
Streaming Edge Coloring with Subquadratic
Palette Size
Shiri Chechik #

Tel Aviv University, Israel

Doron Mukhtar #

Tel Aviv University, Israel

Tianyi Zhang #

Tel Aviv University, Israel

Abstract
In this paper, we study the problem of computing an edge-coloring in the (one-pass) W-streaming
model. In this setting, the edges of an n-node graph arrive in an arbitrary order to a machine with
a relatively small space, and the goal is to design an algorithm that outputs, as a stream, a proper
coloring of the edges using the fewest possible number of colors.

Behnezhad et al. [Behnezhad et al., 2019] devised the first non-trivial algorithm for this problem,
which computes in Õ(n) space a proper O(∆2)-coloring w.h.p. (here ∆ is the maximum degree
of the graph). Subsequent papers improved upon this result, where latest of them [Ansari et al.,
2022] showed that it is possible to deterministically compute an O(∆2/s)-coloring in O(ns) space.
However, none of the improvements succeeded in reducing the number of colors to O(∆2−ϵ) while
keeping the same space bound of Õ(n)1. In particular, no progress was made on the question of
whether computing an O(∆)-coloring is possible with roughly O(n) space, which was stated in
[Behnezhad et al., 2019] to be an interesting open problem.

In this paper we bypass the quadratic bound by presenting a new randomized Õ(n)-space
algorithm that uses Õ(∆1.5) colors.

2012 ACM Subject Classification Theory of computation → Graph algorithms analysis; Theory of
computation → Streaming, sublinear and near linear time algorithms

Keywords and phrases graph algorithms, streaming algorithms, edge coloring

Digital Object Identifier 10.4230/LIPIcs.ICALP.2024.40

Category Track A: Algorithms, Complexity and Games

Related Version Previous Version: https://arxiv.org/abs/2305.07090

Funding This publication is part of a project that has received funding from the European Research
Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant
agreement No 803118 UncertainENV).

1 Introduction

The last few decades have witnessed significant technological advancements, which have led
to an exponential increase in the volume of data sets and network traffic that require efficient
processing. However, many of the devices that we use to perform these tasks lack sufficient
storage capacity to store even a small fraction of the input data, which typically arrives
in an unordered stream. Consequently, we often find ourselves processing this data using
partial information. This scenario is commonplace, especially when attempting to receive
information from remote servers over the internet or fetch data from an external memory
unit.

1 Õ(f) hides logO(1) f factors.

EA
T

C
S

© Shiri Chechik, Doron Mukhtar, and Tianyi Zhang;
licensed under Creative Commons License CC-BY 4.0

51st International Colloquium on Automata, Languages, and Programming (ICALP 2024).
Editors: Karl Bringmann, Martin Grohe, Gabriele Puppis, and Ola Svensson;
Article No. 40; pp. 40:1–40:12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:shiri.chechik@gmail.com
mailto:doron.muk@gmail.com
mailto:tianyiz21@tauex.tau.ac.il
https://orcid.org/0000-0003-3407-3307
https://doi.org/10.4230/LIPIcs.ICALP.2024.40
https://arxiv.org/abs/2305.07090
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

40:2 Streaming Edge Coloring with Subquadratic Palette Size

To gain a better understanding of computing capabilities in such scenarios, the data
stream model has been introduced. This model involves receiving an arbitrary stream of
tokens as input, and the objective is to compute a function of this input by performing one
or more passes over the stream while using minimal working memory. The model has been
primarily applied to problems on graphs. In this context, the data stream consists of a
sequence of updates that defines the edge-set of a graph with a known number of vertices,
and the aim is to compute various properties of this graph.

Clearly, our aim in such problems is to design algorithms whose space complexity is
asymptotically much less than the number of edges - preferably linear in the number of
vertices. However, in some cases, the size of the output may be as large as the size of the
input, forcing us to use a very large space to store it. To get around this, we use a known
variant of the streaming model, called the W-steaming model [5], which allows us to stream
parts of the output along the computation. However, it forces the algorithm to commit to
parts of the output without even seeing the entire input.

Many important problems have been studied in the W-streaming model. In this paper
we focus on the problem of properly coloring the edges of a given graph with a small number
of colors. This problem is considered to be one of the most fundamental and well-studied
problems in graph theory, with many applications in scheduling and communications.

Behnezhad et al. [2] were the first to consider the problem of edge-coloring in the W-
streaming model. They distinguished between two variants: random order streams – in which
the edges arrive according to a random permutation that was chosen uniformly at random
before the start of the algorithm, and adversarial order streams – in which the edges arrive
in an arbitrary order. For the first variant, they provided a simple one-pass algorithm that
uses O(∆) colors and Õ(n) space (where as usual ∆ and n respectively denote the maximum
degree of the input graph and the number of its vertices). For the second one, they provided
a different one-pass algorithm that in Õ(n) space computes w.h.p. a proper O(∆2)-coloring.
Charikar and Liu [7] improved the above results by devising a one-pass Õ(n)-space algorithm
that uses ∆ + o(∆) colors for random order streams, and a one-pass randomized algorithm
that uses Õ(ns) space and (1 + o(1))∆2/s colors for adversarial order streams. More recently,
Ansari et al. [1] provided two simple deterministic algorithms that in one pass and O(ns)
space compute a proper coloring that uses no more than (1 + o(1))∆2/s colors for adversarial
order streams, improving the result of [7].

Interestingly, for the more challenging model of adversarial order streams, all of the above
results require Ω̃(∆2) colors when the available space is Õ(n). This raises the question of
whether one can get asymptotically below this number of colors, while retaining the same
space bound, or if Ω̃(∆2) is an inherent limitation. In this paper we resolve this question, and
show that it is possible to reduce the number of colors without compromising on increasing
the given space.

1.1 Our result

We break the quadratic barrier for the first time by providing a new randomized algorithm
that in one pass and Õ(n)-space (in expectation) computes a proper edge-coloring which
uses, in expectation, no more than Õ(∆1.5) colors (for adversarial order streams).

▶ Theorem 1. For an undirected (multi-)graph G = (V, E) on n vertices and maximum
degree ∆, there is a single-pass randomized streaming algorithm using Õ(n) space for edge
coloring that uses Õ(∆1.5) colors with high probability.

S. Chechik, D. Mukhtar, and T. Zhang 40:3

1.2 Related work
The edge-coloring problem has been studied in several models of computation (see, e.g.
[12, 10, 6, 2]). A closely related model to the W-Streaming is known as the Online model. In
the online edge-coloring problem, we also assume that the edges of the input graph arrive as
a data stream (which can be either random or arbitrary). There is no space limitation, but
there is a requirement to instantly compute and output a color for each newly received edge,
as opposed to the W-Streaming model in which we can delay the announcement of some of
the edges by buffering them. See [15, 11, 13, 4, 8] for some latest results on this problem.

Independent work

In a concurrent work [3], Behnezhad and Saneian have obtained the same result as Theorem 1;
besides, they have a general trade-off of Õ(ns) space and Õ(∆1.5/s) colors, for any parameter s.
In another concurrent work [9], Ghosh and Stoeckl have achieved a trade-off of Õ(ns) space
and Õ(∆2/s2) colors, for any parameter s.

1.3 Technical Overview
Ansari et al. [1] used, in their second algorithm, a very simple buffering approach to color
the graph’s edges. Let G = (V, E) be the input graph, n be its number of vertices and ∆ be
its maximum degree. Assuming that we have a working space of at least n words, we divide
the edge-stream E into continuous intervals E1, ..., Ek of n edges each, buffer each one of
them in order, and color each graph Gi = (V, Ei) separately by using a different set of O(∆)
colors. This gives us a proper O(∆2)-coloring as there can be at most ∆ such intervals.

To reduce the number of colors in such an approach, we have to avoid somehow the
allocation of a new O(∆)-color palette for each interval. Our main observation here is that
we may not be able to edge-color the graph of a given interval Gi with much less than Ω(∆)
colors (as it may contain vertices of high degree), but we can use fewer colors to color all the
edges in Gi that are between vertices of a sufficiently low vertex degrees. We will still have
to use palettes of O(∆) colors to color the rest of the edges, but these edges are now adjacent
to high degree vertices. As the number of these vertices in each of the intervals cannot be
too large, we can afford to store in the machine more information about the colorings that
were used to color these edges across several intervals (which we call a phase). This way, it
will hopefully be sufficient to allocate a few palettes of O(∆)-colors per phase, instead of
allocating a new one for each interval.

Let us develop this idea further. We divide the intervals E1, ..., Ek into contiguous phases
P1, ..., Pk′ of D intervals each. In each phase i ∈ {1, ..., k′}, we are going to process the
intervals one by one, and color their edges. To do that, we distinguish, in each interval
Ej ∈ Pi, between the “low” edges - those whose endpoints are of low degree (at most some
parameter t = Θ(

√
∆)) in Gj , the “high” edges - those whose endpoints are of high degree

(greater than t in Gj) and the “mixed” - all the rest. As we discussed above, in each interval
Ej ∈ Pi, the number of nodes whose degree in Gj is greater than t, cannot be that large
(less than 2n/t). Thus, as long as t ≥ D, we can store for the current phase, O(1) words for
each node and each interval such that this node is of degree greater than t in this interval.

With that in mind, consider the following procedure for coloring the high edges. We
allocate at the start of the phase, c palettes A1, ..., Ac of O(∆) colors each. In each interval,
we choose uniformly at random a set A from the collection, and color all the high edges that
are incident only to vertices that weren’t previously incident to high edges that were colored
using A. (that is, we store for each node that was incident to a high edge, the IDs of all the

ICALP 2024

40:4 Streaming Edge Coloring with Subquadratic Palette Size

palettes that were used to color its incident edges.) Note that each vertex may have a high
degree in no more than ∆/t intervals. Therefore, the probability that a high edge will not
be colored in a certain interval is at most 2∆/tc, which for c = C(∆/t) is 2/C. This means
that in expectation only a fraction of the edges remains uncolored. Let us ignore these edges
for a moment, and discuss how we color the rest of the edges.

Coloring the low edges of each interval is simple as we don’t need big palettes for them.
So we just allocate a new set of O(t) colors for each interval, and properly color the low
edges of that interval with it.

We move now for the task of coloring the mixed edges. Note that this case is more
complicated than the previous ones, as we need to use palettes of K = O(∆)-colors, but
cannot store too much information for the nodes with low degree. As before, we start by
assigning at the start of the phase a set of c = C(∆/t) palettes B1, ..., Bc of O(∆) colors
each. In each interval, we choose uniformly at random a set B from the collection, and the
idea now is that the vertex with the low degree of each mixed edge will choose a color from
B to color this edge.

We illustrate the problems that could arise (when trying to color these edges) and the
way we handle them, by focusing on two edges {u, v} and {u, w} that belong to two different
intervals. Note that since these edges share a vertex, they cannot be colored with the same
color. In the first case, u has a high degree in both of the intervals. A possible conflict can
occur if we happen to chose the same set B in both of them. To solve this, we do the same
thing that we did for the high edges (i.e. we store at the high degree vertices the IDs of
the palettes with which previous incident edges were colored, and avoid coloring an edge
if a conflict was detected). This will guarantee that in expectation only a fraction of them
remains uncolored. In the second case, u has a low degree in both of the intervals. This
means that both w and v have a high degree in their intervals, but they may be different,
and so we cannot know the IDs of the previous palettes. To solve this, we maintain for u a
counter cu, which counts the total number of edges that connected u to high degree vertices
when it had low degree. When u wants to choose a color from B it simply takes the cu color
in it, this will guarantee that no conflict can occur in such cases. In the third and last case,
u has a high degree in one of the intervals and a low in the other. For resolving possible
conflicts in this case, we make use of random offsets. At the start of the phase, we choose for
each vertex v a uniformly random integer rv between 0 and K − 1, and use it to permute
the colors in the set (that is, v considers the first color in B to be the color in the position
rv, and so on). Before we color an edge {u, v} we check whether the offsets rv and ru are far
enough. If this is not the case we skip it (this happens with small probability).

To summarize, in each phase we use O(c∆ + tD) colors. As we have O(∆/D) phases, we
get that the total number of colors is O(∆3/(tD) + t∆). The edges that were left uncolored,
we treat as a new virtual stream, and apply recursively the algorithm on it. As in expectation
the number of uncolored edges reduces each time by a constant factor, we get that it only
increases the space bound and the number of colors by a factor of O(log ∆) .

2 Edge coloring with subquadratic palette size

2.1 Algorithm description
Preparation

Our algorithm assumes prior knowledge of the maximum degree ∆. Without loss of generality,
assume

√
∆ is an integer power of 2. If the data stream contains at most O(n) edges, then the

entire stream fits in the memory, so we can color the graph with O(∆) colors straightforwardly
(more precisely, ⌈ 3∆

2 ⌉ colors for multi-graphs, and ∆ + 1 colors for simple graphs [14, 16]).

S. Chechik, D. Mukhtar, and T. Zhang 40:5

The algorithm divides the data stream into intervals, each interval consisting of n edges
from E (the last interval may have less than n edges). In general, there are at most
|E|/n = O(∆) intervals in the data stream. Let El ⊆ E be the set of edges in the l-th
interval. Denote by Gl = (V, El) the subgraph collected from this interval. We further
partition all intervals into phases, each phase consisting of ∆1/2 consecutive intervals (the
last phase may have less). Different phases will use different sets of edge colors and thus are
independent. For the rest of this section, we will describe our algorithm for an individual
phase.

Fix any degree threshold d be any integral power of 2. If d <
√

∆, we will create O(
√

∆)
new colors for each interval which should be enough to color all edges (u, v) such that

max{degGl
(u), degGl

(v)} < 2d

Otherwise if d ≥
√

∆, then for each interval El, we will describe an algorithm that assigns
colors to all edges (u, v) such that

max{degGl
(u), degGl

(v)} ∈ [d, 2d)

Ranging over all choices of d, we would be able to color the whole graph Gl, by blowing up
the total number of colors by a factor of O(log ∆).

A vertex v ∈ V is called high-degree in Gl, if degGl
(v) ∈ [d, 2d), and if degGl

(v) < d, then
it is called low-degree; we will not consider any vertices whose degree in Gl is at least 2d.

Let κ ≥ 32 be a constant which is an integer power of 2. At the beginning of a single
phase, the algorithm prepares three sequences of disjoint color palettes: A1, A2, · · · , Aκ∆/d,
and B1, B2, · · · , Bκ∆/d, and C1, C2, · · · , Cκ∆/d. All palettes Ai, Bi, Ci have size K = 2κd.

For each palette X (X ∈ {Ai, Bi, Ci}), its colors will be indexed by 0, 1, 2 · · · , K−1. Each
Ai will only be used to color edges between high-degree vertices in some intervals, and each
Bi∪Ci will only be used to color edges between high-degree vertices and low-degree vertices in
some intervals. For each vertex v ∈ V , take a uniformly random integer offset rv ∈ [0, K − 1].
Additionally, for each palette index i, maintain a counter cv[i] ∈ {⊥} ∪ [0, K − 1] which will
bound the number of edges incident on v with colors from palette Ci; when cv[i] = ⊥, it
means this counter cv[i] has not been initialized yet, so it does not take any space in the
storage.

During this phase, each vertex v holds a set of indices Iv ⊆ [κ∆/d], such that i ∈ Iv if
edges incident on v have been colored with colors from palette Ai in any previous intervals.
Finally, the algorithm maintains a virtual stream of leftover edges, which are edges discarded
temporarily but will be processed again recursively.

Processing intervals

Let l0 be the index of the first interval of this phase. For each interval indexed by l, draw
a random index σl ∈ [κ∆/d] uniformly at random. For any i, keep a counter pl[i] =
|{σk = i | l0 ≤ k < l}|. Note that all these counters {pl[i]}1≤i≤κ∆/d can be stored using
O(κ∆/d) = O(n) space; for the l-th interval, we are only using counters pl[∗], and previous
counters will be discarded.

Partition the graph Gl = (V, El) into two disjoint subgraphs: Gl = H1
l ∪ H2

l defined
below; edges in these subgraphs will be colored separately.
(1) H1

l consists of all edges between high-degree vertices in Gl.
To color edges in H1

l , let U be the set of all high-degree vertices such that σl /∈ Iv. Then,
use the palette Aσl

to color the subgraph H1
l [U] since |Aσl

| = 2κd > 4d− 1.

ICALP 2024

40:6 Streaming Edge Coloring with Subquadratic Palette Size

After that, for each high-degree vertex v, add σl to Iv by updating Iv ← Iv ∪ {σl}.
Finally, for each high-degree vertex v /∈ U , insert all its incident edges in Gl to the
virtual stream as leftover edges; we emphasize the point that this also includes its edges
connecting to low-degree vertices.

(2) H2
l consists of all edges connecting high-degree vertices to low-degree vertices.

To color edges in H2
l , go over all low-degree vertices u in the alphabetical order. For each

low-degree vertex u, if cu[σl] = ⊥, then check if degGl
(u) >

√
∆; if so, then initialize a

counter cu[σl]← 0.
Enumerate its incident edges in H2

l in the alphabetical order. For the b-th edge (u, v) ∈ El

incident on u (starting with b = 0), consider several cases below.
(a) If (u, v) was already inserted to the virtual stream in Step (1) due to the reason that

v /∈ U , then skip it and proceed to the next edge incident on u.
(b) Define δ = rv − ru mod K, so d ∈ [0, K − 1]. If δ < 2d or δ > K − 2d, then insert

edge (u, v) to the virtual stream as a leftover edge.
(c) Otherwise, assume 2d ≤ δ ≤ K − 2d. There are several sub-cases.

If cu[σl] = 2d, then simply insert the edge (u, v) to the virtual stream as a leftover
edge.
If cu[σl] ̸= ⊥ and cu[σl] < 2d, then check if the (ru + cu[σl])-th color from palette
Cσl

has already been used in H2
l on any other edge incident on high-degree vertex

v. If so, then insert the edge (u, v) to the virtual stream as a leftover edge;
otherwise, assign the (ru + cu[σl])-th color from palette Cσl

to edge (u, v).
Otherwise if cu[σl] = ⊥, check if pl[σl] ≥ 2d/

√
∆. If so, insert edge (u, v) to the

virtual stream as a leftover edge.
In the case that cu[σl] = ⊥ and pl[σl] < 2d/

√
∆, check if the(

ru + b +
√

∆ · pl[σl]
)

-th color from palette Bσl
has already been used in H2

l on
any other edge incident on high-degree vertex v. If so, then insert the edge (u, v) to
the virtual stream as a leftover edge; otherwise, assign the

(
ru + b +

√
∆ · pl[σl]

)
-

th color from palette Bσl
to edge (u, v).

In all cases (a)(b)(c), if cu[σl] ̸= ⊥, increment the counter by one cu[σl] ← cu[σl] + 1
afterwards (even if (u, v) is inserted to the virtual stream).

Coloring leftover edges

To color all leftover edges in the virtual stream, we apply the above algorithm recursively on
this virtual stream as its input data stream, with fresh colors and independent randomness.
Some of the notations used in the algorithm description are summarized in Table 1.

2.2 Proof of correctness
Let us first state some basic properties of the algorithm.

▶ Lemma 2. The value of any counter cu[i] depends on the data stream and randomness of
indices {σl}, but is independent of the random shifts {rv | v ∈ V }.

Proof. According to the description of the algorithm, each counter cu[i] is initialized to 0 in
the first interval of edges Ek such that degGk

(u) >
√

∆ and σk = i; this event is independent
of random shifts {rv | v ∈ V }. Later on, for any l ≥ k such that σl = i, cu[i] will increase by
|degH2

l
(u)| if u is a low-degree vertex in Gl. Therefore, cu[i] is always independent of the

random shifts {rv | v ∈ V }. ◀

S. Chechik, D. Mukhtar, and T. Zhang 40:7

Table 1 Some of the notations used in the algorithm.

notation definition
El the set of O(n) edges in the l-th interval in from the data stream
Gl Gl = (V, El) is the subgraph collected in the l-th interval

phase a phase consists of ∆1/2 consecutive intervals
κ a constant at least 32 which is also an integer power of 2

Ai, Bi, Ci, 1 ≤ i ≤ κ∆/d three sequences of sets of palettes of size K = 2κd

cv[i] ∈ {⊥} ∪ [0, K − 1] a counter bounding using colors from palette Ci

rv rv ∈ [0, K − 1] is a random shift
Iv i ∈ Iv if v already has edges with colors from Ai

σl a uniformly random index from [1, κ∆/d] for the l-th interval
pl[i] a counter defined by pl[i] = |{σk = i | l0 ≤ k < l}|

high-degree vertex high-degree if degGl
∈ [d, 2d)

low-degree vertex high-degree if degGl
< d

H1
l all edges between high-degree vertices in Gl

H2
l all edges connecting high-degree vertices and low-degree vertices

▶ Lemma 3. At the beginning of the l-th interval, for any low-degree vertex u, if cu[σl] ̸= ⊥,
then all colors from any palette Cσl

indexed by ru + cu[σl], rv + cu[σl] + 1, · · · , ru + 2d− 1
mod K haven’t been used for any edge incident on u.

Proof. This is because the counter cu[σl] increases by one each time we use a color from Cσl

on edges incident on u, so the colors indexed by larger integers have not been used yet. ◀

▶ Lemma 4. For each vertex u, at any moment during the current phase, there are at most
∆
2d different indices i such that∑

l,σl=i

degGl
(u) ≥ 2d

Proof. Since degG(u) ≤ ∆, the number of indices i such that
∑

l,σl=i degGl
(u) ≥ 2d is

bounded by ∆
2d . ◀

Next, we show that our algorithm always produces a valid edge coloring.

▶ Lemma 5. The algorithm always outputs a valid edge coloring of G.

Proof. Consider any two adjacent edges (u, v), (u, w) ∈ E, and we will show that (u, v), (u, w)
must have different colors in the output stream. Note that v does not need to be different
from w since G might not be a simple graph. If one of them appears in the virtual stream,
then because the recursion for leftover edges uses fresh colors for each interval, we can make
sure that (u, v), (u, w) are assigned different colors. For the rest we assume that (u, v), (u, w)
are not leftover edges.

First, consider the case where both (u, v), (u, w) appear in the same interval from the
input stream. According to the algorithm, if they are colored in different Step (1) and (2)
respectively, then they are picking colors from separate palettes; if they are colored in the
same Step (1) or (2), then the algorithm must have colored them in a compatible way.

Secondly, consider the case where (u, v), (u, w) appear in different intervals from the input
stream. Assume (u, v) is in interval El and (u, w) is in interval Eh, h ̸= l. Consider the
following cases.

ICALP 2024

40:8 Streaming Edge Coloring with Subquadratic Palette Size

One of (u, v), (u, w) is colored in Step (1) and the other in Step (2).
In this case, they are using different palettes, so their colors are always different.
Both (u, v), (u, w) are colored in Step (1) but in different intervals.
In this case, since (u, w) is not a leftover edge, by the algorithm we know that σl ̸= σh.
Therefore, (u, v), (u, w) use colors from different palettes Aσl

, Aσh
.

Both (u, v), (u, w) are colored in Step (2) but in different intervals.
If u is high-degree in both intervals El, Eh, then since neither of (u, v), (u, w) is a leftover
edge, it must be σl ̸= σh. Hence, (u, v), (u, w) are taking colors from different palettes.
Next, assume u is low-degree in both intervals, plus that σl = σh. If (u, v), (u, w) were
selecting colors from Bσl

, Cσh
, then their colors must be different. So, we only need to

consider the case where both (u, v), (u, w) were selecting colors from Bσl
, or from Cσl

.
Let us analyze these two cases separately.

(u, v), (u, w) were selecting colors from Bσl
. Then, by the algorithm description, (u, v)

could only take colors from Bσl
taking indices from the range

[ru +
√

∆ · pl[σl], ru +
√

∆ · (pl[σl] + 1)− 1] mod K

and (u, w) could only take colors from Bσl
taking indices from the range

[ru +
√

∆ · ph[σh], ru +
√

∆ · (ph[σh] + 1)− 1] mod K

As l ̸= h and σl = σh, we know that pl[σl] ̸= ph[σh], and therefore the two ranges

[ru +
√

∆ · pl[σl], ru +
√

∆ · (pl[σl] + 1)− 1] mod K

and

[ru +
√

∆ · ph[σh], ru +
√

∆ · (ph[σh] + 1)− 1] mod K

are disjoint, and thus the colors of the two edges must be different.
(u, v), (u, w) were selecting colors from Cσl

.
Suppose the color indices of (u, v), (u, w) were ru + c

(1)
u [σl] and ru + c

(2)
u [σl], where

c
(1)
u [σl] ̸= c

(2)
u [σl] are the counter values of cu[σl] by the time when the color was

selected. Hence, (u, v), (u, w) are picking colors with different indices.
Finally, assume u is high-degree in Gl and low-degree in Gh. Then, when coloring the
edge (u, v), by the condition on Step (2)(b), we know that δ = ru− rv mod K belongs to
[2d, K−2d]. By Lemma 3, as the color index of (u, v) always belongs to {rv, rv +1, · · · , rv +
2d− 1} and the color index of (u, w) always belongs to {ru, ru + 1, · · · , ru + 2d− 1}, the
colors of (u, v), (u, w) should be different as the two index sets are disjoint. ◀

Next, we verify that the total space of each recursion level is at most O(n).

▶ Lemma 6. The space usage of each recursion level of the algorithm is O(n).

Proof. It is clear that in each phase, the total space of all offsets is at most O(n). For the
number of counters in a single phase, every time a new counter cu[σl] has been initialized,
we must have degGl

(u) >
√

∆ for some interval index l within this phase. Since the total
sum of vertex degrees within this phase is bounded by O(n

√
∆), we know that the number

of counters is bounded by O(n).
As for the total space sets Iv’s, in each interval, any set Iv adds one more element if v is

high-degree. As the total number of edges collected from a single phase is O(n
√

∆), The
total size of

∑
v∈V |Iv| would be at most O(n

√
∆/d) = O(n). ◀

S. Chechik, D. Mukhtar, and T. Zhang 40:9

To bound the total number different colors in G, we need to analyze the total number of
leftover edges of each recursion level.

▶ Lemma 7. Suppose there are m edges from the input stream (across all phases) in total.
Then, the expected number of leftover edges to enter the virtual stream is at most 7m/κ, over
the randomness of shifts {rv}v∈V and indices {σl}.

Proof. Consider any single phase, and let (u, v) ∈ E be an arbitrary edge that appears in
interval El. There are several cases where (u, v) could possibly be a leftover edge that gets
inserted to the virtual stream.

Edge (u, v) becomes leftover on Step (1).
The condition for (u, v) being cast as a leftover edge is that σl ∈ Iu ∪ Iv; that is, palette
Aσl

was already used for edges incident on u or v in a previous interval. Since any vertex
can be high-degree in at most ∆/d intervals, the number of non-zero entries of Iu, Iv is
at most 2∆/d. As σl ∈ [κ∆/d] is uniformly random, the probability that σl ∈ Iu ∪ Iv is
at most 2/κ, over the randomness of σl.
Edge (u, v) becomes leftover on Step (2) because cu[σl] = 2d.
By Lemma 4, there are at most ∆

2d different indices i such that
∑l−1

k=l0,σk=i degGk
(v) ≥ 2d;

let I be the set of these indices. Then, since σl is picked uniformly at random, the
probability that σl ∈ I is at most 1

2κ .
As cu[i] ≤

∑l−1
k=l0,σk=i degGk

(v) for any i, the probability that cu[σl] = 2d is at most 1
2κ .

Therefore, (u, v) becomes leftover on this step with probability at most 1
2κ .

Edge (u, v) becomes leftover on Step (2)(b).
In this case, we have δ < 2d or δ > K − 2d for δ = rv − ru mod K. Since rv, ru were
chosen uniformly at random from [0, K − 1], the probability of this event is at most
4d/K < 2/κ, over the randomness of rv.
Edge (u, v) becomes leftover on Step (2)(c) due to pl[σl] ≥ 2d/

√
∆.

Note that since each σk was picked uniformly at random, the expectation of pl[σl]
which counts |{σk = σl | l0 ≤ k < l}| is bounded by d

κ
√

∆
, over the randomness of

σl0 , σl0+1, · · · , σl−1. By Markov’s inequality, the probability that pl[σl] ≥ 2d/
√

∆ is at
most 1

2κ .
Edge (u, v) becomes leftover on Step (2)(c) and pl[σl] < 2d/

√
∆.

In this case, assume u is low-degree and v is high-degree in interval El. We need to
consider two more sub-cases below.

cu[σl] ̸= ⊥.
In this case, edge (u, v) was attempting to use a color from Cσl

. Right before (u, v)
was enumerated, let S be the set of low-degree neighbors w of v whose alphabetical
orders are before u, plus that cw[σl] ̸= ⊥.
For each vertex w ∈ S, suppose there are kw parallel edges between v, w, and let bw

be the value of the counter cw[σl] when the first edge (u, w) was enumerated from the
perspective of w. Define an index set

I =
⋃

w∈S

{rw + bw, rw + bw + 1, · · · , rw + bw + kw − 1}

Note that |I| < 2d since
∑

w∈S kw ≤ degGl
(v) < 2d. As the algorithm enumerates

vertices and edges on Step (2)(c) in the alphabetical order, we know that I is the set
of all possible color indices of edges (v, w), w ∈ S in palette Cσl

.
Now, on the one hand, by Lemma 2, all values of bw, kw are independent of the random
shifts {rz | z ∈ V }. Therefore, as u /∈ S, we know that ru is independent of I. On

ICALP 2024

40:10 Streaming Edge Coloring with Subquadratic Palette Size

the other hand, for (u, v) to be a leftover edge, ru + cu[σl] must belong to I. As the
value cu[σl] is also independent of ru, the probability that ru + cu[σl] ∈ I is at most
|I|/K < 1/κ, over the random choice of ru.
cu[σl] = ⊥.
In this case, edge (u, v) was attempting to use a color from Bσl

. Similar to the previous
sub-case, right before (u, v) was enumerated, let T be the set of low-degree neighbors
w of v whose alphabetical orders are before u, plus that cw[σl] = ⊥.
For each vertex w ∈ T , suppose there are kw parallel edges between u, w, and (u, w)
(the first copy) is the bw-th edge incident on w. Define an index set

J =
⋃

w∈T

{rw+bw+
√

∆·pl[σl], rw+bw+
√

∆·pl[σl]+1, · · · , rw+bw+
√

∆·pl[σl]+kw−1}

Note that |J | < 2d since
∑

w∈T kw ≤ degGl
(v) < 2d. As the algorithm enumerates

vertices and edges on Step (2)(c) in the alphabetical order, we know that J is the set
of all possible color indices of edges (v, w), w ∈ T in palette Bσl

.
Suppose (u, v) is the b-th edge of u in Gl, so ru + b +

√
∆ · pl[σl] is the color index that

(u, v) attempted to use in Bσl
. Since u /∈ T , and that ru is independent of pl[σl] and

all values in {bw | w ∈ T}, we know that the probability that ru + b +
√

∆ · pl[σl] ∈ J

is at most |J |/K < 1/κ, over the random choice of ru.

Taking a summation of all the cases, the probability that (u, v) becomes a leftover edge
is at most 7/κ. Therefore, expected number of leftover edges is bounded by 7m/κ. ◀

▶ Lemma 8. The expected recursion depth of the main algorithm is O(log ∆).

Proof. Consider any recursion where the input stream contains m edges. By Markov’s
inequality and Lemma 7, at each recursion level, with probability at least 1/2, the number of
leftover edges is at most 14m/κ < m/2. Since the original graph G contains O(n∆) edges,
after O(log ∆) recursion levels in expectation, the input has at most O(n) edges, so the
algorithm would not recurse further. ◀

As a corollary, we can bound the total number of different colors and total memory, which
concludes the proof of Theorem 1.

▶ Corollary 9. The number of colors used by our algorithm is Õ
(
∆1.5)

, and the total memory
is bounded by O(n log ∆); both bounds hold in expectation.

Proof. Consider any recursion level. According to the algorithm, in each phase and each
choice of d ≥

√
∆ which is an integer power of 2, the total number of colors in the palettes

{Ai} ∪ {Bi} ∪ {Ci} is O(∆). Also, each interval creates at most O(
√

∆) new colors when
d <
√

∆. Since there are O(
√

∆) phases, the number of colors used for processing intervals
is Õ(∆1.5), summing over all choices of d. As the expected recursion depth is O(log ∆),
together with Lemma 6 we can finish the proof. ◀

2.3 Adaptation to an unknown ∆
So far we have assumed that the value of the maximum degree ∆ of G is known to the
algorithm as prior knowledge. We can adapt our algorithm to an unknown ∆ by losing a
constant factor in the total number of colors in the following way. Basically, we will maintain
the value ∆t which is the maximum degree of the subgraph containing the first t edges in
the data stream. Whenever ∆t ∈ (2k−1, 2k], we will apply Theorem 1 with ∆ = 2k to color

S. Chechik, D. Mukhtar, and T. Zhang 40:11

all the edges. If k increases at some point, we will restart a new instance of Theorem 1 with
a new choice of ∆ = 2k and continue to color the edges with a separate palette; to clarify,
when a new instance of Theorem 1 is restarted, we continue with the current pass of the
data stream, not starting over with a new pass. In the end, the total number of colors will
be Õ(

∑⌈log ∆⌉
k=1 21.5k) = Õ(∆1.5) in expectation.

2.4 From expectation to high probability
So far our bounds on memory and the number of colors only hold in expectation, not with
high probability. These bounds can actually hold with high probability rather than in
expectation. In fact, as shown in Lemma 8, the expected recursion depth can be bounded by
O(log ∆). We can also show that the depth is O(log n) with high probability, and therefore
the total number of colors is at most O(∆1.5 · log n). To get rid of the dependency on log n,
we can increase the size of intervals by a factor of log n; that is, each interval now contains
O(n log n) edges. This would decreases the total number of phases by a factor of Ω(log n)
and thus decreases the number of colors, which cancels out the extra log n factor in the color
bound.

References
1 Mohammad Ansari, Mohammad Saneian, and Hamid Zarrabi-Zadeh. Simple streaming

algorithms for edge coloring. In Proccedings of the 30th Annual European Symposium on
Algorithms (ESA ‘22), pages 8:1–8:4, 2022.

2 Soheil Behnezhad, Mahsa Derakhshan, MohammadTaghi Hajiaghayi, Marina Knittel, and
Hamed Saleh. Streaming and massively parallel algorithms for edge coloring. In Proccedings
of the 27th Annual European Symposium on Algorithms (ESA ‘19), pages 15:1–15:14, 2019.

3 Soheil Behnezhad and Mohammad Saneian. Streaming edge coloring with asymptotically
optimal colors. arXiv preprint, 2023. arXiv:2305.01714.

4 Sayan Bhattacharya, Fabrizio Grandoni, and David Wajc. Online edge coloring algorithms via
the nibble method. In Proceedings of the 32nd Symposium on Discrete Algorithms (SODA
‘21), pages 2830–2842, 2021.

5 Andrea Ribichini Camil Demetrescu, Irene Finocchi. Trading off space for passes in graph
streaming problems. In Proccedings of the 17th Annual Symposium on Discrete Algorithms
(SODA ‘06), pages 714–723, 2006.

6 Yi-Jun Chang, Qizheng He, Wenzheng Li, Seth Pettie, and Jara Uitto. The complexity of
distributed edge coloring with small palettes. In Proceedings of the Twenty-Ninth Annual
Symposium on Discrete Algorithms (SODA ‘18), pages 2633–2652, 2018.

7 Moses Charikar and Paul Liu. Improved algorithms for edge colouring in the W-streaming
model. In Proccedings of the 4th Symposium on Simplicity in Algorithms (SOSA ‘21), pages
181–183, 2021.

8 Ilan Reuven Cohen, Binghui Peng, and David Wajc. Tight bounds for online edge coloring.
In 2019 IEEE 60th Annual Symposium on Foundations of Computer Science (FOCS), pages
1–25. IEEE, 2019.

9 Prantar Ghosh and Manuel Stoeckl. Low-memory algorithms for online and w-streaming edge
coloring. arXiv preprint, 2023. arXiv:2304.12285.

10 David B Shmoys Howard J Karloff. Efficient parallel algorithms for edge coloring problems.
Journal of Algorithms, 8(1):39–52, 1987.

11 Janardhan Kulkarni, Yang P Liu, Ashwin Sah, Mehtaab Sawhney, and Jakub Tarnawski.
Online edge coloring via tree recurrences and correlation decay. In Proceedings of the 54th
Annual ACM SIGACT Symposium on Theory of Computing, pages 104–116, 2022.

12 J. Misra and David Gries. A constructive proof of Vizing’s theorem. Information Processing
Letters, 41(3):131–133, 1992.

ICALP 2024

https://arxiv.org/abs/2305.01714
https://arxiv.org/abs/2304.12285

40:12 Streaming Edge Coloring with Subquadratic Palette Size

13 Amin Saberi and David Wajc. The greedy algorithm is not optimal for on-line edge coloring. In
Proceedings of the 48th International Colloquium on Automata, Languages, and Programming
(ICALP ‘21), pages 109:1–109:18, 2021.

14 Claude E Shannon. A theorem on coloring the lines of a network. Journal of Mathematics
and Physics, 28(1-4):148–152, 1949.

15 Aravind Srinivasan, David Wajc, et al. Online dependent rounding schemes. arXiv preprint,
2023. arXiv:2301.08680.

16 Vadim G Vizing. Critical graphs with given chromatic class (in russian). Metody Discret.
Analiz., 5:9–17, 1965.

https://arxiv.org/abs/2301.08680

	1 Introduction
	1.1 Our result
	1.2 Related work
	1.3 Technical Overview

	2 Edge coloring with subquadratic palette size
	2.1 Algorithm description
	2.2 Proof of correctness
	2.3 Adaptation to an unknown Delta
	2.4 From expectation to high probability

