows. <

3.1 Reduction to a Geometric Problem

We next partition the thick quartics by primitive root. For each primitive 2D string R,
we choose any bottom-right occurrence of each distinct thick quartic with primitive root
R. We denote the obtained set of quartic-fragments by Thickg. Additionally, let us denote
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Figure 4 The red point corresponds to the anchor of the shown occurrence of R>®.

by occsys(R) the set of all positions (i,j) of A where R*>® occurs such that there is an
element of Thickg that fully contains this occurrence of R®® and has top-left corner equal to
(i — x - height(R), j — y - width(R)) for some non-negative integers x and y.

The proof of the following lemma proceeds almost exactly as the proof of Claim 18 in [27],
except that we work with occurrences of R*® instead of R*? and do not need the notion of
special points. We provide a detailed description for completeness.

» Lemma 3.4 (cf. the proof of [27, Claim 18]). For any 2D string R, | Thickg| < |occsxs(R)].

Proof. We will map each QQ € Thickg to an occurrence of R> in such a way that two distinct
quartic-fragments @, Q' € Thickg are mapped to distinct occurrences. This will imply that
the number of occurrences of R is at least as large as the number of elements of Thickpg.
For each z = 6,8, ... in this order, we select @) € Thickg such that height(Q) = z-height(R)
and width(Q) = y - width(R) is the largest among all Q' € Thickg with height(Q’) =
x - height(R). We note that the number of Q' € Thickg with height(Q’) = x - height(R) is
at most y/2 — 2, and our goal is to map them to occurrences of R>® that have not been
used so far. Additionally, we will ensure that those occurrences are all in the same row. Let
(i,4) be the position of an extreme occurrence of ). We observe that R®>® occurs at every
position (¢, j') with ¢’ =i + k - height(R) and j' = j 4 £ - width(R), for every k € [0..2 — 5]
and £ € [0..y — 5]. We choose k € [0..x — 5] such that none of the occurrences of R at
positions (¢ + k - height(R), j + ¢ - width(R)), for £ = 0,1,...,y — 3 have been used so far.
This is possible because so far we have used occurrences of R®>® in only 2/2 — 3 < x — 4 rows.
Then, we map every Q' € Thickr with height(Q’) = z - height(R) to an occurrence of R%5 at
position (i + k - height(R), j + ¢ - width(R)), for some ¢ € [0..y — 5], which is possible due to
y/2—2<y—4. <

Thus, it remains to upper bound ), |occsx5(R)|, i.e., the sum, over all R, of the number
of occurrences of R®>® which are contained in some element of Thickg.

Consider an occurrence of a 2D string of the form R>®, for a primitive string R, at a
position (4, j) of A. We call position (i + 2 - height(R), j + 2 - width(R)) the anchor of this
occurrence; see Figure 4.

Now, for each primitive string R, for each element of occsx5(R), we assign the corres-
ponding occurrence of R>® to its anchor. Let assign(i, j) be the set of primitive 2D strings R
such that an occurrence of R®>® has been assigned to position (4, j). We have

> locesxs(R) =D > |assign(i, 5)- (1)

R i=1 j=1

It now suffices to show that > ., E?Zl |assign(i, j)| = O(n?logn). We will show that
|assign(i, j)| = O(logn) for all 4, j, which straightforwardly yields the desired bound.

Let us fix a position (i, 7). By applying Proposition 2.4 horizontally and vertically one
easily obtains the following fact.
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Figure 5 The red rectangles correspond to T"? and the green rectangles correspond to S,

» Fact 3.5 ([27, Corollary 13]). Let a, b be non-negative integers and W, Z be different 2D
strings with height in [2%..29TY) and width in [2°..2°TY). If W33 and Z32 occur at some
position of A, then at least one of W and Z is not primitive.

This, together with the fact that, for each R € assign(i,j), R>3 occurs at position (i, 5),
implies the following.

» Fact 3.6. For each pair (a,b) € [1.. [logn||?, for each position (i, j) of A, the set assign(i, )
contains at most one element with height in [2%..29%1) and width in [2°..20F1).

Let us define a map ¥** — [1.. [logn]]? as g(R) — (|log(height(R))] , [log(width(R))]).
Let f be the restriction of g to the domain assign(i, 7). Due to Fact 3.6, f is an injective
function. We henceforth identify each element R of assign(i, j) with point f(R). We denote
the image of f by P.

We say that a point (a,b) € Z? dominates or weakly dominates a point (a’,b') if a’ < a
and b’ < b; the dominance is strict if o’ < a and V' < b. (If we require some dominance to be
strict we explicitly say so; that is, whenever we refer to some dominance without explicitly
mentioning whether it is weak or strict, we refer to weak dominance.) A set of points on
which the domination relation forms a total order is called a chain. A set of points such that
none dominates another is called an antichain. We are going to use Dilworth’s theorem [42],
which states that, in any finite partially ordered set, the size of the largest antichain is equal
to the minimum number of chains in which the elements of the set can be decomposed.

For two primitive 2D strings S and T, with 3 - height(S) < height(T) and width(S) <
width(T), we say that S horizontally spans T' when the 2D string rows.peight(s) (T*2), consisting
of the 3-height(S) topmost rows of T2, equals S for some even integer y > 4; see Figure 5.
Similarly, when width(S) < width(T") and height(S) < height(T), we say that S vertically
spans T when the 2D string co|3.Width(S)(T2’1), consisting of the 3 - width(S) leftmost columns
of T?%1, equals S*3 for some even integer x > 4.

» Fact 3.7. Let S and T be two primitive 2D strings. If S spans T horizontally, then the
horizontal period of rows. peight(s) (T2 is width(S). Symmetrically, if S spans T vertically,
then the vertical period of col.igen(s) (T*1Y) is height(S).

Proof. We only prove the first statement as the second one follows by symmetry. Let us
VIEW FOW3.height( S)(TI’Q) as a metastring Z by viewing each of its columns as a metacharacter;
the horizontal period of rows peignt(s)(17?) equals p := per(Z). Note that width(S) is a
period of Z. Towards a contradiction, suppose that p < width(S). Then, an application of
the periodicity lemma to Z implies that p must divide width(S). This fact contradicts the
primitivity of S, as we would have that S = (S[1.. height(S)][1..p])** for k = width(S)/p;
see Figure 5. |

When reading the following lemma, one can think of M being in assign(i,j). However,
the lemma is slightly more general, as needed for the algorithm that is presented in the full
version.
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» Lemma 3.8. Let R € assign(i,j) and M be a primitive 2D string such that:
M55 has an occurrence with anchor (i,7);
g(M) strictly dominates g(R).

Then, R spans M either horizontally or vertically (or both).

Proof. By the definition of assign(i, j), the occurrence of R>® assigned to position (i, 5)
appears inside an element of Thickg, which is necessarily a bottom-right occurrence of a
thick quartic with primitive root R. Let us denote this quartic by . Observe that the
considered occurrence of QQ cannot be fully contained inside the occurrence of M*# at position
(i — 2 - height(M),j — 2 - width(M)) as this would contradict the fact that the considered
occurrence of @ is bottom-right: there would be another occurrence width(A/) positions to the
right. Therefore, () must contain at least one of the following four fragments of A, depicted in
Figure 6: A[i..i+3-height(R))[j..j+2-width(M)), Ali..i+3-height(R))[j—2-width(M)..j),
Ali..i+ 2 height(M))[j..7 + 3 -width(R)), A[i — 2 - height(M)..i)[j..j + 3 - width(R)).

Figure 6 The considered occurrences of each of M®® and R are shown, together with the four
specified fragments, at least one of which must be fully contained in Q.

We next show that in either of the first two cases, R horizontally spans M. In the
remaining cases, a symmetric argument yields that R vertically spans M. First, observe that
we have width(R) < width(M) as a direct consequence of g(M) strictly dominating g(R).
We next need to argue that 3height(R) < height(M). If this were not the case, width(R)
would be a horizontal period of M2, contradicting the primitivity of M. This completes
the proof. <

» Lemma 3.9. Two primitive 2D strings Ry and Ry such that g(R1) and g(Rs) form an
antichain cannot both horizontally span a 2D string R.

Proof. Let g(R1) = (a1,b1) and g(Rs) = (az,bs). Without loss of generality, we can assume
that a; < as and by > bs. Suppose towards a contradiction that both R; and Ry horizontally
span R. By applying Fact 3.7, we obtain that

width(R;) is the horizontal period of r0W3.height(Rl)(R1’2) and

width(Rz) is the horizontal period of row3,height(R2)(R1’2).
Note that, for any k € [1..height(R)], the horizontal period of the string comprised of
the k topmost rows of R"? equals the least common multiple of the periods of those k

rows. Hence, the period cannot decrease as we increase the number of considered rows.

We thus have width(R;) < width(R2) since our assumption that as > a; implies that
height(Rz2) > height(Ry). This is a contradiction to our assumption that b; > be, which
implies that width(R;) > width(R3). <
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The above lemma, Fact 3.6, and Dilworth’s theorem together imply the following.

» Corollary 3.10. All primitive 2D strings that span a primitive 2D string R can be decom-
posed to two sets H and V', such that

the elements of H span R horizontally;

the elements of V' span R wvertically;

the restriction of g to H UV is an injective function;

each of the sets g(H) and g(V') is a chain.

Finally, as mentioned in the introduction, we need the following purely geometric lemma
that follows from the result of Marcus and Tardos [68] on the number of 1s in an m x m
binary matrix M that avoids a fixed permutation P as a submatrix.

» Lemma 3.11. Consider a positive integer m and a set P C [1..m]%. If, for each p € P,
the set of points of P that are strictly dominated by p can be partitioned into at most two
chains, then |P| = O(m).

Proof. We think of P as an m xm matrix M[1..m][l..m], where M[a][b] = 1 when (a,b) € P
and M|a,b] = 0 otherwise. Next, we say that M contains a matrix P as a submatrix when P
can be obtained from M by removing rows, removing columns, and changing 1s into 0s. We
claim that, by the assumptions in the lemma, M does not contain the following matrix P as
a submatrix:

1

To establish this, assume otherwise towards a contradiction. Then, there exists (a,b) € P and
(a1,b1), (az,b2), (as,b3) € P such that (a,b) strictly dominates (a1, b1), (ag, b2), (a3, b3) and
further (ay,b1), (as, bs), (a3, bs) create an antichain. By Dilworth’s theorem, this implies that
the points in P dominated by (a,b) cannot be partitioned into two chains, a contradiction.
Thus, M indeed does not contain P as a submatrix. Because P is a permutation matrix,
this implies |P| = O(m). <

We now complete the proof of our main result with the aid of Lemma 3.11.
» Theorem 3.12. An n x n 2D string has O(n?logn) distinct quartics.

Proof. The number of distinct thin quartics is O(n?logn) by Lemmas 3.2 and 3.3. The
number of distinct thick quartics is

> " [Thickg| < Joccsxs(R)] (Lemma 3.4)
R R

< ;z_:l\assign(i7j)\. (1)

To conclude the proof, it remains to show that |assign(i, j)| = O(logn) for all (i,5) € [1..n]%
Let m = [logn|, and recall that P C [1..m]? was defined as the image of f, which in turn
was the restriction of g to the domain assign(é, j). By Fact 3.6, we only need to show that
|P| = O(m). By Lemma 3.8 and Corollary 3.10, for each p € P, the set of all points of P that
are strictly dominated by p can be partitioned into at most two chains. Thus, by Lemma 3.11
we conclude that indeed |P| = O(m), concluding the proof. <
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4 Overview of the Algorithm

The detailed algorithm can be found in the full version of this work. After preprocessing
the input 2D string, we compute thin and thick quartics separately. Here, we provide an
overview of the main ideas of our O(n?logn)-time algorithm for computing distinct quartics
in an n X n 2D string A over an ordered alphabet.

Computation of Thin Quartics

For thin quartics, our algorithm is quite similar to the combinatorial analysis. For each
position (i, j), we compute an O(logn)-size superset C of the canonical sets that have a non-
empty intersection with BR(i, 7). We do this by relating extreme occurrences of quartics with
occurrences of squares in metastrings obtained by viewing the columns of Afi..i+2%)[1..n],
where a € [1..|logn]], as metacharacters. These squares can be efficiently computed and
give us a handle on the sought thin quartics. Then, we compute the intersection of each
canonical set in C with BR(4, j) in constant time using known tools that allow us to efficiently
operate on the metastrings. We do this by fixing (a,b) € [1.. |[logn]]? and computing all
quartics with height in [27..29%1) and width [2°..2%"1) that occur at position (i,7) of A, of
the form P2¥:2, P?v:4 p22% and P%2 for a primitive 2D string P and z,y > 1.

Computation of Thick Quartics

For thick quartics, our algorithmic approach follows our combinatorial approach in a more
relaxed sense. The main technical challenge is to compute, for each position (i,5), an
O(logn)-size set R of primitive 2D strings R, such that assign(i,j) € R. Then, those
supersets can be postprocessed as in [27] in time linear in their total size to yield the sought
distinct thick quartics. The computation of R is split into two major steps outlined next.

Skyline Computation. First, we compute a set S of skyline primitive 2D strings such that
S € S when (a) S®° has an occurrence anchored at position (i,;), and (b) there is no
other primitive 2D string T with g(T) > ¢(S) such that T°® has an occurrence anchored
at position (¢, 7). This part of the proof is quite technical: it heavily relies on the analysis
of periodicity for 1D (meta)strings and, roughly speaking, on the analysis of the evolution
of the horizontal periodic structure of a 2D string as rows are appended to it. We show
that, for each a € [1..|logn]], there is a single candidate h € [27..2%"!) to be considered
as the height of an element of S. Then, using runs in 1D metastrings whose origins in A
have sufficient overlap and bit-tricks, we can compute the widest 2D string S with height h
such that an occurrence of $%5 is anchored at position (4, j) in constant time (using batched
computations), if one exists.

Computation of Dominated 2D strings. This turned out to be the most challenging part of
our approach. For this exposition, let us treat ¥** as a partially ordered set, in the order of
decreasing widths. Let S = {S1,..., S} in accordance with this order. To obtain R from S,
we need to add to it the 2D strings R € assign(i,j) \ S. By the construction of S we know
that there exists S € S such that g(R) < g(S5).

Our combinatorial analysis implies that each R € assign(i, j) spans each element S € S
for which g(S) strictly dominates g(R) either vertically or horizontally. It turns out that
if R spans all of these elements of S either vertically or horizontally, it is easy to compute it
efficiently. This is, unfortunately, not the case in general. However, we observe that R spans
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vertically (resp. horizontally) a contiguous subset of S. We show that the problem boils down
to computing the union, over all k, of sets I, where I} contains exactly those primitive 2D
strings that span Sy_1 vertically and span Sy horizontally. Crucially, we observe that due to
a strong form of transitivity of the spanning property, the intersection of any two such I
and I consists of a number of the smallest elements of both (i.e., their longest common
prefix if viewed as strings). Hence, by computing the elements of I; from the largest to the
smallest, we can stop whenever we encounter an element that has already been reported by
this procedure. This allows us to reduce the computation of R to the problem of efficiently
computing sets I;,. To this end, we prove that an O(logn)-bits representation of the evolution
of the periodic structure of certain fragments of A as rows and columns are appended to
them suffices for inferring I;; we then use tabulation to infer it efficiently.
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