
Path-Reporting Distance Oracles with Logarithmic
Stretch and Linear Size
Shiri Chechik #

Tel Aviv University, Israel

Tianyi Zhang #

Tel Aviv University, Israel

Abstract
Given an undirected graph G = (V, E, w) on n vertices with positive edge weights, a distance oracle
is a space-efficient data structure that answers pairwise distance queries in fast runtime. The quality
of a distance oracle is measured by three parameters: space, query time, and stretch. In a landmark
paper by [Thorup and Zwick, 2001], they showed that for any integer parameter k ≥ 1, there exists a
distance oracle with size O(kn1+1/k), O(k) query time, and (2k −1)-stretch error on the approximate
distances. After that, there has been a line of subsequent improvements which culminated in the
optimal trade-off of O(n1+1/k) space, O(1) query time, and (2k − 1)-stretch [Chechik, 2015].

However, these line of constructions did not require that the distance oracle is capable of printing
an actual path besides an approximate distance estimate, and there has been a performance gap
between path-reporting distance oracles and ones that are not path-reporting. It is known that the
earliest construction by [Thorup and Zwick, 2001] is path-reporting, but the parameters are worse
by a factor of k. In a later construction by [Wulff-Nilsen, 2013], the query time was improved from
O(k) to O(log k). Better trade-offs were discovered in [Elkin and Pettie, 2015] where the authors
broke the O(kn1+1/k) space barrier and achieved O(n1+1/k log k) space with O(log k) query time,
but their stretch was blown up to a polynomial O(klog4/3 7); they also gave an alternative choice of
O(n1+1/k) space which is optimal, and O(k)-stretch which is also optimal up to a constant factor,
but their query time rose exponentially to O(nϵ). In a recent work [Elkin and Shabat, 2023], the
authors obtained significant improvements of O(n1+1/k log k) space, O(k)-stretch, and O(log log k)
query time, or O(n1+1/k) space, O(k log k)-stretch, and O(log log k) query time.

All the above constructions of path-reporting distance oracles share a common barrier; that is,
they could not achieve optimal space O(n1+1/k) and stretch O(k) simultaneously within logarithmic
query time; for example, in the natural regime where k = ⌈log n⌉, previous distance oracles had to
pay an extra factor of log log n either in the space or stretch. As our result, we bypass this barrier
by a new construction of path-reporting distance oracles with O(n1+1/k) space and O(k)-stretch
and O(log log k) query time.

2012 ACM Subject Classification Theory of computation → Shortest paths

Keywords and phrases graph algorithms, shortest paths, distance oracles

Digital Object Identifier 10.4230/LIPIcs.ICALP.2024.42

Category Track A: Algorithms, Complexity and Games

Funding This publication is part of a project that has received funding from the European Research
Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant
agreement No 803118 UncertainENV).

1 Introduction

Given an undirected graph G = (V, E, w) on n vertices with positive edge weights , distance
oracles are space-efficient data structures that process distance queries with approximate
answers in fast runtime. More specifically, given any pair of vertices s, t ∈ V , the distance
oracle needs to return a distance estimate est(s, t) in the range [distG(s, t), β · distG(s, t)],

EA
T
C
S

© Shiri Chechik and Tianyi Zhang;
licensed under Creative Commons License CC-BY 4.0

51st International Colloquium on Automata, Languages, and Programming (ICALP 2024).
Editors: Karl Bringmann, Martin Grohe, Gabriele Puppis, and Ola Svensson;
Article No. 42; pp. 42:1–42:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:shiri.chechik@gmail.com
mailto:tianyiz21@tauex.tau.ac.il
https://orcid.org/0000-0003-3407-3307
https://doi.org/10.4230/LIPIcs.ICALP.2024.42
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

42:2 Path-Reporting Distance Oracles with Logarithmic Stretch and Linear Size

where β is an upper bound on the stretch error. Intuitively, when the distance oracle has
smaller size, the stretch error grows larger, and the general goal is to understand the optimal
trade-off between space and stretch with a fast query efficiency.

In a pioneering work by Thorup and Zwick [10], they constructed distance oracles for
any integer parameter k ≥ 1 with O(kn1+1/k) space, (2k − 1)-stretch and O(k) query time.
This balance between size and stretch is optimal when k ≤ log n

log log n because the famous
Erdős girth conjecture implies an Ω(n1+1/k) space lower bound for any distance oracle
with (2k − 1)-stretch, and it was left open in [10] if anything better can be achieved for
larger choices of parameter k. In a subsequent work by Mendel and Naor [9], using Ramsey
partitions and tree embeddings, the authors diverged from the techniques of [10] and devised
a new distance oracle with optimal space O(n1+1/k) and O(1) query time, but its stretch
becomes O(k) which is worse than the optimal 2k − 1 by a constant factor. Later on, still
following the old construction of [10], Wulff-Nilsen [11] improved the query time from O(k)
to O(log k) while retaining O(kn1+1/k) space and (2k − 1)-stretch; in the same paper, he
could also obtain constant query time O(1/ϵ) by allowing a slightly larger stretch of (2 + ϵ)k.
This line of works culminated in an optimal construction of distance oracles that achieve
O(n1+1/k) space, (2k − 1)-stretch and O(1) query time simultaneously [5, 4].

However, these works mentioned above did not require that the distance oracles should
be capable of printing an actual path between the queried vertex pair that realizes the
approximate distance estimate; distance oracles with this extra function are called path-
reporting distance oracles. More specifically, in this setting, the query efficiency consists
of two parts: the query time which is the amount of time to compute a distance estimate
est(s, t), and after that we need to report a path π between the vertex pair with total weight
w(π) ≤ est(s, t) in time O(|π|).

So far there has been a performance gap between path-reporting distance oracles and ones
that do not support reporting paths. It was known that the earliest construction of Thorup
and Zwick [10] is path-reporting, but some later improvements including [9, 11, 4, 5] are not,
except one by [11] with O(kn1+1/k) space, (2k − 1)-stretch and O(log k) query time. In a
subsequent work [7], the authors achieved optimal O(n1+1/k) space by tolerating a constant
blowup in the stretch O

(
k · (1/ϵ)log4/3 7) and a sublinear query time O(nϵ), or alternatively,

a sub-optimal space complexity of O(n1+1/k log k) and faster query time O(log k), but a
polynomial blowup in the stretch O

(
klog4/3 7).

In a very recent work [8], the authors devised new constructions of path-reporting distance
oracles with multiple choices of trade-offs which are significant improvements over prior works:
(1) with space O

(
n1+1/k ·

⌈
k log log n·log(3) n

log n

⌉)
, they could achieve (4+ϵ)k-stretch and O(log k)

query time, and (2) with space O
(

n1+1/k ·
⌈

k log log n
log n

⌉)
, they could achieve (24 + ϵ)k-stretch

and O(log log k) time, and (3) with optimal space O(n1+1/k) they could achieve O(k log k)-
stretch and O(log log k) query time; here we have not listed all the trade-offs, but only the
representative ones in [8].

One common quantitative barrier of all the above constructions of path-reporting distance
oracles is that they could not achieve optimal space O(n1+1/k) and linear stretch O(k)
simultaneously using a fast query time. For example, when k gets close to log n, the trade-offs
in [8] needs to pay O(log log n) factor either in the space or in the stretch. As for the results
from [7], although could achieve O(n1+1/k) space and O

(
k · (1/ϵ)log4/3 7)-stretch at the same

time, their query time blows up exponentially to O(nϵ); besides, their stretch upper bound
has a large constant coefficient of O

(
(1/ϵ)log4/3 7) in front of k. This leads to the following

natural question even for k = ⌈log n⌉.

S. Chechik and T. Zhang 42:3

▶ Question 1. How to design a path-reporting distance with O(n) space and O(log n)-stretch
that supports O(log n) query time?

As our result, we give a positive answer to the above question, which is formalized in the
statement below.

▶ Theorem 2. Given an undirected graph G = (V, E, w) with positive edge weights on n

vertices, for any integer k ≥ 1, there is a path-reporting distance oracle with 12k-stretch,
O(n1+1/k) space, and O(log log k) query time; furthermore, an approximate shortest path π

can be retrieved in time O(log log k + |π|) time.

1.1 Technical overview
To support the function of path-reporting, prior works adopted different strategies: in [7] the
authors were heavily exploiting the power of distance preservers [6], and in [8] the authors
were utilizing the connection to hopsets. In our construction, we employed another different
strategy of using tree covers which is adapted from the notion of cluster covers in the design
of the optimal but non-path-reporting distance oracles [5].

The approach of [5]

Similar to [10], let us take a hierarchy of random sets V = A0 ⊇ A1 ⊇ A2 ⊇ · · · ⊇ Ak−1 ⊇ Ak,
where Ai+1 includes each vertex in Ai with probability n−1/k independently. For any Ai,
a cluster cover is a collection of (not necessarily disjoint) subsets Ci with the following
properties.

Weak radius. Each vertex v ∈ V is assigned to a unique cluster Ci
home(v) ∈ Ci which

contains v. Plus, Ci
home(v) has weak radius of roughly distG(v, Ai).

Packing. The total size of clusters in C is bounded by O(n1+1/k).
Covering. For any pair of vertices s, t, if distG(s, t) ≤ 1

i · distG(s, Ai), then Ci
home(s)

contains both s, t.

The idea of using cluster covers to compute approximate distances is to build cluster covers
C(i) for a constant number of indices i ∈ {k/2, k/4, k/8, . . . , k/128} (assuming k is an integer
multiple of 128), and check if t ∈ Ci

home(s) for each such i. If we can locate two consecutive
indices i, i/2 such that t ∈ Ci

home(s) and t /∈ Ci/2
home(s), then we will estimate distG(s, t)

through the weak radius of Ci
home(s). The reason why this would be a good estimate is

because t /∈ Ci/2
home(s) and so distG(s, t) > 2

i · distG(s, Ai/2), and therefore distG(s, t) cannot
be too much smaller than the weak radius of Ci

home(s) when distG(s, Ai/2) and distG(s, Ai)
are not too different; if distG(s, Ai/2) is also way smaller than distG(s, Ai), we will use some
other shortcuts between pivots in Ai/2 to find a better distance estimate.

If we cannot locate any pair of consecutive indices i, i/2 such that t ∈ Ci
home(s) and

t /∈ Ci/2
home(s), then this means that both s, t are actually a small cluster Ck/128

home (s). In this
case, we should expect that the same distance oracle construction by Thorup and Zwick [10]
to give a much better distance estimate with roughly k/64-stretch. To take advantage of
this slack, we can apply the construction by Mendel and Naor [9] to quickly calculate an
estimation.

Tree covers

One of the reasons why the distance oracle of [5] is not path-reporting is that cluster covers
only have an upper bound on weak radius rather than strong radius. Therefore, for the cause
of reporting paths, we need to ensure that each cluster has a spanning tree whose radius is
small; in other words, we are looking for a tree cover Ci with the following revised properties.

ICALP 2024

42:4 Path-Reporting Distance Oracles with Logarithmic Stretch and Linear Size

Strong radius. Each vertex v ∈ V is assigned to a unique cluster Ci
home(v) ∈ Ci which

contains v. Plus, Ci
home(v) has a spanning tree of radius at most distG(v, Ai).

To find such a tree cover, let us start with the basic approach of ball-carving (which
is similar to the approach for cluster covers [5]): starting with W ← V , while W is not
empty, pick an arbitrary vertex v ∈ W and grow a tree T in graph G[W] to a radius
r · ρ = r

i · distG(v, Ai) such that:∣∣BallG[W](v, (r − 1)ρ)
∣∣ ≥ n−1/k

∣∣BallG[W](v, rρ)
∣∣

Then, we add this tree T to Ci and remove all vertices in BallG[W](v, (r − 1)ρ) from W ;
for those vertices we have just removed, assign their home trees to be T . By doing this we
can guarantee the strong radius and the packing property. However, this could damage the
covering property. Imagine that for some pair of vertices s, t which are close, some vertices
on the shortest path between s, t were removed after adding a spanning tree T to Ci, then
the home tree of s might not be able to reach t. To fix this issue, the idea is to assign s to
this earlier tree T which might not have removed s at the time it was created.

Graph contraction

Another obstacle of path-reporting is that the construction of Chechik [5] incorporates the
construction of Mendel and Naor [9]. To avoid using the distance oracle by Mendel and Naor,
we could continue to apply tree covers for smaller indices i < k/128, but this would raise
the space complexity from O(n1+1/k) to O(n1+1/k log k). Notice that on lower levels, we are
obtaining much better stretch than O(k), which gives us some slack when designing our data
structures. To take advantage of such slack, the idea is to apply the stretch-friendly partition
of a recent work [3] which roughly contracts the graph G into n/τ clusters while blowup the
stretch by O(τ), and then build our tree cover structures on the contracted graph which
takes only O(n1+1/k/τ) space.

2 Preliminaries

Let ϵ = 0.01 be a fixed constant (independent of n, k), and assume k > 100. Logarithms
are of base 2. For any graph G = (V, E, w) and any vertex subset S ⊆ V , let G[S] be the
induced subgraph of G on S.

▶ Definition 3 (bunches and balls). Let G = (V, E, w) be an undirected weighted graph. For
each vertex v ∈ V and vertex subset S ⊆ V , let pivG(v, S) ∈ S be the closest vertex to v,
and define the bunch around v with respect to S as:

BunG(v, S) def= {u | distG(u, v) < distG(u, S)}

Furthermore, for any δ > 0, define

Bunδ
G(v, S) def= {u | distG(u, v) < δ · distG(u, S)}

Balls are similar to bunches, except that the radius is specified by a value, rather than a
vertex set. More specifically, for any value ρ ≥ 0, define the ball around v to be:

BallG(v, ρ) = {u | distG(u, v) ≤ ρ}

S. Chechik and T. Zhang 42:5

2.1 Stretch-friendly partitions
We need the notion of stretch-friendly partition from [3].

▶ Definition 4 ([3]). Let G = (V, E, w) be an undirected weighted graph, and fix an integer
τ ≥ 1. A stretch-friendly τ -partition of G is a partition C ⊂ 2V of V with the following
guarantees for every U ∈ C.
(1) There is a spanning tree T [U] of G[U] rooted at the cluster center vertex cntr[U] ∈ U ,

such that for every v ∈ U , the unique tree path between cntr[U], v has at most τ edges.
(2) If (x, y) ∈ E, x ∈ U, y /∈ U , then the weight of every edge on the tree path in T [U]

between x, cntr[U] is at most w(x, y).
(3) If (x, y) ∈ E, x, y ∈ U , then the weight of every edge on the tree path in T [U] between

x, y is at most w(x, y).

For any stretch-friendly partition C, define G/C to be the quotient graph where each
cluster in C is contracted to a single node. Here are some basic properties of stretch-friendly
partitions.

▶ Lemma 5. Let G = (V, E, w) be an undirected weighted graph, and let C be a stretch
friendly τ -partition of G. Consider any pair of vertices s, t ∈ V , then we can find a path π

between s, t using edges of G/C and tree edges of T [C], C ∈ C, such that:

w(π) ≤ 4τ · distG(s, t)

Furthermore, given the shortest path π′ between C(s), C(t) in G/C, the above path π can be
computed in time O(|π|).

Proof. If C(s) = C(t), then we can take the tree path between s, t in T [C(s)] which has
length at most 2τ · distG(s, t). Otherwise, take the shortest path π0 between C(s), C(t) and
suppose it visits contracted nodes C(s) = U0, U1, . . . , Ul = C(t). Let (ui, vi) ∈ E be the edge
connecting Ui, Ui+1,∀0 ≤ i < l. By definition of stretch-friendly τ -partitions, we have:

distG(s, t) ≥ 1
τ
·min

{
distT [U0](s, cntr[U0]), distT [Ul](t, cntr[Ul])

}
w(ui, vi) ≥

1
2τ
·
(
distT [Ui](ui, cntr[Ui]) + distT [Ui+1](vi, cntr[Ui+1])

)
To find a path between s, t, let π be a concatenation of these paths: tree path between

s, u0 in T [U0], edge (u0, v0), tree path between v0, u1 in T [U1], , tree path between
vl−1, t in T [Ul]. Taking a summation of the above inequalities, we have:

w(π) ≤ 2τ · distG(s, t) + 2τ · distG/C (C(s), C(t)) ≤ 4τ · distG(s, t)

As for the runtime to compute π, using the tree structure of T [C], it is straightforward to
compute π by its definition in time O(|π|). ◀

The next statement shows how to construct a hierarchy of stretch-friendly clusters.

▶ Lemma 6 ([3]). For any 0 ≤ i ≤ ⌈log n⌉, there exists a stretch-friendly (3 · 2i− 1)-partition
Ci and each cluster in Ci has size at least 2i. Moreover, Ci is a refinement of Ci+1; that is,
for each cluster U ∈ Ci+1, U can be partitioned into sub-clusters U = U1 ∪U2 ∪ · · · ∪Uk, such
that Uj ∈ Ci,∀1 ≤ j ≤ k, and each tree T [Uj] is a sub-tree of T [U].

ICALP 2024

42:6 Path-Reporting Distance Oracles with Logarithmic Stretch and Linear Size

2.2 Distance preservers
Throughout this paper, we assume shortest paths are unique by breaking ties using alphabetic
ordering. We need a path-reporting distance preserver from [7].

▶ Definition 7 (branching events, [7]). For a collection of paths Π in an undirected graph
G, a pair of paths together with common vertex (π1, π2, x) is called a branching event, if
x ∈ V (π1) ∩ V (π2), and that the edges incident on x of π1 and π2 are different.

▶ Lemma 8 ([7]). Given an undirected weighted graph G = (V, E, w) and a collection of
paths Π, there is a distance-preserving path-reporting data structure that reports any path
π ∈ Π in time O(|π|). The data structure has size O(n + |Π|+ |br(Π)|) where br(Π) is the
set of branching events of Π.

As a by-product, though it is not necessary for our main result, we slightly improve the
above lemma as following, thus answering a small open question in [7]. This matches the
sparsity bound of distance-preservers which do not require the function of path-reporting [6].

▶ Lemma 9. Given an undirected weighted graph G = (V, E, w) and a collection of shortest
paths Π, there is a distance-preserving path-reporting data structure that reports any path
π ∈ Π in time O(|π|). The data structure has size O

(
n + |Π|+

√
n|br(Π)|

)
where br(Π) is

the set of branching events of Π.

3 Tree covers

Before describing our path-reporting distance oracles, we will first need a building block
which is adapted from [5]. Our stretch guarantee is worse than [5] roughly by a factor of 3/2
because our data structure is path-reporting, while the data structure from [5] could only
report distance values, not any real paths in the graph.

▶ Lemma 10. Let G = (V, E, w) be an undirected weighted graph and let S ⊆ V be a
vertex subset. Suppose that there exists an integer parameter r ≥ log2 k such |BunG(v, S)| ≤
O(n r

k log2 n) for each v ∈ V . Then, there exists a collection of trees T of G with the following
properties.

The size of all trees in T is bounded by O(n1+1/k).
For any pair of vertices u, v, if distG(u, v) ≤ 2

3(1+ϵ)2r · distG(u, S), then there exists a
tree T ∈ T such that T contains both u, v, and more importantly:

distT (u, v) ≤ distT (u, rt[T]) + distT (v, rt[T]) ≤ 2(1 + ϵ) · distG(u, S)

where rt[T] is a fixed root of T ; plus, such a tree T can be found in constant time.

Proof. For any integer 0 ≤ b ≤
⌈
log1+ϵ 3

⌉
, consider the sequence of values (1 + ϵ)b, 3(1 +

ϵ)b, 9(1 + ϵ)b, · · · , 3i(1 + ϵ)b, · · · . For any i ≥ 0, let Vi,b ⊆ V be the set of vertices v such that
distG(v, S) ∈

[
3i(1 + ϵ)b, 3i(1 + ϵ)b+1]; by definition, we have V =

⋃
i,b Vi,b.

Constructing a tree cover. Fix any offset 0 ≤ b ≤
⌈
log1+ϵ 3

⌉
, we will build a collection

of trees Tb by a greedy ball-carving scheme on G; in the end, we will take the union of all
trees T =

⋃
b Tb. Initially, set W ← V , and go over all integers i = 0, 1, 2, · · · . As long

asVi,b\W ̸= ∅, enumerate all vertices v ∈ Vi,b. Define a distance value ρv = 1
(1+ϵ)r ·distG(v, S).

Therefore, as r > log2 k, we have∣∣BallG[W] (v, (1 + ϵ)rρv)
∣∣ ≤ |BunG(v, S)| < O(nr/k log2 n) < n

⌊
r

(1−ϵ)

⌋
· 1

k

S. Chechik and T. Zhang 42:7

▷ Claim 11. There must exist an integer 0 ≤ rv < ⌊(1 + ϵ)r⌋ such that:∣∣BallG[W] (v, (rv + 1) · ρv)
∣∣ ≤ n1/k

∣∣BallG[W] (v, rv · ρv)
∣∣

Proof of claim. Suppose otherwise, then for any integer 0 ≤ l < ⌊(1 + ϵ)r⌋, we have:∣∣BallG[W] (v, (l + 1) · ρv)
∣∣ > n1/k

∣∣BallG[W] (v, l · ρv)
∣∣

Taking a product of these inequalities over all integers 0 ≤ l < ⌊(1 + ϵ)r⌋, we have:∣∣BallG[W] (v, ⌊(1 + ϵ)r⌋ · ρv)
∣∣ > n⌊

r
1−ϵ⌋· 1

k

Which is a contradiction. ◁

Then, let T be the single-source shortest paths tree rooted at rt[T] ← v that spans
the vertex set BallG[W] (v, (rv + 1) · ρv). All vertices in BallG[W] (v, rv · ρv) ∩ V (T) will be
called core vertices of T denoted as core(T), and vertices in BallG[W] (v, (rv + 1) · ρv) will
be called peripheral vertices of T . After that, add T to Tb, and then remove all the core
vertices BallG[W] (v, rv · ρv) from W by updating the vertex set:

W ←W \BallG[W] (v, rv · ρv)

After that, move on to the next vertex in Vi,b \W .

Assigning home trees. To find a tree that meets the requirement in the lemma statement
in constant time, we need each vertex to remember a constant number of trees that contain
itself, which are called home trees. Specifically, for each vertex v ∈ V , we will associate a
tree T b

home(v) ∈ Tb with v which is defined to be the first tree T created in Tb containing v

such that:

distT (v, core(T)) ≤ 1
3(1 + ϵ)2 ρv

Size of the tree cover. By the algorithm, each time we add a new tree T to Tb, |T | is at
most n1/k|core(T)|. As core vertices are removed from W right afterwards, the total size of
Tb is bounded by O

(
n1+1/k

)
.

The covering property. Consider any pair of vertices u, v such that distG(u, v) ≤ 2
3(1+ϵ)2r ·

distG(u, S). Let us first state an elementary inequality.

▷ Claim 12. ρu ≤ (1 + ϵ) · ρv.

Proof of claim. By triangle inequality, we have:

distG(u, S) ≤ distG(v, S) + distG(u, v)

≤ distG(v, S) + 2
3(1 + ϵ)2r

· distG(u, S)

< distG(v, S) + ϵ

1 + ϵ
· distG(u, S)

The last inequality holds as r ≥ log2 k and ϵ is a constant. Therefore, by definition of ρu, ρv,
we can conclude the proof. ◁

ICALP 2024

42:8 Path-Reporting Distance Oracles with Logarithmic Stretch and Linear Size

Let π be the shortest path between u, v in G. Assume u ∈ Vi,b for some i, b ≥ 0.

▷ Claim 13. Vertices on π cannot be core vertices of trees rooted at any vertices from Vj,b

for some j < i.

Proof of claim. Suppose otherwise that there was a vertex w ∈ Vj,b which grew a tree T ∈ Tb

whose core includes a vertex z ∈ V (π). Then, by triangle inequality, we would have:

distG(u, S) ≤ distG(u, z) + distG(z, w) + distG(w, S)

≤ 2
3(1 + ϵ)r · 3

i · (1 + ϵ)b+1 + 2 · 3i−1 · (1 + ϵ)b+1

<

(
1
32 + 2

)
· 3i−1 · (1 + ϵ)b+1

< 3i · (1 + ϵ)b

This contradicts the definition that u ∈ Vi,b. ◁

As for the tree covering property, consider the first tree T created whose core intersected
with V (π), and consider the moment right before T was created. Since z ∈ V (π), it must be:

min{distG[W](z, u), distG[W](z, v)} ≤ 0.5 · distG(u, v) ≤ ρu

3(1 + ϵ)2

Consider two possibilities.
distG[W](z, u) ≤ 0.5 · distG(u, v) ≤ ρu

3(1+ϵ)2 .
In this case, we have distT (u, core(T)) ≤ ρu

3(1+ϵ)2 . Hence, by definition of T b
home(u),

T b
home(u) must have been created no later than T . Therefore, when T b

home(u) was being
created with root z ∈ Vi,b (Claim 13), all vertices on π was still present in W . Therefore,
at the moment, we have:

distG[W]
(
v, core

(
T b

home(u)
))
≤ distG[W](u, v) + distT b

home(u)
(
u, core

(
T b

home(u)
))

≤ ρu

(1 + ϵ)2 < ρz

Hence, v was included in T b
home(u). As for their distance in the tree, by our algorithm,

the radius of T b
home(u) is at most 3i · (1 + ϵ)b+1 ≤ (1 + ϵ)distG(u, S). Hence, we have:

distT b
home(u)(u, v) ≤ 2(1 + ϵ) · distG(u, S)

distG[W](z, v) ≤ 0.5 · distG(u, v) ≤ 1
3(1+ϵ)2 ρu.

In this case, we have distT (v, core(T)) ≤ 1
3(1+ϵ)2 ρu ≤ 1

3(1+ϵ) ρv. Hence, by definition of
T b

home(v), T b
home(v) must have been created no later than T . Therefore, when T b

home(v)
was being created with root z ∈ Vi,b (Claim 13), all vertices on π was still present in W .
Therefore, at the moment, we have:

distG[W]
(
u, core

(
T b

home(v)
))
≤ distG[W](u, v) + distT b

home(v)
(
v, core

(
T b

home(v)
))

≤ 1
1 + ϵ

ρv ≤ ρz

Hence, u was included in T b
home(v). As for their distance in the tree, by our algorithm,

the radius of T b
home(v) is at most 3i · (1 + ϵ)b+1 ≤ (1 + ϵ)distG(u, S). Hence, we have:

distT b
home(u)(u, v) ≤ 2(1 + ϵ) · distG(u, S) ◀

Given such a collection of trees T satisfying the conditions of Lemma 10, let us state
a subroutine TreeCover(s, t, T) with constant runtime that checks if the tree cover data
structure T can provide a distance estimation for distG(s, t) as long with the a path.

S. Chechik and T. Zhang 42:9

Algorithm 1 TreeCover(s, t, T).

1 Assume s ∈ Vi,a, t ∈ Vj,b;
2 for v ∈ {s, t}, c ∈ {a, b} do
3 if T c

home(v) contains both {s, t} then
4 return distT c

home(v)(s, t), along with the tree path in T c
home(v) between s, t if

required;
5 return ⊥;

4 Path-reporting distance oracles

4.1 Data structures

Define α = 3/4 + ϵ. Apply Lemma 6 on G to create a sequence of stretch-friendly partitions
{Ci}0≤i≤⌈log n⌉. Build a level ancestor data structure with O(n) space so that for any u ∈ V

and any index 0 ≤ i ≤ ⌈log n⌉, we can access the cluster Ci(u) in constant time [2].
Take a hierarchy of vertex sets V = A0 ⊇ A1 ⊇ A2 ⊇ · · · ⊇ Ak, where Ai+1 includes

each vertex in Ai independently with probability n−1/k, ∀0 ≤ i < k. Therefore, with high
probability, size of Ai is at most O(n1− i

k log n).
Define a sequence of integers h0, h1, h2, . . . , hι satisfying h0 = k, h1 = ⌈αk⌉, and for l ≥ 1

define hl = max
{⌈

αlk
⌉

, 2
⌈
log2 k

⌉}
, the sequence stops until it reaches hι = 2

⌈
log2 k

⌉
.

Data structures for high levels

Let κ = 50 be an integer threshold. For every integer 0 ≤ l ≤ ι, we will build some data
structures separately. When l > κ, let C(l) ∈ {Ci}0≤i≤⌈log n⌉ which is a stretch-friendly
τl-partition where τl ∈ [α−l/5, 2α−l/5]; we can make sure that the sequence {τl}κ≤l≤ι is
non-decreasing. Plus, if 0 ≤ l ≤ κ, then set C(l) to be singletons (that is, τl = 1). For each
vertex v ∈ V , let C(l)(v) ∈ C(l) be the unique cluster that contains v. Let G/C(l) be the
quotient graph of G where each cluster in C(l) is contracted to a single node, and the edges
of G/C(l) are edges in G between different clusters in C(l).

For the rest, we will build some graph data structures. For each integer 1 ≤ l ≤ ι, let Bhl

be the set of contracted nodes in G/C(l) containing at least one vertex from the random set
Ahl

, and let Chl−1 be the set of contracted nodes in G/C(l) containing at least one vertex
from the random set Ahl−1 . Build the following data structures.

(i) For each integer 1 ≤ l ≤ ι, apply Lemma 10 on the quotient graph G/C(l) to build
a tree cover Tl with respect to the terminal set Bhl

by setting the parameter r = hl;
we will prove that this parameter r satisfies the requirement of Lemma 10 with high
probability over the random choices of A1, . . . , Ak.
For the special case when l = 0, simply set T0 to be single-source shortest paths trees
rooted at each vertex in Ak in G, and each vertex in u ∈ V has a pointer to the vertex
in Ak that is the closest one to u. It is straightforward to see that T0 is also a valid
tree cover for Ak using the definition of Lemma 10 (by setting r ← k, S ← Ak), and
TreeCover(s, t, T0) can always return a nonempty value whether or not the inequality
distG(u, v) ≤ 2(1−ϵ)2

3k · distG(u, Ak) is satisfied.
(ii) For each integer 0 ≤ l ≤ ι and for each contracted node x in G/C(l), store a shortest

path from x to its nearest node in Bhl
denoted as pivG/C(l) (x, Bhl

).

ICALP 2024

42:10 Path-Reporting Distance Oracles with Logarithmic Stretch and Linear Size

(iii) For each integer 1 ≤ l ≤ ι, we will build a set of paths Πl in G/C(l) in the following
manner.
For each pair of nodes x ∈ Bhl

and y ∈ Bhl
∩Bun1/2

G/C(l)

(
x, Chl−1

)
, let πx,y the shortest

path between x, y in graph G/C(l), and add πx,y to Πl. After building path set Πl, apply
Lemma 8 to build a path-reporting distance preserver data structure in the quotient
graph G/C(l) with respect to Πl.

Data structures for low levels

Let C(ι) be a stretch-friendly Θ(log2 k)-partition of G, and let G/C(ι) be the quotient graph.
For each 0 ≤ i ≤ 2

⌈
log2 k

⌉
, let Bi be the set of nodes in G/C(ι) containing at least one vertex

in Ai. Store the following data structures for each 0 ≤ i ≤ 2
⌈
log2 k

⌉
.

(i) For each node x in graph G/C(ι), store the shortest paths to all nodes y ∈ Bi in G/C(ι)

such that distG/C(ι)(x, y) < distG/C(ι) (x, Bi+1), as well as the shortest path from x to
pivG/C(ι)(x, Bi). We assume shortest paths are unique by breaking ties alphabetically.

(ii) For each node x in graph G/C(ι) and each even index 0 ≤ i < 2
⌈
log2 k

⌉
, store the

difference:

∆(x, i) def= distG/C(ι) (x, Bi+2)− distG/C(ι) (x, Bi)

Then, for each such x, store a range minimum query data structure for all entries
∆(x, i), i = 0, 2, . . . , 2

⌈
log2 k

⌉
− 2 with linear space and constant query time [1].

4.2 Query algorithm
Given any query (s, t) ∈ V 2, the query algorithm consists of two phases, one for high levels
(in range

[
2
⌈
log2 k

⌉
, k
]
), and one for low levels (in range

[
0, 2

⌈
log2 k

⌉]
).

High-level phase

By the design of the data structure, TreeCover (s, t, T0) always returns nonempty value
because each tree in T0 is a spanning tree of G. For each 1 ≤ l ≤ ι, define ul = C(l)(s), vl =
C(l)(t). Next, run the subroutine TreeCover (uι, vι, Tι); if it successfully returns a nonempty
value, then move on to the next phase. Otherwise, the algorithm maintains two indices
l1 ← 0, l2 ← ι and performs the following binary search procedure; the goal of the binary
search procedure is to find a consecutive pair of indices l−1, l such that TreeCover (ul, ul, Tl)
returns an empty value, while TreeCover (ul−1, vl−1, Tl−1) returns successfully a nonempty
value.
(1) If l1 < l2 − 1, define l3 = ⌊(l1 + l2)/2⌋, and run the subroutine TreeCover (ul3 , vl3 , Tl3).

If the subroutine returns an empty value, then assign l2 ← l3; otherwise, assign l1 ← l3.
Then, continue with the new pair (l1, l2).

(2) Now suppose l1 + 1 = l2 = l and TreeCover (ul−1, vl−1, Tl−1) returns a nonempty
value, but the procedure TreeCover (ul, vl, Tl) returns null. Then, query part (ii)
of the data structure in the storage to find the vertices x = pivG/C(l) (ul, Bhl

) and
y = pivG/C(l) (vl, Bhl

), and check two possibilities below.
(a) The shortest path between nodes x, y in G/C(l) is preserved in the distance-preserver;

that is, there is a path between x, y in Πl

In this case, query the shortest path π′
1 from ul to x using part (ii), and the shortest

path π′
2 from x to y using the path-reporting distance preserver in part (iii), and

the shortest path π′
3 from y to vl using part (ii). Then, define the concatenation

π′ = π′
1 ◦ π′

2 ◦ π′
3 and then recover a path π between s, t in G by unpacking the

contracted nodes in C(l) using π′ by Lemma 5 with runtime O(|π|).

S. Chechik and T. Zhang 42:11

(b) The shortest path between nodes x, y in G/C(l) is not preserved in the distance-
preserver.
In this case, as TreeCover (ul−1, vl−1, Tl−1) returned a nonempty value, we can use
the tree in Tl−1 that covers both ul−1, vl−1 to get a path π′ between them. Then,
by Lemma 5 we can obtain a path between s, t in G which unpacks the contracted
nodes in C(l−1).

Low-level phase

This part is pretty much the same as the query algorithm from [11]. The difference is that
we are making the queries in the contracted graph G/C(ι), and total number of levels is at
most 2

⌈
log2 k

⌉
rather than k. For convenience, rename the variables by u = C(ι)(s) and

v = C(ι)(t). We first check if u = v; if it is the case, we can directly retrieve a path using
the spanning trees of the stretch-friendly τι-partition C(ι) which has stretch error at most
2τι < k. For the rest, let us assume that u ̸= v.

▶ Definition 14 ([11]). For a pair of contracted nodes u, v in G/C(ι), and even index
j ∈ [0, 2 log2 k] is called (u, v)-terminal if (1) j = 2

⌈
log2 k

⌉
or (2) j < 2

⌈
log2 k

⌉
and one of

the following conditions holds:

pivG/C(ι) (u, Bj) ∈ BunG/C(ι) (v, Bj+1)

pivG/C(ι) (v, Bj+1) ∈ BunG/C(ι) (u, Bj+2)

Next, we will perform a binary search on the interval
[
0, 2

⌈
log2 k

⌉]
as did in [11]. Initially,

set i1 ← 0, i2 ← 2
⌈
log2 k

⌉
. In each iteration we perform the following steps while guaranteeing

that i2 is always (u, v)-terminal.
If i1 = i2, since i2 is (u, v)-terminal, we can consider three different possibilities.

i2 = 2
⌈
log2 k

⌉
.

Since TreeCover(u, v, Tι) returns successfully, we can use the tree in Tι that covers
both u, v to get a path π′ between them. Then, by Lemma 5 we can obtain a path
between s, t in G which unpacks the contracted nodes in C(ι).
pivG/C(ι) (u, Bi2) ∈ BunG/C(ι) (v, Bi2+1).
According to part (i) of our low-level data structures, we have stored the shortest path
π1 from v to pivG/C(ι) (u, Bi2) in G/C(ι), as well as the shortest path π2 from u to
pivG/C(ι)(u, Bi2). Then, we can retrieve a path between s, t by applying Lemma 5 on
π1 ◦ π2.
pivG/C(ι) (v, Bi2+1) ∈ BunG/C(ι) (u, Bi2+2).
Similarly, according to part (i) of our low-level data structures, we have stored the
shortest path π1 from u to pivG/C(ι) (v, Bi2+1) in G/C(ι), as well as the shortest path
π2 from v to pivG/C(ι)(u, Bi2+2). Then, we can retrieve a path between s, t by applying
Lemma 5 on π1 ◦ π2.

Otherwise, let j be the middle even index among i1, i1 + 2, · · · , i2 − 2, and let i3 be the
even index in i1, i1 + 2, · · · , j maximizing ∆(u, i3) by querying part (ii) of our low-level
data structure. If i3 is not (u, v)-terminal, then recurse on the index pair (j + 2, i2);
otherwise, recurse on (i1, i3).

4.3 Space analysis
Size of high-level data structures

Let us analyze the size of our data structures part by part for each index 0 ≤ l < ι.

ICALP 2024

42:12 Path-Reporting Distance Oracles with Logarithmic Stretch and Linear Size

▷ Claim 15. Let N = O(n · αl/5) be the number of contracted nodes in G/C(l). With high
probability over the randomness of Ahl

, for any contracted node u ∈ G/C(l), we have the
following bounds.∣∣BunG/C(l) (u, Bhl

)
∣∣ ≤ O

(
N

hl
k log2 N

)
.∣∣Bhl

∩BunG/C(l)
(
u, Chl−1

)∣∣ ≤ O
(

n
hl−1−hl

k log n
)

.

Proof. Let S be the set of nodes in G/C(l) which are the nearest 10n
hl
k log n ones to u.

Then, since Ahl
samples each vertices in V independently with probability n− hl

k , with high
probability, Ahl

contains at least one vertex contracted in some nodes in S. Therefore, in
this case we have

∣∣BunG/C(l) (u, Bhl
)
∣∣ ≤ O

(
n

hl
k log n

)
≤ O

(
N

hl
k log2 N

)
.

As for the second inequality bound, let u1, u2, . . . , uj ∈ Bhl
be the nearest nodes to u in

G/C(l), for some j = O
(

n
hl−1−hl

k log n
)

. Then, since each ui belongs to Chl−1 with probability

at least n−
hl−1−hl

k , at least one node ui, 1 ≤ i ≤ j should belong to Chl−1 with high probability.
Therefore, the size of

∣∣Bhl
∩BunG/C(l)

(
u, Chl−1

)∣∣ should be ≤ O
(

n
hl−1−hl

k log n
)

. ◁

Using Lemma 10 and Claim 15, we know that the total size of the tree cover data structure
for the quotient graph G/C(l) is bounded by O

(
n1+ 1

k · αl/5
)

. Then, taking a summation

over all indices 0 ≤ l < ι, the size bound becomes O
(

n1+ 1
k

)
. Similarly, we can also bound

the total size of shortest paths from all the nodes x to pivG/C(l) (x, Bhl
).

To bound the total size of our path-reporting distance preservers, we need to bound the
total number of branching events of Πl.

▷ Claim 16. For each 0 ≤ l ≤ ι, the expectation of |br(Πl)|+ |Πl| over the randomness of
A1, . . . , Ak is bounded by O(n/ log n).

Proof. Let (π1, π2, ∗) ∈ br(Πl) be any branching event, and assume π1, π2 are shortest paths
in G/C(l) between nodes u1, v1 and u2, v2 such that vb ∈ Bun1/2

G/C(l)

(
ub, Chl−1

)
,∀b ∈ {1, 2}.

Without loss of generality, assume that w(π1) ≥ w(π2). Then, we have:

distG/C(l)(u1, x) ≤ w(π1) + w(π2) < distG/C(l)
(
u1, Chl−1

)
,∀x ∈ {v1, u2, v2}

Therefore, v1, u2, v2 ∈ Bhl
∩ BunG/C(l)

(
u1, Chl−1

)
. Therefore, using Claim 15, with high

probability, |br(Πl)| is bounded by the following up to a constant factor (recall that α =
3/4 + ϵ):∑

u∈Bhl

∣∣Bhl
∩BunG/C(l)

(
u, Chl−1

)∣∣3 ≤ |Bhl
| ·O

(
n

3hl−1−3hl
k log3 n

)

≤ |Ahl
| ·O

(
n

3hl−1−3hl
k log3 n

)
≤ O

(
n1− hl

k +
3hl−1−3hl

k log4 n

)
< O

(
n1−

4⌈αlk⌉−3⌈αl−1k⌉
k log4 n

)

≤ O

(
n1− 3ϵ·αl−1k−3

k log4 n

)
< O

(
n1−ϵ·log2 k log4 n

)
< n/ log n

S. Chechik and T. Zhang 42:13

As for the size of Πl, by definition, it is bounded by
∑

u∈Bhl

∣∣∣Bhl
∩Bun1/2

G/C(l)

(
u, Chl−1

)∣∣∣
which is also at most O(n/ log n) according to the above calculation. ◁

Applying Definition 7 and Claim 16, we can bound the expected size of part-(iii) of our
data structures by O(n).

Size of low-level data structures

It is clear that part (ii) only takes space O(n log2 k/τι) ≤ O(n). As for part (i), for each
node x, we have stored the shortest path from x to every node y ∈ Bi ∩BunG/C(ι)(x, Bi+1)
and pivG/C(ι)(x, Bi). It is clear that the total size of the shortest paths to pivots is at most
O(n/τι), so it is at most O(n) by taking a summation over all indices 0 ≤ i ≤ 2

⌈
log2 k

⌉
.

Next, let us focus on shortest paths from x to nodes in Bi ∩BunG/C(ι)(x, Bi+1).
▷ Claim 17. For each node x in G/C(ι), the expected size of Bi ∩BunG/C(ι)(x, Bi+1) is at
most n1/k over the randomness of A1, A2, . . . , Ak.
Proof. Fix any node x, order all nodes in G/C(ι) in an increasing order of distances as
y0, y1, . . . , yl, For each yj , let |yj | be the number of vertices in V contracted within.
Conditioning on pivG/C(ι)(x, Bi+1) being yl, the expected total number vertices contracted
in nodes from Bi ∩ BunG/C(ι)(x, Bi+1) is equal to n−i/k

∑l−1
j=0 |yj |. Therefore, the overall

expected total number vertices contracted in nodes from Bi ∩BunG/C(ι)(x, Bi+1) would be:

n−i/k
∑
l≥1

l−1∑
j=0
|yj | · Pr

[
pivG/C(ι)(x, Bi+1) = yl

]

= n−i/k
∑
l≥1

l−1∑
j=0
|yj | ·

(
1− n−(i+1)/k

)∑l−1
j=0

|yj |
·
(

1−
(

1− n−(i+1)/k
)|yl|

)
≤ n−i/k · n(i+1)/k = n1/k

The inequality holds as the summation is maximized when |yj | = 1,∀j ≥ 0. Therefore, the
expected size of Bi ∩BunG/C(ι)(x, Bi+1) is also at most n1/k. ◁

To bound the total size of shortest paths from x to Bi ∩BunG/C(ι)(x, Bi+1), we need the
one more statement below.
▷ Claim 18. Fix any node x, and for any y ∈ Bi ∩BunG/C(ι)(x, Bi+1) and node z on the
shortest path from x to y in graph G/C(ι), we have y ∈ BunG/C(ι)(z, Bi+1).
Proof. By triangle inequality, we have:

distG/C(ι)(z, y) = distG/C(ι)(x, y)− distG/C(ι)(x, z)
< distG/C(ι)(x, Bi+1)− distG/C(ι)(x, z)
< distG/C(ι)(z, Bi+1)

So by definition of bunches, we have y ∈ BunG/C(ι)(z, Bi+1). ◁

By Claim 18, if the data structure needs to store the shortest path γx,y from x to
y ∈ Bi∩BunG/C(ι)(x, Bi+1), then it also needs to store each shortest path γz,y for any z ∈ γx,y.
Therefore, to store all the path {γx,y} in a space-efficient manner, we only need to store the
first edge of γx,y (which is incident on x) for all x in G/C(ι) and y ∈ Bi ∩BunG/C(ι)(x, Bi+1);
this also allows us to retrieve the path γx,y in |γx,y| time. Then, by Claim 17, the total
size of this shortest path data structure over all node x in G/C(ι) would be bounded by
O(n1+1/k/τι), which is O(n1+1/k) summing over all 0 ≤ i ≤ 2

⌈
log2 k

⌉
.

ICALP 2024

42:14 Path-Reporting Distance Oracles with Logarithmic Stretch and Linear Size

4.4 Stretch analysis
Let us analyze the stretch of the high-level phase and the low-level phase separately.

High-level phase

By the algorithm description, suppose that the subroutine TreeCover (uι, vι, Tι) does not
return any nonempty value. Then, by the binary search procedure, in the end we will find an in-
dex 1 ≤ l ≤ ι such that TreeCover (ul, vl, Tl) returns null and TreeCover (ul−1, vl−1, Tl−1)
returns a nonempty value. Define x = pivG/C(l) (ul, Bhl

) and y = pivG/C(l) (vl, Bhl
).

▷ Claim 19. If 1 ≤ l ≤ κ, then:

distG(x, y) ≤
(
3(1 + ϵ)2hl + 1

)
· distG(s, t)

If κ < l ≤ ι, then:

distG/C(l)(x, y) ≤
(
3(1 + ϵ)2hl + 1

)
· distG/C(l)(ul, vl)

Proof. For the first inequality, since TreeCover (s, t, Tl) does not return anything, by the
guarantee of Lemma 10, we know that:

distG(s, t) >
2

3(1 + ϵ)2hl
·max {distG (s, Ahl

) , distG (t, Ahl
)}

Thus, by triangle inequality, we have:

distG(x, y) ≤ distG(x, s) + distG(s, t) + distG(t, y) ≤
(
3(1 + ϵ)2hl + 1

)
· distG(s, t)

Similarly, for the second inequality, since TreeCover (ul, vl, Tl) does not return anything,
by the guarantee of Lemma 10, we know that:

distG/C(l)(ul, vl) >
2

3(1 + ϵ)2hl
·max{distG/C(l) (ul, Bhl

) , distG/C(l) (vl, Bhl
)}

Thus, by triangle inequality, we have:

distG/C(l)(x, y) ≤ distG/C(l)(x, ul) + distG/C(l)(ul, vl) + distG/C(l)(vl, y)
≤
(
3(1 + ϵ)2hl + 1

)
· distG/C(l)(ul, vl) ◁

Next, let us study two possibilities. First, assume that the shortest path between nodes
x, y in G/C(l) belongs to Πl.

1 ≤ l ≤ κ.
In this case, using Claim 19, the path reported by our distance oracle has length at most:

distG(s, x)+distG(x, y)+distG(y, t) ≤
(
6(1 + ϵ)2hl + 1

)
·distG(s, t) ≤ 5k ·distG(s, t)

κ < l ≤ ι.
In this case, let π′ be the concatenation of shortest paths between ul, x, and x, y, and
y, vl in graph G/C(l). Using Claim 19 and triangle inequality, we have:

w(π′) = distG/C(l)(ul, x) + distG/C(l)(x, y) + distG/C(l)(y, vl)
≤
(
6(1 + ϵ)2hl + 1

)
· distG/C(l)(ul, vl)

S. Chechik and T. Zhang 42:15

Applying Lemma 5 on π′ and then we can obtain a path between s, t with length at most:

4τl ·
(
6(1 + ϵ)2hl + 1

)
· distG/C(l)(ul, vl) ≤ 4τl ·

(
6(1 + ϵ)2hl + 1

)
· distG(s, t)

≤ 8α−l/5 ·
(
6(1 + ϵ)2 ⌈αlk

⌉
+ 1
)
· distG(s, t)

< 50α4l/5k · distG(s, t)
< 10k · distG(s, t)

Next, consider the case where the shortest path between nodes x, y in G/C(l) does not
belong to Πl. Consider two possibilities.

1 ≤ l ≤ κ.
In this case, using Claim 19, we know distG(x, y) ≤

(
3(1 + ϵ)2hl + 1

)
· distG(s, t). Also,

in the proof of Claim 19, we have also shown:

distG(s, t) >
2

3(1 + ϵ)2hl
·max {distG (s, x) , distG (t, y)}

Now, since y /∈ Bun1/2
G

(
x, Ahl−1

)
and x /∈ Bun1/2

G

(
y, Ahl−1

)
, we know that:

max
{

distG

(
x, Ahl−1

)
, distG

(
y, Ahl−1

)}
≤ 2distG(x, y)

Therefore, we have:

max
{

distG

(
s, Ahl−1

)
, distG

(
t, Ahl−1

)}
≤ max

{
distG(s, x) + distG

(
x, Ahl−1

)
, distG(t, y) + distG

(
y, Ahl−1

)}
≤
(

15(1 + ϵ)2hl

2 + 2
)
· distG(s, t)

As TreeCover (s, t, Tl) successfully returns a nonempty value, by Lemma 10, the path
retrieved between s, t has length at most (k > 100, ϵ < 0.1):(

15(1 + ϵ)hl

(1− ϵ) + 4(1 + ϵ)
)
· distG(s, t)

<

(
15(1 + ϵ) ⌈(0.75 + ϵ)k⌉

(1− ϵ) + 4(1 + ϵ)
)
· distG(s, t)

< 12k · distG(s, t)

l > κ.
In this case, using Claim 19, we know that distG/C(l)(x, y) ≤

(
3(1 + ϵ)2hl + 1

)
·

distG/C(l)(ul, vl). Also, in the proof of Claim 19, we have also show:

distG/C(l)(ul, vl) >
2

3(1 + ϵ)2hl
·max{distG/C(l) (ul, x) , distG/C(l) (vl, y)}

Now, since x /∈ BunG/C(l)(y, Chl−1) and y /∈ BunG/C(l)(x, Chl−1), we know that:

max
{

distG/C(l)
(
x, Chl−1

)
, distG/C(l)

(
y, Chl−1

)}
≤ 2distG/C(l)(x, y)

Therefore, we have:

max
{

distG/C(l)
(
ul, Chl−1

)
, distG/C(l)

(
vl, Chl−1

)}
≤ max

{
distG/C(l)(ul, x) + distG/C(l)

(
x, Chl−1

)
, distG/C(l)(vl, y) + distG/C(l)

(
y, Chl−1

)}
≤
(

15(1 + ϵ)2hl

2 + 2
)
· distG/C(l)(ul, vl)

ICALP 2024

42:16 Path-Reporting Distance Oracles with Logarithmic Stretch and Linear Size

Take an arbitrary vertex z ∈ V contracted in the node pivG/C(l)(ul, Chl−1). Then,
applying Lemma 5, we can bound distG(s, Ahl−1) as:

distG(s, Ahl−1) ≤ distG(s, z) ≤ 4τl ·
(

15(1 + ϵ)2hl

2 + 2
)
· distG/C(l)(ul, vl)

< 8α−l/5 · 8αlk · distG(s, t) = 64α4l/5k · distG(s, t)

Similarly we can prove that distG(t, Ahl−1) < 64α4l/5k · distG(s, t).
As TreeCover (ul−1, vl−1, Tl−1) successfully returns a nonempty value, by Lemma 10,
the path retrieved between ul−1, vl−1 in G/C(l−1) has length at most (k > 100, ϵ < 0.1):

2(1 + ϵ) max
{

distG/C(l−1)
(
ul−1, Bhl−1

)
, distG/C(l−1)

(
vl−1, Bhl−1

)}
≤ 2(1 + ϵ) ·max

{
distG(s, Ahl−1), distG(t, Ahl−1)

}
< 130 · α4l/5k · distG(s, t)

Then, applying Lemma 5 again, we can unpack this path and retrieve a path between s, t

with weight at most (note that l > κ = 50 and α = 3
4 + ϵ):

4τl · 130 · α4l/5k · distG(s, t) < 1040 · α3l/5k · distG(s, t) < 10k · distG(s, t)

Low-level phase

Next, let us turn to the stretch if the query procedure is in the low-level phase. By the
algorithm description, we should assume that the subroutine TreeCover (uι, vι, Tι) returns
a nonempty value.

▷ Claim 20. During the binary search procedure on the index pair (i1, i2), it always holds
that distG/C(ι) (u, Bi1) ≤ i1 · distG/C(ι) (u, v). Plus, i2 is always (u, v)-terminal.

Proof. The second half of the statement is straightforward. So, let us prove the first half
by an induction. At the beginning of the algorithm, i1 = 0, and thus distG/C(ι) (u, Bi1) =
0. In each iteration, if i3 is (u, v)-terminal, then i1 does not change, so the induction
holds. Otherwise, since pivG/C(ι) (u, Bi3) /∈ BunG/C(ι) (v, Bi3+1) and pivG/C(ι) (v, Bi3+1) /∈
BunG/C(ι) (u, Bi3+2), we know that by definition of bunches:

distG/C(ι) (v, Bi3+1) ≤ distG/C(ι)(u, v) + distG/C(ι) (u, Bi3)

distG/C(ι) (u, Bi3+2) ≤ distG/C(ι)(u, v) + distG/C(ι) (v, Bi3+1)

Hence, ∆(u, i3) ≤ 2distG/C(ι)(u, v). Since ∆(u, i3) is the maximum among ∆(u, i), i1 ≤ i ≤
j − 2, we know that distG/C(ι)(u, Bj) ≤ j · distG/C(ι)(u, v). ◁

In the end, when the algorithm terminates, we have i1 = i2 = i. By the above claim,
we know that distG/C(ι)(u, Bi) ≤ i · distG/C(ι)(u, v), and either i = 2

⌈
log2 k

⌉
or i is (u, v)-

terminal. Consider two possibilities.
i = 2

⌈
log2 k

⌉
.

In this case, as TreeCover(u, v, Tι) successfully returned a nonempty value, by Lemma 10,
the path length between u, v in G/C(ι) reported by our distance oracle is at most:

2(1 + ϵ) · distG/C(ι)(u, Bi) < 5 log2 k · distG/C(ι)(u, v)

If we unpack the clusters in C(ι), according to Lemma 5, this path has length at most:

20τι · log2 k · distG(u, v) < 40k1/5 log2 k · distG(u, v) < 10k · distG(u, v)

S. Chechik and T. Zhang 42:17

i < 2
⌈
log2 k

⌉
.

In this case, as i is (u, v)-terminal, we know that either pivG/C(ι) (u, Bi) ∈
BunG/C(ι) (v, Bi+1) or pivG/C(ι) (v, Bi+1) ∈ BunG/C(ι) (u, Bi+1). Therefore, our data
structure can report a path in G/C(ι) of length at most (2i + 1) · distG/C(ι)(u, v) between
u, v. If we unpack the clusters in C(ι), according to Lemma 5, this path has length at
most:

4τι · (2i + 1) · distG(u, v) < 10k · distG(u, v)

References
1 Michael A Bender and Martin Farach-Colton. The LCA problem revisited. In LATIN 2000:

Theoretical Informatics: 4th Latin American Symposium, Punta del Este, Uruguay, April
10-14, 2000 Proceedings 4, pages 88–94. Springer, 2000.

2 Michael A Bender and Martın Farach-Colton. The level ancestor problem simplified. Theoretical
Computer Science, 321(1):5–12, 2004.

3 Marcel Bezdrighin, Michael Elkin, Mohsen Ghaffari, Christoph Grunau, Bernhard Haeupler,
Saeed Ilchi, and Václav Rozhoň. Deterministic distributed sparse and ultra-sparse spanners
and connectivity certificates. In Proceedings of the 34th ACM Symposium on Parallelism in
Algorithms and Architectures, pages 1–10, 2022.

4 Shiri Chechik. Approximate distance oracles with constant query time. In Proceedings of the
forty-sixth annual ACM symposium on Theory of computing, pages 654–663, 2014.

5 Shiri Chechik. Approximate distance oracles with improved bounds. In Proceedings of the
forty-seventh annual ACM symposium on Theory of Computing, pages 1–10, 2015.

6 Don Coppersmith and Michael Elkin. Sparse sourcewise and pairwise distance preservers.
SIAM Journal on Discrete Mathematics, 20(2):463–501, 2006.

7 Michael Elkin and Seth Pettie. A linear-size logarithmic stretch path-reporting distance oracle
for general graphs. ACM Transactions on Algorithms (TALG), 12(4):1–31, 2016.

8 Michael Elkin and Idan Shabat. Path-Reporting Distance Oracles with Logarithmic Stretch
and Size O(n log log n). In 2023 IEEE 64th Annual Symposium on Foundations of Computer
Science (FOCS), pages 2278–2311. IEEE, 2023.

9 Manor Mendel and Assaf Naor. Ramsey partitions and proximity data structures. Journal of
the European Mathematical Society, 9(2):253–275, 2007.

10 Mikkel Thorup and Uri Zwick. Approximate distance oracles. Journal of the ACM (JACM),
52(1):1–24, 2005.

11 Christian Wulff-Nilsen. Approximate distance oracles with improved query time. In Proceedings
of the twenty-fourth annual ACM-SIAM symposium on Discrete algorithms, pages 539–549.
SIAM, 2013.

A Missing proofs

▶ Lemma 21 (restate Lemma 9). Given an undirected weighted graph G = (V, E, w) and a
collection of shortest paths Π, there is a distance-preserving path-reporting data structure that
reports any path π ∈ Π in time |π|. The data structure has size O

(
n + |Π|+

√
n|br(Π)|

)
where br(Π) is the set of branching events of Π.

Proof. First, for any path π ∈ Π, store both of endpoints in V as well as its first and last
edges. Since all paths in Π are shortest paths, there are no two paths sharing the same pair
of endpoints. For any path π ∈ Π, we can identify π with its starting and ending vertex
which is denoted by ID(π). This part takes space O(n + |Π|).

ICALP 2024

42:18 Path-Reporting Distance Oracles with Logarithmic Stretch and Linear Size

We will build a routing table data structure Du at any vertex u ∈ V . That is, for any
path π ∈ Π that passes through u through a pair of edges (v, u), (u, w), given the ID of π, the
routing data structure Du is able to answer the edges (v, u), (u, w) in constant time. Once
this is goal is fulfilled, as we have also stored starting and ending edges of each path, our
path-reporting distance preserver is complete. For the rest, let us focus on the design of Du.

For any vertex u ∈ V , let Πu be the set of paths in Π that pass through u, and for any
unordered pairs of different neighbors v, w of u in G, let Π{v,w}

u be the set of paths that use
edges (v, u), (u, w) to go through u, and so |Πu| =

∑
v ̸=w

∣∣∣Π{v,w}
u

∣∣∣, and also by definition of
branching events, the number of branchings at x is equal to:

|br(Πu)| =
∑

{v,w}̸={v′,w′}

∣∣∣Π{v,w}
u

∣∣∣ · ∣∣∣Π{v′,w′}
u

∣∣∣ = 1
2

|Πu|2 −
∑
v ̸=w

∣∣∣Π{v,w}
u

∣∣∣2


Consider two different cases.
For any vertex pair v, w, we have

∣∣∣Π{v,w}
u

∣∣∣ ≤ 1
2 · |Πu|.

In this case, for each path π ∈ Πu using edges (v, u), (u, w), store a triple (ID(π), v, w);
all such triples will be stored in a hash table that supports constant-time queries using
path IDs.
As for the space of Du, on the one hand, it is O(|Πu|). On the other hand, under this
condition we have:

|br(Πu)| = 1
2

|Πu|2 −
∑
v ̸=w

∣∣∣Π{v,w}
u

∣∣∣2
 ≥ 1

2

(
|Πu|2 −

1
2 |Πu|2

)
= 1

4 |Πu|2

Therefore, |Du| = O
(√
|br(Πu)|

)
.

There exists a vertex pair v∗, w∗ such that
∣∣∣Π{v∗,w∗}

u

∣∣∣ > 1
2 · |Πu|.

In this case, for each path π ∈ Πu using edges (v, u), (u, w) such that {v, w} ≠ {v∗, w∗},
store a triple (ID(π), v, w); all these triples will be stored in a hash table that supports
constant-time queries using path IDs. For those paths π which pass through u using
edges (v∗, u), (u, w∗), we can query this hash table with ID(π) which returns nothing, and
then answer the query with {(v∗, u), (u, w∗)}.
As for the size of Du, on the one hand, its space is O

(
Πu \Π{v∗,w∗}

u

)
. On the other

hand, we have:

|br(Πu)| = 1
2

|Πu|2 −
∑
v ̸=w

∣∣∣Π{v,w}
u

∣∣∣2
 ≥ 1

2 ·
(
|Πu|2 −

∣∣∣Π{v∗,w∗}
u

∣∣∣2 − ∣∣∣Πu \Π{v∗,w∗}
u

∣∣∣2)

≥
∣∣∣Π{v∗,w∗}

u

∣∣∣ · ∣∣∣Πu \Π{v∗,w∗}
u

∣∣∣ ≥ ∣∣∣Πu \Π{v∗,w∗}
u

∣∣∣2
Therefore, we also have |Du| = O

(√
br(Πu)

)
In either case, we are able to show |Du| = O

(√
br(Πu)

)
, and so the total size can be

bounded by:∑
u∈V

|Du| ≤
√

n
∑
u∈V

|Du|2 = O
(√

n|br(Π)|
)

◀

	1 Introduction
	1.1 Technical overview

	2 Preliminaries
	2.1 Stretch-friendly partitions
	2.2 Distance preservers

	3 Tree covers
	4 Path-reporting distance oracles
	4.1 Data structures
	4.2 Query algorithm
	4.3 Space analysis
	4.4 Stretch analysis

	A Missing proofs

