
Faster Algorithms for Dual-Failure Replacement
Paths
Shiri Chechik #

Tel Aviv University, Israel

Tianyi Zhang #

Tel Aviv University, Israel

Abstract
Given a simple weighted directed graph G = (V, E, ω) on n vertices as well as two designated
terminals s, t ∈ V , our goal is to compute the shortest path from s to t avoiding any pair of
presumably failed edges f1, f2 ∈ E, which is a natural generalization of the classical replacement
path problem which considers single edge failures only.

This dual failure replacement paths problem was recently studied by Vassilevska Williams,
Woldeghebriel and Xu [FOCS 2022] who designed a cubic time algorithm for general weighted
digraphs which is conditionally optimal; in the same paper, for unweighted graphs where ω ≡ 1,
the authors presented an algebraic algorithm with runtime Õ(n2.9146), as well as a conditional
lower bound of n8/3−o(1) against combinatorial algorithms. However, it was unknown in their work
whether fast matrix multiplication is necessary for a subcubic runtime in unweighted digraphs.

As our primary result, we present the first truly subcubic combinatorial algorithm for dual failure
replacement paths in unweighted digraphs. Our runtime is Õ(n3−1/18). Besides, we also study
algebraic algorithms for digraphs with small integer edge weights from {−M, −M +1, · · · , M −1, M}.
As our secondary result, we obtained a runtime of Õ(Mn2.8716), which is faster than the previous
bound of Õ(M2/3n2.9144 + Mn2.8716) from [Vassilevska Williams, Woldeghebriela and Xu, 2022].

2012 ACM Subject Classification Theory of computation → Shortest paths

Keywords and phrases graph algorithms, shortest paths, replacement paths

Digital Object Identifier 10.4230/LIPIcs.ICALP.2024.41

Category Track A: Algorithms, Complexity and Games

Related Version Full Version: https://arxiv.org/abs/2404.13907

Funding This work is part of a project that has received funding from the European Research
Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant
agreement No 803118 UncertainENV).

1 Introduction

In the replacement path problem, we want to understand shortest paths in a directed graph
that avoid presumably failed edges. More specifically, let G = (V, E, ω) be an edge-weighted
simple digraph on n vertices and m edges. Fix a pair of source and terminal vertices s, t ∈ V ,
we want to compute the shortest path from s to t that avoids any designated set F ⊆ E of
failed edges.

The most classical setting is when the number of failures is at most one; namely, we
want to compute all the values of dist(s, t, G \ {f}) when f ranges over all edges on the
shortest path from s to t in G. The complexity of single-failure replacement path is now
well-understood. On the hardness side, it was proved that computing all single-failure
replacement paths in weighted graphs requires at least n3−o(1) time [19] assuming the APSP
conjecture. To breach the cubic barrier, we need to assume the input digraph has small
integer edge weights, or allow approximation errors in the algorithm output. When the edge

EA
T
C
S

© Shiri Chechik and Tianyi Zhang;
licensed under Creative Commons License CC-BY 4.0

51st International Colloquium on Automata, Languages, and Programming (ICALP 2024).
Editors: Karl Bringmann, Martin Grohe, Gabriele Puppis, and Ola Svensson;
Article No. 41; pp. 41:1–41:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:shiri.chechik@gmail.com
mailto:tianyiz21@tauex.tau.ac.il
https://orcid.org/0000-0003-3407-3307
https://doi.org/10.4230/LIPIcs.ICALP.2024.41
https://arxiv.org/abs/2404.13907
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

41:2 Faster Algorithms for Dual-Failure Replacement Paths

weights are integers in the range {−M,−M + 1, · · · , M − 1, M}, there is an algorithm with
runtime Õ(Mnω)1 [7, 17]. For the special case when the input digraph is unweighted (ω ≡ 1),
there is a combinatorial algorithm (algorithms not using fast matrix multiplication) with
runtime Õ(mn1/2) [16], which is optimal under the hardness of combinatorial boolean matrix
multiplication [19].

A natural extension is to study replacement paths when there are two edge failures. We
are interested in fast algorithms that compute for all pairs of edges f1, f2 ∈ E the value of
dist(s, t, G \ {f1, f2}). This problem was first studied in [4] and recently revisited in [20]. For
general weighted digraphs, the authors of [20] designed an algorithm with runtime Õ(n3),
which is the same as the easier single failure replacement paths problem. When the graph
has small edge weights from range {−M,−M + 1, · · · , M − 1, M}, in the same paper the
authors have shown subcubic runtime upper bound of Õ(M2/3n2.9144 + Mn2.8716) using fast
matrix multiplication. Finally, as complementary to their algorithms, the authors showed
a conditional lower bound of n8/3−o(1) against combinatorial algorithms for unweighted
digraphs assuming the hardness of boolean matrix multiplication.

According to the results in [20], there is a gap in their understanding about dual-failure
replacement paths in unweighted graphs. On the one hand, their algebraic algorithm computes
dual-failure replacement paths in Õ(n2.9144) by setting M = 1; on the other hand, their
conditional lower bound against combinatorial algorithms is also subcubic. So, it is not clear
whether combinatorial algorithm can achieve subcubic runtime as well, or the conditional
lower bound can be improved to cubic.

1.1 Our results

In this paper, we first study fast combinatorial algorithms for unweighted digraphs and show
that subcubic runtime can indeed be achieved without using fast matrix multiplication.

▶ Theorem 1. Given a simple unweighted directed graph G = (V, E) on n vertices, and
fix any pair of vertices s, t ∈ V , the values of all dual-failure replacement path distances
dist(s, t, G \ {f1, f2}),∀f1, f2 ∈ E can be computed in Õ(n3−1/18) time with high probability;
most importantly, the algorithm does not use fast matrix multiplication.

Here, a digraph is simple if it does not contain two edges between the same pair of vertices
with the same direction. Secondly, we also study fast algebraic algorithms for dual-failure
replacement paths when the edge weights are from the set {−M,−M + 1, · · · , M − 1, M}.
The proof of the following statement is presented in the full version.

▶ Theorem 2. Given a simple weighted directed graph G = (V, E, ω) on n vertices along
with integer edge weights ω : E → {−M,−M + 1, · · · , M − 1, M} without negative cycles,
and fix any pair of vertices s, t ∈ V , the values of all dual-failure replacement path distances
dist(s, t, G \ {f1, f2}),∀f1, f2 ∈ E can be computed in time Õ(Mn2.8716).

1.2 Other related works

The replacement paths problem has also been studied in other settings, including the
single-source setting [13, 6, 12, 11] and the approximation setting [8, 2, 15].

1 ω ∈ [2, 2.371552] is the fast matrix multiplication exponent [21, 10, 1, 14, 18].

S. Chechik and T. Zhang 41:3

s tsi ti sj tj sk tk

p

f1

f2

f1

f2

f1

f2

Figure 1 For simplicity, let us assume that when f1 falls on the sub-paths π[si, ti], the dual-failure
replacement path also passes through si, ti. In this picture, the two cyan dual-failure replacement
paths have length less than L, and we will show that they are vertex-disjoint. The orange dual-failure
replacement path has length at least L, and so it hits a vertex p ∈ U with high probability; in this
case, we will compute single-source single-failure replacement paths to and from p in graph G \ E(π)
to help us compute dual-failure replacement paths.

1.3 Subcubic combinatorial algorithm for unweighted digraphs

1.3.1 One failure on a long st-path
Let us first consider the case where one edge failure f1 lies on the shortest st-path π, while
the other one f2 does not. This case would be easy when we use fast matrix multiplication
as did by [20], but it becomes complicated when we are restricted to purely combinatorial
algorithms.

As a preliminary step, we first show how to deal with the case where |π| > L for some
parameter L slightly larger than n0.5, say L = n0.55. Partition the st-path π into sub-paths
of length exactly 5L as π = γ1 ◦ γ2 ◦ · · · ◦ γh, h ≤ ⌈n/5L⌉, and let si, ti be the endpoints of
sub-path γi. Assume only one edge failure f1 falls on sub-path γi, and let ρ be the optimal
replacement path from s to t avoiding {f1, f2}.

Take a random set of vertices U of size O(n log n/L). If |ρ \ π| > L, then with high
probability ρ\π would contain a vertex p from U . Then, we can compute single-source single-
failure replacement paths to and from p in graph G\E(π) that takes runtime Õ(n3.5/L) [6], so
that for each vertex z ∈ V , we know the shortest path between z, p in graph G\ (E(π)∪{f2}).
Using this information, we will be able to recover ρ.

Now suppose |ρ \ π| < L. Then in this case, we will show that the detour parts of
different dual-failure replacement paths ρ are vertex-disjoint from each other when the first
edge failure f1 comes from different choice of sub-paths γi. Then, we can partition G into
vertex-disjoint subgraphs G1, G2, · · · , Gh, such that the dual-failure replacement paths for
failures on γi belong to subgragh Gi, and solve the dual-failure replacement paths problem
for source-terminal pair (si, ti) in graph Gi. See Figure 1 for an illustration.

1.3.2 One failure on a short st-path
By the previous subsection, we have reduced to the case that the st-path has length at most
L. So, for the rest, let us rename the problem instance and assume that |π| ≤ L. For the i-th
edge ei on π (0 ≤ i < L), we can compute the optimal replacement path from s to t avoiding
ei and let αi be the corresponding detour whose endpoints are ai and bi. Again, through

ICALP 2024

41:4 Faster Algorithms for Dual-Failure Replacement Paths

s tai bi

xi

yi

ei

fi

αi

γi

Figure 2 The cyan path is the detour αi that avoids ei, and the orange path is the detour γi that
avoids fi which lies on αi. Via some case analysis, we will show the difficult case is that |αi| < L.

some case analysis, we can assume that the span of each detour αi which is |π[ai, bi]| is at
most g for some parameter g slightly larger than n1/3 (say g = n0.35). Consider any edge
failure fi ∈ E(αi), as a simplification let us assume that the optimal replacement path from
s to t avoiding {ei, fi} is a concatenation:

ρ = π[s, ai] ◦ αi[ai, xi] ◦ γi ◦ αi[yi, bi] ◦ π[bi, t]

where γi is a detour with respect to αi in G \ E(π). Via some case analysis, we can assume
that |αi| < L. See Figure 2 for an illustration.

Let us first consider the case when |γi| < g. A wishful thought is that for two different
choice of dual failures {ei, fi} and {ej , fj} where ei and ej are well-separated on the shortest
path π (|π(ei, ej)| ≥ 10g), we are guaranteed that the two dual-failure detours γi and γj are
vertex-disjoint; if this is the case, then we can partition the graph G into O(L/g) vertex-
disjoint subgraphs and compute dual-failure replacement paths separately. However, this
is generally not true. The key observation is that when fi and fj are roughly at the same
height on the detour, namely |αi[ai, fi)| ≈ |αj [aj , fj)| up to an additive error of at most g,
such a disjointness condition indeed holds. Therefore, our algorithm will further partition
each detour αi into sub-paths of length g as αi = βi

1 ◦ βi
2 ◦ · · · ◦ βi

l . Then, fix any height
index 1 ≤ h ≤ l, we will deal with all the dual failures {ei, fi},∀1 ≤ i ≤ L/g,∀fi ∈ E(βi

h) at
the same time. See Figure 3 for an illustration.

Now, what happens if |γi| ≥ g? We can take a random sample U of pivot vertices of size
O(n log n/g). Then, with high probability, γi contains a vertex in U . For simplicity, assume
both endpoints of the detour γi are lying within the sub-path βi

h which contains the second
edge failure fi, then we could compute single-source shortest paths to and from each vertex
p ∈ U in the subgraph G \

(
E(π) ∪ E(βi

h)
)

which takes time Õ(n3/g), then we can compute
each detour γi for each choice of fi on βi

h in time Õ(g2) by guessing the positions of xi, yi.
Unfortunately, there are L2/g different choices for the subgraph G \

(
E(π) ∪ E(βi

h)
)
, and

thus we do not have enough time to compute single-source shortest paths for each vertex in
U in all these subgraphs. In fact, we can only afford to compute single-source shortest paths
for vertices in U in the subgraph Gh = G \

(
E(π) ∪

⋃L−1
i=0 E(βi

h)
)

; that is, for each index
h, remove all sub-paths βi

h,∀0 ≤ i < L from G \ E(π) simultaneously (which becomes Gh),
and compute multi-source shortest paths to and from U in Gh. The key observation is that

S. Chechik and T. Zhang 41:5

s tai bi

xi

yi

ei

fi

αi

γi

aj bj

xj

yj

ej

fj

αj

γj

Figure 3 For two well-separated edges ei, ej such that |π(ei, ej)| ≥ 10g, if both |γi|, |γj | are less
than g, and fi, fj are roughly at the same height (i.e., |αi[ai, fi)| ≈ |αj [aj , fj)|), then we can show
that the two dual-failure detours γi, γj are vertex-disjoint.

the detour γi cannot touch vertices on βj
h if |i− j| > 10g. Therefore, to compute γi, we can

build a small shortcut graph consisting of all vertices in U ∪
⋃i+10g

j=i−10g V (βj
h) which contains

all edges in
⋃i+10g

j=i−10g E(βj
h) \ E(βi

h) and all shortcut edges to and from p ∈ U weighted by
the single-source distances we have computed in Gh. See Figure 4 for an illustration.

1.3.3 Both failures on the st-path
Now let us assume both edge failures lie on π. As the same in [20], the main difficulty of
dual-failure replacement path for this case comes from the backward paths. More specifically,
given two edge failures {f1, f2}, in general the optimal dual replacement path ρ has three
parts.

A prefix of ρ that diverges from π before the first edge failure f1 on π[s, f1), and then
meets somewhere in the middle y ∈ V (π(f1, f2)) using edges in G \ E(π).
A sub-path of ρ that travels from y to another vertex x ∈ V (π(f1, y]) using edges in
(G \ E(π)) ∪ E(π(f1, f2)); this sub-path is the so-called backward path of ρ which may
converge and diverge multiple times with π(f1, f2).
A suffix of ρ that converges with π after the second edge failure f2 on π(f2, t] starting
from x using edges in G \ E(π), and then reach t using the rest of π.

To compute the backward path, let us divide π into sub-paths of length L for some parameter
L as π = γ1 ◦ γ2 ◦ · · · ◦ γn/L. Take a random pivot vertex set U of size O(n log n

L). The
main observation is that if f1 and f2 are in different sub-paths γi, γj , j − i > 1, plus that
x ∈ V (γi), y ∈ V (γj), then the prefix ρ[s, y] must have length at least L and thus contain a
pivot p ∈ U with high probability. Therefore, if we compute single-source replacement paths
[6] from p in graph G \E(γi), then it would provide useful information about the backward
path of ρ from y to x. See Figure 5 for an illustration.

1.4 Faster algebraic algorithm for weighted digraphs
Let us divide the shortest path π from s to t into sub-paths of hops at most L; that is,
π = γ1 ◦ γ2 ◦ · · · ◦ γ⌈n/L⌉. Given a pair of edge failures {f1, f2}, suppose f1 and f2 belong to
γl1 and γl2 respectively. In the previous paper [20], the difficult case is when f1, f2 come from
different sub-paths, say l1 < l2. To compute dist(s, t, G \ {f1, f2}) efficiently, their approach

ICALP 2024

41:6 Faster Algorithms for Dual-Failure Replacement Paths

s t
ai bi

ai−1 bi−1ai+1 bi+1ai−10g bi−10g
ai+10g bi+10gei

fi

Figure 4 A shortcut graph that helps computing the dual-failure detour γi avoiding {fi, gi}, which
consists of vertices in U ∪

⋃i+10g

j=i−10g
V (βj

h). This shortcut graph includes all edges in
⋃i+10g

j=i−10g
E(βj

h)\
E(βi

h), and some shortcut edges representing distances to and from U in Gh; actually, it will also
contain some shortcut edges between vertices in

⋃i+10g

j=i−10g
V (βj

h) which we have not discussed in the
overview.

s t

p

x y
f1 f2

γi γj

Figure 5 When f1, f2 lie in different sub-paths γi, γj such that j − i > 1, we can show that ρ

must contain a vertex in U with high probability. Then we can apply the algorithm from [6] to
compute single-source replacement path from p in graph G \ E(γi) to learn about the sub-path
ρ[p, x] which contains the backward path in the middle.

S. Chechik and T. Zhang 41:7

was to build a sketch graph Hf1,f2 on vertices {s, t} ∪ V (γl1) ∪ V (γl2) which encodes an
optimal replacement path, and then run s-t shortest path in Hf1,f2 which takes Õ(L2) time
for each {f1, f2}, leading to a total runtime overhead of Õ(n2L2).

Divide each sub-path γl into segments γl = αl
1 ◦ αl

2 ◦ · · · ◦ αl
⌈L/g⌉ of hops at most g (for

some parameter g < L). Assume f1 lies on αl1
h1

and f2 lies on αl2
h2

, and let ρ be the optimal
replacement path from s to t avoiding {f1, f2}. Our main observation is that, if ρ intersects
both αl1

h1
, αl2

h2
, then we can build a smaller sketch graph Hf1,f2 on {s, t}∪V

(
αl1

h1

)
∪V

(
αl2

h2

)
which still encodes ρ, and so the runtime would be reduced to Õ(g2). Otherwise, if ρ skips over
αl2

h2
entirely, we will build a sketch graph Hf1,(l2,h2) on the vertex set {s, t} ∪ V (γl1)∪ V (γl2)

which only depends on f1 and αl2
h2

and not on f2. As the number of such graphs Hf1,(l2,h2)
is at most O(n2/g), the runtime can be bounded by Õ(n2L2/g). Overall, the runtime would
be Õ(n2g2 + n2L2/g) which is always better than the previous bound of Õ(n2L2).

2 Preliminaries

Throughout the paper, logarithm log(∗) will have base 2, and we assume the number of
vertices n in the input graph is an integral power of 2. In any weighted digraph G = (V, E, ω),
for any vertex u ∈ V , let deg(u, G) be its vertex degree (counting both in-edges and out-
edges); for any pair of vertices u, v ∈ V , let dist(u, v, G) be the weighted length of the shortest
path from u to v in G. Throughout the algorithm, we will maintain a distance estimation
function est(∗, ∗, ∗), such that the value est(u, v, G) ≥ dist(u, v, G) is always an upper bound.
All values of est(∗, ∗, ∗) are initially infinity and are non-increasing throughout the algorithms.
When we update the value of an estimation est(u, v, G) with a distance value D, we mean
est(u, v, G)← {D, est(u, v, G)}.

Given any directed path or walk ρ in G, let |ρ| be the number of edges on ρ, and let ω(ρ)
be its total edge weight. For any two vertices u, v ∈ V (ρ) where u comes before v on ρ, let
ρ[u, v] ⊆ ρ be the sub-path of ρ from u to v. In addition, let ρ[∗, v] and ρ[u, ∗] be the prefix
and suffix sub-path of ρ; this notation will be useful when we don’t have variable names for
the endpoints of path ρ.

For any edge f ∈ E(ρ) and vertex u ∈ V (ρ) which comes before edge f , let ρ[u, f) be
the sub-path from u to f (excluding edge f); similarly we can define notations ρ(f, v] and
ρ(f1, f2) in the natural way.

Borrowing a terminology from [20], let us define the notion of canonical paths.

▶ Definition 3 ([20]). Let s, t ∈ V be two vertices, and let π be a shortest path from s to
t. For any edge set F ⊆ E, a path ρ from s to t in G \ F is called canonical with respect
to π and F , if for any u, v ∈ V (π) ∩ V (ρ) such that u appears before v in both π, ρ and
E(π[u, v]) ∩ F = ∅, then ρ[u, v] is the same as π[u, v].

2.1 Unweighted digraphs
For tie-breaking among shortest paths, we can randomly perturb all unit edge weights slightly
so that all replacement shortest paths for at most two edge failures are unique under the
perturbed weights. We can show that, under the weight perturbation, all replacement shortest
paths are canonical. Next, let us state a basic property regarding shortest replacement paths
for one edge failure.

▶ Lemma 4. Consider any edge f ∈ E(π), any canonical shortest path ρ from s to t avoiding
f can be decomposed as ρ = π[s, a] ◦ α ◦ π[b, t], where a, b ∈ V (π) and α is a shortest path
from a to b in G \ E(π). For convenience, α will be called the detour of the replacement
path, and a, b are called the divergence and convergence vertex, respectively.

ICALP 2024

41:8 Faster Algorithms for Dual-Failure Replacement Paths

It is known that shortest replacement paths for one failure can be computed efficiently.

▶ Lemma 5 ([16]). Given an unweighted digraph G = (V, E) on n vertices and m edges.
Fixing any source-terminal pair s, t ∈ V , we can compute all canonical shortest replacement
paths from s to t avoiding f with high probability in time Õ(mn1/2 + n2), where f ranges
over all edges in E.

We also need a basic property about replacement paths for dual edge failures where only
one edge falls on the st-path π.

▶ Lemma 6. Consider any edge f1 ∈ E(π) and let α be the detour of the shortest replacement
path that avoids f1. Consider any edge f2 ∈ E(α). Then, there is a shortest replacement
path ρ avoiding {f1, f2} such that:

ρ is a canonical shortest path avoiding f1 in graph G \ {f1}.
ρ diverges and converges with π for once.

We will be applying the following algorithm for single-source replacement paths algorithm
from [6] as a black-box.

▶ Lemma 7 ([6]). Given an unweighted digraph G = (V, E) on n vertices and m edges.
Fixing any vertex s ∈ V , we can compute all shortest replacement paths from s to t avoiding
f with high probability in time Õ(mn1/2 + n2), where t ranges over all vertices in V \ {s}
and f ranges over all edges in E.

To be consistent with our perturbation-based tie-braking, we should also impose the same
edge weight perturbation on the graph on which Lemma 7 is applied; although Lemma 7
is only stated for unweighted digraphs, it also works with edge weight perturbation (for
example, all hitting set arguments still work, since perturbation only changes path lengths
negligibly).

In the original paper [6], they only claim to compute all the length of shortest replacement
paths, but here we need the actual shortest paths tree in each graph G \ {f}. To achieve
such an augmentation, during the execution of the algorithm in [6], we can keep track of
the last edge of each replacement path, and by uniqueness of shortest paths under weight
perturbation, the set of these last edges form the shortest paths tree.

Finally, one of our basic tools is a truncated version of Dijkstra’s algorithm, which is
stated below.

▶ Lemma 8 ([9]). Given an unweighted digraph G = (V, E) on n vertices. For any vertex
s ∈ V and any threshold L, let U = {u | dist(s, u, G) ≤ L}. Then we can compute shortest
paths from s to all vertices in U in time O(

∑
u∈U deg(u, G) + n log n).

2.2 Weighted digraphs
When the input graph contains negative edge weights, we assume it does not contain any
negative cycles. For weighted graphs, since fast matrix multiplication algorithms only work
with small integer edge weights, we will not assume unique shortest paths by perturbing the
edge weights.

Our algorithm relies on fast algorithms which computes shortest paths in digraphs with
negative edge weights.

▶ Lemma 9 ([3]). Given a weighted digraph G = (V, E, ω) with edge weights ω : E →
{−M,−M + 1, · · · , M − 1, M} without negative cycles, and fix any source vertex s ∈ V .
Then, single-source shortest path from s can be computed in time Õ(m log M) with high
probability.

S. Chechik and T. Zhang 41:9

▶ Lemma 10 ([22]). Given a weighted digraph G = (V, E, ω) with edge weights ω : E →
{−M,−M + 1, · · · , M − 1, M} without negative cycles, all-pairs shortest paths in G can be
computed in time Õ(M

1
4−ω n2+ 1

4−ω) with high probability.

We will apply single-source multi-terminal replacement paths algorithms as a black-box;
the currently best known upper bound is stated below.

▶ Lemma 11 ([13]). Given a weighted digraph G = (V, E, ω) with edge weights ω : E →
{−M,−M +1, · · · , M −1, M} without negative cycles, and fix any source vertex s ∈ V and a
terminal set T ⊆ V . Then, the value of all dist(s, t, G \ {f}),∀t ∈ T, f ∈ E can be computed
in time Õ(Mnω + M

1
4−ω n1+ 1

4−ω · |T |) with high probability.

We will use the following fast algorithm for distance sensitivity oracles in weighted digraphs.
In a weighted digraph G = (V, E, ω) with edge weights ω : E → {−M,−M +1, · · · , M−1, M},
a distance sensitivity oracle is an efficient data structure that answers dist(u, v, G \ {f}) for
any u, v ∈ V, f ∈ E.

▶ Lemma 12 ([5]). Given a weighted digraph G = (V, E, ω) with edge weights ω : E →
{−M,−M + 1, · · · , M −1, M} without negative cycles, a distance sensitivity oracle with Õ(1)
query time can be constructed in time Õ(Mn2.8719).

3 One failure on a short st-path

We use two parameters g and L which will be determined in the end such that g < n1/2 < L.
In this section, we study the case where only one edge failure lies on a short st-path, plus
that the input graph is sparse and dist(s, t, G) ≤ L. More specifically, let G = (V, E) be an
unweighted digraph with n vertices and m edges, and consider a pair of vertices s, t with a
shortest st-path E(π) of length at most L. The task is to compute for any pairs of edges
f1, f2 the value of dist(s, t, G \ {f1, f2}), where f1 ∈ E(π), f2 /∈ E(π). The purpose of this
section is to prove the following lemma.

▶ Lemma 13. Let G = (V, E) be an unweighted digraph with n vertices and m edges. Fix
a pair of source and terminal s, t ∈ V such that dist(s, t, G) ≤ L. Then, all values of
dist(s, t, G \ {f1, f2}) can be computed with high probability in time:

Õ

(
mn1.5 + n3

L
+ mn1/2L/g + n2L/g + mL2/g + mnL2/g3 + mLg + L2g4 + n2L2/g2

)
when f1 ∈ E(π) while f2 /∈ E(π); here g is an arbitrary parameter to be determined later.

Let π = ⟨s = u0, u1, · · · , u|π| = t⟩. First, we use Lemma 5 to compute for each
(ui, ui+1) ∈ E(π) the replacement path from s to t that avoids ei = (ui, ui+1), and let αi be
the corresponding detour avoiding ei which starts at ai and ends at bi.

For each detour αi, divide αi into sub-paths of length g (except for the last sub-path)
and list them as βi

1, · · · , βi
li

, and assume f ∈ E(βi
l); later on, when we refer to βi

l , if l ≤ 0 or
l > li, then βi

l would simply be an empty path.
Throughout the algorithm, for each 0 ≤ i < |π| and every edge f ∈ E(αi), we will

maintain a distance estimation est(s, t, G \ {ei, f}) ≥ dist(s, t, G \ {ei, f}), and in the end it
will be guaranteed that est(s, t, G \ {ei, f}) = dist(s, t, G \ {ei, f}).

Let ρi,f be a canonical shortest replacement path for {ei, f}. Suppose ρi,f departs from
π[s, ai] ◦ αi ◦ π[bi, t] at vertex xi,f and converges with π[s, ai] ◦ αi ◦ π[bi, t] at vertex yi,f . For
the rest, we address different cases depending on the properties regarding αi, ρi,f ; note that
our algorithm does not need to know which case it is in advance.

ICALP 2024

41:10 Faster Algorithms for Dual-Failure Replacement Paths

s tai bi
xi,f

yi,f

ei

f

(a) In this case, xi,f ̸= ai and ρi,f [xi,f , ∗] diverges from π immediately.

s tai bi

xi,f

yi,f

ei

f

(b) In this case, xi,f = ai and ρi,f [xi,f , ∗] uses some edges on π[ai, bi] before it diverges.

Figure 6 In this picture, the cyan path is detour αi, and the orange path is ρi,f [xi,f , yi,f].

Case 1: xi,f ∈ V (π[s, ai]) or yi,f ∈ V (π[bi, t])

This is an easy case of our algorithm, and the runtime of this part can be bounded by O(mL).
See Figure 6 for an illustration. Check the full version for more details.

Case 2: xi,f , yi,f ∈ V (αi) and |αi| ≥ L

This is an easy case of our algorithm, and the runtime of this part can be bounded by
Õ(mn1.5+n3

L). See Figure 7 for an illustration. Check the full version for more details.

Case 3: xi,f , yi,f ∈ V (αi), plus that |π[ai, ui]| > g or |π[ui+1, bi]| > g

This is an easy case of our algorithm, and the runtime of this part can be bounded by

Õ
(
m
√

nL/g + n2L/g + L2)
See Figure 8 for an illustration. Check the full version for more details.

Case 4: xi,f , yi,f ∈ V (αi), plus that xi,f /∈ V (βi
l) or yi,f /∈ V (βi

l), and |αi| < L

This is an easy case of our algorithm, and the runtime of this part can be bounded by
Õ(mL2/g). See Figure 9 for an illustration. Check the full version for more details.

S. Chechik and T. Zhang 41:11

s tai bi

xi,f yi,f

ei

f

Figure 7 The sub-path ρi,f [ai, bi] has length greater than L.

at least g edges

s tai bi

xi,f yi,f

ei

f

Figure 8 In this picture, xi,f , yi,f ∈ V (αi) plus that |π[ai, ui]| > g.

s tai bi

xi,f

yi,f

ei

f

Figure 9 The dotted cyan path is βi
l .

ICALP 2024

41:12 Faster Algorithms for Dual-Failure Replacement Paths

s t
aj bj

aj−1 bj−1aj+1 bj+1ab+10kg bb+10kg
ab+(10k+5)g bb+(10k+5)g

Figure 10 Graph Xb+10kg
l excludes all edges in E(π) ∪

⋃b+(10k+5)g

j=b+10kg,j∈I
E(βj

l) which are drawn and
black and cyan solid paths.

Main case: |π[ai, ui]|, |π[ui+1, bi]| ≤ g, and xi,f , yi,f ∈ V (βi
l), and |αi| < L

Algorithm Main case.

Let I ⊆ [L] be the set of all indices such that |π[ai, ui]|, |π[ui+1, bi]| ≤ g and |αi| < L.
For each pair of indices (p, q) ∈ [L/g]× [L/g], define the set of sub-paths:

Pp,q = {βi
l | (l, li − l + 1) = (p, q), i ∈ I}

(1) Let U ⊆ V be the uniformly random subset of size 10n log n
g . Then, for each pair of indices

p, q ∈ [L/g], define the graph:

Gp,q = G \

E(π) ∪
⋃

β∈Pp,q

E(β)


Then, for each vertex u ∈ U , compute single-source shortest paths to and from u in Gp,q.

(2) For any index 1 ≤ l ≤ ⌈L/g⌉, and for any offset 1 ≤ b ≤ 10g, initialize two sets of vertices
Ab,l, Bb,l ← V . Then, go over the sequence of all sub-paths βb

l , βb+10g
l , · · · , βb+10hg

l ,
where h ≤ ⌈ L

10g ⌉.
Next, for each sub-path βb+10kg

l , define the following two graphs

Xb+10kg
l = G \

E(π) ∪
⋃

j∈[b+10kg,b+(10k+5)g]∩I

E(βj
l)



Y b+10kg
l = G \

E(π) ∪
⋃

j∈[b+(10k−5)g,b+10kg]∩I

E(βj
l)


See Figure 10 for an illustration.

(a) Then, for each vertex v ∈ V
(

βb+10kg
l

)
, perform a truncated Dijkstra at v in the

induced subgraph Xb+10kg
l [Ab,l] up to depth g. For each z ∈ Ab,l, record the distance

value

µX(v, z)← dist
(

v, z, Xb+10kg
l [Ab,l]

)
if dist

(
v, z, Xb+10kg

l [Ab,l]
)
≤ g.

S. Chechik and T. Zhang 41:13

s t
ai bi

ai−1 bi−1ai+1 bi+1ai−5g bi−5g
ai+5g bi+5g

Figure 11 Vertices on the topmost are in U , and orange edges represent shortcut edges in Hi
l .

After we have visited all vertices v ∈ V
(

βb+10kg
l

)
, let P k

b,l ⊆ Ab,l be the set of all

vertices searched by truncated Dijkstra of any v ∈ V
(

βb+10kg
l

)
. Then, prune the

vertex set

Ab,l ← Ab,l \ P k
b,l

(b) Symmetrically, for each vertex v ∈ V
(

βb+10kg
l

)
, perform a truncated Dijkstra at v

in the induced subgraph Y b+10kg
l [Bb,l] up to depth g. For each z ∈ Bb,l, record the

distance value

µY (v, z)← dist
(

v, z, Y b+10kg
l [Bb,l]

)
if dist

(
v, z, Y b+10kg

l [Bb,l]
)
≤ g.

After we have visited all vertices v ∈ V
(

βb+10kg
l

)
, let Qk

b,l ⊆ Bb,l be the set of all

vertices searched by truncated Dijkstra of any v ∈ V
(

βb+10kg
l

)
. Then, prune the

vertex set

Bb,l ← Bb,l \Qk
b,l

(3) For any index i ∈ I and index 1 ≤ l ≤ li/g, let us build a shortcut digraph Hi
l with edge

weight function ω in the following manner. See Figure 11 for an illustration.

Vertices. Add all vertices in sub-paths V (βj
l),∀j ∈ [i− 5g, i + 5g] ∩ I, as well as all

pivot vertices in U to Hi
l .

Edges. First, add to E(Hi
l) all the sub-paths: ⋃

j∈[i−5g,i+5g]∩I

E
(

βj
l

) \ E
(
βi

l

)
Then, add the following three types of weighted edges.

ICALP 2024

41:14 Faster Algorithms for Dual-Failure Replacement Paths

(a) For any u ∈ U and any vertex v ∈ V (Hi
l), add an edge (u, v) with edge weight:

ω(u, v) = dist(u, v, Gl,li−l+1)

and edge (v, u) with edge weight:

ω(v, u) = dist(v, u, Gl,li−l+1)

(b) For any pair of vertices u, v ∈ V (Hi
l) where u ∈ V (βj

l), j ∈ [i− 5g, i], add an edge
(u, v), and assign a weight:

ω(u, v) = µX(u, v)

If µX(u, v) was not assigned in Step (2), then it is infinity by default.
(c) For any pair of vertices u, v ∈ V (Hi

l) where u ∈ V (βj
l), j ∈ [i, i + 5g], add an edge

(u, v), and assign a weight:

ω(u, v) = µY (u, v)

If µY (u, v) was not assigned in Step (2), then it is infinity by default.

After that, for each vertex z ∈ V
(
βi

l

)
, apply single-source shortest path on z in Hi

l .
In this way, for every pair of vertices x, y ∈ V

(
βi

l

)
, we have computed a distance

dist
(
x, y, Hi

l

)
.

Finally, for every edge f ∈ E
(
βi

l

)
, update the estimation est(s, t, G \ {ei, f}) with:

min
x∈V (βi

l
[∗,f)),y∈V (βi

l
(f,∗])

{
dist(s, x, G \ {ei}) + dist

(
x, y, Hi

l

)
+ dist(y, t, G \ {ei})

}

Runtime. The runtime of Step (1) is bounded by Õ(|U | ·mL2/g2) = Õ(mnL2

g3). As for the
runtime of Step (2), consider any offset 1 ≤ b ≤ 10g. We argue that the Dijkstra procedure for
all vertices on sub-paths βb

l , βb+10g
l , · · · , βb+10hg

l has runtime at most O(mg); this is because
every vertex in V is visited by at most O(g) instances of Dijkstra rooted at vertices from
some sub-paths βb+10kg

l . Therefore, the overall runtime of Step (2) is bounded by O(mLg)
summing over all 1 ≤ b ≤ 10g and 1 ≤ l ≤ L/g.

Finally, let us estimate the runtime of Step (3). For each index i ∈ I, there are at most
L/g different sub-paths βi

l as |αi| ≤ L. By definition, the shortcut digraph Hi contains at
most O(g2 + n log n

g) vertices, and so the number of edges within is bounded by Õ(g4 + n2

g2),
and hence the runtime of multi-source shortest paths computation for all vertices in V (βi

l)
in Hi

l is Õ(g5 + n2

g). Then, for each f ∈ E(βi
l), the time of calculating the formula

min
x∈V (βi

l
[∗,f)),y∈V (βi

l
(f,∗])

{dist(s, x, G \ {ei}) + dist(x, y, Hi) + dist(y, t, G \ {ei})}

is bounded by O(g2). Summing over all i, l and f ∈ E(βi
l), the runtime of this part is

bounded by Õ(L2g4 + n2L2

g2).
Taking a summation, the overall runtime for this case is at most:

Õ
(
mnL2/g3 + mLg + L2g4 + n2L2/g2)

S. Chechik and T. Zhang 41:15

Correctness. To prove that our algorithm computes the correct value for |ρi,f |, it suffices
to prove that dist

(
xi,f , yi,f , Hi

l

)
= |ρi,f [xi,f , yi,f]|. First we argue that dist

(
xi,f , yi,f , Hi

l

)
≥

|ρi,f [xi,f , yi,f]| due to the following reason.

▷ Claim 14. Any weighted edge (u, v) in Hi
l corresponds to a path from u to v in G that

does not contain any edge in E(π) ∪ E(βi
l).

Proof. If the weighted edge (u, v) was defined on Step (3)(a), then it corresponds to a shortest
path in Gl,li−l+1 which excludes all edges in E(π) ∪ E(βi

l).
If the weighted edge (u, v) was defined on Step (3)(b), suppose u ∈ V (βj

l) where j ∈
[i− 5g, i], then by definition of ω(u, v) = µX(u, v), which is equal to the length of a path in
graph Xj

l which excludes all edges in E(π) ∪ E(βi
l).

Symmetrically, if the weighted edge (u, v) was defined on Step (3)(c), suppose u ∈ V (βj
l)

where j ∈ [i, i + 5g], then by definition of ω(u, v) = µY (u, v), it is equal to the length of a
path in graph Y j

l which excludes all edges in E(π) ∪ E(βi
l). ◁

For the rest, let us prove that dist
(
xi,f , yi,f , Hi

l

)
≤ |ρi,f [xi,f , yi,f]|. To do this, we will

find a path in Hi
l from xi,f to yi,f with weighted length at most |ρi,f [xi,f , yi,f]|.

▷ Claim 15. ρi,f [xi,f , yi,f] does not contain any vertices in the following vertex subset:
i−5g−1⋃

j=0
V

(
βj

l

)
∪

L⋃
j=i+5g+1

V
(

βj
lj−li+l

)
Proof. Suppose otherwise that the sub-path ρi,f [xi,f , yi,f] contains a vertex v ∈⋃i−5g−1

j=0 V (βj
l) ∪

⋃L
j=i+5g+1 V (βj

lj−li+l). Let us assume that v ∈ V (βj
l) for some index

0 ≤ j < i− 5g; if v ∈ V (βj
lj−li+l) for some j > i + 5g, the proof will be similar.

By the assumption that i ∈ I, we know that |π[ai, ui]| ≤ g. Since j < i− 5g, we know
that vertex uj lies between s, ai, and consequently |π[s, aj]| ≤ |π[s, uj]| < |π[s, ai]| − 4g.

Consider the path π[s, aj] ◦αj [aj , v]. We first argue that this path does not contain edges
from {ei, f}. Clearly, π[s, aj] ◦ αj [aj , v] does not contain the edge ei, since aj lies between s

and ui, and E(αj [aj , v]) ∩ E(π) = ∅. As for the position of f , if f ∈ E(αj [aj , v]), then there
must be a vertex z ∈ V (αj [aj , v]) ∩ V (βi

l). Then π[s, aj] ◦ αj [aj , z] ◦ αi[z, bi] ◦ αi[bi, t] is a
replacement path that avoids edge ei, with length at most:

|π[s, aj]|+ |αj [aj , z]|+ |αi[z, bi]|+ |αi[bi, t]|
< (|π[s, ai]| − 4g) + |αj [aj , v]|+ |αi[z, bi]|+ |αi[bi, t]|
≤ (|π[s, ai]| − 4g) + l · g + |αi[z, bi]|+ |αi[bi, t]|
≤ (|π[s, ai]| − 4g) + (|αi[ai, z]|+ g) + |αi[z, bi]|+ |αi[bi, t]|
≤ |π[s, ai] + |αi[ai, z]|+ |αi[z, bi]|+ |αi[bi, t]| − 3g = |π[s, ai] ◦ αi ◦ π[bi, t]| − 3g

which is a contradiction that π[s, ai] ◦ αi ◦ π[bi, t] is a shortest replacement path avoiding ei.
Next, we argue that |π[s, aj]◦αj [aj , v]| < |ρi,f [s, xi,f]| < |ρi,f [s, v]|. In fact, by |π[s, aj]| <

|π[s, ai]| − 4g, we have:

|π[s, aj]|+ |αj [aj , v]| < (|π[s, ai]| − 4g) + l · g
≤ (|π[s, ai]| − 4g) + (|αi[ai, xi,f]|+ g) = |ρi,f [s, xi,f]| − 3g

As we have proved, π[s, aj] ◦ αj [aj , v] is a path avoiding {ei, f} of length less than
|ρi,f [s, v]|. So, if we replace the prefix ρi,f [s, v] with π[s, aj] ◦ αj [aj , v] and consider a new
path:

ρ′ = π[s, aj] ◦ αj [aj , v] ◦ ρi,f [v, t]

ICALP 2024

41:16 Faster Algorithms for Dual-Failure Replacement Paths

s t
aj bj

ai bi

xi,f

yi,f
v

ei

f

Figure 12 The sub-path ρi,f [xi,f , yi,f] is drawn as the orange curve. If ρi,f [xi,f , yi,f] contains a
vertex v ∈ V

(
βj

l

)
, then the alternate path π[s, aj] ◦ αj [∗, v] ◦ ρi,f [v, yi,f] ◦ αi[yi,f , bi] ◦ π[bi, t] be a

shorter replacement path than ρi,f avoiding {ei, f}.

then we have a new replacement path ρ′ avoiding {ei, f} from s to t with a strictly better
distance, a contradiction. See Figure 12 for an illustration.

◁

Decompose the path ρi,f [xi,f , yi,f] into minimal sub-paths whose endpoints are belonging
to V (Hi

l); this is achievable because both xi,f , yi,f ∈ V (Hi
l). To prove the upper bound:

dist(xi,f , yi,f , Hi
l) ≤ |ρi,f [xi,f , yi,f]|

it suffices to show that for any two consecutive vertices u, v ∈ V (Hi
l) on path ρi,f [xi,f , yi,f],

we have ω(u, v) ≤ |ρi,f [u, v]|. Consider several cases below.
One of u, v belongs to the pivot set U .
Without loss of generality, assume that u ∈ U . It suffices to show that the shortest path
from u to v in graph Gl,li−l+1 is has the same length as ρi,f [u, v].
Since v is the next vertex in V (Hi

l) after u on the path ρi,f , the sub-path ρi,f [u, v] does
not contain any vertices from V (Hi

l) except for its endpoints; in other words, ρi,f [u, v]
does not contain vertices from U ∪

⋃i+5g
j=i−5g V (βj

l). Additionally, according to Claim 15,
ρi,f [u, v] does not contain (internally) any vertices in

i−5g−1⋃
j=0

V
(

βj
l

)
∪

L⋃
j=i+5g+1

V
(

βj
lj−li+l

)
Therefore, ρi,f [u, v] does not contain (internally) any vertices from the set:

U∪
⋃

j∈[i−5g,i+5g]∩I

V
(

βj
l

)
∪

i−5g−1⋃
j=0

V
(

βj
l

)
∪

L⋃
j=i+5g+1

V
(

βj
lj−li+l

)
⊇ U∪

⋃
β∈Pl,li−l+1

V (β)

By definition of graph Gl,li−l+1, we know that dist(u, v, Gl,li−l+1) ≤ |ρi,f [u, v]|.
Both of u, v are not in U .
Assume that u ∈ V (βc

l) for some c ∈ [i − 5g, i + 5g], and v ∈ V (βd
l) for some d ∈

[i − 5g, i + 5g]. Without loss of generality, assume that c ≤ i; if c ≥ i, a symmetric
argument would work.

S. Chechik and T. Zhang 41:17

Since v is the next vertex in V (Hi
l) after u on the path ρi,f and that U is a uniformly

random vertex set of size 10n log n
g , with high probability over the randomness of U , we

must have |ρi,f [u, v]| ≤ g.
Similar to the previous case, we know that ρi,f [u, v] does not contain (internally) vertices
from

⋃i+5g
j=i−5g V

(
βj

l

)
. Therefore, by definition of Xc

l , we know that ρi,f [u, v] ⊆ Xc
l ;

namely, the sub-path ρi,f [u, v] belongs to graph Xc
l . Therefore, to prove that ω(u, v) =

µX(u, v) ≤ |ρi,f [u, v]|, it suffices to show that the truncated Dijkstra procedure correctly
computes the value µX(u, v) = dist(u, v, Xc

l).
Decompose the integer c = b + 10kg, where 1 ≤ b ≤ 10g, k ≥ 0. To prove that the
truncated Dijkstra procedure correctly computes the value µX(u, v) = dist(u, v, Xc

l),
it suffices to show that the vertex set Ab,l contains all vertices on ρi,f [u, v] when u is
performing a truncated Dijkstra in the induced subgraph Xc

l [Ab,l]; in other words, we
need to show that any vertex on ρi,f [u, v] has not been pruned from Ab,l by truncated
Dijkstraes from vertices on previous sub-paths βb

l , βb+10g
l , · · · , β

b+10(k−1)g
l .

Assume otherwise there is a vertex z ∈ V (ρi,f [u, v]) which was also visited by the truncated
Dijkstra of some vertices w ∈ V (βb+10jg

l) for some j < k. As all Dijkstra searches are
truncated up to depth g, we know that there is a path γ from w to z in Xb+10jg

l of length
at most g. Consider the path

θ = π[s, ab+10jg] ◦ αb+10jg[∗, w] ◦ γ ◦ ρi,f [z, v] ◦ αd[v, bd] ◦ π[bd, t]

and claim two properties of it.

▷ Claim 16. θ is a path from s to t that avoids the edge ed.

Proof. It is clear that path θ departs from π at vertex ab+10jg and converges with π

at vertex bd. So it suffices to show that ab+10jg lies between s and vertex ud. This is
straightforward since ab+10jg lies on path π[s, ub+10jg] which is strictly a prefix of π[s, ud],
as d ≥ i− 5g ≥ b + (10k − 5)g > b + 10jg. ◁

To reach a contradiction, we show that |θ| is a strictly better replacement path from s to
t that avoids ed than path π[s, ad] ◦αd ◦ π[bd, t]. In fact, on the one hand, since d ∈ I, we
know that |π[ad, ud]| ≤ g. Therefore,

|π[s, ab+10jg]| ≤ |π[s, ub+10jg]| = b+10jg ≤ 10(k−1)g ≤ i−10g ≤ d−5g ≤ |π[s, ad]|−4g

On the other hand, since v ∈ V (βd
l) and w ∈ V (βb+10jg

l), we know that

|αd[∗, v]| ≥ (l − 1)g + 1 > |αb+10jg[∗, w]| − g

Finally, as |γ|, |ρi,f [z, v]| ≤ g, we have:

|θ| ≤ (|π[s, ad]| − 4g) + (|αd[∗, v]|+ g) + |γ|+ |ρi,f [z, v]|+ |αd[v, bd]|+ |π[bd, t]|
≤ |π[s, ad]|+ |αd[∗, v]|+ |αd[v, bd]|+ |π[bd, t]| − g

= |π[s, ad] ◦ αd ◦ π[bd, t]| − g

which contradicts the fact that π[s, ad] ◦ αd ◦ π[bd, t] is the shortest replacement path
avoiding ed. See Figure 13 for an illustration.

ICALP 2024

41:18 Faster Algorithms for Dual-Failure Replacement Paths

s t
ab+10jg bb+10jg

ac bc
ad bd

w u v

z

ed

Figure 13 If µX(u, v) does not capture the orange path ρi,f [u, v], then a previous Dijkstra search
from vertex w must have intercepted ρi,f [u, v] at a vertex z through a path γ drawn as the red curve.
In this case, αb+10jg[∗, w] ◦ γ ◦ ρi,f [z, v] ◦ αd[v, bd] would be a better detour than αd for avoiding ed.

Proof of Lemma 13

Summarizing the total runtime of all five cases, the overall runtime is bounded by as following:

Õ

(
mn1.5 + n3

L
+ mn1/2L/g + n2L/g + mL2/g + mnL2/g3 + mLg + L2g4 + n2L2/g2

)

4 One failure on a long st-path

In this section, we study the case where only one edge failure lies on the shortest path, plus
that the input graph is dense and dist(s, t, G) could be as large as O(n). Let G = (V, E) be
a digraph with n vertices, and consider a pair of vertices s, t as well as an st-shortest path
π = ⟨s = u0, u1, u2, · · · , u|π| = t⟩. The task is to compute for any pairs of edges f1, f2, the
value of dist(s, t, G \ {f1, f2}) where f1 ∈ E(π), f2 /∈ E(π). The following lemma is proved in
the full version.

▶ Lemma 17. All values of dist(s, t, G \ {f1, f2}) can be computed with high probability in
time Õ

(
n3−1/18)

when f1 ∈ E(π) while f2 /∈ E(π).

5 Both failures on the st-path

In this section, we study the case where both edge failures f1, f2 are lying the shortest path.
Let G = (V, E) be a digraph with n vertices, and consider a pair of vertices s, t as well as an
st-shortest path π = ⟨s = u0, u1, u2, · · · , u|π| = t⟩. For convenience, define H = G \ E(π).
The task is to compute for any pairs of edges f1, f2 ∈ V (π), the value of dist(s, t, G\{f1, f2}).
The following lemma is proved in the full version.

▶ Lemma 18. All values of dist(s, t, G \ {f1, f2}) can be computed in time Õ(n3−1/7) when
both edges f1, f2 are on π.

Proof of Theorem 1. This is a direct combination of Lemma 17 and Lemma 18. ◀

S. Chechik and T. Zhang 41:19

References

1 Josh Alman and Virginia Vassilevska Williams. A refined laser method and faster matrix
multiplication. In Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 522–539. SIAM, 2021.

2 Aaron Bernstein. A nearly optimal algorithm for approximating replacement paths and k
shortest simple paths in general graphs. In Proceedings of the twenty-first annual ACM-SIAM
symposium on Discrete Algorithms, pages 742–755. SIAM, 2010.

3 Aaron Bernstein, Danupon Nanongkai, and Christian Wulff-Nilsen. Negative-weight single-
source shortest paths in near-linear time. In 2022 IEEE 63rd Annual Symposium on Foundations
of Computer Science (FOCS), pages 600–611. IEEE, 2022.

4 Amit M Bhosle and Teofilo F Gonzalez. Replacement paths for pairs of shortest path edges in
directed graphs. In Proceedings of the 16th IASTED International Conference on Parallel and
Distributed Computing and Systems. Citeseer, 2004.

5 Shiri Chechik and Sarel Cohen. Distance sensitivity oracles with subcubic preprocessing time
and fast query time. In Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory
of Computing, pages 1375–1388, 2020.

6 Shiri Chechik and Ofer Magen. Near optimal algorithm for the directed single source re-
placement paths problem. In 47th International Colloquium on Automata, Languages, and
Programming (ICALP 2020). Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2020.

7 Shiri Chechik and Moran Nechushtan. Simplifying and unifying replacement paths algorithms
in weighted directed graphs. In 47th International Colloquium on Automata, Languages, and
Programming (ICALP 2020). Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2020.

8 Shiri Chechik and Tianyi Zhang. Nearly optimal approximate dual-failure replacement paths.
In Proceedings of the 2024 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 2568–2596. SIAM, 2024.

9 Edsger W Dijkstra. A note on two problems in connexion with graphs. In Edsger Wybe
Dijkstra: His Life, Work, and Legacy, pages 287–290. 2022.

10 Ran Duan, Hongxun Wu, and Renfei Zhou. Faster matrix multiplication via asymmetric
hashing. In 2023 IEEE 64th Annual Symposium on Foundations of Computer Science (FOCS),
pages 2129–2138. IEEE, 2023.

11 Fabrizio Grandoni and Virginia Vassilevska Williams. Improved distance sensitivity oracles via
fast single-source replacement paths. In 2012 IEEE 53rd Annual Symposium on Foundations
of Computer Science, pages 748–757. IEEE, 2012.

12 Fabrizio Grandoni and Virginia Vassilevska Williams. Faster replacement paths and distance
sensitivity oracles. ACM Transactions on Algorithms (TALG), 16(1):1–25, 2019.

13 Yuzhou Gu, Adam Polak, Virginia Vassilevska Williams, and Yinzhan Xu. Faster monotone
min-plus product, range mode, and single source replacement paths. In 48th International
Colloquium on Automata, Languages, and Programming (ICALP 2021). Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2021.

14 François Le Gall. Powers of tensors and fast matrix multiplication. In Proceedings of the 39th
international symposium on symbolic and algebraic computation, pages 296–303, 2014.

15 Liam Roditty. On the k-simple shortest paths problem in weighted directed graphs. In
Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete algorithms, pages
920–928. Citeseer, 2007.

16 Liam Roditty and Uri Zwick. Replacement paths and k simple shortest paths in unweighted
directed graphs. In Automata, Languages and Programming: 32nd International Colloquium,
ICALP 2005, Lisbon, Portugal, July 11-15, 2005. Proceedings 32, pages 249–260. Springer,
2005.

17 Virginia Vassilevska Williams. Faster replacement paths. In Proceedings of the twenty-second
annual ACM-SIAM symposium on Discrete Algorithms, pages 1337–1346. SIAM, 2011.

ICALP 2024

41:20 Faster Algorithms for Dual-Failure Replacement Paths

18 Virginia Vassilevska Williams. Multiplying matrices faster than coppersmith-winograd. In
Proceedings of the forty-fourth annual ACM symposium on Theory of computing, pages 887–898,
2012.

19 Virginia Vassilevska Williams and Ryan Williams. Subcubic equivalences between path, matrix
and triangle problems. In 2010 IEEE 51st Annual Symposium on Foundations of Computer
Science, pages 645–654. IEEE, 2010.

20 Virginia Vassilevska Williams, Eyob Woldeghebriel, and Yinzhan Xu. Algorithms and lower
bounds for replacement paths under multiple edge failure. In 2022 IEEE 63rd Annual
Symposium on Foundations of Computer Science (FOCS), pages 907–918. IEEE, 2022.

21 Virginia Vassilevska Williams, Yinzhan Xu, Zixuan Xu, and Renfei Zhou. New bounds for
matrix multiplication: from alpha to omega. In Proceedings of the 2024 Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages 3792–3835. SIAM, 2024.

22 Uri Zwick. All pairs shortest paths using bridging sets and rectangular matrix multiplication.
Journal of the ACM (JACM), 49(3):289–317, 2002.

	1 Introduction
	1.1 Our results
	1.2 Other related works
	1.3 Subcubic combinatorial algorithm for unweighted digraphs
	1.3.1 One failure on a long st-path
	1.3.2 One failure on a short st-path
	1.3.3 Both failures on the st-path

	1.4 Faster algebraic algorithm for weighted digraphs

	2 Preliminaries
	2.1 Unweighted digraphs
	2.2 Weighted digraphs

	3 One failure on a short st-path
	4 One failure on a long st-path
	5 Both failures on the st-path

