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Abstract
We consider the design of a positioning system where a robot determines its position from local
observations. This is a well-studied problem of considerable practical importance and mathematical
interest. The dominant paradigm derives from the classical theory of de Bruijn sequences, where the
robot has access to a window within a larger code and can determine its position if these windows
are distinct. We propose an alternative model in which the robot has more limited observational
powers, which we argue is more realistic in terms of engineering: the robot does not have access to
the full pattern of colours (or letters) in the window, but only to the intensity of each colour (or the
number of occurrences of each letter). This leads to a mathematically interesting problem with a
different flavour to that arising in the classical paradigm, requiring new construction techniques.
The parameters of our construction are optimal up to a constant factor, and computing the position
requires only a constant number of arithmetic operations.
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1 Introduction

Consider a robot located on a grid of coloured squares that must determine its position
after observing part of the grid through a fixed viewing window. The dominant paradigm
for this problem derives from the mathematical theory of de Bruijn sequences, i.e. binary
(or bi-coloured) cyclic sequences of length 2n in which each binary sequence of length n

appears exactly once as a subsequence of consecutive entries. Such a sequence can be used
for positioning a robot in one dimension: the robot sees a viewing window of length n; this
window induces a subsequence with a unique colour pattern; from this colour pattern the
robot can then reconstruct its position in the sequence (if we disregard issues of computational
efficiency and error correction). Generalisations of this idea to higher dimensions and related
combinatorial structures have led to a rich mathematical theory; see Section 1.2.

However, while this theory is mathematically pleasing, we will argue in Section 1.3 that
engineering constraints support a model in which the robot does not have access to the
full colour pattern in the window, but must infer its position only knowing the intensity of
each colour, that is, the multiset of colours. More precisely, given an n × n grid, a robot
with an m × m viewing window, and a palette of k colours, our task is to colour the grid so
that each possible location of the viewing windows produces a different multiset of colours.
Furthermore, it will be mathematically more natural to undertake this task for a torus of
side n rather than a grid, and also to generalise to an arbitrary dimension d.

▶ Example 1. The grid colouring illustrated in Figure 1 has dimension d = 2, size n = 8,
window size m = 4, and k = 3 colours (red 0, green 1, and blue 2). No two 4 × 4 subsquares
contain the same multiset of colours. For example, two viewing windows are shown with
multisets that have multiplicities for (0, 1, 2) equal to (6, 2, 8) and (3, 5, 8), respectively.
Observe that the second window “wraps around” because the grid is considered as a torus.

2 2 2 2 2 1 2 1
2 2 2 2 1 2 1 2
2 2 2 2 2 1 2 2
2 2 2 2 1 2 1 2
0 2 0 2 0 1 0 1
2 0 2 0 1 0 1 0
0 2 0 2 0 1 0 2
2 0 2 2 1 0 1 2

2 2 2 2 2 1 2 1
2 2 2 2 1 2 1 2
2 2 2 2 2 1 2 2
2 2 2 2 1 2 1 2
0 2 0 2 0 1 0 1
2 0 2 0 1 0 1 0
0 2 0 2 0 1 0 2
2 0 2 2 1 0 1 2

2 2 2 2 2 1 2 1
2 2 2 2 1 2 1 2
2 2 2 2 2 1 2 2
2 2 2 2 1 2 1 2
0 2 0 2 0 1 0 1
2 0 2 0 1 0 1 0
0 2 0 2 0 1 0 2
2 0 2 2 1 0 1 2

Figure 1 A grid coloring of dimension d = 2, size n = 8, window size m = 4. Observe that the
two windows depicted contain distinct multisets of colours.

Our question of study is, given m, d, k, what is the largest grid size n for which position
reconstruction is possible? Unfortunately, even the one-dimensional version of this question
is the subject of several unsolved problems, discussed in Section 1.2. However, for practical
purposes one can be content to relax from finding the optimal n given m, d, k to a value
that is optimal up to a constant factor, where we think of d and k as fixed and consider
the asymptotics for large m and n. There is a clear information theoretic barrier (see
Observation 10) at n = Θk,d(mk−1), where the subscripts indicate that k and d are constants.
The main contribution of this paper is a construction that achieves this theoretical optimum
up to a constant factor, and moreover has optimal computational efficiency, in that only a
constant number of arithmetic operations are required to compute the location of the window
from its multiset of colours. We implemented and tested this construction in Python [13].
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1.1 Definitions and Results
Notations. All vectors, tuples and sequences are indexed starting at 0. Integer intervals
are denoted with square brackets, such as [0, n − 1]. Given a length d, the vector ei has
all coordinates equal to 0, except the ith, which is equal to 1. The value of 1condition is 1
if condition is satisfied, and 0 otherwise. We write i ≡ j mod n when the integer i − j is
divisible by n. Tables are represented with row indices increasing from top to bottom and
column indices increasing from left to right, both starting at 0.

We first present general definitions that will be useful for discussing the literature and
presenting our construction, starting with cycle packings for the one-dimensional case, and
continuing with their higher dimensional generalisation, torus packings. Then the central
objects of this article, grid colouring, are formally defined as particular cases of torus packings.
Our main result, Theorem 9, is a near-optimal construction for grid colourings. It will make
use of vector sum packings (Definition 11), which are particular cases of cycle packings.

▶ Definition 2. Given an alphabet A, a size n, a window size m, and a function f on Am,
an (A, f, n, m)-cycle packing is a function W : Z 7→ A that satisfies

Periodicity. For all x ∈ Z we have Wx = Wx+n.
Injectivity. If f(Wx, Wx+1, . . . , Wx+m−1) = f(Wy, Wy+1, . . . , Wy+m−1), for any in-
tegers x and y, then x ≡ y mod n.

Let us explain this formal definition. Consider a circle composed of n squares, each
receiving a letter from A. A robot located on this circle wants to recover its position. It makes
a local measurement, function f of the letters in a window of size m around it. The injectivity
condition ensures that two positions of the robot (and thus of the window) correspond to two
distinct values of f . Thus the robot is always able to deduce its position. Observe that the
form of function f matters as different functions induce different types of information that
robot can extract from the viewing window. To illustrate this point, consider the following
three examples of (A, f, n, m)-cycle packings. These examples all have A = {0, 1, 2} and
m = 3 but differ in their functions f (which in turn lead to varying sizes of n).

▶ Example 3. Take the basic case where f is the identity function. The robot thus
receives the entire colour pattern in its viewing window. Thus a cycle packing corres-
ponds to a sequence of length n where all the contiguous subsequences of length m have
distinct colour patterns. With A = {0, 1, 2} and window size m = 3, we have that
(0, 1, 1, 1, 2, 1, 0, 1, 2, 0, 1, 0, 2, 1, 1, 0, 0, 2, 2, 1, 2, 2, 2, 0, 2, 0, 0) is a cycle-packing of size n = 27
as each possible string of length 3 appears at most once; thus, the injectivity property holds.
In fact, each such string appears exactly once (e.g. the factor (0, 0, 0) = f(0, 0, 0) appears by
wrapping around), making it a de Bruijn sequence. This exactness property is not required
for cycle packings, but when it is satisfied the cycle packing is called a universal cycle.

▶ Example 4. Recall our motivation is that the robot extracts the colour intensities rather
than the entire colour pattern. So instead of the identity function, assume that f is the
multiset counting function which simply counts the number of appearances of each colour
in the viewing window. Now, for the alphabet A = {0, 1, 2} with window size m = 3, the
sequence (0, 1, 1, 1, 2, 2, 2, 0, 0) is a cycle packing of size n = 9 as every multiset appears
at most once (e.g. the multiset (3, 0, 0) = f(0, 0, 0) arises by wrapping around) and the
injectivity property holds. However, this cycle packing is not a universal cycle as no viewing
window contains all three colours, so the multiset (1, 1, 1) does not appear.

ICALP 2024
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▶ Example 5. Again take A = {0, 1, 2} with window size m = 3, but now let f be the
summation function. We claim the sequence (0, 0, 0, 2, 2, 2, 1) is a cycle packing of size n = 7.
To see this, observe that f(0, 0, 0) = 0 + 0 + 0 = 0, f(0, 0, 2) = 0 + 0 + 2 = 2, etc. Continuing
these calculations, the outputted sequence of sums is (0, 2, 4, 6, 5, 3, 1). This has distinct
entries, so injectivity is satisfied. The reader may query the relevance of the summation
function. In fact, this example is a special case of vector sum packings (Definition 11) which,
in turn, will play a critical role in the construction underlying our main theorem.

Of course, our interest lies in dimension d > 1, so we now extend the definition of cycle
packings to higher dimensions.

▶ Definition 6. Given an alphabet A, a size n, a window size m, a dimension d, and a
function f on Amd , an (A, f, n, m, d)-torus packing is a function W : Zd 7→ A that satisfies

Periodicity. For all x ∈ Zd and j ∈ [0, d−1], we have Wx = Wx+nej
where ej denotes

the vector with a 1 in position j and 0 elsewhere.
Injectivity. For any x and y in Zd, if f

(
(Wx+c)c∈[0,m−1]d

)
= f

(
(Wy+c)c∈[0,m−1]d

)
,

then xj ≡ yj mod n for all j (where xj denote the jth coordinate of the vector x).

Note the key distinction in this definition is that the viewing window shares the same
higher dimension as the torus. Again, by the periodicity property, we can identify a torus
packing W with its pattern (Wx)x∈[0,n−1]d . We are now ready to define the central objects
of this paper. These are grid colourings, a particular case of torus packing that correspond
exactly to the robot position reconstruction problem.

▶ Definition 7. An (n, m, d, k)-grid colouring is an (A, f, n, m, d)-torus packing with
|A| = k and f mapping any sequence to the multiset of its entries.

▶ Example 8. Consider, again, our example in Figure 1. This is an (A, f, n, m, d)-torus
packing with A = {0, 1, 2}, n = 8, m = 4, d = 2 and where f is the multiset counting
function. Consequently, since |A| = 3, this is an (8, 4, 2, 3)-grid colouring.

The following is our main result on grid colourings, implemented and tested in Python [13].

▶ Theorem 9. Fix a dimension d ≥ 2 and a number of colours k of the form bd + 1 for some
b ≥ 1. For any window size m multiple of 2(k − 1), there is an (n, m, d, k)-grid colouring W

(explicitly constructed in the proof) with

n ∼ C
1/d
k · mk−1 where Ck =

(
2

k − 1

)k−1
.

Furthermore, for any x in Zd, given the multiset of colours in (Wx+c)c∈[0,m−1]d one can
compute x mod n with Ok,d(1) arithmetic operations.

Our construction in Theorem 9 of size n = Ωk,d(mk−1) is optimal up to a multiplicative
constant. This fact follows from the following observation, which is immediate from counting
considerations (injectivity requires the number of possible colour multisets to be at least the
number of windows that they must distinguish).

▶ Observation 10. The parameters of any (n, m, d, k)-grid colouring satisfy the inequality

nd ≤
(

md + k − 1
k − 1

)
.

In particular, for fixed dimension d and number of colours k, as the window size m tends to
infinity, we have

n ≤ C
′1/d
k · mk−1(1 + O(m−1)) with C ′

k = 1
(k − 1)! .
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We conclude this section by discussing related work and providing technological justifica-
tions for our positioning model.

1.2 Related Work

The combinatorial structures associated with torus packings (Definition 6) have a rich
mathematical literature, starting from a problem solved in the 19th century, independently
rediscovered by de Bruijn and now known as de Bruijn sequences (see [12]). The generalisation
to higher dimensions was independently considered in several papers starting from the 1960’s
(see [24]) and has developed an extensive literature (see e.g. [17, 18, 20]) under the name
of de Bruijn tori. The extension to general combinatorial structures encoded by sequences
as in Definition 6 was proposed by Chung, Graham and Diaconis [9], who considered the
one-dimensional problem (“universal cycles”) for a variety of combinatorial structures. These
early formulations of the problem generally asked for optimal solutions in which every object
in a given combinatorial class is realised exactly once; in the context of Definition 6 this
corresponds to strengthening injectivity to bijectivity. However, for practical purposes one
can be satisfied with approximately optimal solutions, and given the difficulty of finding
optimal solutions there is also a substantial literature (see e.g. [3,10,11]) finding approximate
solutions from the perspective of packing (injectivity) and covering (surjectivity).

For the multiset encoding problem considered in this paper, finding the exact optimum
is an open problem even for the one-dimensional setting of universal cycles, considered by
Knuth [21, Fascicle 3, Section 7.2.1.3, Problem 109]. Hurlbert et al. [19] construct universal
cycles for multisets with particular parameters, and Blanca and Godbole [3] consider the
problem when the multisets have bounded multiplicities. Furthermore, the known results
only consider the opposite regime of parameters from those needed for our application: we
consider small palettes of colours (a.k.a. alphabets) and a large window, whereas previous
techniques in the literature only apply to small windows and large alphabets. This comment
also applies to the problem replacing “multiset” by “set”, which is perhaps even more natural
mathematically, given that it can be viewed as a hypergraph version of the Euler tour problem
(introduced by Euler in the 18th century). Following many partial results, an exact solution
to this problem (for small windows and large alphabets) was found by Glock et al. [14],
solving a conjecture from Chung et al. [9]. We are unaware of any results in the literature
on multiset packing in one dimension (meaning maximizing the number of multisets that
appear in a sequence, rather than looking for sequences that contain all possible multisets).

Moving on from the abstract mathematical problem, we now consider some of the
computer science literature aimed towards the specific application of indoor positioning.
Much of the early work was surveyed by Burns and Mitchell [5]. More recent literature
(see e.g. [2, 4, 6, 25]) has emphasised two further conditions that do not appear in the
mathematical formulation but are naturally desirable for practical implementations: namely
(a) computational efficiency, and (b) robustness against measurement errors. These works
bring a variety of techniques from coding theory to bear on the positioning problem, providing
efficient positioning algorithms with error correction. However, while these algorithms make
natural use of an existing toolkit and are conceptually pleasing, we will argue that they are
not addressing the most appropriate formulation of the problem from the point of view of
the target application of robot positioning, for which a new paradigm is needed.

ICALP 2024
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1.3 Motivation and Engineering Aspects
The focus of this paper is theoretical, concerning near-optimal designs for elegant combinat-
orial structures, namely torus packings. However, as stated, our motivation derives from the
problem of position reconstruction (where the dimension is 2 and the torus of is considered a
square). The vast number of applications of localization and positioning have prompted the
design of a plethora of systems; see [31] and references therein.

Given the great practical importance of positioning systems, it behoves us to justify our
claim that the approporiate way to model them is with multiset counting functions. We do
this in this section by summarising two systems where our code (and variants of it) will be
useful.

Light-Based Positioning. Recently, visible light based positioning systems have gained
much attention [23, 26, 31] for two key reasons: (i) there is a strong demand for accurate but
low-cost solutions, and (ii) there have been breakthroughs in the energy consumption and
life expectancy of light-emitting diodes (LEDs). Contrary to systems requiring several light
emitters and relying on triangulation [26], systems based on universal torus packing (such
as de Bruijn torus [1, 27, 28] and our construction) rely on only one light source, reducing
cost and energy consumption. Consider a room lit by a light-emitting diode (LED). A robot
moving on the floor wears a light sensor or camera. A printed film is placed on top of the
robot, above this sensor. The film is printed with a coloured grid, distorted so that depending
on the position of the robot in the room, the light coming from the LED projects a square
window of the coloured grid on the sensor [16]. If the coloured grid code depends on the
respective positions of the colours (such as de Bruijn torus), the light detector must be a
camera [22, 30] to recognize the pattern. If a torus packing for multisets is used instead,
the robot can wear a simple light intensity sensor to recover the multiset of colours: the
pattern of the colours is not needed, and we side-step the problematic issue of resolving the
image. Such a device is considerably less expensive and has much shorter response time
(lower latency) than a camera. It should be noted that the total light intensity (number of
coloured rays) received by the detector depends on the position and also the orientation of
the robot. Thus, for practical application of the construction presented in this article some
redundancy should be added to allow for a unique position decoding in all cases. Positioning
systems based on a de Bruijn torus also require redundancy to correct errors [6] and allow
different orientations of the receiver [29]. We plan to explore redundancy in universal torus
packing for multisets in future work.

Ambient Backscatters. An ambient backscatter is a small and inexpensive device that,
upon reception of a radio wave, turns it into electricity and sends back data through a radio
signal. Consider a warehouse where ambient backscatter devices are regularly placed, forming
a grid. A robot with a radio emitter and receptor needs to locate itself in the warehouse.
Each backscatter device, when in reach of the emitted radio wave, sends back its identification
number (ID). If all devices have distinct IDs, the robot can determine its position based on
the signals it receives. However, in the interest of energy consumption, IDs composed of
few bits are preferred [7]. The same ID can be reused by several devices, provided that at
any position, the multiset of IDs detected by the robot is unique. The relative position of
the robot to its neighbouring backscatter devices is unknown, so the IDs should be chosen
following a universal torus packing for multisets (a de Bruijn torus would require the robot
to have directional antennas, making the system less practical and more expensive). For this
application, our construction should be adapted to account for radial symmetry and decay
of signal power in the detection window.
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2 Overview

We have reduced the position reconstruction problem to the design of grid colourings.
Consequently our main result, Theorem 9, is based upon an near-optimal grid colouring
construction. A key building block in this construction will be the following family of cycle
packings, which we call vector sum packings.

▶ Definition 11. Given positive integers n, m, b and s, an (n, m, b, s)-vector sum packing
is an (A, f, n, m)-cycle packing with A = [0, s]b and f(z0, . . . , zm−1) = z0 + · · · + zm−1.

▶ Example 12. For the special case of vector dimension b = 1 we have already encountered
a (8, 3, 1, 2)-vector sum packing in Example 5.

▶ Example 13. Let us see an example of a vector sum packing with vector dimension b = 3.
Set m = 2, s = 1, n = 8 and (z0, z1, . . . , z7) =

((
0
0
0

)
,
(

1
0
0

)
,
(

0
1
0

)
,
(

0
0
0

)
,
(

0
0
1

)
,
(

1
0
0

)
,
(

0
1
1

)
,
(

0
0
0

))
.

Then f(z0, z1) =
(

1
0
0

)
, f(z1, z2) =

(
1
1
0

)
, f(z2, z3) =

(
0
1
0

)
, f(z3, z4) =

(
0
0
1

)
, f(z4, z5) =

(
1
0
1

)
,

f(z5, z6) =
(

1
1
1

)
, f(z6, z7) =

(
0
1
1

)
, and f(z7, z0) =

(
0
0
0

)
. As these sums all differ, the

injectivity property holds and we have a vector sum packing.

The strategy of our construction is encapsulated in the following two key lemmas (proven
in Section 3 and Section 4, respectively). The first reduces the construction of a grid colouring
to the construction of a vector sum packing.

▶ Lemma 14. Consider a dimension d, size n, window size m, and number of colours k,
and assume the existence of integers b and s satisfying k = bd + 1 and s = md−1

bd . Then
the existence of an (n, m, b, s)-vector sum packing implies the existence of a (n, m, d, k)-grid
colouring.

Given Lemma 14, the final piece in the puzzle is a construction of vector sum packings.

▶ Lemma 15. For any s ≥ 1, m ≥ 2 and b ≥ 1, there exists an (nb, m, b, 2s)-vector sum
packing with

nb = (2ms + 1)b−1
(

2ms − 1
s

)
+ 1

s
.

To deduce the existence of the construction for Theorem 9, we combine Lemmas 14 and 15,
choosing m as a large multiple of 2bd, with k = bd + 1 and s = md−1

2bd . Then the value of nb

in Lemma 15 satisfies nb ∼
( 2

k−1
)(k−1)/d

mk−1 for large m. We will prove in Corollary 22
that the position can be computed with a constant number of arithmetic operations.

We remark that the vector sum packing problem is related to the combinatorial theory
of antimagic labellings (a natural variant on the classic topic of magic labellings) in which
one is required to label the edges (or vertices) of a graph (or hypergraph) from a given set
of integers (or vectors) so that vertices (or edges) are uniquely determined by the sum of
their incident labels. A well-known conjecture of Ringel (cited in [15]) states that for any
connected graph with m > 1 edges there is an antimagic labelling of its edges by {1, . . . , m}.
It appears that this connection has not previously been exploited and may be fruitful for
further research.

3 From Vector Sum Packing to Grid Colouring

The aim of this section is to prove Lemma 14, which reduces the grid colouring problem to
the vector sum packing problem.

ICALP 2024
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3.1 The Separation Property
In this section, we consider a fixed dimension d ≥ 2, window size m ≥ 2 and grid size n ≥ m.
For x ∈ Zd, let us define the window of corner x as the set of points

Window(x) = {x + c | c ∈ [0, m − 1]d}.

For the grid colouring problem, we require that the coordinates of each point x are uniquely
determined modulo n by the multiset of colours of the points from Window(x). This multiset
is denoted by colourMultiset(x), and the colour of the point x is denoted by colour(x).

We now present a sufficient condition, called separation, that guarantees this property.
Each colour is represented as a pair (pigment, shade). We divide the set of colours into
d pigment classes, one pigment class Ci for each dimension i ∈ [0, d − 1]. Each pigment
class contains b shades. Thus Ci = {ci,0, ci,1, . . . , ci,b−1} where if i is the green pigment, say,
then ci,0 represents very light green and ci,b−1 represents very dark green. The idea now
is that for each square x ∈ Zd, the coordinate xi modulo n is uniquely determined by the
pigment class Ci, for each i ∈ [0, d − 1], precisely by colourMultiset(x) ∩ Ci. In particular, xi

is independent of any other pigment class j ̸= i on Window(x), for example, shades of red.
Evidently, this separation property implies that if x and y have the same colour multiset
for every pigment class then xi ≡ yi mod n for each i ∈ [0, d − 1] and, hence, x ≡ y mod n.
Thus the separation property implies that we have a proper grid colouring.

Rather than working directly with separation, it will be convenient to consider the
following two further conditions that together clearly imply separation.

Dimensional Inconsistency: Given x and y, if xi ̸= yi mod n then

colourMultiset(x) ∩ Ci ̸= colourMultiset(y) ∩ Ci.

Anti-Dimensional Consistency: Given x and y, if xi = yi mod n then

colourMultiset(x) ∩ Ci = colourMultiset(y) ∩ Ci.

To ensure anti-dimensional consistency it will be convenient to focus on the following condition
called quasi-periodicity, which states that if some x is coloured a shade of pigment i then
any translate y of x by distance m in any dimension other than i has the same colour as x

∀i ̸= j, if colour(x) ∈ Ci then colour(x + m ej) = colour(x).

▶ Lemma 16. Any quasi-periodic grid colouring satisfies anti-dimensional consistency.

Proof. Take a quasi-periodic colouring. It suffices to show, given xi, that colourMultiset(x)∩
Ci is fixed. This will hold if the number of squares of colour ci,ℓ in a window does not change
if we translate by one square in any dimension j other than i. Let us define

A = Window(x) \ Window(x + ej), B = Window(x + ej) \ Window(x).

Since B is obtained from A by translation by mej , quasi-periodicity implies that the number
of points of colour ci,ℓ in A and B are equal. Thus, the number of points of colour ci,ℓ

in Window(x) and Window(x + ej) are equal as well. As this argument applies for any
j ̸= i, the anti-dimensional consistency property holds. Thus, quasi-periodicity implies
anti-dimensional consistency. ◀
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3.2 Separation via Vector Sum Packing
Assume we have an (n, m, b, s)-vector sum packing (zj)j∈Z of size n and window size m,
containing vectors in [0, s]b, where s is a positive integer equal to md−1

bd for some dimension
d ≥ 2. We will now construct a (n, m, d, k)-grid colouring with number of colours k = bd + 1.
We detail our algorithm below and illustrate it in Figure 2. As we saw in the previous section,
to ensure the separation condition, it is sufficient that our grid colouring satisfies dimensional
inconsistency and quasi-periodicity.

(a) We begin with an initial colouring of the grid using only d pigments, each coming in b

different shades. Take a pigment i ∈ [0, d − 1] and shade h ∈ [0, b − 1]. Then the point
x = (x0, . . . , xd−1) has pigment i and shade h if and only if

d−1∑
j=0

xj ≡ i + hd mod bd.

This initial colouring is quasi-periodic. But, of course, it does not satisfy dimensional
inconsistency. To rectify this, we will apply the last unused colour, which we call blank,
to erase some colours from the initial colouring.

(b) Consider a dimension i ∈ [0, d − 1]. We associate to it the pigment i and the set Ci of
the corresponding b shades. For each j ∈ Z, let

Bi,j = {x | xi = j and ∀ℓ ̸= i, xℓ ∈ [0, m − 1]}.

We apply the blank colour to erase some of the colours from Bi,j , so that the number of
points of shade ci,ℓ is equal to the ℓth component of zj . This is always possible, because
in the initial colouring, Bi,j contains s = md−1

bd occurrences of shade ci,ℓ, and the values
of the vectors from the vector sum packing are all in [0, s].

(c) We apply quasi-periodicity to reproduce this construction on the rest of the grid. Spe-
cifically, point x = (x0, . . . , xd−1) of pigment i and shade h in the initial colouring is
erased if and only if the point y with yi = xi and for all j ̸= i, yj = xj mod m was
erased at step (b).

The injectivity of the vector sum packing implies the dimensional inconsistency of our grid
colouring. By construction, our grid colouring is quasi-periodic, so by Lemma 16, it satisfies
the separation property, concluding the proof of Lemma 14.

3.3 An Example
An illustration of the proof of Lemma 14 is given in Figure 2 on a grid of dimension d = 2,
size n = 8, window size m = 4, number of colours k = 3. To create the grid-colouring we use
the vector sum packing (z0, z1, . . . , z7) = (0, 0, 0, 0, 2, 2, 2, 1) (note each vector has dimension
1, so is represented by its content). In particular, s = 2 and b = 1; note that k = bd + 1 and
s = md−1

bd . Recall, the aim is that number of occurrences of 0 (resp. 1) in a 4 by 4 square
characterizes its row (resp. column) number. Following the proof of Lemma 14, we start with
a periodic colouring, represented in (a). We now use the blank colour 2 to erase some of the 0.
First, in (b), we erase entries in the first 4 columns so the number of occurrences of 0 in these
columns for the eight rows are (0, 0, 0, 0, 2, 2, 2, 1). Second in (c), we apply quasi-periodicity
on the rest of the grid. Next, in (d) and (e), we apply the same approach to erase some of
the 1. The final result is (e). No two 4 × 4 subsquares contain the same multiset of colours.

Let us now illustrate how this grid is used for localization. Recall that our convention
is to number the rows from top to botton, and column from left to right, both starting at
0. Assume we are measuring in a window (i.e. a 4 × 4 subsquare) the multiset of colors
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0 1 0 1 0 1 0 1
1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1
1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1
1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1
1 0 1 0 1 0 1 0

2 1 2 1 0 1 0 1
1 2 1 2 1 0 1 0
2 1 2 1 0 1 0 1
1 2 1 2 1 0 1 0
0 1 0 1 0 1 0 1
1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1
1 0 1 2 1 0 1 0

2 1 2 1 2 1 2 1
1 2 1 2 1 2 1 2
2 1 2 1 2 1 2 1
1 2 1 2 1 2 1 2
0 1 0 1 0 1 0 1
1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1
1 0 1 2 1 0 1 2

(a) (b) (c)

2 2 2 2 2 1 2 1
2 2 2 2 1 2 1 2
2 2 2 2 2 1 2 2
2 2 2 2 1 2 1 2
0 1 0 1 0 1 0 1
1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1
1 0 1 2 1 0 1 2

2 2 2 2 2 1 2 1
2 2 2 2 1 2 1 2
2 2 2 2 2 1 2 2
2 2 2 2 1 2 1 2
0 2 0 2 0 1 0 1
2 0 2 0 1 0 1 0
0 2 0 2 0 1 0 2
2 0 2 2 1 0 1 2

(d) (e)

Figure 2 Illustration of the steps of the proof of Lemma 14 on a grid of dimension d = 2, size
n = 8, window size m = 4, number of colours k = 3.

containing 5 occurrences of 0, 3 occurrences of 1 and 8 occurrences of 2. We wish to locate
this window in the grid (e). The naive algorithm is to consider each possible window in the
grid and compare the multisets of colors. This becomes costly for large grids, so we present
a more efficient algorithm. By convention, color 0 is used to determine the row. Looking at
the vector sum packing (0, 0, 0, 0, 2, 2, 2, 1), we observe that the sequence whose jth element
is the sum of m = 4 consecutive elements starting at position j, is (0, 2, 4, 6, 7, 5, 3, 1). The
number 5 is located at position 5 in this sequence, so the upper-left corner of the window
we are seeking has row number 5. To determine the column, we consider the color 1. Its
number of occurrence 3 has position 6 in (0, 2, 4, 6, 7, 5, 3, 1), so the column number is 6. On
the torus (e), the 4 × 4 subsquare with top left corner in row 5 and column 6 indeed contains
5 occurrences of 0, 3 occurrences of 1 and 8 occurrences of 2.

Observe that for any fixed dimension, the localization problem in the grid reduces in
constant complexity to the problem of computing the position of a vector in a vector
sum packing. We call this second problem decoding. In the next section, we will present
our construction for vector sum packings, as well as a decoding algorithm with constant
complexity (in the number of arithmetic operations, as the dimension d and parameter b,
defined there, are fixed).

A grid colouring of size 256, window size 8, and 5 colours is presented in the appendix.

4 Vector Sum Packing

This section presents our construction of vector sum packings, thus proving Lemma 15, which
is the last missing ingredient for the proof of our main result Theorem 9.
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4.1 Profiles and Duals

To build vector sum packings (see Definition 11), we introduce certain integer sequences that
we call profiles. Profiles with different parameters will be used to fill the coordinates of the
vector sum packing, in Lemma 21.

The m-dual of a profile w is an integer sequence of same length |w|, defined as the sum
of the elements of w on a cycling window of length m

Dualm(w) =
( i+m−1∑

j=i

wi mod |w|

)
i∈[0,|w|−1]

.

Consider integers s ≥ 1 and m ≥ 2. Let us write sequences of length 1 as (σ) and
sequences of length m as (σ0, σ1, . . . , σm−1). For a finite sequence L and a nonnegative
integer T , the sequence obtained by concatenating T copies of L one after the other is
denoted by LT . Let ∅ denote the emptysequence, and let a · b denote the concatenation of
the sequences a and b, so (1, 2, 3) · (4) is equal to (1, 2, 3, 4). In the following tables, the rows
and columns are numbered starting at 0, in red. Straight lines have been added between
some of the rows to distinguish parts of the tables following different rules.

Let us define the sequence Profile(s, m, 0) as the concatenation of the cells from the
following table, read line by line from top left to bottom right.

0 1 2 · · · s − 1
0 (0, . . . , 0) (2, . . . , 2) (4, . . . , 4) · · · (2s − 2, . . . , 2s − 2)
1 (2s, . . . , 2s, 2s − 1) (2s − 2, . . . , 2s − 2, 2s − 3) (2s − 4, . . . , 2s − 4, 2s − 5) · · · (2, . . . , 2, 1)

For example, we have Profile(1, 3, 0) = (0, 0, 0, 2, 2, 1) and Profile(2, 2, 0) = (0, 0, 2, 2, 4, 3, 2, 1).

▶ Lemma 17. Profile(s, m, 0) has length 2ms. Furthermore, its m-dual is

Dualm(Profile(s, m, 0)) = (0, 2, 4, . . . , 2ms − 2, 2ms − 1, 2ms − 3, 2ms − 5, . . . , 1).

Proof. Profile(s, m, 0) has length 2ms because each entry in the table is a sequence of
cardinality m and there are 2s entries in the table. The reader may easily verify that the
m-dual begins with non-negative even numbers increasing up to 2ms − 2 followed by positive
odd numbers decreasing down from 2ms − 2. Thus, the m-dual contains every integer in
[0, 2m − 1] exactly once. ◀

Let us define the (s, m, 0)-decoding function as the function that associates to an integer v

its smallest index in the m-dual of Profile(s, m, 0). For example, the (2, 2, 0)-decoding function
sends 6 to 3, because the 2-dual of Profile(2, 2, 0) = (0, 0, 2, 2, 4, 3, 2, 1) is (0, 2, 4, 6, 7, 5, 3, 1) ,
where the first (and only) occurrence of 6 is at position 3.

▶ Corollary 18. The (s, m, 0)-decoding function is

v 7→

{
v
2 if v is even,

2ms − 1 − v−1
2 if v is odd.

It is computable in a constant number of arithmetic operations.
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For any positive integer T and m ≥ 2, let us define the sequence Profile(s, m, T ) as the
concatenation of the cells from the following table.

0 1 2 · · · s − 1
0 (0, . . . , 0, 0)T (0, . . . , 0, 2)T (0, . . . , 0, 4)T · · · (0, . . . , 0, 2s − 2)T

1 (0, . . . , 0, 0, 2s)T (0, . . . , 0, 2, 2s)T (0, . . . , 0, 4, 2s)T · · · (0, . . . , 0, 2s − 2, 2s)T

...
...

...
...

m − 1 (0, 2s, . . . , 2s, 2s)T (2, 2s, . . . , 2s, 2s)T · · · · · · (2s − 2, 2s, . . . , 2s)T

m (2s)mT −1 (2s − 1, 2s, . . . , 2s)T (2s − 3, 2s, . . . , 2s)T · · · (3, 2s, . . . , 2s)T

m + 1 (1, 2s, 2s, . . . , 2s)T −1 (1, 2s, . . . , 2s, 2s − 2)T (1, 2s, . . . , 2s, 2s − 4)T · · · (1, 2s, . . . , 2s, 2)T

m + 2 (1, 2s, . . . , 2s, 0)T (1, 2s, . . . , 2s − 2, 0)T (1, 2s, . . . , 2s, 2s − 4, 0)T · · · (1, 2s, . . . , 2s, 2, 0)T

...
...

...
...

2m − 1 (1, 2s, 0, . . . , 0)T (1, 2s − 2, 0, . . . , 0)T · · · · · · (1, 2, 0, . . . , 0)T

2m (1, 0, . . . , 0)T −1 · (1) ∅ ∅ · · · ∅

▶ Lemma 19. For any m ≥ 2, Profile(s, m, T ) has length m((2ms + 1)T − 2). Furthermore,
its m-dual is obtained by concatenation of the cells of the following table

0 1 2 · · · s − 1
0 (0)mT (2)mT (4)mT · · · (2s − 2)mT

1 (2s)mT −1 (2s + 2)mT (2s + 4)mT · · · (4s − 2)mT

2 (4s)mT −1 (4s + 2)mT (4s + 4)mT · · · (6s − 2)mT

...
...

...
...

...
m − 1 (2(m − 1)s)mT −1 (2(m − 1)s + 2)mT (2(m − 1)s + 4)mT · · · (2ms − 2)mT

m (2ms)mT −1 (2ms − 1)mT (2ms − 3)mT · · · (2(m − 1)s + 3)mT

m + 1 (2(m − 1)s + 1)mT −1 (2(m − 1)s − 1)mT (2(m − 1)s − 3)mT · · · (2(m − 2)s + 3)mT

...
...

...
...

...
2m − 1 (2s + 1)mT −1 (2s − 1)mT (2s − 3)mT · · · (3)mT

2m (1)mT −1 ∅ ∅ · · · ∅

Proof. In the table, there are 2ms − 2 cells containing sequences of length mT , one cell
containing a sequence of length mT − 1, one cell containing a sequence of length m(T − 1)
and one celle containing a sequence of length m(T − 1) + 1, so Profile(s, m, T ) has length

(2ms − 2)mT + mT − 1 + m(T − 1) + m(T − 1) + 1 = mT (2ms + 1) − 2m

as desired. Again, the reader may verify that the m-dual begins with non-negative even
numbers increasing up to 2ms followed by positive odd numbers decreasing down from
2ms − 1 (repeated in the quantities specified). ◀

We define the (s, m, T )-decoding function as the function that associates to an integer v

its smallest index in the m-dual of Profile(s, m, T ).

▶ Corollary 20. The (s, m, T )-decoding function output on the input v is computed using the
following algorithm. If v is even, we define r = ⌊ v

2s ⌋ and c = v
2 mod [s]. They represent the

row and column in the m-dual from Lemma 19. Then the output of the decoding function is

(r m T s − r + 1)1r>0 + (c m T − 1 + 1r=0)1c>0.

Otherwise, v is odd and we define r = ⌊ 2 m s−v+1
2s ⌋ and c = 2 m s−v+1

2 mod s. The output is
then

1 + m(m T s − 1) + (m T s r − r)1r>0 + (c m T − 1)1c>0.

It is computable in a constant number of arithmetic operations.
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4.2 Generating a Vector Sum Packing
We will explicitly construct the vector sum packing by combining profiles, thus proving
Lemma 15.

Recall that an (n, m, b, s)-vector sum packing is characterised by its pattern (z0, . . . , zn−1)
where each zi is a vector in [0, s]b. These vectors will be defined as the columns of a matrix
M (b). Furthermore, the rows of this matrix will be constructed using sequences given by the
Profile(s, m, T ).

The matrix M (b) will have b rows and m · Tb = nb columns. Specifically, given s ≥ 1 and
m ≥ 2, we set T0 = 0 and T1 = 2s. Then, for each b ≥ 1, we recursively set

Tb+1 = (2ms + 1)Tb − 2.

Thus we obtain the dimensions of our M (b) matrices. To fill in the entries of the matrices we
again apply a recursive construction.

For b = 1, the matrix M (1) has only one row, which is identical to the sequence
Profile(s, m, 0). We remark that M (1) does indeed have n1 = m · T1 = 2ms columns, as
required by Lemma 17.
Next consider the case b ≥ 2. The basic idea is that M (b) should simply be the concat-
enation on 2ms + 1 copies of M (b−1), plus an additional row identical to the sequence
Profile(s, m, Tb−1), which will be used to distinguish between the different copies.

However, this basic idea does not scale correctly, so instead of concatenating identical
copies of M (b−1), we also concatenate truncated copies of M (b−1). Specifically, we allow for
the truncated matrix M (b−1,⋆) which is identical to M (b−1) except that its first column is
removed.

We now set M (b) = M (b−1,0) ◦ M (b−1,2) ◦ · · · ◦ M (b−1,2ms) ◦ M (b−1,2ms−1) ◦ · · · ◦ M (b−1,1)),
where each M (b−1,ℓ) is either M (b−1) or M (b−1,⋆) and where ◦ denotes the concatenation
operation. Thus, it remains, to prescribe, for each for ℓ ∈ [0, 2ms] whether M (b−1,ℓ) is set
equal to M (b−1) or M (b−1,⋆). To do this, we use the m-dual of the Profile(s, m, Tb−1). In
particular, define Iℓ to be the set of indices where the m-dual of the profile takes value ℓ.
That is,

Iℓ = {i | Dualm(Profile(s, m, Tb−1))i = ℓ} (1)

Recall that nb = mTb = m · ((2ms + 1) · Tb−1 − 2). Observe then, from Lemma 19, that the
(Iℓ)s are disjoint integer intervals of length either nb−1 or nb−1 − 1 whose union is [0, nb − 1].
For each ℓ ∈ [0, 2ms], we now define

M (b−1,ℓ) =
{

M (b−1) if |Iℓ| = nb−1,

M (b−1,⋆) if |Iℓ| = nb−1 − 1.

The resultant construction of M (b) is then illustrated in Figure 3. For example, for s = 1,
m = 2 and b = 2, we have T0 = 0 and T1 = 2, so

Profile(s, m, Tb−1) = Profile(1, 2, 2) = (0, 0, 0, 0, 0, 2, 0, 2, 2, 2, 2, 1, 2, 1, 0, 1),
Dualm(Profile(s, m, Tb−1)) = (0, 0, 0, 0, 2, 2, 2, 4, 4, 4, 3, 3, 3, 1, 1, 1),

Profile(s, m, Tb−2) = Profile(1, 2, 0) = (0, 0, 2, 1),

so

M (2) =
(

0 0 2 1 0 2 1 0 2 1 0 2 1 0 2 1
0 0 0 0 0 2 0 2 2 2 2 1 2 1 0 1

)
.
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M (b) =

I0︷ ︸︸ ︷ I2︷ ︸︸ ︷ I2ms︷ ︸︸ ︷ I1︷ ︸︸ ︷
M (b−1,0) M (b−1,2) · · · M (b−1,2ms) · · · M (b−1,1)

Profile(s, m, Tb−1)

Figure 3 The recursive construction of the matrix M (b). The indices j for the sets Ij on top of
the figure are first increasing even numbers, then decreasing odd numbers.

As stated, we will take our vectors (z0, z1, . . . , znb−1) to be the columns of M (b). That
is, let Vi,j = M

(b)
i mod nb, j . Then, for any i ∈ Z, we have zi = (Vi,j)j∈[0,b−1].

▶ Lemma 21. The sequence of vectors (z0, z1, . . . , znb−1) is the pattern of an (nb, m, b, 2s)-
vector sum packing.

Proof. Given (z0, z1, . . . , znb−1) recall that f(zj , zj+1, . . . , zj+m−1) = zj + zj+1 + · · · +
zj+m−1, where the indices are taken modulo nb. Our task is to prove that f is injective.

We will show this by extending the definition of an m-dual to matrices: we define the
m-dual of a matrix M with n columns to be the matrix D of the same dimensions where
for all i, the ith column of D is equal to the sum of the columns of M of all indices in
[i, i + m − 1] modulo n.

Proving (z0, z1, . . . , znb−1) is an (nb, m, b, 2s)-vector sum packing is then equivalent to
proving that the m-dual of M (b) does not contain any identical columns. We will do so by
induction on b.

Initialization. For the base case b = 1, recall that M (b) = Profile(s, m, 0). Hence, by
Lemma 17, Dualm(M (b)) does not contain two identical columns.

Induction Step. For the induction hypothesis, assume that Dualm(M (b−1)) does not contain
two identical columns. Now define Profile∗(s, m, T ) to be equal to Profile(s, m, T ) except with
the first 0 removed. By construction, each row j ∈ [0, b − 1] of M (b) is a concatenation of the
form P0 ◦P1 ◦ · · · ◦Pr where each Pi is equal either to Profile(s, m, Tj) or to Profile∗(s, m, Tj).
Next observe that both Profile(s, m, Tj) and Profile∗(s, m, Tj) start with m − 1 occurrences
of 0. This implies that m-dual and concatenation commutes as

Dualm(P0 ◦ P1 ◦ · · · ◦ Pr) = Dualm(P0) ◦ Dualm(P1) ◦ · · · ◦ Dualm(Pr).

Therefore the m-dual of the matrix M (b) is

Dualm(M (b)) =

I0︷ ︸︸ ︷ I1︷ ︸︸ ︷
Dualm(M (b−1,0)) · · · Dualm(M (b−1,1))

Dualm(Profile(s, m, Tb−1))

(2)

Assume that two columns c and c′ with column indices i and i′ in Dualm(M (b)) are equal.
Let ℓ ∈ [0, 2ms] denote the value of c in its final row b − 1. Thus, c′ also has entry ℓ in its last
row. But the last row b − 1 of Dualm(M (b)) is defined to equal Dualm(Profile(s, m, Tb−1)).
Hence, by definition of Iℓ from Equation (1), we have i ∈ Iℓ and i′ ∈ Iℓ. Let d and d′ be
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obtained from c and c′ by removing their last row b − 1. By Equation (2), both d and d′

belong to Dualm(M (b−1,ℓ)). Thus, they both belong to Dualm(M (b−1)). By the induction
hypothesis, this implies i = i′ and concludes the proof. ◀

Let the (n, m, b, s)-decoding function for vector sum packing be defined as the function
that inputs an integer vector x and outputs its index in the m-dual of the (n, m, b, s)-vector
sum packing we defined.

▶ Corollary 22. For fixed b, the (nb, m, b, 2s)-decoding function for our vector sum packing
is computable in a constant number of arithmetic operations.

Proof. This decoding function is computed recursively, following the recursive construction
of matrix Dualm(M (b)) from Equation (2). It inputs a vector x and an auxiliary Boolean
parameter B, initialized at False, that indicates if we are looking for localization in a vector
sum packing where the first vector has been removed.

We first use the decoding function for profiles from Corollaries 18 and 20 on the last
coordinate of x to compute an integer c, and set p = c if B is equal to False, and p = c − 1
if B is equal to True. For b = 1, as x is a vector of dimension 1, the algorithm stops
and p is returned. Otherwise, by construction, p is the smallest possible index for any
vector whose last coordinate is equal to the last coordinate of x. Now, in Equation (2), we
want to determine whether the matrix Dualm(M b−1,j) on top of p is equal to Dualm(M b−1)
or to Dualm(M b−1,⋆). As explained in the construction, this is decided by looking at
Dualm(Profile(s, m, Tb−1)) from Lemma 19. In this sequence, let ℓ denote the number of
repetition of the element at position p.

If ℓ = mTb−1, then we are working with Dualm(M b−1). In that case, we call recursively
the (nb−1, m, b − 1, 2s)-decoding function on the vector x without its last coordinate,
with auxiliary parameter equal to False. The output is added to p and returned.
Otherwise, we have ℓ = mTb−1 − 1, and we are working with Dualm(M b−1,⋆). We call
recursively the (nb−1, m, b − 1, 2s)-decoding function on the vector x without its last
coordinate, with auxiliary parameter equal to True. The output is added to p and
returned.

Deciding whether ℓ = mTb−1 or ℓ = mTb−1 − 1 is achieved by looking at the parity of p

and its value modulo s. This recursive construction has depth b, so for b fixed, it requires
only a constant number of arithmetic operations. Python code for this algorithm is provided
in [13]. ◀

4.3 Summary and Complexity
Let us summarize our algorithm constructing a grid coloring. It inputs a dimension d ≥ 2
and two other parameters b ≥ 1 and t ≥ 1. The first step is to compute the window size
m = 2bdt, the number of colors k = bd + 1, the parameter s = (2bd)d−2td−1 to ensure
2s = md−1

bd , and the grid size n = (2ms + 1)b−1(2ms − 1/s) + 1/s. The second step is to
construct an (n, m, b, 2s)-vector sum packing, as described in Section 4.2, using the profile
sequences defined in Section 4.1. In the third step, we finally colour the points of our grid of
side n and dimension d. Our set of colours is {0, 1, . . . , k − 1}. Here the last colour k − 1 is a
“blank” color used to erase the other colours. The other colours are divided into d sets, called
pigment classes. Each pigment class contains b colours, which we call its shades. To each
dimension of the grid is associated a unique pigment. The vector sum packing is then used,
as explained in Section 3, to colour the points of the grid.
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Next consider the localization problem. Localization means, given a multiset S of colours,
the recovery of the unique window of size m in the grid that contains this multiset of colors
(if it exists). To achieve localization, we proceed dimension by dimension. We count in S the
colours from the pigment class corresponding to the dimension considered and make a vector
out of it. For example, if the dimension corresponds to the colours 4, 5, 6 and S contains
three occurrences of the color 4, zero occurrences of the colour 5 and two occurrences of
the colour 6, the vector is (3, 0, 2). We use the decoding algorithm for vector sum packing
from Corollary 22 to translate this vector into a coordinate. Having achieved this for every
coordinate, we deduce the position of the window whose multiset of colours is equal to S.

The construction of the grid and localization procedure are illustrated in Section 3.3. We
measure complexity as the number of arithmetic operations for b and d fixed, while t goes to
infinity. The construction of the grid has complexity proportional to the size of its output,
which is O(nd) = O(tb d2). Corollary 22 implies that the complexity of the localization
algorithm is constant.

5 Conclusion

Many interesting directions for future research remain, both theoretical and practical. One
nice extension would be to make our grid colouring robust by allowing for error detection
and correction. This has been achieved for other cycle and torus packing problems (see, for
example, [2, 4, 6, 25]) and is a necessary step for practical applications. Another valuable
contribution would be to study disc-like windows rather than the square windows examined
in this article. This would match the natural shape of the domain where an emission emitted
at a point is detectable.
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A Software Implementation

We implemented our algorithm constructing the grid colouring as well as the decoding
algorithm in Python. The code is available at [13]. An example of grid colouring computed
with this code is presented in Figure 4.

Figure 4 Grid colouring of size 256, window size 8 and number of colours 5. It corresponds to
the parameters d = 2, b = 2 and t = 1.
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